]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
cb323159 | 2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
0a7de745 | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
0a7de745 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
0a7de745 | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
0a7de745 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
0a7de745 | 31 | /* |
1c79356b A |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
0a7de745 | 35 | * |
1c79356b A |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
0a7de745 | 41 | * |
1c79356b A |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
0a7de745 | 45 | * |
1c79356b | 46 | * Carnegie Mellon requests users of this software to return to |
0a7de745 | 47 | * |
1c79356b A |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
0a7de745 | 52 | * |
1c79356b A |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/memory_object.c | |
60 | * Author: Michael Wayne Young | |
61 | * | |
62 | * External memory management interface control functions. | |
63 | */ | |
64 | ||
1c79356b A |
65 | /* |
66 | * Interface dependencies: | |
67 | */ | |
68 | ||
0a7de745 | 69 | #include <mach/std_types.h> /* For pointer_t */ |
1c79356b A |
70 | #include <mach/mach_types.h> |
71 | ||
0b4e3aa0 | 72 | #include <mach/mig.h> |
1c79356b A |
73 | #include <mach/kern_return.h> |
74 | #include <mach/memory_object.h> | |
75 | #include <mach/memory_object_default.h> | |
76 | #include <mach/memory_object_control_server.h> | |
0b4e3aa0 | 77 | #include <mach/host_priv_server.h> |
1c79356b A |
78 | #include <mach/boolean.h> |
79 | #include <mach/vm_prot.h> | |
80 | #include <mach/message.h> | |
81 | ||
1c79356b A |
82 | /* |
83 | * Implementation dependencies: | |
84 | */ | |
0a7de745 | 85 | #include <string.h> /* For memcpy() */ |
1c79356b | 86 | |
0b4e3aa0 | 87 | #include <kern/host.h> |
0a7de745 | 88 | #include <kern/thread.h> /* For current_thread() */ |
0b4e3aa0 A |
89 | #include <kern/ipc_mig.h> |
90 | #include <kern/misc_protos.h> | |
91 | ||
92 | #include <vm/vm_object.h> | |
93 | #include <vm/vm_fault.h> | |
1c79356b A |
94 | #include <vm/memory_object.h> |
95 | #include <vm/vm_page.h> | |
96 | #include <vm/vm_pageout.h> | |
0a7de745 A |
97 | #include <vm/pmap.h> /* For pmap_clear_modify */ |
98 | #include <vm/vm_kern.h> /* For kernel_map, vm_move */ | |
99 | #include <vm/vm_map.h> /* For vm_map_pageable */ | |
100 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ | |
6d2010ae | 101 | #include <vm/vm_shared_region.h> |
1c79356b | 102 | |
1c79356b | 103 | #include <vm/vm_external.h> |
1c79356b | 104 | |
91447636 A |
105 | #include <vm/vm_protos.h> |
106 | ||
0a7de745 | 107 | memory_object_default_t memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; |
cb323159 | 108 | decl_lck_mtx_data(, memory_manager_default_lock); |
1c79356b | 109 | |
1c79356b A |
110 | |
111 | /* | |
112 | * Routine: memory_object_should_return_page | |
113 | * | |
114 | * Description: | |
115 | * Determine whether the given page should be returned, | |
116 | * based on the page's state and on the given return policy. | |
117 | * | |
118 | * We should return the page if one of the following is true: | |
119 | * | |
120 | * 1. Page is dirty and should_return is not RETURN_NONE. | |
121 | * 2. Page is precious and should_return is RETURN_ALL. | |
122 | * 3. Should_return is RETURN_ANYTHING. | |
123 | * | |
d9a64523 | 124 | * As a side effect, m->vmp_dirty will be made consistent |
1c79356b A |
125 | * with pmap_is_modified(m), if should_return is not |
126 | * MEMORY_OBJECT_RETURN_NONE. | |
127 | */ | |
128 | ||
0a7de745 | 129 | #define memory_object_should_return_page(m, should_return) \ |
1c79356b | 130 | (should_return != MEMORY_OBJECT_RETURN_NONE && \ |
d9a64523 A |
131 | (((m)->vmp_dirty || ((m)->vmp_dirty = pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(m)))) || \ |
132 | ((m)->vmp_precious && (should_return) == MEMORY_OBJECT_RETURN_ALL) || \ | |
1c79356b A |
133 | (should_return) == MEMORY_OBJECT_RETURN_ANYTHING)) |
134 | ||
0a7de745 | 135 | typedef int memory_object_lock_result_t; |
1c79356b | 136 | |
0a7de745 A |
137 | #define MEMORY_OBJECT_LOCK_RESULT_DONE 0 |
138 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK 1 | |
139 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN 2 | |
140 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_FREE 3 | |
1c79356b A |
141 | |
142 | memory_object_lock_result_t memory_object_lock_page( | |
0a7de745 A |
143 | vm_page_t m, |
144 | memory_object_return_t should_return, | |
145 | boolean_t should_flush, | |
146 | vm_prot_t prot); | |
1c79356b A |
147 | |
148 | /* | |
149 | * Routine: memory_object_lock_page | |
150 | * | |
151 | * Description: | |
152 | * Perform the appropriate lock operations on the | |
153 | * given page. See the description of | |
154 | * "memory_object_lock_request" for the meanings | |
155 | * of the arguments. | |
156 | * | |
157 | * Returns an indication that the operation | |
158 | * completed, blocked, or that the page must | |
159 | * be cleaned. | |
160 | */ | |
161 | memory_object_lock_result_t | |
162 | memory_object_lock_page( | |
0a7de745 A |
163 | vm_page_t m, |
164 | memory_object_return_t should_return, | |
165 | boolean_t should_flush, | |
166 | vm_prot_t prot) | |
1c79356b | 167 | { |
0a7de745 A |
168 | if (m->vmp_busy || m->vmp_cleaning) { |
169 | return MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK; | |
170 | } | |
b0d623f7 | 171 | |
0a7de745 | 172 | if (m->vmp_laundry) { |
316670eb | 173 | vm_pageout_steal_laundry(m, FALSE); |
0a7de745 | 174 | } |
6d2010ae | 175 | |
1c79356b A |
176 | /* |
177 | * Don't worry about pages for which the kernel | |
178 | * does not have any data. | |
179 | */ | |
d9a64523 A |
180 | if (m->vmp_absent || m->vmp_error || m->vmp_restart) { |
181 | if (m->vmp_error && should_flush && !VM_PAGE_WIRED(m)) { | |
6d2010ae A |
182 | /* |
183 | * dump the page, pager wants us to | |
184 | * clean it up and there is no | |
185 | * relevant data to return | |
186 | */ | |
0a7de745 | 187 | return MEMORY_OBJECT_LOCK_RESULT_MUST_FREE; |
765c9de3 | 188 | } |
0a7de745 | 189 | return MEMORY_OBJECT_LOCK_RESULT_DONE; |
765c9de3 | 190 | } |
d9a64523 | 191 | assert(!m->vmp_fictitious); |
1c79356b | 192 | |
b0d623f7 | 193 | if (VM_PAGE_WIRED(m)) { |
6d2010ae A |
194 | /* |
195 | * The page is wired... just clean or return the page if needed. | |
196 | * Wired pages don't get flushed or disconnected from the pmap. | |
197 | */ | |
0a7de745 A |
198 | if (memory_object_should_return_page(m, should_return)) { |
199 | return MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN; | |
200 | } | |
1c79356b | 201 | |
0a7de745 A |
202 | return MEMORY_OBJECT_LOCK_RESULT_DONE; |
203 | } | |
1c79356b | 204 | |
6d2010ae A |
205 | if (should_flush) { |
206 | /* | |
0a7de745 | 207 | * must do the pmap_disconnect before determining the |
6d2010ae A |
208 | * need to return the page... otherwise it's possible |
209 | * for the page to go from the clean to the dirty state | |
210 | * after we've made our decision | |
211 | */ | |
39037602 | 212 | if (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED) { |
316670eb A |
213 | SET_PAGE_DIRTY(m, FALSE); |
214 | } | |
6d2010ae A |
215 | } else { |
216 | /* | |
217 | * If we are decreasing permission, do it now; | |
218 | * let the fault handler take care of increases | |
219 | * (pmap_page_protect may not increase protection). | |
220 | */ | |
0a7de745 | 221 | if (prot != VM_PROT_NO_CHANGE) { |
39037602 | 222 | pmap_page_protect(VM_PAGE_GET_PHYS_PAGE(m), VM_PROT_ALL & ~prot); |
0a7de745 | 223 | } |
1c79356b | 224 | } |
1c79356b | 225 | /* |
6d2010ae | 226 | * Handle returning dirty or precious pages |
1c79356b | 227 | */ |
1c79356b | 228 | if (memory_object_should_return_page(m, should_return)) { |
1c79356b | 229 | /* |
6d2010ae A |
230 | * we use to do a pmap_disconnect here in support |
231 | * of memory_object_lock_request, but that routine | |
232 | * no longer requires this... in any event, in | |
233 | * our world, it would turn into a big noop since | |
234 | * we don't lock the page in any way and as soon | |
235 | * as we drop the object lock, the page can be | |
236 | * faulted back into an address space | |
237 | * | |
238 | * if (!should_flush) | |
39037602 | 239 | * pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); |
1c79356b | 240 | */ |
0a7de745 | 241 | return MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN; |
1c79356b A |
242 | } |
243 | ||
244 | /* | |
6d2010ae | 245 | * Handle flushing clean pages |
1c79356b | 246 | */ |
0a7de745 A |
247 | if (should_flush) { |
248 | return MEMORY_OBJECT_LOCK_RESULT_MUST_FREE; | |
249 | } | |
1c79356b | 250 | |
6d2010ae A |
251 | /* |
252 | * we use to deactivate clean pages at this point, | |
253 | * but we do not believe that an msync should change | |
254 | * the 'age' of a page in the cache... here is the | |
255 | * original comment and code concerning this... | |
256 | * | |
257 | * XXX Make clean but not flush a paging hint, | |
258 | * and deactivate the pages. This is a hack | |
259 | * because it overloads flush/clean with | |
260 | * implementation-dependent meaning. This only | |
261 | * happens to pages that are already clean. | |
262 | * | |
263 | * if (vm_page_deactivate_hint && (should_return != MEMORY_OBJECT_RETURN_NONE)) | |
264 | * return (MEMORY_OBJECT_LOCK_RESULT_MUST_DEACTIVATE); | |
265 | */ | |
1c79356b | 266 | |
0a7de745 | 267 | return MEMORY_OBJECT_LOCK_RESULT_DONE; |
1c79356b | 268 | } |
0b4e3aa0 | 269 | |
6d2010ae | 270 | |
1c79356b | 271 | |
1c79356b A |
272 | /* |
273 | * Routine: memory_object_lock_request [user interface] | |
274 | * | |
275 | * Description: | |
276 | * Control use of the data associated with the given | |
277 | * memory object. For each page in the given range, | |
278 | * perform the following operations, in order: | |
279 | * 1) restrict access to the page (disallow | |
280 | * forms specified by "prot"); | |
281 | * 2) return data to the manager (if "should_return" | |
282 | * is RETURN_DIRTY and the page is dirty, or | |
0a7de745 | 283 | * "should_return" is RETURN_ALL and the page |
1c79356b A |
284 | * is either dirty or precious); and, |
285 | * 3) flush the cached copy (if "should_flush" | |
286 | * is asserted). | |
287 | * The set of pages is defined by a starting offset | |
288 | * ("offset") and size ("size"). Only pages with the | |
289 | * same page alignment as the starting offset are | |
290 | * considered. | |
291 | * | |
292 | * A single acknowledgement is sent (to the "reply_to" | |
293 | * port) when these actions are complete. If successful, | |
294 | * the naked send right for reply_to is consumed. | |
295 | */ | |
296 | ||
297 | kern_return_t | |
298 | memory_object_lock_request( | |
0a7de745 A |
299 | memory_object_control_t control, |
300 | memory_object_offset_t offset, | |
301 | memory_object_size_t size, | |
302 | memory_object_offset_t * resid_offset, | |
303 | int * io_errno, | |
304 | memory_object_return_t should_return, | |
305 | int flags, | |
306 | vm_prot_t prot) | |
1c79356b | 307 | { |
0a7de745 | 308 | vm_object_t object; |
1c79356b | 309 | |
0a7de745 | 310 | /* |
1c79356b A |
311 | * Check for bogus arguments. |
312 | */ | |
0b4e3aa0 | 313 | object = memory_object_control_to_vm_object(control); |
0a7de745 A |
314 | if (object == VM_OBJECT_NULL) { |
315 | return KERN_INVALID_ARGUMENT; | |
316 | } | |
1c79356b | 317 | |
0a7de745 A |
318 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) { |
319 | return KERN_INVALID_ARGUMENT; | |
320 | } | |
1c79356b | 321 | |
55e303ae | 322 | size = round_page_64(size); |
1c79356b A |
323 | |
324 | /* | |
325 | * Lock the object, and acquire a paging reference to | |
0b4e3aa0 | 326 | * prevent the memory_object reference from being released. |
1c79356b | 327 | */ |
1c79356b A |
328 | vm_object_lock(object); |
329 | vm_object_paging_begin(object); | |
b0d623f7 A |
330 | |
331 | if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) { | |
332 | if ((should_return != MEMORY_OBJECT_RETURN_NONE) || offset || object->copy) { | |
333 | flags &= ~MEMORY_OBJECT_DATA_FLUSH_ALL; | |
334 | flags |= MEMORY_OBJECT_DATA_FLUSH; | |
335 | } | |
336 | } | |
1c79356b A |
337 | offset -= object->paging_offset; |
338 | ||
0a7de745 | 339 | if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) { |
b0d623f7 | 340 | vm_object_reap_pages(object, REAP_DATA_FLUSH); |
0a7de745 | 341 | } else { |
b0d623f7 | 342 | (void)vm_object_update(object, offset, size, resid_offset, |
0a7de745 A |
343 | io_errno, should_return, flags, prot); |
344 | } | |
1c79356b | 345 | |
1c79356b A |
346 | vm_object_paging_end(object); |
347 | vm_object_unlock(object); | |
1c79356b | 348 | |
0a7de745 | 349 | return KERN_SUCCESS; |
1c79356b A |
350 | } |
351 | ||
352 | /* | |
0b4e3aa0 A |
353 | * memory_object_release_name: [interface] |
354 | * | |
355 | * Enforces name semantic on memory_object reference count decrement | |
356 | * This routine should not be called unless the caller holds a name | |
357 | * reference gained through the memory_object_named_create or the | |
358 | * memory_object_rename call. | |
359 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
360 | * reference count is not 1. i.e. idle with the only remaining reference | |
361 | * being the name. | |
362 | * If the decision is made to proceed the name field flag is set to | |
363 | * false and the reference count is decremented. If the RESPECT_CACHE | |
0a7de745 | 364 | * flag is set and the reference count has gone to zero, the |
0b4e3aa0 A |
365 | * memory_object is checked to see if it is cacheable otherwise when |
366 | * the reference count is zero, it is simply terminated. | |
367 | */ | |
368 | ||
369 | kern_return_t | |
370 | memory_object_release_name( | |
0a7de745 A |
371 | memory_object_control_t control, |
372 | int flags) | |
0b4e3aa0 | 373 | { |
0a7de745 | 374 | vm_object_t object; |
0b4e3aa0 A |
375 | |
376 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
377 | if (object == VM_OBJECT_NULL) { |
378 | return KERN_INVALID_ARGUMENT; | |
379 | } | |
0b4e3aa0 A |
380 | |
381 | return vm_object_release_name(object, flags); | |
382 | } | |
383 | ||
384 | ||
385 | ||
386 | /* | |
387 | * Routine: memory_object_destroy [user interface] | |
388 | * Purpose: | |
389 | * Shut down a memory object, despite the | |
390 | * presence of address map (or other) references | |
391 | * to the vm_object. | |
392 | */ | |
393 | kern_return_t | |
394 | memory_object_destroy( | |
0a7de745 A |
395 | memory_object_control_t control, |
396 | kern_return_t reason) | |
0b4e3aa0 | 397 | { |
0a7de745 | 398 | vm_object_t object; |
0b4e3aa0 A |
399 | |
400 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
401 | if (object == VM_OBJECT_NULL) { |
402 | return KERN_INVALID_ARGUMENT; | |
403 | } | |
0b4e3aa0 | 404 | |
0a7de745 | 405 | return vm_object_destroy(object, reason); |
0b4e3aa0 A |
406 | } |
407 | ||
408 | /* | |
409 | * Routine: vm_object_sync | |
1c79356b A |
410 | * |
411 | * Kernel internal function to synch out pages in a given | |
412 | * range within an object to its memory manager. Much the | |
413 | * same as memory_object_lock_request but page protection | |
414 | * is not changed. | |
415 | * | |
416 | * If the should_flush and should_return flags are true pages | |
417 | * are flushed, that is dirty & precious pages are written to | |
418 | * the memory manager and then discarded. If should_return | |
419 | * is false, only precious pages are returned to the memory | |
420 | * manager. | |
421 | * | |
422 | * If should flush is false and should_return true, the memory | |
423 | * manager's copy of the pages is updated. If should_return | |
424 | * is also false, only the precious pages are updated. This | |
425 | * last option is of limited utility. | |
426 | * | |
427 | * Returns: | |
428 | * FALSE if no pages were returned to the pager | |
429 | * TRUE otherwise. | |
430 | */ | |
431 | ||
432 | boolean_t | |
0b4e3aa0 | 433 | vm_object_sync( |
0a7de745 A |
434 | vm_object_t object, |
435 | vm_object_offset_t offset, | |
436 | vm_object_size_t size, | |
437 | boolean_t should_flush, | |
438 | boolean_t should_return, | |
439 | boolean_t should_iosync) | |
1c79356b | 440 | { |
0a7de745 | 441 | boolean_t rv; |
91447636 | 442 | int flags; |
1c79356b | 443 | |
1c79356b A |
444 | /* |
445 | * Lock the object, and acquire a paging reference to | |
446 | * prevent the memory_object and control ports from | |
447 | * being destroyed. | |
448 | */ | |
449 | vm_object_lock(object); | |
450 | vm_object_paging_begin(object); | |
451 | ||
39236c6e | 452 | if (should_flush) { |
0a7de745 | 453 | flags = MEMORY_OBJECT_DATA_FLUSH; |
39236c6e A |
454 | /* |
455 | * This flush is from an msync(), not a truncate(), so the | |
456 | * contents of the file are not affected. | |
457 | * MEMORY_OBECT_DATA_NO_CHANGE lets vm_object_update() know | |
458 | * that the data is not changed and that there's no need to | |
459 | * push the old contents to a copy object. | |
460 | */ | |
461 | flags |= MEMORY_OBJECT_DATA_NO_CHANGE; | |
0a7de745 A |
462 | } else { |
463 | flags = 0; | |
464 | } | |
91447636 | 465 | |
0a7de745 A |
466 | if (should_iosync) { |
467 | flags |= MEMORY_OBJECT_IO_SYNC; | |
468 | } | |
91447636 A |
469 | |
470 | rv = vm_object_update(object, offset, (vm_object_size_t)size, NULL, NULL, | |
0a7de745 A |
471 | (should_return) ? |
472 | MEMORY_OBJECT_RETURN_ALL : | |
473 | MEMORY_OBJECT_RETURN_NONE, | |
474 | flags, | |
475 | VM_PROT_NO_CHANGE); | |
1c79356b A |
476 | |
477 | ||
478 | vm_object_paging_end(object); | |
479 | vm_object_unlock(object); | |
480 | return rv; | |
481 | } | |
482 | ||
91447636 A |
483 | |
484 | ||
6d2010ae | 485 | #define LIST_REQ_PAGEOUT_PAGES(object, data_cnt, po, ro, ioerr, iosync) \ |
0a7de745 A |
486 | MACRO_BEGIN \ |
487 | \ | |
488 | int upl_flags; \ | |
489 | memory_object_t pager; \ | |
490 | \ | |
491 | if ((pager = (object)->pager) != MEMORY_OBJECT_NULL) { \ | |
492 | vm_object_paging_begin(object); \ | |
493 | vm_object_unlock(object); \ | |
494 | \ | |
495 | if (iosync) \ | |
496 | upl_flags = UPL_MSYNC | UPL_IOSYNC; \ | |
497 | else \ | |
498 | upl_flags = UPL_MSYNC; \ | |
499 | \ | |
500 | (void) memory_object_data_return(pager, \ | |
501 | po, \ | |
502 | (memory_object_cluster_size_t)data_cnt, \ | |
6d2010ae A |
503 | ro, \ |
504 | ioerr, \ | |
0a7de745 A |
505 | FALSE, \ |
506 | FALSE, \ | |
507 | upl_flags); \ | |
508 | \ | |
509 | vm_object_lock(object); \ | |
510 | vm_object_paging_end(object); \ | |
511 | } \ | |
6d2010ae A |
512 | MACRO_END |
513 | ||
39037602 A |
514 | extern struct vnode * |
515 | vnode_pager_lookup_vnode(memory_object_t); | |
91447636 A |
516 | |
517 | static int | |
518 | vm_object_update_extent( | |
0a7de745 A |
519 | vm_object_t object, |
520 | vm_object_offset_t offset, | |
521 | vm_object_offset_t offset_end, | |
522 | vm_object_offset_t *offset_resid, | |
523 | int *io_errno, | |
524 | boolean_t should_flush, | |
525 | memory_object_return_t should_return, | |
526 | boolean_t should_iosync, | |
527 | vm_prot_t prot) | |
91447636 | 528 | { |
0a7de745 A |
529 | vm_page_t m; |
530 | int retval = 0; | |
531 | vm_object_offset_t paging_offset = 0; | |
532 | vm_object_offset_t next_offset = offset; | |
533 | memory_object_lock_result_t page_lock_result; | |
534 | memory_object_cluster_size_t data_cnt = 0; | |
535 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; | |
536 | struct vm_page_delayed_work *dwp; | |
537 | int dw_count; | |
538 | int dw_limit; | |
539 | int dirty_count; | |
540 | ||
541 | dwp = &dw_array[0]; | |
542 | dw_count = 0; | |
6d2010ae | 543 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
4bd07ac2 | 544 | dirty_count = 0; |
91447636 A |
545 | |
546 | for (; | |
0a7de745 A |
547 | offset < offset_end && object->resident_page_count; |
548 | offset += PAGE_SIZE_64) { | |
549 | /* | |
b0d623f7 | 550 | * Limit the number of pages to be cleaned at once to a contiguous |
fe8ab488 | 551 | * run, or at most MAX_UPL_TRANSFER_BYTES |
91447636 | 552 | */ |
b0d623f7 | 553 | if (data_cnt) { |
fe8ab488 | 554 | if ((data_cnt >= MAX_UPL_TRANSFER_BYTES) || (next_offset != offset)) { |
6d2010ae | 555 | if (dw_count) { |
3e170ce0 | 556 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); |
6d2010ae A |
557 | dwp = &dw_array[0]; |
558 | dw_count = 0; | |
559 | } | |
560 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, | |
0a7de745 | 561 | paging_offset, offset_resid, io_errno, should_iosync); |
b0d623f7 A |
562 | data_cnt = 0; |
563 | } | |
91447636 | 564 | } |
91447636 | 565 | while ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
6d2010ae | 566 | dwp->dw_mask = 0; |
0a7de745 | 567 | |
6d2010ae A |
568 | page_lock_result = memory_object_lock_page(m, should_return, should_flush, prot); |
569 | ||
570 | if (data_cnt && page_lock_result != MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN) { | |
571 | /* | |
572 | * End of a run of dirty/precious pages. | |
573 | */ | |
574 | if (dw_count) { | |
3e170ce0 | 575 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); |
6d2010ae A |
576 | dwp = &dw_array[0]; |
577 | dw_count = 0; | |
578 | } | |
579 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, | |
0a7de745 | 580 | paging_offset, offset_resid, io_errno, should_iosync); |
6d2010ae A |
581 | /* |
582 | * LIST_REQ_PAGEOUT_PAGES will drop the object lock which will | |
583 | * allow the state of page 'm' to change... we need to re-lookup | |
584 | * the current offset | |
585 | */ | |
586 | data_cnt = 0; | |
587 | continue; | |
588 | } | |
589 | ||
590 | switch (page_lock_result) { | |
6d2010ae A |
591 | case MEMORY_OBJECT_LOCK_RESULT_DONE: |
592 | break; | |
593 | ||
594 | case MEMORY_OBJECT_LOCK_RESULT_MUST_FREE: | |
0a7de745 | 595 | if (m->vmp_dirty == TRUE) { |
4bd07ac2 | 596 | dirty_count++; |
0a7de745 | 597 | } |
6d2010ae A |
598 | dwp->dw_mask |= DW_vm_page_free; |
599 | break; | |
600 | ||
601 | case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK: | |
602 | PAGE_SLEEP(object, m, THREAD_UNINT); | |
603 | continue; | |
604 | ||
605 | case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN: | |
0a7de745 | 606 | if (data_cnt == 0) { |
6d2010ae | 607 | paging_offset = offset; |
0a7de745 | 608 | } |
6d2010ae A |
609 | |
610 | data_cnt += PAGE_SIZE; | |
611 | next_offset = offset + PAGE_SIZE_64; | |
612 | ||
6d2010ae A |
613 | /* |
614 | * wired pages shouldn't be flushed and | |
615 | * since they aren't on any queue, | |
616 | * no need to remove them | |
617 | */ | |
618 | if (!VM_PAGE_WIRED(m)) { | |
6d2010ae A |
619 | if (should_flush) { |
620 | /* | |
621 | * add additional state for the flush | |
622 | */ | |
d9a64523 | 623 | m->vmp_free_when_done = TRUE; |
6d2010ae A |
624 | } |
625 | /* | |
626 | * we use to remove the page from the queues at this | |
627 | * point, but we do not believe that an msync | |
628 | * should cause the 'age' of a page to be changed | |
629 | * | |
630 | * else | |
631 | * dwp->dw_mask |= DW_VM_PAGE_QUEUES_REMOVE; | |
632 | */ | |
633 | } | |
634 | retval = 1; | |
635 | break; | |
636 | } | |
637 | if (dwp->dw_mask) { | |
638 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); | |
639 | ||
640 | if (dw_count >= dw_limit) { | |
3e170ce0 | 641 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); |
6d2010ae A |
642 | dwp = &dw_array[0]; |
643 | dw_count = 0; | |
644 | } | |
91447636 A |
645 | } |
646 | break; | |
647 | } | |
648 | } | |
0a7de745 A |
649 | |
650 | if (object->pager) { | |
39037602 | 651 | task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_INVALIDATED, vnode_pager_lookup_vnode(object->pager)); |
0a7de745 | 652 | } |
91447636 A |
653 | /* |
654 | * We have completed the scan for applicable pages. | |
655 | * Clean any pages that have been saved. | |
656 | */ | |
0a7de745 | 657 | if (dw_count) { |
3e170ce0 | 658 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); |
0a7de745 | 659 | } |
6d2010ae | 660 | |
91447636 | 661 | if (data_cnt) { |
0a7de745 A |
662 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, |
663 | paging_offset, offset_resid, io_errno, should_iosync); | |
91447636 | 664 | } |
0a7de745 | 665 | return retval; |
91447636 A |
666 | } |
667 | ||
668 | ||
669 | ||
1c79356b | 670 | /* |
0b4e3aa0 | 671 | * Routine: vm_object_update |
1c79356b | 672 | * Description: |
0b4e3aa0 | 673 | * Work function for m_o_lock_request(), vm_o_sync(). |
1c79356b A |
674 | * |
675 | * Called with object locked and paging ref taken. | |
676 | */ | |
677 | kern_return_t | |
0b4e3aa0 | 678 | vm_object_update( |
0a7de745 A |
679 | vm_object_t object, |
680 | vm_object_offset_t offset, | |
681 | vm_object_size_t size, | |
682 | vm_object_offset_t *resid_offset, | |
683 | int *io_errno, | |
684 | memory_object_return_t should_return, | |
685 | int flags, | |
686 | vm_prot_t protection) | |
1c79356b | 687 | { |
0a7de745 A |
688 | vm_object_t copy_object = VM_OBJECT_NULL; |
689 | boolean_t data_returned = FALSE; | |
690 | boolean_t update_cow; | |
691 | boolean_t should_flush = (flags & MEMORY_OBJECT_DATA_FLUSH) ? TRUE : FALSE; | |
692 | boolean_t should_iosync = (flags & MEMORY_OBJECT_IO_SYNC) ? TRUE : FALSE; | |
693 | vm_fault_return_t result; | |
694 | int num_of_extents; | |
695 | int n; | |
696 | #define MAX_EXTENTS 8 | |
697 | #define EXTENT_SIZE (1024 * 1024 * 256) | |
698 | #define RESIDENT_LIMIT (1024 * 32) | |
91447636 | 699 | struct extent { |
0a7de745 A |
700 | vm_object_offset_t e_base; |
701 | vm_object_offset_t e_min; | |
702 | vm_object_offset_t e_max; | |
91447636 | 703 | } extents[MAX_EXTENTS]; |
1c79356b A |
704 | |
705 | /* | |
706 | * To avoid blocking while scanning for pages, save | |
707 | * dirty pages to be cleaned all at once. | |
708 | * | |
709 | * XXXO A similar strategy could be used to limit the | |
710 | * number of times that a scan must be restarted for | |
711 | * other reasons. Those pages that would require blocking | |
712 | * could be temporarily collected in another list, or | |
713 | * their offsets could be recorded in a small array. | |
714 | */ | |
715 | ||
716 | /* | |
717 | * XXX NOTE: May want to consider converting this to a page list | |
718 | * XXX vm_map_copy interface. Need to understand object | |
719 | * XXX coalescing implications before doing so. | |
720 | */ | |
721 | ||
0a7de745 A |
722 | update_cow = ((flags & MEMORY_OBJECT_DATA_FLUSH) |
723 | && (!(flags & MEMORY_OBJECT_DATA_NO_CHANGE) && | |
724 | !(flags & MEMORY_OBJECT_DATA_PURGE))) | |
725 | || (flags & MEMORY_OBJECT_COPY_SYNC); | |
726 | ||
2d21ac55 | 727 | if (update_cow || (flags & (MEMORY_OBJECT_DATA_PURGE | MEMORY_OBJECT_DATA_SYNC))) { |
0a7de745 | 728 | int collisions = 0; |
2d21ac55 | 729 | |
0a7de745 A |
730 | while ((copy_object = object->copy) != VM_OBJECT_NULL) { |
731 | /* | |
2d21ac55 A |
732 | * need to do a try here since we're swimming upstream |
733 | * against the normal lock ordering... however, we need | |
734 | * to hold the object stable until we gain control of the | |
735 | * copy object so we have to be careful how we approach this | |
736 | */ | |
0a7de745 A |
737 | if (vm_object_lock_try(copy_object)) { |
738 | /* | |
739 | * we 'won' the lock on the copy object... | |
740 | * no need to hold the object lock any longer... | |
741 | * take a real reference on the copy object because | |
742 | * we're going to call vm_fault_page on it which may | |
743 | * under certain conditions drop the lock and the paging | |
744 | * reference we're about to take... the reference | |
745 | * will keep the copy object from going away if that happens | |
746 | */ | |
747 | vm_object_unlock(object); | |
748 | vm_object_reference_locked(copy_object); | |
749 | break; | |
2d21ac55 A |
750 | } |
751 | vm_object_unlock(object); | |
1c79356b | 752 | |
2d21ac55 A |
753 | collisions++; |
754 | mutex_pause(collisions); | |
755 | ||
756 | vm_object_lock(object); | |
757 | } | |
758 | } | |
759 | if ((copy_object != VM_OBJECT_NULL && update_cow) || (flags & MEMORY_OBJECT_DATA_SYNC)) { | |
0a7de745 A |
760 | vm_map_size_t i; |
761 | vm_map_size_t copy_size; | |
762 | vm_map_offset_t copy_offset; | |
763 | vm_prot_t prot; | |
764 | vm_page_t page; | |
765 | vm_page_t top_page; | |
766 | kern_return_t error = 0; | |
d9a64523 | 767 | struct vm_object_fault_info fault_info = {}; |
2d21ac55 A |
768 | |
769 | if (copy_object != VM_OBJECT_NULL) { | |
0a7de745 | 770 | /* |
2d21ac55 A |
771 | * translate offset with respect to shadow's offset |
772 | */ | |
0a7de745 A |
773 | copy_offset = (offset >= copy_object->vo_shadow_offset) ? |
774 | (vm_map_offset_t)(offset - copy_object->vo_shadow_offset) : | |
775 | (vm_map_offset_t) 0; | |
2d21ac55 | 776 | |
0a7de745 A |
777 | if (copy_offset > copy_object->vo_size) { |
778 | copy_offset = copy_object->vo_size; | |
779 | } | |
2d21ac55 A |
780 | |
781 | /* | |
782 | * clip size with respect to shadow offset | |
783 | */ | |
6d2010ae | 784 | if (offset >= copy_object->vo_shadow_offset) { |
0a7de745 | 785 | copy_size = size; |
6d2010ae | 786 | } else if (size >= copy_object->vo_shadow_offset - offset) { |
0a7de745 | 787 | copy_size = size - (copy_object->vo_shadow_offset - offset); |
2d21ac55 | 788 | } else { |
0a7de745 | 789 | copy_size = 0; |
2d21ac55 | 790 | } |
0a7de745 | 791 | |
6d2010ae | 792 | if (copy_offset + copy_size > copy_object->vo_size) { |
0a7de745 A |
793 | if (copy_object->vo_size >= copy_offset) { |
794 | copy_size = copy_object->vo_size - copy_offset; | |
2d21ac55 | 795 | } else { |
0a7de745 | 796 | copy_size = 0; |
2d21ac55 A |
797 | } |
798 | } | |
0a7de745 | 799 | copy_size += copy_offset; |
1c79356b A |
800 | } else { |
801 | copy_object = object; | |
802 | ||
803 | copy_size = offset + size; | |
804 | copy_offset = offset; | |
805 | } | |
2d21ac55 A |
806 | fault_info.interruptible = THREAD_UNINT; |
807 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
2d21ac55 A |
808 | fault_info.lo_offset = copy_offset; |
809 | fault_info.hi_offset = copy_size; | |
b0d623f7 | 810 | fault_info.stealth = TRUE; |
d9a64523 A |
811 | assert(fault_info.cs_bypass == FALSE); |
812 | assert(fault_info.pmap_cs_associated == FALSE); | |
1c79356b A |
813 | |
814 | vm_object_paging_begin(copy_object); | |
2d21ac55 A |
815 | |
816 | for (i = copy_offset; i < copy_size; i += PAGE_SIZE) { | |
0a7de745 | 817 | RETRY_COW_OF_LOCK_REQUEST: |
b0d623f7 A |
818 | fault_info.cluster_size = (vm_size_t) (copy_size - i); |
819 | assert(fault_info.cluster_size == copy_size - i); | |
2d21ac55 | 820 | |
0a7de745 | 821 | prot = VM_PROT_WRITE | VM_PROT_READ; |
39236c6e | 822 | page = VM_PAGE_NULL; |
0a7de745 A |
823 | result = vm_fault_page(copy_object, i, |
824 | VM_PROT_WRITE | VM_PROT_READ, | |
825 | FALSE, | |
826 | FALSE, /* page not looked up */ | |
827 | &prot, | |
828 | &page, | |
829 | &top_page, | |
830 | (int *)0, | |
831 | &error, | |
832 | FALSE, | |
833 | FALSE, &fault_info); | |
b0d623f7 A |
834 | |
835 | switch (result) { | |
1c79356b | 836 | case VM_FAULT_SUCCESS: |
2d21ac55 | 837 | if (top_page) { |
1c79356b | 838 | vm_fault_cleanup( |
39037602 | 839 | VM_PAGE_OBJECT(page), top_page); |
1c79356b A |
840 | vm_object_lock(copy_object); |
841 | vm_object_paging_begin(copy_object); | |
1c79356b | 842 | } |
0a7de745 | 843 | if ((!VM_PAGE_NON_SPECULATIVE_PAGEABLE(page))) { |
b0d623f7 | 844 | vm_page_lockspin_queues(); |
0a7de745 A |
845 | |
846 | if ((!VM_PAGE_NON_SPECULATIVE_PAGEABLE(page))) { | |
b0d623f7 | 847 | vm_page_deactivate(page); |
39037602 | 848 | } |
b0d623f7 A |
849 | vm_page_unlock_queues(); |
850 | } | |
2d21ac55 | 851 | PAGE_WAKEUP_DONE(page); |
1c79356b A |
852 | break; |
853 | case VM_FAULT_RETRY: | |
0a7de745 | 854 | prot = VM_PROT_WRITE | VM_PROT_READ; |
1c79356b A |
855 | vm_object_lock(copy_object); |
856 | vm_object_paging_begin(copy_object); | |
857 | goto RETRY_COW_OF_LOCK_REQUEST; | |
858 | case VM_FAULT_INTERRUPTED: | |
0a7de745 | 859 | prot = VM_PROT_WRITE | VM_PROT_READ; |
1c79356b A |
860 | vm_object_lock(copy_object); |
861 | vm_object_paging_begin(copy_object); | |
862 | goto RETRY_COW_OF_LOCK_REQUEST; | |
863 | case VM_FAULT_MEMORY_SHORTAGE: | |
864 | VM_PAGE_WAIT(); | |
0a7de745 | 865 | prot = VM_PROT_WRITE | VM_PROT_READ; |
1c79356b A |
866 | vm_object_lock(copy_object); |
867 | vm_object_paging_begin(copy_object); | |
868 | goto RETRY_COW_OF_LOCK_REQUEST; | |
b0d623f7 A |
869 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
870 | /* success but no VM page: fail */ | |
871 | vm_object_paging_end(copy_object); | |
872 | vm_object_unlock(copy_object); | |
0a7de745 | 873 | /*FALLTHROUGH*/ |
1c79356b | 874 | case VM_FAULT_MEMORY_ERROR: |
0a7de745 A |
875 | if (object != copy_object) { |
876 | vm_object_deallocate(copy_object); | |
877 | } | |
1c79356b A |
878 | vm_object_lock(object); |
879 | goto BYPASS_COW_COPYIN; | |
b0d623f7 A |
880 | default: |
881 | panic("vm_object_update: unexpected error 0x%x" | |
0a7de745 | 882 | " from vm_fault_page()\n", result); |
1c79356b | 883 | } |
1c79356b A |
884 | } |
885 | vm_object_paging_end(copy_object); | |
2d21ac55 A |
886 | } |
887 | if ((flags & (MEMORY_OBJECT_DATA_SYNC | MEMORY_OBJECT_COPY_SYNC))) { | |
0a7de745 | 888 | if (copy_object != VM_OBJECT_NULL && copy_object != object) { |
1c79356b | 889 | vm_object_unlock(copy_object); |
0a7de745 | 890 | vm_object_deallocate(copy_object); |
1c79356b A |
891 | vm_object_lock(object); |
892 | } | |
2d21ac55 | 893 | return KERN_SUCCESS; |
1c79356b | 894 | } |
2d21ac55 | 895 | if (copy_object != VM_OBJECT_NULL && copy_object != object) { |
0a7de745 | 896 | if ((flags & MEMORY_OBJECT_DATA_PURGE)) { |
39037602 | 897 | vm_object_lock_assert_exclusive(copy_object); |
0a7de745 | 898 | copy_object->shadow_severed = TRUE; |
2d21ac55 A |
899 | copy_object->shadowed = FALSE; |
900 | copy_object->shadow = NULL; | |
901 | /* | |
902 | * delete the ref the COW was holding on the target object | |
903 | */ | |
904 | vm_object_deallocate(object); | |
905 | } | |
906 | vm_object_unlock(copy_object); | |
0a7de745 | 907 | vm_object_deallocate(copy_object); |
2d21ac55 | 908 | vm_object_lock(object); |
1c79356b A |
909 | } |
910 | BYPASS_COW_COPYIN: | |
911 | ||
91447636 A |
912 | /* |
913 | * when we have a really large range to check relative | |
914 | * to the number of actual resident pages, we'd like | |
915 | * to use the resident page list to drive our checks | |
916 | * however, the object lock will get dropped while processing | |
917 | * the page which means the resident queue can change which | |
918 | * means we can't walk the queue as we process the pages | |
919 | * we also want to do the processing in offset order to allow | |
0a7de745 | 920 | * 'runs' of pages to be collected if we're being told to |
91447636 | 921 | * flush to disk... the resident page queue is NOT ordered. |
0a7de745 | 922 | * |
91447636 A |
923 | * a temporary solution (until we figure out how to deal with |
924 | * large address spaces more generically) is to pre-flight | |
925 | * the resident page queue (if it's small enough) and develop | |
926 | * a collection of extents (that encompass actual resident pages) | |
927 | * to visit. This will at least allow us to deal with some of the | |
928 | * more pathological cases in a more efficient manner. The current | |
929 | * worst case (a single resident page at the end of an extremely large | |
930 | * range) can take minutes to complete for ranges in the terrabyte | |
931 | * category... since this routine is called when truncating a file, | |
932 | * and we currently support files up to 16 Tbytes in size, this | |
933 | * is not a theoretical problem | |
934 | */ | |
1c79356b | 935 | |
0a7de745 A |
936 | if ((object->resident_page_count < RESIDENT_LIMIT) && |
937 | (atop_64(size) > (unsigned)(object->resident_page_count / (8 * MAX_EXTENTS)))) { | |
938 | vm_page_t next; | |
939 | vm_object_offset_t start; | |
940 | vm_object_offset_t end; | |
941 | vm_object_size_t e_mask; | |
91447636 | 942 | vm_page_t m; |
1c79356b | 943 | |
91447636 A |
944 | start = offset; |
945 | end = offset + size; | |
946 | num_of_extents = 0; | |
947 | e_mask = ~((vm_object_size_t)(EXTENT_SIZE - 1)); | |
1c79356b | 948 | |
39037602 | 949 | m = (vm_page_t) vm_page_queue_first(&object->memq); |
1c79356b | 950 | |
39037602 | 951 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t) m)) { |
d9a64523 | 952 | next = (vm_page_t) vm_page_queue_next(&m->vmp_listq); |
1c79356b | 953 | |
d9a64523 | 954 | if ((m->vmp_offset >= start) && (m->vmp_offset < end)) { |
0a7de745 | 955 | /* |
91447636 A |
956 | * this is a page we're interested in |
957 | * try to fit it into a current extent | |
1c79356b | 958 | */ |
0a7de745 A |
959 | for (n = 0; n < num_of_extents; n++) { |
960 | if ((m->vmp_offset & e_mask) == extents[n].e_base) { | |
961 | /* | |
91447636 A |
962 | * use (PAGE_SIZE - 1) to determine the |
963 | * max offset so that we don't wrap if | |
964 | * we're at the last page of the space | |
965 | */ | |
0a7de745 A |
966 | if (m->vmp_offset < extents[n].e_min) { |
967 | extents[n].e_min = m->vmp_offset; | |
968 | } else if ((m->vmp_offset + (PAGE_SIZE - 1)) > extents[n].e_max) { | |
969 | extents[n].e_max = m->vmp_offset + (PAGE_SIZE - 1); | |
970 | } | |
971 | break; | |
91447636 A |
972 | } |
973 | } | |
974 | if (n == num_of_extents) { | |
0a7de745 | 975 | /* |
91447636 A |
976 | * didn't find a current extent that can encompass |
977 | * this page | |
978 | */ | |
0a7de745 A |
979 | if (n < MAX_EXTENTS) { |
980 | /* | |
981 | * if we still have room, | |
91447636 A |
982 | * create a new extent |
983 | */ | |
0a7de745 | 984 | extents[n].e_base = m->vmp_offset & e_mask; |
d9a64523 A |
985 | extents[n].e_min = m->vmp_offset; |
986 | extents[n].e_max = m->vmp_offset + (PAGE_SIZE - 1); | |
91447636 A |
987 | |
988 | num_of_extents++; | |
989 | } else { | |
990 | /* | |
991 | * no room to create a new extent... | |
992 | * fall back to a single extent based | |
0a7de745 | 993 | * on the min and max page offsets |
91447636 A |
994 | * we find in the range we're interested in... |
995 | * first, look through the extent list and | |
996 | * develop the overall min and max for the | |
997 | * pages we've looked at up to this point | |
0a7de745 A |
998 | */ |
999 | for (n = 1; n < num_of_extents; n++) { | |
1000 | if (extents[n].e_min < extents[0].e_min) { | |
1001 | extents[0].e_min = extents[n].e_min; | |
1002 | } | |
1003 | if (extents[n].e_max > extents[0].e_max) { | |
1004 | extents[0].e_max = extents[n].e_max; | |
1005 | } | |
91447636 A |
1006 | } |
1007 | /* | |
1008 | * now setup to run through the remaining pages | |
1009 | * to determine the overall min and max | |
1010 | * offset for the specified range | |
1011 | */ | |
1012 | extents[0].e_base = 0; | |
1013 | e_mask = 0; | |
1014 | num_of_extents = 1; | |
1015 | ||
1016 | /* | |
1017 | * by continuing, we'll reprocess the | |
1018 | * page that forced us to abandon trying | |
1019 | * to develop multiple extents | |
1020 | */ | |
1021 | continue; | |
1022 | } | |
1023 | } | |
1c79356b | 1024 | } |
91447636 | 1025 | m = next; |
1c79356b | 1026 | } |
91447636 | 1027 | } else { |
0a7de745 | 1028 | extents[0].e_min = offset; |
91447636 | 1029 | extents[0].e_max = offset + (size - 1); |
1c79356b | 1030 | |
91447636 A |
1031 | num_of_extents = 1; |
1032 | } | |
1033 | for (n = 0; n < num_of_extents; n++) { | |
0a7de745 A |
1034 | if (vm_object_update_extent(object, extents[n].e_min, extents[n].e_max, resid_offset, io_errno, |
1035 | should_flush, should_return, should_iosync, protection)) { | |
1036 | data_returned = TRUE; | |
1037 | } | |
1c79356b | 1038 | } |
0a7de745 | 1039 | return data_returned; |
1c79356b A |
1040 | } |
1041 | ||
91447636 | 1042 | |
0b4e3aa0 A |
1043 | static kern_return_t |
1044 | vm_object_set_attributes_common( | |
0a7de745 A |
1045 | vm_object_t object, |
1046 | boolean_t may_cache, | |
5ba3f43e | 1047 | memory_object_copy_strategy_t copy_strategy) |
1c79356b | 1048 | { |
0a7de745 | 1049 | boolean_t object_became_ready; |
1c79356b | 1050 | |
0a7de745 A |
1051 | if (object == VM_OBJECT_NULL) { |
1052 | return KERN_INVALID_ARGUMENT; | |
1053 | } | |
1c79356b A |
1054 | |
1055 | /* | |
1056 | * Verify the attributes of importance | |
1057 | */ | |
1058 | ||
0a7de745 A |
1059 | switch (copy_strategy) { |
1060 | case MEMORY_OBJECT_COPY_NONE: | |
1061 | case MEMORY_OBJECT_COPY_DELAY: | |
1062 | break; | |
1063 | default: | |
1064 | return KERN_INVALID_ARGUMENT; | |
1c79356b A |
1065 | } |
1066 | ||
0a7de745 | 1067 | if (may_cache) { |
1c79356b | 1068 | may_cache = TRUE; |
0a7de745 | 1069 | } |
1c79356b A |
1070 | |
1071 | vm_object_lock(object); | |
1072 | ||
1073 | /* | |
1074 | * Copy the attributes | |
1075 | */ | |
1076 | assert(!object->internal); | |
1077 | object_became_ready = !object->pager_ready; | |
1078 | object->copy_strategy = copy_strategy; | |
1079 | object->can_persist = may_cache; | |
1c79356b A |
1080 | |
1081 | /* | |
1082 | * Wake up anyone waiting for the ready attribute | |
1083 | * to become asserted. | |
1084 | */ | |
1085 | ||
1086 | if (object_became_ready) { | |
1087 | object->pager_ready = TRUE; | |
1088 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
1089 | } | |
1090 | ||
1091 | vm_object_unlock(object); | |
1092 | ||
0a7de745 | 1093 | return KERN_SUCCESS; |
1c79356b A |
1094 | } |
1095 | ||
5ba3f43e A |
1096 | |
1097 | kern_return_t | |
1098 | memory_object_synchronize_completed( | |
0a7de745 A |
1099 | __unused memory_object_control_t control, |
1100 | __unused memory_object_offset_t offset, | |
1101 | __unused memory_object_size_t length) | |
5ba3f43e | 1102 | { |
0a7de745 A |
1103 | panic("memory_object_synchronize_completed no longer supported\n"); |
1104 | return KERN_FAILURE; | |
5ba3f43e A |
1105 | } |
1106 | ||
1107 | ||
1c79356b A |
1108 | /* |
1109 | * Set the memory object attribute as provided. | |
1110 | * | |
0a7de745 | 1111 | * XXX This routine cannot be completed until the vm_msync, clean |
1c79356b | 1112 | * in place, and cluster work is completed. See ifdef notyet |
0b4e3aa0 | 1113 | * below and note that vm_object_set_attributes_common() |
1c79356b A |
1114 | * may have to be expanded. |
1115 | */ | |
1116 | kern_return_t | |
1117 | memory_object_change_attributes( | |
0a7de745 A |
1118 | memory_object_control_t control, |
1119 | memory_object_flavor_t flavor, | |
1120 | memory_object_info_t attributes, | |
1121 | mach_msg_type_number_t count) | |
1c79356b | 1122 | { |
0a7de745 A |
1123 | vm_object_t object; |
1124 | kern_return_t result = KERN_SUCCESS; | |
1125 | boolean_t may_cache; | |
1126 | boolean_t invalidate; | |
1127 | memory_object_copy_strategy_t copy_strategy; | |
1c79356b | 1128 | |
0b4e3aa0 | 1129 | object = memory_object_control_to_vm_object(control); |
0a7de745 A |
1130 | if (object == VM_OBJECT_NULL) { |
1131 | return KERN_INVALID_ARGUMENT; | |
1132 | } | |
1c79356b A |
1133 | |
1134 | vm_object_lock(object); | |
0b4e3aa0 | 1135 | |
1c79356b A |
1136 | may_cache = object->can_persist; |
1137 | copy_strategy = object->copy_strategy; | |
1c79356b A |
1138 | #if notyet |
1139 | invalidate = object->invalidate; | |
1140 | #endif | |
0a7de745 | 1141 | vm_object_unlock(object); |
1c79356b A |
1142 | |
1143 | switch (flavor) { | |
0a7de745 A |
1144 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: |
1145 | { | |
1146 | old_memory_object_behave_info_t behave; | |
1c79356b | 1147 | |
0a7de745 A |
1148 | if (count != OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { |
1149 | result = KERN_INVALID_ARGUMENT; | |
1150 | break; | |
1151 | } | |
1c79356b | 1152 | |
0a7de745 | 1153 | behave = (old_memory_object_behave_info_t) attributes; |
1c79356b | 1154 | |
1c79356b A |
1155 | invalidate = behave->invalidate; |
1156 | copy_strategy = behave->copy_strategy; | |
1157 | ||
1158 | break; | |
0a7de745 | 1159 | } |
1c79356b | 1160 | |
0a7de745 A |
1161 | case MEMORY_OBJECT_BEHAVIOR_INFO: |
1162 | { | |
1163 | memory_object_behave_info_t behave; | |
1c79356b | 1164 | |
0a7de745 A |
1165 | if (count != MEMORY_OBJECT_BEHAVE_INFO_COUNT) { |
1166 | result = KERN_INVALID_ARGUMENT; | |
1167 | break; | |
1168 | } | |
1c79356b | 1169 | |
0a7de745 | 1170 | behave = (memory_object_behave_info_t) attributes; |
1c79356b | 1171 | |
1c79356b A |
1172 | invalidate = behave->invalidate; |
1173 | copy_strategy = behave->copy_strategy; | |
1c79356b | 1174 | break; |
0a7de745 | 1175 | } |
1c79356b | 1176 | |
0a7de745 A |
1177 | case MEMORY_OBJECT_PERFORMANCE_INFO: |
1178 | { | |
1179 | memory_object_perf_info_t perf; | |
1c79356b | 1180 | |
0a7de745 A |
1181 | if (count != MEMORY_OBJECT_PERF_INFO_COUNT) { |
1182 | result = KERN_INVALID_ARGUMENT; | |
1183 | break; | |
1184 | } | |
1c79356b | 1185 | |
0a7de745 | 1186 | perf = (memory_object_perf_info_t) attributes; |
1c79356b A |
1187 | |
1188 | may_cache = perf->may_cache; | |
1c79356b A |
1189 | |
1190 | break; | |
0a7de745 | 1191 | } |
1c79356b | 1192 | |
0a7de745 A |
1193 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: |
1194 | { | |
1195 | old_memory_object_attr_info_t attr; | |
1c79356b | 1196 | |
0a7de745 A |
1197 | if (count != OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { |
1198 | result = KERN_INVALID_ARGUMENT; | |
1199 | break; | |
1200 | } | |
1c79356b A |
1201 | |
1202 | attr = (old_memory_object_attr_info_t) attributes; | |
1203 | ||
0a7de745 A |
1204 | may_cache = attr->may_cache; |
1205 | copy_strategy = attr->copy_strategy; | |
1c79356b A |
1206 | |
1207 | break; | |
0a7de745 | 1208 | } |
1c79356b | 1209 | |
0a7de745 A |
1210 | case MEMORY_OBJECT_ATTRIBUTE_INFO: |
1211 | { | |
1212 | memory_object_attr_info_t attr; | |
1c79356b | 1213 | |
0a7de745 A |
1214 | if (count != MEMORY_OBJECT_ATTR_INFO_COUNT) { |
1215 | result = KERN_INVALID_ARGUMENT; | |
1216 | break; | |
1217 | } | |
1c79356b A |
1218 | |
1219 | attr = (memory_object_attr_info_t) attributes; | |
1220 | ||
1221 | copy_strategy = attr->copy_strategy; | |
0a7de745 | 1222 | may_cache = attr->may_cache_object; |
1c79356b A |
1223 | |
1224 | break; | |
0a7de745 | 1225 | } |
1c79356b | 1226 | |
0a7de745 | 1227 | default: |
1c79356b A |
1228 | result = KERN_INVALID_ARGUMENT; |
1229 | break; | |
1230 | } | |
1231 | ||
0a7de745 A |
1232 | if (result != KERN_SUCCESS) { |
1233 | return result; | |
1234 | } | |
1c79356b A |
1235 | |
1236 | if (copy_strategy == MEMORY_OBJECT_COPY_TEMPORARY) { | |
1237 | copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
1c79356b A |
1238 | } |
1239 | ||
1240 | /* | |
1c79356b A |
1241 | * XXX may_cache may become a tri-valued variable to handle |
1242 | * XXX uncache if not in use. | |
1243 | */ | |
0a7de745 A |
1244 | return vm_object_set_attributes_common(object, |
1245 | may_cache, | |
1246 | copy_strategy); | |
1c79356b A |
1247 | } |
1248 | ||
1249 | kern_return_t | |
1250 | memory_object_get_attributes( | |
0a7de745 A |
1251 | memory_object_control_t control, |
1252 | memory_object_flavor_t flavor, | |
1253 | memory_object_info_t attributes, /* pointer to OUT array */ | |
1254 | mach_msg_type_number_t *count) /* IN/OUT */ | |
1c79356b | 1255 | { |
0a7de745 A |
1256 | kern_return_t ret = KERN_SUCCESS; |
1257 | vm_object_t object; | |
1c79356b | 1258 | |
0b4e3aa0 | 1259 | object = memory_object_control_to_vm_object(control); |
0a7de745 A |
1260 | if (object == VM_OBJECT_NULL) { |
1261 | return KERN_INVALID_ARGUMENT; | |
1262 | } | |
1c79356b | 1263 | |
0a7de745 | 1264 | vm_object_lock(object); |
1c79356b A |
1265 | |
1266 | switch (flavor) { | |
0a7de745 A |
1267 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: |
1268 | { | |
1269 | old_memory_object_behave_info_t behave; | |
1c79356b A |
1270 | |
1271 | if (*count < OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1272 | ret = KERN_INVALID_ARGUMENT; | |
1273 | break; | |
1274 | } | |
1275 | ||
1276 | behave = (old_memory_object_behave_info_t) attributes; | |
1277 | behave->copy_strategy = object->copy_strategy; | |
5ba3f43e | 1278 | behave->temporary = FALSE; |
0a7de745 A |
1279 | #if notyet /* remove when vm_msync complies and clean in place fini */ |
1280 | behave->invalidate = object->invalidate; | |
1c79356b A |
1281 | #else |
1282 | behave->invalidate = FALSE; | |
1283 | #endif | |
1284 | ||
1285 | *count = OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT; | |
1286 | break; | |
0a7de745 | 1287 | } |
1c79356b | 1288 | |
0a7de745 A |
1289 | case MEMORY_OBJECT_BEHAVIOR_INFO: |
1290 | { | |
1291 | memory_object_behave_info_t behave; | |
1c79356b A |
1292 | |
1293 | if (*count < MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
0a7de745 A |
1294 | ret = KERN_INVALID_ARGUMENT; |
1295 | break; | |
1296 | } | |
1c79356b | 1297 | |
0a7de745 A |
1298 | behave = (memory_object_behave_info_t) attributes; |
1299 | behave->copy_strategy = object->copy_strategy; | |
5ba3f43e | 1300 | behave->temporary = FALSE; |
0a7de745 A |
1301 | #if notyet /* remove when vm_msync complies and clean in place fini */ |
1302 | behave->invalidate = object->invalidate; | |
1c79356b A |
1303 | #else |
1304 | behave->invalidate = FALSE; | |
1305 | #endif | |
5ba3f43e | 1306 | behave->advisory_pageout = FALSE; |
39236c6e | 1307 | behave->silent_overwrite = FALSE; |
0a7de745 | 1308 | *count = MEMORY_OBJECT_BEHAVE_INFO_COUNT; |
1c79356b | 1309 | break; |
0a7de745 | 1310 | } |
1c79356b | 1311 | |
0a7de745 A |
1312 | case MEMORY_OBJECT_PERFORMANCE_INFO: |
1313 | { | |
1314 | memory_object_perf_info_t perf; | |
1c79356b A |
1315 | |
1316 | if (*count < MEMORY_OBJECT_PERF_INFO_COUNT) { | |
1317 | ret = KERN_INVALID_ARGUMENT; | |
1318 | break; | |
1319 | } | |
1320 | ||
1321 | perf = (memory_object_perf_info_t) attributes; | |
2d21ac55 | 1322 | perf->cluster_size = PAGE_SIZE; |
1c79356b A |
1323 | perf->may_cache = object->can_persist; |
1324 | ||
1325 | *count = MEMORY_OBJECT_PERF_INFO_COUNT; | |
1326 | break; | |
0a7de745 | 1327 | } |
1c79356b | 1328 | |
0a7de745 A |
1329 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: |
1330 | { | |
1331 | old_memory_object_attr_info_t attr; | |
1c79356b | 1332 | |
0a7de745 A |
1333 | if (*count < OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { |
1334 | ret = KERN_INVALID_ARGUMENT; | |
1335 | break; | |
1336 | } | |
1c79356b | 1337 | |
0a7de745 A |
1338 | attr = (old_memory_object_attr_info_t) attributes; |
1339 | attr->may_cache = object->can_persist; | |
1340 | attr->copy_strategy = object->copy_strategy; | |
1c79356b | 1341 | |
0a7de745 A |
1342 | *count = OLD_MEMORY_OBJECT_ATTR_INFO_COUNT; |
1343 | break; | |
1344 | } | |
1c79356b | 1345 | |
0a7de745 A |
1346 | case MEMORY_OBJECT_ATTRIBUTE_INFO: |
1347 | { | |
1348 | memory_object_attr_info_t attr; | |
1c79356b | 1349 | |
0a7de745 A |
1350 | if (*count < MEMORY_OBJECT_ATTR_INFO_COUNT) { |
1351 | ret = KERN_INVALID_ARGUMENT; | |
1352 | break; | |
1353 | } | |
1c79356b | 1354 | |
0a7de745 A |
1355 | attr = (memory_object_attr_info_t) attributes; |
1356 | attr->copy_strategy = object->copy_strategy; | |
2d21ac55 | 1357 | attr->cluster_size = PAGE_SIZE; |
0a7de745 | 1358 | attr->may_cache_object = object->can_persist; |
5ba3f43e | 1359 | attr->temporary = FALSE; |
1c79356b | 1360 | |
0a7de745 A |
1361 | *count = MEMORY_OBJECT_ATTR_INFO_COUNT; |
1362 | break; | |
1363 | } | |
1c79356b | 1364 | |
0a7de745 | 1365 | default: |
1c79356b A |
1366 | ret = KERN_INVALID_ARGUMENT; |
1367 | break; | |
1368 | } | |
1369 | ||
0a7de745 | 1370 | vm_object_unlock(object); |
1c79356b | 1371 | |
0a7de745 | 1372 | return ret; |
1c79356b A |
1373 | } |
1374 | ||
1c79356b | 1375 | |
55e303ae A |
1376 | kern_return_t |
1377 | memory_object_iopl_request( | |
0a7de745 A |
1378 | ipc_port_t port, |
1379 | memory_object_offset_t offset, | |
1380 | upl_size_t *upl_size, | |
1381 | upl_t *upl_ptr, | |
1382 | upl_page_info_array_t user_page_list, | |
1383 | unsigned int *page_list_count, | |
1384 | upl_control_flags_t *flags, | |
1385 | vm_tag_t tag) | |
55e303ae | 1386 | { |
0a7de745 A |
1387 | vm_object_t object; |
1388 | kern_return_t ret; | |
1389 | upl_control_flags_t caller_flags; | |
55e303ae A |
1390 | |
1391 | caller_flags = *flags; | |
1392 | ||
91447636 A |
1393 | if (caller_flags & ~UPL_VALID_FLAGS) { |
1394 | /* | |
1395 | * For forward compatibility's sake, | |
1396 | * reject any unknown flag. | |
1397 | */ | |
1398 | return KERN_INVALID_VALUE; | |
1399 | } | |
1400 | ||
55e303ae | 1401 | if (ip_kotype(port) == IKOT_NAMED_ENTRY) { |
0a7de745 | 1402 | vm_named_entry_t named_entry; |
55e303ae | 1403 | |
ea3f0419 | 1404 | named_entry = (vm_named_entry_t) ip_get_kobject(port); |
55e303ae | 1405 | /* a few checks to make sure user is obeying rules */ |
0a7de745 A |
1406 | if (*upl_size == 0) { |
1407 | if (offset >= named_entry->size) { | |
1408 | return KERN_INVALID_RIGHT; | |
1409 | } | |
b0d623f7 | 1410 | *upl_size = (upl_size_t)(named_entry->size - offset); |
0a7de745 | 1411 | if (*upl_size != named_entry->size - offset) { |
b0d623f7 | 1412 | return KERN_INVALID_ARGUMENT; |
0a7de745 | 1413 | } |
55e303ae | 1414 | } |
0a7de745 A |
1415 | if (caller_flags & UPL_COPYOUT_FROM) { |
1416 | if ((named_entry->protection & VM_PROT_READ) | |
1417 | != VM_PROT_READ) { | |
1418 | return KERN_INVALID_RIGHT; | |
55e303ae A |
1419 | } |
1420 | } else { | |
0a7de745 A |
1421 | if ((named_entry->protection & |
1422 | (VM_PROT_READ | VM_PROT_WRITE)) | |
1423 | != (VM_PROT_READ | VM_PROT_WRITE)) { | |
1424 | return KERN_INVALID_RIGHT; | |
55e303ae A |
1425 | } |
1426 | } | |
0a7de745 A |
1427 | if (named_entry->size < (offset + *upl_size)) { |
1428 | return KERN_INVALID_ARGUMENT; | |
1429 | } | |
55e303ae A |
1430 | |
1431 | /* the callers parameter offset is defined to be the */ | |
1432 | /* offset from beginning of named entry offset in object */ | |
1433 | offset = offset + named_entry->offset; | |
1434 | ||
39236c6e | 1435 | if (named_entry->is_sub_map || |
0a7de745 | 1436 | named_entry->is_copy) { |
39236c6e | 1437 | return KERN_INVALID_ARGUMENT; |
0a7de745 A |
1438 | } |
1439 | ||
55e303ae A |
1440 | named_entry_lock(named_entry); |
1441 | ||
5ba3f43e A |
1442 | object = named_entry->backing.object; |
1443 | vm_object_reference(object); | |
1444 | named_entry_unlock(named_entry); | |
0c530ab8 | 1445 | } else if (ip_kotype(port) == IKOT_MEM_OBJ_CONTROL) { |
0a7de745 | 1446 | memory_object_control_t control; |
0c530ab8 | 1447 | control = (memory_object_control_t) port; |
0a7de745 A |
1448 | if (control == NULL) { |
1449 | return KERN_INVALID_ARGUMENT; | |
1450 | } | |
55e303ae | 1451 | object = memory_object_control_to_vm_object(control); |
0a7de745 A |
1452 | if (object == VM_OBJECT_NULL) { |
1453 | return KERN_INVALID_ARGUMENT; | |
1454 | } | |
55e303ae | 1455 | vm_object_reference(object); |
0c530ab8 A |
1456 | } else { |
1457 | return KERN_INVALID_ARGUMENT; | |
55e303ae | 1458 | } |
0a7de745 A |
1459 | if (object == VM_OBJECT_NULL) { |
1460 | return KERN_INVALID_ARGUMENT; | |
1461 | } | |
55e303ae A |
1462 | |
1463 | if (!object->private) { | |
55e303ae A |
1464 | if (object->phys_contiguous) { |
1465 | *flags = UPL_PHYS_CONTIG; | |
1466 | } else { | |
1467 | *flags = 0; | |
1468 | } | |
1469 | } else { | |
1470 | *flags = UPL_DEV_MEMORY | UPL_PHYS_CONTIG; | |
1471 | } | |
1472 | ||
1473 | ret = vm_object_iopl_request(object, | |
0a7de745 A |
1474 | offset, |
1475 | *upl_size, | |
1476 | upl_ptr, | |
1477 | user_page_list, | |
1478 | page_list_count, | |
1479 | caller_flags, | |
1480 | tag); | |
55e303ae A |
1481 | vm_object_deallocate(object); |
1482 | return ret; | |
1483 | } | |
1484 | ||
0a7de745 | 1485 | /* |
0b4e3aa0 A |
1486 | * Routine: memory_object_upl_request [interface] |
1487 | * Purpose: | |
1488 | * Cause the population of a portion of a vm_object. | |
1489 | * Depending on the nature of the request, the pages | |
1490 | * returned may be contain valid data or be uninitialized. | |
1491 | * | |
1492 | */ | |
1c79356b | 1493 | |
0b4e3aa0 A |
1494 | kern_return_t |
1495 | memory_object_upl_request( | |
0a7de745 A |
1496 | memory_object_control_t control, |
1497 | memory_object_offset_t offset, | |
1498 | upl_size_t size, | |
1499 | upl_t *upl_ptr, | |
1500 | upl_page_info_array_t user_page_list, | |
1501 | unsigned int *page_list_count, | |
1502 | int cntrl_flags, | |
1503 | int tag) | |
0b4e3aa0 | 1504 | { |
0a7de745 | 1505 | vm_object_t object; |
0b4e3aa0 A |
1506 | |
1507 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
1508 | if (object == VM_OBJECT_NULL) { |
1509 | return KERN_TERMINATED; | |
1510 | } | |
0b4e3aa0 A |
1511 | |
1512 | return vm_object_upl_request(object, | |
0a7de745 A |
1513 | offset, |
1514 | size, | |
1515 | upl_ptr, | |
1516 | user_page_list, | |
1517 | page_list_count, | |
1518 | (upl_control_flags_t)(unsigned int) cntrl_flags, | |
1519 | tag); | |
0b4e3aa0 A |
1520 | } |
1521 | ||
0a7de745 | 1522 | /* |
0b4e3aa0 A |
1523 | * Routine: memory_object_super_upl_request [interface] |
1524 | * Purpose: | |
1525 | * Cause the population of a portion of a vm_object | |
1526 | * in much the same way as memory_object_upl_request. | |
1527 | * Depending on the nature of the request, the pages | |
1528 | * returned may be contain valid data or be uninitialized. | |
1529 | * However, the region may be expanded up to the super | |
1530 | * cluster size provided. | |
1c79356b | 1531 | */ |
0b4e3aa0 | 1532 | |
1c79356b | 1533 | kern_return_t |
0b4e3aa0 A |
1534 | memory_object_super_upl_request( |
1535 | memory_object_control_t control, | |
0a7de745 A |
1536 | memory_object_offset_t offset, |
1537 | upl_size_t size, | |
1538 | upl_size_t super_cluster, | |
1539 | upl_t *upl, | |
1540 | upl_page_info_t *user_page_list, | |
1541 | unsigned int *page_list_count, | |
1542 | int cntrl_flags, | |
1543 | int tag) | |
1c79356b | 1544 | { |
0a7de745 | 1545 | vm_object_t object; |
0b4e3aa0 A |
1546 | |
1547 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
1548 | if (object == VM_OBJECT_NULL) { |
1549 | return KERN_INVALID_ARGUMENT; | |
1550 | } | |
0b4e3aa0 A |
1551 | |
1552 | return vm_object_super_upl_request(object, | |
0a7de745 A |
1553 | offset, |
1554 | size, | |
1555 | super_cluster, | |
1556 | upl, | |
1557 | user_page_list, | |
1558 | page_list_count, | |
1559 | (upl_control_flags_t)(unsigned int) cntrl_flags, | |
1560 | tag); | |
1c79356b A |
1561 | } |
1562 | ||
2d21ac55 | 1563 | kern_return_t |
d9a64523 | 1564 | memory_object_cluster_size( |
0a7de745 A |
1565 | memory_object_control_t control, |
1566 | memory_object_offset_t *start, | |
1567 | vm_size_t *length, | |
1568 | uint32_t *io_streaming, | |
d9a64523 | 1569 | memory_object_fault_info_t mo_fault_info) |
2d21ac55 | 1570 | { |
0a7de745 A |
1571 | vm_object_t object; |
1572 | vm_object_fault_info_t fault_info; | |
2d21ac55 A |
1573 | |
1574 | object = memory_object_control_to_vm_object(control); | |
1575 | ||
0a7de745 | 1576 | if (object == VM_OBJECT_NULL || object->paging_offset > *start) { |
d9a64523 | 1577 | return KERN_INVALID_ARGUMENT; |
0a7de745 | 1578 | } |
2d21ac55 A |
1579 | |
1580 | *start -= object->paging_offset; | |
1581 | ||
d9a64523 A |
1582 | fault_info = (vm_object_fault_info_t)(uintptr_t) mo_fault_info; |
1583 | vm_object_cluster_size(object, | |
0a7de745 A |
1584 | (vm_object_offset_t *)start, |
1585 | length, | |
1586 | fault_info, | |
1587 | io_streaming); | |
2d21ac55 A |
1588 | |
1589 | *start += object->paging_offset; | |
1590 | ||
d9a64523 | 1591 | return KERN_SUCCESS; |
2d21ac55 A |
1592 | } |
1593 | ||
1594 | ||
1c79356b | 1595 | /* |
0b4e3aa0 | 1596 | * Routine: host_default_memory_manager [interface] |
1c79356b A |
1597 | * Purpose: |
1598 | * set/get the default memory manager port and default cluster | |
1599 | * size. | |
1600 | * | |
1601 | * If successful, consumes the supplied naked send right. | |
1602 | */ | |
1603 | kern_return_t | |
1604 | host_default_memory_manager( | |
0a7de745 A |
1605 | host_priv_t host_priv, |
1606 | memory_object_default_t *default_manager, | |
2d21ac55 | 1607 | __unused memory_object_cluster_size_t cluster_size) |
1c79356b | 1608 | { |
0b4e3aa0 A |
1609 | memory_object_default_t current_manager; |
1610 | memory_object_default_t new_manager; | |
1611 | memory_object_default_t returned_manager; | |
2d21ac55 | 1612 | kern_return_t result = KERN_SUCCESS; |
1c79356b | 1613 | |
0a7de745 A |
1614 | if (host_priv == HOST_PRIV_NULL) { |
1615 | return KERN_INVALID_HOST; | |
1616 | } | |
1c79356b A |
1617 | |
1618 | assert(host_priv == &realhost); | |
1619 | ||
1620 | new_manager = *default_manager; | |
b0d623f7 | 1621 | lck_mtx_lock(&memory_manager_default_lock); |
1c79356b | 1622 | current_manager = memory_manager_default; |
2d21ac55 | 1623 | returned_manager = MEMORY_OBJECT_DEFAULT_NULL; |
1c79356b | 1624 | |
0b4e3aa0 | 1625 | if (new_manager == MEMORY_OBJECT_DEFAULT_NULL) { |
1c79356b A |
1626 | /* |
1627 | * Retrieve the current value. | |
1628 | */ | |
0b4e3aa0 | 1629 | returned_manager = current_manager; |
2d21ac55 | 1630 | memory_object_default_reference(returned_manager); |
1c79356b | 1631 | } else { |
3e170ce0 A |
1632 | /* |
1633 | * Only allow the kernel to change the value. | |
1634 | */ | |
1635 | extern task_t kernel_task; | |
1636 | if (current_task() != kernel_task) { | |
1637 | result = KERN_NO_ACCESS; | |
1638 | goto out; | |
1639 | } | |
2d21ac55 A |
1640 | |
1641 | /* | |
1642 | * If this is the first non-null manager, start | |
1643 | * up the internal pager support. | |
1644 | */ | |
1645 | if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { | |
1646 | result = vm_pageout_internal_start(); | |
0a7de745 | 1647 | if (result != KERN_SUCCESS) { |
2d21ac55 | 1648 | goto out; |
0a7de745 | 1649 | } |
2d21ac55 A |
1650 | } |
1651 | ||
1c79356b A |
1652 | /* |
1653 | * Retrieve the current value, | |
1654 | * and replace it with the supplied value. | |
0b4e3aa0 A |
1655 | * We return the old reference to the caller |
1656 | * but we have to take a reference on the new | |
1657 | * one. | |
1c79356b | 1658 | */ |
1c79356b A |
1659 | returned_manager = current_manager; |
1660 | memory_manager_default = new_manager; | |
0b4e3aa0 A |
1661 | memory_object_default_reference(new_manager); |
1662 | ||
1c79356b A |
1663 | /* |
1664 | * In case anyone's been waiting for a memory | |
1665 | * manager to be established, wake them up. | |
1666 | */ | |
1667 | ||
1668 | thread_wakeup((event_t) &memory_manager_default); | |
b0d623f7 A |
1669 | |
1670 | /* | |
1671 | * Now that we have a default pager for anonymous memory, | |
1672 | * reactivate all the throttled pages (i.e. dirty pages with | |
1673 | * no pager). | |
1674 | */ | |
0a7de745 | 1675 | if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { |
b0d623f7 A |
1676 | vm_page_reactivate_all_throttled(); |
1677 | } | |
1c79356b | 1678 | } |
0a7de745 | 1679 | out: |
b0d623f7 | 1680 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1681 | |
1682 | *default_manager = returned_manager; | |
0a7de745 | 1683 | return result; |
1c79356b A |
1684 | } |
1685 | ||
1686 | /* | |
1687 | * Routine: memory_manager_default_reference | |
1688 | * Purpose: | |
1689 | * Returns a naked send right for the default | |
1690 | * memory manager. The returned right is always | |
1691 | * valid (not IP_NULL or IP_DEAD). | |
1692 | */ | |
1693 | ||
0b4e3aa0 | 1694 | __private_extern__ memory_object_default_t |
2d21ac55 | 1695 | memory_manager_default_reference(void) |
1c79356b | 1696 | { |
0b4e3aa0 | 1697 | memory_object_default_t current_manager; |
1c79356b | 1698 | |
b0d623f7 | 1699 | lck_mtx_lock(&memory_manager_default_lock); |
0b4e3aa0 A |
1700 | current_manager = memory_manager_default; |
1701 | while (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { | |
9bccf70c A |
1702 | wait_result_t res; |
1703 | ||
b0d623f7 | 1704 | res = lck_mtx_sleep(&memory_manager_default_lock, |
0a7de745 A |
1705 | LCK_SLEEP_DEFAULT, |
1706 | (event_t) &memory_manager_default, | |
1707 | THREAD_UNINT); | |
9bccf70c | 1708 | assert(res == THREAD_AWAKENED); |
0b4e3aa0 | 1709 | current_manager = memory_manager_default; |
1c79356b | 1710 | } |
0b4e3aa0 | 1711 | memory_object_default_reference(current_manager); |
b0d623f7 | 1712 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1713 | |
1714 | return current_manager; | |
1715 | } | |
1716 | ||
1c79356b A |
1717 | /* |
1718 | * Routine: memory_manager_default_check | |
1719 | * | |
1720 | * Purpose: | |
1721 | * Check whether a default memory manager has been set | |
1722 | * up yet, or not. Returns KERN_SUCCESS if dmm exists, | |
1723 | * and KERN_FAILURE if dmm does not exist. | |
1724 | * | |
1725 | * If there is no default memory manager, log an error, | |
1726 | * but only the first time. | |
1727 | * | |
1728 | */ | |
0b4e3aa0 | 1729 | __private_extern__ kern_return_t |
1c79356b A |
1730 | memory_manager_default_check(void) |
1731 | { | |
0b4e3aa0 | 1732 | memory_object_default_t current; |
1c79356b | 1733 | |
b0d623f7 | 1734 | lck_mtx_lock(&memory_manager_default_lock); |
1c79356b | 1735 | current = memory_manager_default; |
0b4e3aa0 | 1736 | if (current == MEMORY_OBJECT_DEFAULT_NULL) { |
0a7de745 A |
1737 | static boolean_t logged; /* initialized to 0 */ |
1738 | boolean_t complain = !logged; | |
1c79356b | 1739 | logged = TRUE; |
b0d623f7 | 1740 | lck_mtx_unlock(&memory_manager_default_lock); |
0a7de745 | 1741 | if (complain) { |
1c79356b | 1742 | printf("Warning: No default memory manager\n"); |
0a7de745 A |
1743 | } |
1744 | return KERN_FAILURE; | |
1c79356b | 1745 | } else { |
b0d623f7 | 1746 | lck_mtx_unlock(&memory_manager_default_lock); |
0a7de745 | 1747 | return KERN_SUCCESS; |
1c79356b A |
1748 | } |
1749 | } | |
1750 | ||
0b4e3aa0 | 1751 | __private_extern__ void |
1c79356b A |
1752 | memory_manager_default_init(void) |
1753 | { | |
0b4e3aa0 | 1754 | memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; |
b0d623f7 | 1755 | lck_mtx_init(&memory_manager_default_lock, &vm_object_lck_grp, &vm_object_lck_attr); |
1c79356b A |
1756 | } |
1757 | ||
1758 | ||
1c79356b A |
1759 | |
1760 | /* Allow manipulation of individual page state. This is actually part of */ | |
1761 | /* the UPL regimen but takes place on the object rather than on a UPL */ | |
1762 | ||
1763 | kern_return_t | |
1764 | memory_object_page_op( | |
0a7de745 A |
1765 | memory_object_control_t control, |
1766 | memory_object_offset_t offset, | |
1767 | int ops, | |
1768 | ppnum_t *phys_entry, | |
1769 | int *flags) | |
1c79356b | 1770 | { |
0a7de745 | 1771 | vm_object_t object; |
0b4e3aa0 A |
1772 | |
1773 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
1774 | if (object == VM_OBJECT_NULL) { |
1775 | return KERN_INVALID_ARGUMENT; | |
1776 | } | |
1c79356b | 1777 | |
0c530ab8 | 1778 | return vm_object_page_op(object, offset, ops, phys_entry, flags); |
1c79356b A |
1779 | } |
1780 | ||
55e303ae | 1781 | /* |
0a7de745 A |
1782 | * memory_object_range_op offers performance enhancement over |
1783 | * memory_object_page_op for page_op functions which do not require page | |
1784 | * level state to be returned from the call. Page_op was created to provide | |
1785 | * a low-cost alternative to page manipulation via UPLs when only a single | |
1786 | * page was involved. The range_op call establishes the ability in the _op | |
55e303ae A |
1787 | * family of functions to work on multiple pages where the lack of page level |
1788 | * state handling allows the caller to avoid the overhead of the upl structures. | |
1789 | */ | |
1790 | ||
1791 | kern_return_t | |
1792 | memory_object_range_op( | |
0a7de745 A |
1793 | memory_object_control_t control, |
1794 | memory_object_offset_t offset_beg, | |
1795 | memory_object_offset_t offset_end, | |
55e303ae A |
1796 | int ops, |
1797 | int *range) | |
1798 | { | |
0a7de745 | 1799 | vm_object_t object; |
55e303ae A |
1800 | |
1801 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
1802 | if (object == VM_OBJECT_NULL) { |
1803 | return KERN_INVALID_ARGUMENT; | |
1804 | } | |
55e303ae | 1805 | |
0c530ab8 | 1806 | return vm_object_range_op(object, |
0a7de745 A |
1807 | offset_beg, |
1808 | offset_end, | |
1809 | ops, | |
1810 | (uint32_t *) range); | |
55e303ae A |
1811 | } |
1812 | ||
91447636 | 1813 | |
6d2010ae A |
1814 | void |
1815 | memory_object_mark_used( | |
0a7de745 | 1816 | memory_object_control_t control) |
6d2010ae | 1817 | { |
0a7de745 | 1818 | vm_object_t object; |
6d2010ae | 1819 | |
0a7de745 | 1820 | if (control == NULL) { |
6d2010ae | 1821 | return; |
0a7de745 | 1822 | } |
6d2010ae A |
1823 | |
1824 | object = memory_object_control_to_vm_object(control); | |
1825 | ||
0a7de745 | 1826 | if (object != VM_OBJECT_NULL) { |
6d2010ae | 1827 | vm_object_cache_remove(object); |
0a7de745 | 1828 | } |
6d2010ae A |
1829 | } |
1830 | ||
1831 | ||
1832 | void | |
1833 | memory_object_mark_unused( | |
0a7de745 A |
1834 | memory_object_control_t control, |
1835 | __unused boolean_t rage) | |
6d2010ae | 1836 | { |
0a7de745 | 1837 | vm_object_t object; |
6d2010ae | 1838 | |
0a7de745 | 1839 | if (control == NULL) { |
6d2010ae | 1840 | return; |
0a7de745 | 1841 | } |
6d2010ae A |
1842 | |
1843 | object = memory_object_control_to_vm_object(control); | |
1844 | ||
0a7de745 | 1845 | if (object != VM_OBJECT_NULL) { |
6d2010ae | 1846 | vm_object_cache_add(object); |
0a7de745 | 1847 | } |
6d2010ae A |
1848 | } |
1849 | ||
fe8ab488 A |
1850 | void |
1851 | memory_object_mark_io_tracking( | |
1852 | memory_object_control_t control) | |
1853 | { | |
1854 | vm_object_t object; | |
1855 | ||
0a7de745 | 1856 | if (control == NULL) { |
fe8ab488 | 1857 | return; |
0a7de745 | 1858 | } |
fe8ab488 A |
1859 | object = memory_object_control_to_vm_object(control); |
1860 | ||
1861 | if (object != VM_OBJECT_NULL) { | |
1862 | vm_object_lock(object); | |
1863 | object->io_tracking = TRUE; | |
1864 | vm_object_unlock(object); | |
1865 | } | |
1866 | } | |
6d2010ae | 1867 | |
cb323159 A |
1868 | void |
1869 | memory_object_mark_trusted( | |
1870 | memory_object_control_t control) | |
1871 | { | |
1872 | vm_object_t object; | |
1873 | ||
1874 | if (control == NULL) { | |
1875 | return; | |
1876 | } | |
1877 | object = memory_object_control_to_vm_object(control); | |
1878 | ||
1879 | if (object != VM_OBJECT_NULL) { | |
1880 | vm_object_lock(object); | |
1881 | object->pager_trusted = TRUE; | |
1882 | vm_object_unlock(object); | |
1883 | } | |
1884 | } | |
1885 | ||
39037602 A |
1886 | #if CONFIG_SECLUDED_MEMORY |
1887 | void | |
1888 | memory_object_mark_eligible_for_secluded( | |
1889 | memory_object_control_t control, | |
0a7de745 | 1890 | boolean_t eligible_for_secluded) |
39037602 A |
1891 | { |
1892 | vm_object_t object; | |
1893 | ||
0a7de745 | 1894 | if (control == NULL) { |
39037602 | 1895 | return; |
0a7de745 | 1896 | } |
39037602 A |
1897 | object = memory_object_control_to_vm_object(control); |
1898 | ||
1899 | if (object == VM_OBJECT_NULL) { | |
1900 | return; | |
1901 | } | |
1902 | ||
1903 | vm_object_lock(object); | |
1904 | if (eligible_for_secluded && | |
1905 | secluded_for_filecache && /* global boot-arg */ | |
1906 | !object->eligible_for_secluded) { | |
1907 | object->eligible_for_secluded = TRUE; | |
1908 | vm_page_secluded.eligible_for_secluded += object->resident_page_count; | |
1909 | } else if (!eligible_for_secluded && | |
0a7de745 | 1910 | object->eligible_for_secluded) { |
39037602 A |
1911 | object->eligible_for_secluded = FALSE; |
1912 | vm_page_secluded.eligible_for_secluded -= object->resident_page_count; | |
1913 | if (object->resident_page_count) { | |
1914 | /* XXX FBDP TODO: flush pages from secluded queue? */ | |
1915 | // printf("FBDP TODO: flush %d pages from %p from secluded queue\n", object->resident_page_count, object); | |
1916 | } | |
1917 | } | |
1918 | vm_object_unlock(object); | |
1919 | } | |
1920 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
1921 | ||
91447636 A |
1922 | kern_return_t |
1923 | memory_object_pages_resident( | |
0a7de745 A |
1924 | memory_object_control_t control, |
1925 | boolean_t * has_pages_resident) | |
91447636 | 1926 | { |
0a7de745 | 1927 | vm_object_t object; |
91447636 A |
1928 | |
1929 | *has_pages_resident = FALSE; | |
1930 | ||
1931 | object = memory_object_control_to_vm_object(control); | |
0a7de745 A |
1932 | if (object == VM_OBJECT_NULL) { |
1933 | return KERN_INVALID_ARGUMENT; | |
1934 | } | |
91447636 | 1935 | |
0a7de745 | 1936 | if (object->resident_page_count) { |
91447636 | 1937 | *has_pages_resident = TRUE; |
0a7de745 A |
1938 | } |
1939 | ||
1940 | return KERN_SUCCESS; | |
91447636 A |
1941 | } |
1942 | ||
2d21ac55 A |
1943 | kern_return_t |
1944 | memory_object_signed( | |
0a7de745 A |
1945 | memory_object_control_t control, |
1946 | boolean_t is_signed) | |
2d21ac55 | 1947 | { |
0a7de745 | 1948 | vm_object_t object; |
2d21ac55 A |
1949 | |
1950 | object = memory_object_control_to_vm_object(control); | |
0a7de745 | 1951 | if (object == VM_OBJECT_NULL) { |
2d21ac55 | 1952 | return KERN_INVALID_ARGUMENT; |
0a7de745 | 1953 | } |
2d21ac55 A |
1954 | |
1955 | vm_object_lock(object); | |
1956 | object->code_signed = is_signed; | |
1957 | vm_object_unlock(object); | |
1958 | ||
1959 | return KERN_SUCCESS; | |
1960 | } | |
91447636 | 1961 | |
39236c6e A |
1962 | boolean_t |
1963 | memory_object_is_signed( | |
0a7de745 | 1964 | memory_object_control_t control) |
39236c6e | 1965 | { |
0a7de745 A |
1966 | boolean_t is_signed; |
1967 | vm_object_t object; | |
39236c6e A |
1968 | |
1969 | object = memory_object_control_to_vm_object(control); | |
0a7de745 | 1970 | if (object == VM_OBJECT_NULL) { |
39236c6e | 1971 | return FALSE; |
0a7de745 | 1972 | } |
39236c6e A |
1973 | |
1974 | vm_object_lock_shared(object); | |
1975 | is_signed = object->code_signed; | |
1976 | vm_object_unlock(object); | |
1977 | ||
1978 | return is_signed; | |
1979 | } | |
1980 | ||
6d2010ae | 1981 | boolean_t |
d9a64523 | 1982 | memory_object_is_shared_cache( |
0a7de745 | 1983 | memory_object_control_t control) |
6d2010ae | 1984 | { |
0a7de745 | 1985 | vm_object_t object = VM_OBJECT_NULL; |
6d2010ae A |
1986 | |
1987 | object = memory_object_control_to_vm_object(control); | |
0a7de745 | 1988 | if (object == VM_OBJECT_NULL) { |
6d2010ae | 1989 | return FALSE; |
0a7de745 | 1990 | } |
6d2010ae | 1991 | |
d9a64523 | 1992 | return object->object_is_shared_cache; |
6d2010ae A |
1993 | } |
1994 | ||
0b4e3aa0 A |
1995 | static zone_t mem_obj_control_zone; |
1996 | ||
1997 | __private_extern__ void | |
1998 | memory_object_control_bootstrap(void) | |
1999 | { | |
0a7de745 | 2000 | int i; |
0b4e3aa0 | 2001 | |
0a7de745 A |
2002 | i = (vm_size_t) sizeof(struct memory_object_control); |
2003 | mem_obj_control_zone = zinit(i, 8192 * i, 4096, "mem_obj_control"); | |
6d2010ae | 2004 | zone_change(mem_obj_control_zone, Z_CALLERACCT, FALSE); |
0b4c1975 | 2005 | zone_change(mem_obj_control_zone, Z_NOENCRYPT, TRUE); |
0b4e3aa0 A |
2006 | return; |
2007 | } | |
2008 | ||
2009 | __private_extern__ memory_object_control_t | |
2010 | memory_object_control_allocate( | |
0a7de745 A |
2011 | vm_object_t object) |
2012 | { | |
0b4e3aa0 A |
2013 | memory_object_control_t control; |
2014 | ||
2015 | control = (memory_object_control_t)zalloc(mem_obj_control_zone); | |
0c530ab8 A |
2016 | if (control != MEMORY_OBJECT_CONTROL_NULL) { |
2017 | control->moc_object = object; | |
2018 | control->moc_ikot = IKOT_MEM_OBJ_CONTROL; /* fake ip_kotype */ | |
2019 | } | |
0a7de745 | 2020 | return control; |
0b4e3aa0 A |
2021 | } |
2022 | ||
2023 | __private_extern__ void | |
2024 | memory_object_control_collapse( | |
0a7de745 A |
2025 | memory_object_control_t control, |
2026 | vm_object_t object) | |
2027 | { | |
0c530ab8 | 2028 | assert((control->moc_object != VM_OBJECT_NULL) && |
0a7de745 | 2029 | (control->moc_object != object)); |
0c530ab8 | 2030 | control->moc_object = object; |
0b4e3aa0 A |
2031 | } |
2032 | ||
2033 | __private_extern__ vm_object_t | |
2034 | memory_object_control_to_vm_object( | |
0a7de745 | 2035 | memory_object_control_t control) |
0b4e3aa0 | 2036 | { |
0c530ab8 | 2037 | if (control == MEMORY_OBJECT_CONTROL_NULL || |
0a7de745 | 2038 | control->moc_ikot != IKOT_MEM_OBJ_CONTROL) { |
0b4e3aa0 | 2039 | return VM_OBJECT_NULL; |
0a7de745 | 2040 | } |
0b4e3aa0 | 2041 | |
0a7de745 | 2042 | return control->moc_object; |
0b4e3aa0 A |
2043 | } |
2044 | ||
5ba3f43e A |
2045 | __private_extern__ vm_object_t |
2046 | memory_object_to_vm_object( | |
2047 | memory_object_t mem_obj) | |
2048 | { | |
2049 | memory_object_control_t mo_control; | |
2050 | ||
2051 | if (mem_obj == MEMORY_OBJECT_NULL) { | |
2052 | return VM_OBJECT_NULL; | |
2053 | } | |
2054 | mo_control = mem_obj->mo_control; | |
2055 | if (mo_control == NULL) { | |
2056 | return VM_OBJECT_NULL; | |
2057 | } | |
2058 | return memory_object_control_to_vm_object(mo_control); | |
2059 | } | |
2060 | ||
0b4e3aa0 A |
2061 | memory_object_control_t |
2062 | convert_port_to_mo_control( | |
0a7de745 | 2063 | __unused mach_port_t port) |
0b4e3aa0 A |
2064 | { |
2065 | return MEMORY_OBJECT_CONTROL_NULL; | |
2066 | } | |
2067 | ||
2068 | ||
2069 | mach_port_t | |
2070 | convert_mo_control_to_port( | |
0a7de745 | 2071 | __unused memory_object_control_t control) |
0b4e3aa0 A |
2072 | { |
2073 | return MACH_PORT_NULL; | |
2074 | } | |
2075 | ||
2076 | void | |
2077 | memory_object_control_reference( | |
0a7de745 | 2078 | __unused memory_object_control_t control) |
0b4e3aa0 A |
2079 | { |
2080 | return; | |
2081 | } | |
2082 | ||
2083 | /* | |
2084 | * We only every issue one of these references, so kill it | |
2085 | * when that gets released (should switch the real reference | |
2086 | * counting in true port-less EMMI). | |
2087 | */ | |
2088 | void | |
2089 | memory_object_control_deallocate( | |
0a7de745 | 2090 | memory_object_control_t control) |
0b4e3aa0 | 2091 | { |
91447636 | 2092 | zfree(mem_obj_control_zone, control); |
0b4e3aa0 A |
2093 | } |
2094 | ||
2095 | void | |
2096 | memory_object_control_disable( | |
0a7de745 | 2097 | memory_object_control_t control) |
0b4e3aa0 | 2098 | { |
0c530ab8 A |
2099 | assert(control->moc_object != VM_OBJECT_NULL); |
2100 | control->moc_object = VM_OBJECT_NULL; | |
0b4e3aa0 A |
2101 | } |
2102 | ||
2103 | void | |
2104 | memory_object_default_reference( | |
2105 | memory_object_default_t dmm) | |
2106 | { | |
2107 | ipc_port_make_send(dmm); | |
2108 | } | |
2109 | ||
2110 | void | |
2111 | memory_object_default_deallocate( | |
2112 | memory_object_default_t dmm) | |
2113 | { | |
2114 | ipc_port_release_send(dmm); | |
2115 | } | |
2116 | ||
2117 | memory_object_t | |
2118 | convert_port_to_memory_object( | |
0a7de745 | 2119 | __unused mach_port_t port) |
0b4e3aa0 | 2120 | { |
0a7de745 | 2121 | return MEMORY_OBJECT_NULL; |
0b4e3aa0 A |
2122 | } |
2123 | ||
2124 | ||
2125 | mach_port_t | |
2126 | convert_memory_object_to_port( | |
0a7de745 | 2127 | __unused memory_object_t object) |
0b4e3aa0 | 2128 | { |
0a7de745 | 2129 | return MACH_PORT_NULL; |
0b4e3aa0 A |
2130 | } |
2131 | ||
0b4e3aa0 A |
2132 | |
2133 | /* Routine memory_object_reference */ | |
0a7de745 A |
2134 | void |
2135 | memory_object_reference( | |
0b4e3aa0 A |
2136 | memory_object_t memory_object) |
2137 | { | |
0c530ab8 A |
2138 | (memory_object->mo_pager_ops->memory_object_reference)( |
2139 | memory_object); | |
0b4e3aa0 A |
2140 | } |
2141 | ||
2142 | /* Routine memory_object_deallocate */ | |
0a7de745 A |
2143 | void |
2144 | memory_object_deallocate( | |
0b4e3aa0 A |
2145 | memory_object_t memory_object) |
2146 | { | |
0c530ab8 | 2147 | (memory_object->mo_pager_ops->memory_object_deallocate)( |
0a7de745 | 2148 | memory_object); |
0b4e3aa0 A |
2149 | } |
2150 | ||
2151 | ||
2152 | /* Routine memory_object_init */ | |
0a7de745 A |
2153 | kern_return_t |
2154 | memory_object_init | |
0b4e3aa0 A |
2155 | ( |
2156 | memory_object_t memory_object, | |
2157 | memory_object_control_t memory_control, | |
91447636 | 2158 | memory_object_cluster_size_t memory_object_page_size |
0b4e3aa0 A |
2159 | ) |
2160 | { | |
0c530ab8 A |
2161 | return (memory_object->mo_pager_ops->memory_object_init)( |
2162 | memory_object, | |
2163 | memory_control, | |
2164 | memory_object_page_size); | |
0b4e3aa0 A |
2165 | } |
2166 | ||
2167 | /* Routine memory_object_terminate */ | |
0a7de745 A |
2168 | kern_return_t |
2169 | memory_object_terminate | |
0b4e3aa0 A |
2170 | ( |
2171 | memory_object_t memory_object | |
2172 | ) | |
2173 | { | |
0c530ab8 A |
2174 | return (memory_object->mo_pager_ops->memory_object_terminate)( |
2175 | memory_object); | |
0b4e3aa0 A |
2176 | } |
2177 | ||
2178 | /* Routine memory_object_data_request */ | |
0a7de745 A |
2179 | kern_return_t |
2180 | memory_object_data_request | |
0b4e3aa0 A |
2181 | ( |
2182 | memory_object_t memory_object, | |
2183 | memory_object_offset_t offset, | |
91447636 | 2184 | memory_object_cluster_size_t length, |
2d21ac55 A |
2185 | vm_prot_t desired_access, |
2186 | memory_object_fault_info_t fault_info | |
0b4e3aa0 A |
2187 | ) |
2188 | { | |
0c530ab8 A |
2189 | return (memory_object->mo_pager_ops->memory_object_data_request)( |
2190 | memory_object, | |
0a7de745 | 2191 | offset, |
0c530ab8 | 2192 | length, |
2d21ac55 A |
2193 | desired_access, |
2194 | fault_info); | |
0b4e3aa0 A |
2195 | } |
2196 | ||
2197 | /* Routine memory_object_data_return */ | |
0a7de745 A |
2198 | kern_return_t |
2199 | memory_object_data_return | |
0b4e3aa0 A |
2200 | ( |
2201 | memory_object_t memory_object, | |
2202 | memory_object_offset_t offset, | |
b0d623f7 | 2203 | memory_object_cluster_size_t size, |
91447636 | 2204 | memory_object_offset_t *resid_offset, |
0a7de745 | 2205 | int *io_error, |
0b4e3aa0 | 2206 | boolean_t dirty, |
91447636 | 2207 | boolean_t kernel_copy, |
0a7de745 | 2208 | int upl_flags |
0b4e3aa0 A |
2209 | ) |
2210 | { | |
0c530ab8 A |
2211 | return (memory_object->mo_pager_ops->memory_object_data_return)( |
2212 | memory_object, | |
2213 | offset, | |
2214 | size, | |
2215 | resid_offset, | |
2216 | io_error, | |
2217 | dirty, | |
2218 | kernel_copy, | |
2219 | upl_flags); | |
0b4e3aa0 A |
2220 | } |
2221 | ||
2222 | /* Routine memory_object_data_initialize */ | |
0a7de745 A |
2223 | kern_return_t |
2224 | memory_object_data_initialize | |
0b4e3aa0 A |
2225 | ( |
2226 | memory_object_t memory_object, | |
2227 | memory_object_offset_t offset, | |
b0d623f7 | 2228 | memory_object_cluster_size_t size |
0b4e3aa0 A |
2229 | ) |
2230 | { | |
0c530ab8 A |
2231 | return (memory_object->mo_pager_ops->memory_object_data_initialize)( |
2232 | memory_object, | |
2233 | offset, | |
2234 | size); | |
0b4e3aa0 A |
2235 | } |
2236 | ||
2237 | /* Routine memory_object_data_unlock */ | |
0a7de745 A |
2238 | kern_return_t |
2239 | memory_object_data_unlock | |
0b4e3aa0 A |
2240 | ( |
2241 | memory_object_t memory_object, | |
2242 | memory_object_offset_t offset, | |
b0d623f7 | 2243 | memory_object_size_t size, |
0b4e3aa0 A |
2244 | vm_prot_t desired_access |
2245 | ) | |
2246 | { | |
0c530ab8 A |
2247 | return (memory_object->mo_pager_ops->memory_object_data_unlock)( |
2248 | memory_object, | |
2249 | offset, | |
2250 | size, | |
2251 | desired_access); | |
0b4e3aa0 A |
2252 | } |
2253 | ||
2254 | /* Routine memory_object_synchronize */ | |
0a7de745 A |
2255 | kern_return_t |
2256 | memory_object_synchronize | |
0b4e3aa0 A |
2257 | ( |
2258 | memory_object_t memory_object, | |
2259 | memory_object_offset_t offset, | |
b0d623f7 | 2260 | memory_object_size_t size, |
0b4e3aa0 A |
2261 | vm_sync_t sync_flags |
2262 | ) | |
2263 | { | |
0a7de745 | 2264 | panic("memory_object_syncrhonize no longer supported\n"); |
5ba3f43e | 2265 | |
0c530ab8 A |
2266 | return (memory_object->mo_pager_ops->memory_object_synchronize)( |
2267 | memory_object, | |
2268 | offset, | |
2269 | size, | |
2270 | sync_flags); | |
0b4e3aa0 A |
2271 | } |
2272 | ||
593a1d5f A |
2273 | |
2274 | /* | |
2275 | * memory_object_map() is called by VM (in vm_map_enter() and its variants) | |
2276 | * each time a "named" VM object gets mapped directly or indirectly | |
2277 | * (copy-on-write mapping). A "named" VM object has an extra reference held | |
0a7de745 | 2278 | * by the pager to keep it alive until the pager decides that the |
593a1d5f A |
2279 | * memory object (and its VM object) can be reclaimed. |
2280 | * VM calls memory_object_last_unmap() (in vm_object_deallocate()) when all | |
2281 | * the mappings of that memory object have been removed. | |
2282 | * | |
2283 | * For a given VM object, calls to memory_object_map() and memory_object_unmap() | |
2284 | * are serialized (through object->mapping_in_progress), to ensure that the | |
2285 | * pager gets a consistent view of the mapping status of the memory object. | |
2286 | * | |
2287 | * This allows the pager to keep track of how many times a memory object | |
2288 | * has been mapped and with which protections, to decide when it can be | |
2289 | * reclaimed. | |
2290 | */ | |
2291 | ||
2292 | /* Routine memory_object_map */ | |
0a7de745 A |
2293 | kern_return_t |
2294 | memory_object_map | |
593a1d5f A |
2295 | ( |
2296 | memory_object_t memory_object, | |
2297 | vm_prot_t prot | |
2298 | ) | |
2299 | { | |
2300 | return (memory_object->mo_pager_ops->memory_object_map)( | |
2301 | memory_object, | |
2302 | prot); | |
2303 | } | |
2304 | ||
2305 | /* Routine memory_object_last_unmap */ | |
0a7de745 A |
2306 | kern_return_t |
2307 | memory_object_last_unmap | |
0b4e3aa0 A |
2308 | ( |
2309 | memory_object_t memory_object | |
2310 | ) | |
2311 | { | |
593a1d5f | 2312 | return (memory_object->mo_pager_ops->memory_object_last_unmap)( |
0c530ab8 | 2313 | memory_object); |
0b4e3aa0 A |
2314 | } |
2315 | ||
6d2010ae | 2316 | /* Routine memory_object_data_reclaim */ |
0a7de745 A |
2317 | kern_return_t |
2318 | memory_object_data_reclaim | |
6d2010ae A |
2319 | ( |
2320 | memory_object_t memory_object, | |
0a7de745 | 2321 | boolean_t reclaim_backing_store |
6d2010ae A |
2322 | ) |
2323 | { | |
0a7de745 | 2324 | if (memory_object->mo_pager_ops->memory_object_data_reclaim == NULL) { |
6d2010ae | 2325 | return KERN_NOT_SUPPORTED; |
0a7de745 | 2326 | } |
6d2010ae A |
2327 | return (memory_object->mo_pager_ops->memory_object_data_reclaim)( |
2328 | memory_object, | |
2329 | reclaim_backing_store); | |
2330 | } | |
2331 | ||
91447636 A |
2332 | upl_t |
2333 | convert_port_to_upl( | |
0a7de745 | 2334 | ipc_port_t port) |
91447636 A |
2335 | { |
2336 | upl_t upl; | |
2337 | ||
2338 | ip_lock(port); | |
2339 | if (!ip_active(port) || (ip_kotype(port) != IKOT_UPL)) { | |
0a7de745 A |
2340 | ip_unlock(port); |
2341 | return (upl_t)NULL; | |
91447636 | 2342 | } |
ea3f0419 | 2343 | upl = (upl_t) ip_get_kobject(port); |
91447636 A |
2344 | ip_unlock(port); |
2345 | upl_lock(upl); | |
0a7de745 | 2346 | upl->ref_count += 1; |
91447636 A |
2347 | upl_unlock(upl); |
2348 | return upl; | |
2349 | } | |
2350 | ||
2351 | mach_port_t | |
2352 | convert_upl_to_port( | |
0a7de745 | 2353 | __unused upl_t upl) |
91447636 A |
2354 | { |
2355 | return MACH_PORT_NULL; | |
2356 | } | |
2357 | ||
2358 | __private_extern__ void | |
2359 | upl_no_senders( | |
0a7de745 A |
2360 | __unused ipc_port_t port, |
2361 | __unused mach_port_mscount_t mscount) | |
91447636 A |
2362 | { |
2363 | return; | |
2364 | } |