]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/memory_object.c | |
60 | * Author: Michael Wayne Young | |
61 | * | |
62 | * External memory management interface control functions. | |
63 | */ | |
64 | ||
1c79356b A |
65 | /* |
66 | * Interface dependencies: | |
67 | */ | |
68 | ||
69 | #include <mach/std_types.h> /* For pointer_t */ | |
70 | #include <mach/mach_types.h> | |
71 | ||
0b4e3aa0 | 72 | #include <mach/mig.h> |
1c79356b A |
73 | #include <mach/kern_return.h> |
74 | #include <mach/memory_object.h> | |
75 | #include <mach/memory_object_default.h> | |
76 | #include <mach/memory_object_control_server.h> | |
0b4e3aa0 | 77 | #include <mach/host_priv_server.h> |
1c79356b A |
78 | #include <mach/boolean.h> |
79 | #include <mach/vm_prot.h> | |
80 | #include <mach/message.h> | |
81 | ||
1c79356b A |
82 | /* |
83 | * Implementation dependencies: | |
84 | */ | |
85 | #include <string.h> /* For memcpy() */ | |
86 | ||
0b4e3aa0 A |
87 | #include <kern/xpr.h> |
88 | #include <kern/host.h> | |
89 | #include <kern/thread.h> /* For current_thread() */ | |
90 | #include <kern/ipc_mig.h> | |
91 | #include <kern/misc_protos.h> | |
92 | ||
93 | #include <vm/vm_object.h> | |
94 | #include <vm/vm_fault.h> | |
1c79356b A |
95 | #include <vm/memory_object.h> |
96 | #include <vm/vm_page.h> | |
97 | #include <vm/vm_pageout.h> | |
98 | #include <vm/pmap.h> /* For pmap_clear_modify */ | |
1c79356b A |
99 | #include <vm/vm_kern.h> /* For kernel_map, vm_move */ |
100 | #include <vm/vm_map.h> /* For vm_map_pageable */ | |
2d21ac55 | 101 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ |
6d2010ae | 102 | #include <vm/vm_shared_region.h> |
1c79356b | 103 | |
1c79356b | 104 | #include <vm/vm_external.h> |
1c79356b | 105 | |
91447636 A |
106 | #include <vm/vm_protos.h> |
107 | ||
108 | ||
0b4e3aa0 | 109 | memory_object_default_t memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; |
b0d623f7 | 110 | decl_lck_mtx_data(, memory_manager_default_lock) |
1c79356b | 111 | |
1c79356b A |
112 | |
113 | /* | |
114 | * Routine: memory_object_should_return_page | |
115 | * | |
116 | * Description: | |
117 | * Determine whether the given page should be returned, | |
118 | * based on the page's state and on the given return policy. | |
119 | * | |
120 | * We should return the page if one of the following is true: | |
121 | * | |
122 | * 1. Page is dirty and should_return is not RETURN_NONE. | |
123 | * 2. Page is precious and should_return is RETURN_ALL. | |
124 | * 3. Should_return is RETURN_ANYTHING. | |
125 | * | |
126 | * As a side effect, m->dirty will be made consistent | |
127 | * with pmap_is_modified(m), if should_return is not | |
128 | * MEMORY_OBJECT_RETURN_NONE. | |
129 | */ | |
130 | ||
131 | #define memory_object_should_return_page(m, should_return) \ | |
132 | (should_return != MEMORY_OBJECT_RETURN_NONE && \ | |
55e303ae | 133 | (((m)->dirty || ((m)->dirty = pmap_is_modified((m)->phys_page))) || \ |
1c79356b A |
134 | ((m)->precious && (should_return) == MEMORY_OBJECT_RETURN_ALL) || \ |
135 | (should_return) == MEMORY_OBJECT_RETURN_ANYTHING)) | |
136 | ||
137 | typedef int memory_object_lock_result_t; | |
138 | ||
6d2010ae A |
139 | #define MEMORY_OBJECT_LOCK_RESULT_DONE 0 |
140 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK 1 | |
141 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN 2 | |
142 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_FREE 3 | |
1c79356b A |
143 | |
144 | memory_object_lock_result_t memory_object_lock_page( | |
145 | vm_page_t m, | |
146 | memory_object_return_t should_return, | |
147 | boolean_t should_flush, | |
148 | vm_prot_t prot); | |
149 | ||
150 | /* | |
151 | * Routine: memory_object_lock_page | |
152 | * | |
153 | * Description: | |
154 | * Perform the appropriate lock operations on the | |
155 | * given page. See the description of | |
156 | * "memory_object_lock_request" for the meanings | |
157 | * of the arguments. | |
158 | * | |
159 | * Returns an indication that the operation | |
160 | * completed, blocked, or that the page must | |
161 | * be cleaned. | |
162 | */ | |
163 | memory_object_lock_result_t | |
164 | memory_object_lock_page( | |
165 | vm_page_t m, | |
166 | memory_object_return_t should_return, | |
167 | boolean_t should_flush, | |
168 | vm_prot_t prot) | |
169 | { | |
170 | XPR(XPR_MEMORY_OBJECT, | |
171 | "m_o_lock_page, page 0x%X rtn %d flush %d prot %d\n", | |
b0d623f7 | 172 | m, should_return, should_flush, prot, 0); |
1c79356b | 173 | |
1c79356b | 174 | |
316670eb A |
175 | if (m->busy || m->cleaning) |
176 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK); | |
b0d623f7 | 177 | |
316670eb A |
178 | if (m->laundry) |
179 | vm_pageout_steal_laundry(m, FALSE); | |
6d2010ae | 180 | |
1c79356b A |
181 | /* |
182 | * Don't worry about pages for which the kernel | |
183 | * does not have any data. | |
184 | */ | |
765c9de3 | 185 | if (m->absent || m->error || m->restart) { |
6d2010ae A |
186 | if (m->error && should_flush && !VM_PAGE_WIRED(m)) { |
187 | /* | |
188 | * dump the page, pager wants us to | |
189 | * clean it up and there is no | |
190 | * relevant data to return | |
191 | */ | |
192 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_FREE); | |
765c9de3 | 193 | } |
6d2010ae | 194 | return (MEMORY_OBJECT_LOCK_RESULT_DONE); |
765c9de3 | 195 | } |
1c79356b A |
196 | assert(!m->fictitious); |
197 | ||
b0d623f7 | 198 | if (VM_PAGE_WIRED(m)) { |
6d2010ae A |
199 | /* |
200 | * The page is wired... just clean or return the page if needed. | |
201 | * Wired pages don't get flushed or disconnected from the pmap. | |
202 | */ | |
203 | if (memory_object_should_return_page(m, should_return)) | |
204 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN); | |
1c79356b | 205 | |
6d2010ae A |
206 | return (MEMORY_OBJECT_LOCK_RESULT_DONE); |
207 | } | |
1c79356b | 208 | |
6d2010ae A |
209 | if (should_flush) { |
210 | /* | |
211 | * must do the pmap_disconnect before determining the | |
212 | * need to return the page... otherwise it's possible | |
213 | * for the page to go from the clean to the dirty state | |
214 | * after we've made our decision | |
215 | */ | |
316670eb A |
216 | if (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED) { |
217 | SET_PAGE_DIRTY(m, FALSE); | |
218 | } | |
6d2010ae A |
219 | } else { |
220 | /* | |
221 | * If we are decreasing permission, do it now; | |
222 | * let the fault handler take care of increases | |
223 | * (pmap_page_protect may not increase protection). | |
224 | */ | |
225 | if (prot != VM_PROT_NO_CHANGE) | |
226 | pmap_page_protect(m->phys_page, VM_PROT_ALL & ~prot); | |
1c79356b | 227 | } |
1c79356b | 228 | /* |
6d2010ae | 229 | * Handle returning dirty or precious pages |
1c79356b | 230 | */ |
1c79356b | 231 | if (memory_object_should_return_page(m, should_return)) { |
1c79356b | 232 | /* |
6d2010ae A |
233 | * we use to do a pmap_disconnect here in support |
234 | * of memory_object_lock_request, but that routine | |
235 | * no longer requires this... in any event, in | |
236 | * our world, it would turn into a big noop since | |
237 | * we don't lock the page in any way and as soon | |
238 | * as we drop the object lock, the page can be | |
239 | * faulted back into an address space | |
240 | * | |
241 | * if (!should_flush) | |
242 | * pmap_disconnect(m->phys_page); | |
1c79356b | 243 | */ |
6d2010ae | 244 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN); |
1c79356b A |
245 | } |
246 | ||
247 | /* | |
6d2010ae | 248 | * Handle flushing clean pages |
1c79356b | 249 | */ |
6d2010ae A |
250 | if (should_flush) |
251 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_FREE); | |
1c79356b | 252 | |
6d2010ae A |
253 | /* |
254 | * we use to deactivate clean pages at this point, | |
255 | * but we do not believe that an msync should change | |
256 | * the 'age' of a page in the cache... here is the | |
257 | * original comment and code concerning this... | |
258 | * | |
259 | * XXX Make clean but not flush a paging hint, | |
260 | * and deactivate the pages. This is a hack | |
261 | * because it overloads flush/clean with | |
262 | * implementation-dependent meaning. This only | |
263 | * happens to pages that are already clean. | |
264 | * | |
265 | * if (vm_page_deactivate_hint && (should_return != MEMORY_OBJECT_RETURN_NONE)) | |
266 | * return (MEMORY_OBJECT_LOCK_RESULT_MUST_DEACTIVATE); | |
267 | */ | |
1c79356b | 268 | |
6d2010ae | 269 | return (MEMORY_OBJECT_LOCK_RESULT_DONE); |
1c79356b | 270 | } |
0b4e3aa0 | 271 | |
6d2010ae | 272 | |
1c79356b | 273 | |
1c79356b A |
274 | /* |
275 | * Routine: memory_object_lock_request [user interface] | |
276 | * | |
277 | * Description: | |
278 | * Control use of the data associated with the given | |
279 | * memory object. For each page in the given range, | |
280 | * perform the following operations, in order: | |
281 | * 1) restrict access to the page (disallow | |
282 | * forms specified by "prot"); | |
283 | * 2) return data to the manager (if "should_return" | |
284 | * is RETURN_DIRTY and the page is dirty, or | |
285 | * "should_return" is RETURN_ALL and the page | |
286 | * is either dirty or precious); and, | |
287 | * 3) flush the cached copy (if "should_flush" | |
288 | * is asserted). | |
289 | * The set of pages is defined by a starting offset | |
290 | * ("offset") and size ("size"). Only pages with the | |
291 | * same page alignment as the starting offset are | |
292 | * considered. | |
293 | * | |
294 | * A single acknowledgement is sent (to the "reply_to" | |
295 | * port) when these actions are complete. If successful, | |
296 | * the naked send right for reply_to is consumed. | |
297 | */ | |
298 | ||
299 | kern_return_t | |
300 | memory_object_lock_request( | |
0b4e3aa0 A |
301 | memory_object_control_t control, |
302 | memory_object_offset_t offset, | |
303 | memory_object_size_t size, | |
91447636 A |
304 | memory_object_offset_t * resid_offset, |
305 | int * io_errno, | |
1c79356b A |
306 | memory_object_return_t should_return, |
307 | int flags, | |
0b4e3aa0 | 308 | vm_prot_t prot) |
1c79356b | 309 | { |
0b4e3aa0 | 310 | vm_object_t object; |
1c79356b | 311 | |
b0d623f7 | 312 | /* |
1c79356b A |
313 | * Check for bogus arguments. |
314 | */ | |
0b4e3aa0 | 315 | object = memory_object_control_to_vm_object(control); |
1c79356b A |
316 | if (object == VM_OBJECT_NULL) |
317 | return (KERN_INVALID_ARGUMENT); | |
318 | ||
0b4e3aa0 | 319 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) |
1c79356b | 320 | return (KERN_INVALID_ARGUMENT); |
1c79356b | 321 | |
55e303ae | 322 | size = round_page_64(size); |
1c79356b A |
323 | |
324 | /* | |
325 | * Lock the object, and acquire a paging reference to | |
0b4e3aa0 | 326 | * prevent the memory_object reference from being released. |
1c79356b | 327 | */ |
1c79356b A |
328 | vm_object_lock(object); |
329 | vm_object_paging_begin(object); | |
b0d623f7 A |
330 | |
331 | if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) { | |
332 | if ((should_return != MEMORY_OBJECT_RETURN_NONE) || offset || object->copy) { | |
333 | flags &= ~MEMORY_OBJECT_DATA_FLUSH_ALL; | |
334 | flags |= MEMORY_OBJECT_DATA_FLUSH; | |
335 | } | |
336 | } | |
1c79356b A |
337 | offset -= object->paging_offset; |
338 | ||
b0d623f7 A |
339 | if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) |
340 | vm_object_reap_pages(object, REAP_DATA_FLUSH); | |
341 | else | |
342 | (void)vm_object_update(object, offset, size, resid_offset, | |
343 | io_errno, should_return, flags, prot); | |
1c79356b | 344 | |
1c79356b A |
345 | vm_object_paging_end(object); |
346 | vm_object_unlock(object); | |
1c79356b A |
347 | |
348 | return (KERN_SUCCESS); | |
349 | } | |
350 | ||
351 | /* | |
0b4e3aa0 A |
352 | * memory_object_release_name: [interface] |
353 | * | |
354 | * Enforces name semantic on memory_object reference count decrement | |
355 | * This routine should not be called unless the caller holds a name | |
356 | * reference gained through the memory_object_named_create or the | |
357 | * memory_object_rename call. | |
358 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
359 | * reference count is not 1. i.e. idle with the only remaining reference | |
360 | * being the name. | |
361 | * If the decision is made to proceed the name field flag is set to | |
362 | * false and the reference count is decremented. If the RESPECT_CACHE | |
363 | * flag is set and the reference count has gone to zero, the | |
364 | * memory_object is checked to see if it is cacheable otherwise when | |
365 | * the reference count is zero, it is simply terminated. | |
366 | */ | |
367 | ||
368 | kern_return_t | |
369 | memory_object_release_name( | |
370 | memory_object_control_t control, | |
371 | int flags) | |
372 | { | |
373 | vm_object_t object; | |
374 | ||
375 | object = memory_object_control_to_vm_object(control); | |
376 | if (object == VM_OBJECT_NULL) | |
377 | return (KERN_INVALID_ARGUMENT); | |
378 | ||
379 | return vm_object_release_name(object, flags); | |
380 | } | |
381 | ||
382 | ||
383 | ||
384 | /* | |
385 | * Routine: memory_object_destroy [user interface] | |
386 | * Purpose: | |
387 | * Shut down a memory object, despite the | |
388 | * presence of address map (or other) references | |
389 | * to the vm_object. | |
390 | */ | |
391 | kern_return_t | |
392 | memory_object_destroy( | |
393 | memory_object_control_t control, | |
394 | kern_return_t reason) | |
395 | { | |
396 | vm_object_t object; | |
397 | ||
398 | object = memory_object_control_to_vm_object(control); | |
399 | if (object == VM_OBJECT_NULL) | |
400 | return (KERN_INVALID_ARGUMENT); | |
401 | ||
402 | return (vm_object_destroy(object, reason)); | |
403 | } | |
404 | ||
405 | /* | |
406 | * Routine: vm_object_sync | |
1c79356b A |
407 | * |
408 | * Kernel internal function to synch out pages in a given | |
409 | * range within an object to its memory manager. Much the | |
410 | * same as memory_object_lock_request but page protection | |
411 | * is not changed. | |
412 | * | |
413 | * If the should_flush and should_return flags are true pages | |
414 | * are flushed, that is dirty & precious pages are written to | |
415 | * the memory manager and then discarded. If should_return | |
416 | * is false, only precious pages are returned to the memory | |
417 | * manager. | |
418 | * | |
419 | * If should flush is false and should_return true, the memory | |
420 | * manager's copy of the pages is updated. If should_return | |
421 | * is also false, only the precious pages are updated. This | |
422 | * last option is of limited utility. | |
423 | * | |
424 | * Returns: | |
425 | * FALSE if no pages were returned to the pager | |
426 | * TRUE otherwise. | |
427 | */ | |
428 | ||
429 | boolean_t | |
0b4e3aa0 | 430 | vm_object_sync( |
1c79356b A |
431 | vm_object_t object, |
432 | vm_object_offset_t offset, | |
91447636 | 433 | vm_object_size_t size, |
1c79356b | 434 | boolean_t should_flush, |
91447636 A |
435 | boolean_t should_return, |
436 | boolean_t should_iosync) | |
1c79356b A |
437 | { |
438 | boolean_t rv; | |
91447636 | 439 | int flags; |
1c79356b | 440 | |
0b4e3aa0 A |
441 | XPR(XPR_VM_OBJECT, |
442 | "vm_o_sync, object 0x%X, offset 0x%X size 0x%x flush %d rtn %d\n", | |
b0d623f7 | 443 | object, offset, size, should_flush, should_return); |
1c79356b A |
444 | |
445 | /* | |
446 | * Lock the object, and acquire a paging reference to | |
447 | * prevent the memory_object and control ports from | |
448 | * being destroyed. | |
449 | */ | |
450 | vm_object_lock(object); | |
451 | vm_object_paging_begin(object); | |
452 | ||
39236c6e | 453 | if (should_flush) { |
91447636 | 454 | flags = MEMORY_OBJECT_DATA_FLUSH; |
39236c6e A |
455 | /* |
456 | * This flush is from an msync(), not a truncate(), so the | |
457 | * contents of the file are not affected. | |
458 | * MEMORY_OBECT_DATA_NO_CHANGE lets vm_object_update() know | |
459 | * that the data is not changed and that there's no need to | |
460 | * push the old contents to a copy object. | |
461 | */ | |
462 | flags |= MEMORY_OBJECT_DATA_NO_CHANGE; | |
463 | } else | |
91447636 A |
464 | flags = 0; |
465 | ||
466 | if (should_iosync) | |
467 | flags |= MEMORY_OBJECT_IO_SYNC; | |
468 | ||
469 | rv = vm_object_update(object, offset, (vm_object_size_t)size, NULL, NULL, | |
1c79356b A |
470 | (should_return) ? |
471 | MEMORY_OBJECT_RETURN_ALL : | |
472 | MEMORY_OBJECT_RETURN_NONE, | |
91447636 | 473 | flags, |
1c79356b A |
474 | VM_PROT_NO_CHANGE); |
475 | ||
476 | ||
477 | vm_object_paging_end(object); | |
478 | vm_object_unlock(object); | |
479 | return rv; | |
480 | } | |
481 | ||
91447636 A |
482 | |
483 | ||
6d2010ae A |
484 | #define LIST_REQ_PAGEOUT_PAGES(object, data_cnt, po, ro, ioerr, iosync) \ |
485 | MACRO_BEGIN \ | |
486 | \ | |
487 | int upl_flags; \ | |
488 | memory_object_t pager; \ | |
489 | \ | |
39236c6e | 490 | if (object->object_slid) { \ |
6d2010ae A |
491 | panic("Objects with slid pages not allowed\n"); \ |
492 | } \ | |
493 | \ | |
494 | if ((pager = (object)->pager) != MEMORY_OBJECT_NULL) { \ | |
495 | vm_object_paging_begin(object); \ | |
496 | vm_object_unlock(object); \ | |
497 | \ | |
498 | if (iosync) \ | |
499 | upl_flags = UPL_MSYNC | UPL_IOSYNC; \ | |
500 | else \ | |
501 | upl_flags = UPL_MSYNC; \ | |
502 | \ | |
503 | (void) memory_object_data_return(pager, \ | |
504 | po, \ | |
505 | (memory_object_cluster_size_t)data_cnt, \ | |
506 | ro, \ | |
507 | ioerr, \ | |
508 | FALSE, \ | |
509 | FALSE, \ | |
510 | upl_flags); \ | |
511 | \ | |
512 | vm_object_lock(object); \ | |
513 | vm_object_paging_end(object); \ | |
514 | } \ | |
515 | MACRO_END | |
516 | ||
517 | ||
91447636 A |
518 | |
519 | static int | |
520 | vm_object_update_extent( | |
521 | vm_object_t object, | |
522 | vm_object_offset_t offset, | |
523 | vm_object_offset_t offset_end, | |
524 | vm_object_offset_t *offset_resid, | |
525 | int *io_errno, | |
526 | boolean_t should_flush, | |
527 | memory_object_return_t should_return, | |
528 | boolean_t should_iosync, | |
529 | vm_prot_t prot) | |
530 | { | |
531 | vm_page_t m; | |
532 | int retval = 0; | |
91447636 | 533 | vm_object_offset_t paging_offset = 0; |
b0d623f7 | 534 | vm_object_offset_t next_offset = offset; |
91447636 | 535 | memory_object_lock_result_t page_lock_result; |
6d2010ae A |
536 | memory_object_cluster_size_t data_cnt = 0; |
537 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; | |
538 | struct vm_page_delayed_work *dwp; | |
539 | int dw_count; | |
540 | int dw_limit; | |
541 | ||
542 | dwp = &dw_array[0]; | |
543 | dw_count = 0; | |
544 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); | |
91447636 A |
545 | |
546 | for (; | |
547 | offset < offset_end && object->resident_page_count; | |
548 | offset += PAGE_SIZE_64) { | |
549 | ||
550 | /* | |
b0d623f7 | 551 | * Limit the number of pages to be cleaned at once to a contiguous |
fe8ab488 | 552 | * run, or at most MAX_UPL_TRANSFER_BYTES |
91447636 | 553 | */ |
b0d623f7 | 554 | if (data_cnt) { |
fe8ab488 | 555 | if ((data_cnt >= MAX_UPL_TRANSFER_BYTES) || (next_offset != offset)) { |
6d2010ae A |
556 | |
557 | if (dw_count) { | |
558 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
559 | dwp = &dw_array[0]; | |
560 | dw_count = 0; | |
561 | } | |
562 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, | |
563 | paging_offset, offset_resid, io_errno, should_iosync); | |
b0d623f7 A |
564 | data_cnt = 0; |
565 | } | |
91447636 | 566 | } |
91447636 | 567 | while ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
6d2010ae A |
568 | |
569 | dwp->dw_mask = 0; | |
570 | ||
571 | page_lock_result = memory_object_lock_page(m, should_return, should_flush, prot); | |
572 | ||
573 | if (data_cnt && page_lock_result != MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN) { | |
574 | /* | |
575 | * End of a run of dirty/precious pages. | |
576 | */ | |
577 | if (dw_count) { | |
578 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
579 | dwp = &dw_array[0]; | |
580 | dw_count = 0; | |
581 | } | |
582 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, | |
583 | paging_offset, offset_resid, io_errno, should_iosync); | |
584 | /* | |
585 | * LIST_REQ_PAGEOUT_PAGES will drop the object lock which will | |
586 | * allow the state of page 'm' to change... we need to re-lookup | |
587 | * the current offset | |
588 | */ | |
589 | data_cnt = 0; | |
590 | continue; | |
591 | } | |
592 | ||
593 | switch (page_lock_result) { | |
594 | ||
595 | case MEMORY_OBJECT_LOCK_RESULT_DONE: | |
596 | break; | |
597 | ||
598 | case MEMORY_OBJECT_LOCK_RESULT_MUST_FREE: | |
599 | dwp->dw_mask |= DW_vm_page_free; | |
600 | break; | |
601 | ||
602 | case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK: | |
603 | PAGE_SLEEP(object, m, THREAD_UNINT); | |
604 | continue; | |
605 | ||
606 | case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN: | |
607 | if (data_cnt == 0) | |
608 | paging_offset = offset; | |
609 | ||
610 | data_cnt += PAGE_SIZE; | |
611 | next_offset = offset + PAGE_SIZE_64; | |
612 | ||
6d2010ae A |
613 | /* |
614 | * wired pages shouldn't be flushed and | |
615 | * since they aren't on any queue, | |
616 | * no need to remove them | |
617 | */ | |
618 | if (!VM_PAGE_WIRED(m)) { | |
619 | ||
620 | if (should_flush) { | |
621 | /* | |
622 | * add additional state for the flush | |
623 | */ | |
6d2010ae | 624 | m->pageout = TRUE; |
6d2010ae A |
625 | } |
626 | /* | |
627 | * we use to remove the page from the queues at this | |
628 | * point, but we do not believe that an msync | |
629 | * should cause the 'age' of a page to be changed | |
630 | * | |
631 | * else | |
632 | * dwp->dw_mask |= DW_VM_PAGE_QUEUES_REMOVE; | |
633 | */ | |
634 | } | |
635 | retval = 1; | |
636 | break; | |
637 | } | |
638 | if (dwp->dw_mask) { | |
639 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); | |
640 | ||
641 | if (dw_count >= dw_limit) { | |
642 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
643 | dwp = &dw_array[0]; | |
644 | dw_count = 0; | |
645 | } | |
91447636 A |
646 | } |
647 | break; | |
648 | } | |
649 | } | |
650 | /* | |
651 | * We have completed the scan for applicable pages. | |
652 | * Clean any pages that have been saved. | |
653 | */ | |
6d2010ae A |
654 | if (dw_count) |
655 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
656 | ||
91447636 | 657 | if (data_cnt) { |
6d2010ae A |
658 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, |
659 | paging_offset, offset_resid, io_errno, should_iosync); | |
91447636 A |
660 | } |
661 | return (retval); | |
662 | } | |
663 | ||
664 | ||
665 | ||
1c79356b | 666 | /* |
0b4e3aa0 | 667 | * Routine: vm_object_update |
1c79356b | 668 | * Description: |
0b4e3aa0 | 669 | * Work function for m_o_lock_request(), vm_o_sync(). |
1c79356b A |
670 | * |
671 | * Called with object locked and paging ref taken. | |
672 | */ | |
673 | kern_return_t | |
0b4e3aa0 | 674 | vm_object_update( |
6d2010ae A |
675 | vm_object_t object, |
676 | vm_object_offset_t offset, | |
677 | vm_object_size_t size, | |
678 | vm_object_offset_t *resid_offset, | |
679 | int *io_errno, | |
680 | memory_object_return_t should_return, | |
681 | int flags, | |
682 | vm_prot_t protection) | |
1c79356b | 683 | { |
2d21ac55 | 684 | vm_object_t copy_object = VM_OBJECT_NULL; |
1c79356b A |
685 | boolean_t data_returned = FALSE; |
686 | boolean_t update_cow; | |
91447636 A |
687 | boolean_t should_flush = (flags & MEMORY_OBJECT_DATA_FLUSH) ? TRUE : FALSE; |
688 | boolean_t should_iosync = (flags & MEMORY_OBJECT_IO_SYNC) ? TRUE : FALSE; | |
b0d623f7 | 689 | vm_fault_return_t result; |
91447636 A |
690 | int num_of_extents; |
691 | int n; | |
692 | #define MAX_EXTENTS 8 | |
693 | #define EXTENT_SIZE (1024 * 1024 * 256) | |
694 | #define RESIDENT_LIMIT (1024 * 32) | |
695 | struct extent { | |
696 | vm_object_offset_t e_base; | |
697 | vm_object_offset_t e_min; | |
698 | vm_object_offset_t e_max; | |
699 | } extents[MAX_EXTENTS]; | |
1c79356b A |
700 | |
701 | /* | |
702 | * To avoid blocking while scanning for pages, save | |
703 | * dirty pages to be cleaned all at once. | |
704 | * | |
705 | * XXXO A similar strategy could be used to limit the | |
706 | * number of times that a scan must be restarted for | |
707 | * other reasons. Those pages that would require blocking | |
708 | * could be temporarily collected in another list, or | |
709 | * their offsets could be recorded in a small array. | |
710 | */ | |
711 | ||
712 | /* | |
713 | * XXX NOTE: May want to consider converting this to a page list | |
714 | * XXX vm_map_copy interface. Need to understand object | |
715 | * XXX coalescing implications before doing so. | |
716 | */ | |
717 | ||
718 | update_cow = ((flags & MEMORY_OBJECT_DATA_FLUSH) | |
719 | && (!(flags & MEMORY_OBJECT_DATA_NO_CHANGE) && | |
720 | !(flags & MEMORY_OBJECT_DATA_PURGE))) | |
721 | || (flags & MEMORY_OBJECT_COPY_SYNC); | |
722 | ||
2d21ac55 A |
723 | if (update_cow || (flags & (MEMORY_OBJECT_DATA_PURGE | MEMORY_OBJECT_DATA_SYNC))) { |
724 | int collisions = 0; | |
725 | ||
726 | while ((copy_object = object->copy) != VM_OBJECT_NULL) { | |
727 | /* | |
728 | * need to do a try here since we're swimming upstream | |
729 | * against the normal lock ordering... however, we need | |
730 | * to hold the object stable until we gain control of the | |
731 | * copy object so we have to be careful how we approach this | |
732 | */ | |
733 | if (vm_object_lock_try(copy_object)) { | |
734 | /* | |
735 | * we 'won' the lock on the copy object... | |
736 | * no need to hold the object lock any longer... | |
737 | * take a real reference on the copy object because | |
738 | * we're going to call vm_fault_page on it which may | |
739 | * under certain conditions drop the lock and the paging | |
740 | * reference we're about to take... the reference | |
741 | * will keep the copy object from going away if that happens | |
742 | */ | |
743 | vm_object_unlock(object); | |
744 | vm_object_reference_locked(copy_object); | |
745 | break; | |
746 | } | |
747 | vm_object_unlock(object); | |
1c79356b | 748 | |
2d21ac55 A |
749 | collisions++; |
750 | mutex_pause(collisions); | |
751 | ||
752 | vm_object_lock(object); | |
753 | } | |
754 | } | |
755 | if ((copy_object != VM_OBJECT_NULL && update_cow) || (flags & MEMORY_OBJECT_DATA_SYNC)) { | |
91447636 A |
756 | vm_map_size_t i; |
757 | vm_map_size_t copy_size; | |
758 | vm_map_offset_t copy_offset; | |
1c79356b A |
759 | vm_prot_t prot; |
760 | vm_page_t page; | |
761 | vm_page_t top_page; | |
762 | kern_return_t error = 0; | |
2d21ac55 A |
763 | struct vm_object_fault_info fault_info; |
764 | ||
765 | if (copy_object != VM_OBJECT_NULL) { | |
766 | /* | |
767 | * translate offset with respect to shadow's offset | |
768 | */ | |
6d2010ae A |
769 | copy_offset = (offset >= copy_object->vo_shadow_offset) ? |
770 | (vm_map_offset_t)(offset - copy_object->vo_shadow_offset) : | |
2d21ac55 A |
771 | (vm_map_offset_t) 0; |
772 | ||
6d2010ae A |
773 | if (copy_offset > copy_object->vo_size) |
774 | copy_offset = copy_object->vo_size; | |
2d21ac55 A |
775 | |
776 | /* | |
777 | * clip size with respect to shadow offset | |
778 | */ | |
6d2010ae | 779 | if (offset >= copy_object->vo_shadow_offset) { |
2d21ac55 | 780 | copy_size = size; |
6d2010ae A |
781 | } else if (size >= copy_object->vo_shadow_offset - offset) { |
782 | copy_size = size - (copy_object->vo_shadow_offset - offset); | |
2d21ac55 A |
783 | } else { |
784 | copy_size = 0; | |
785 | } | |
786 | ||
6d2010ae A |
787 | if (copy_offset + copy_size > copy_object->vo_size) { |
788 | if (copy_object->vo_size >= copy_offset) { | |
789 | copy_size = copy_object->vo_size - copy_offset; | |
2d21ac55 A |
790 | } else { |
791 | copy_size = 0; | |
792 | } | |
793 | } | |
794 | copy_size+=copy_offset; | |
1c79356b | 795 | |
1c79356b A |
796 | } else { |
797 | copy_object = object; | |
798 | ||
799 | copy_size = offset + size; | |
800 | copy_offset = offset; | |
801 | } | |
2d21ac55 A |
802 | fault_info.interruptible = THREAD_UNINT; |
803 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
804 | fault_info.user_tag = 0; | |
fe8ab488 | 805 | fault_info.pmap_options = 0; |
2d21ac55 A |
806 | fault_info.lo_offset = copy_offset; |
807 | fault_info.hi_offset = copy_size; | |
808 | fault_info.no_cache = FALSE; | |
b0d623f7 | 809 | fault_info.stealth = TRUE; |
6d2010ae A |
810 | fault_info.io_sync = FALSE; |
811 | fault_info.cs_bypass = FALSE; | |
0b4c1975 | 812 | fault_info.mark_zf_absent = FALSE; |
316670eb | 813 | fault_info.batch_pmap_op = FALSE; |
1c79356b A |
814 | |
815 | vm_object_paging_begin(copy_object); | |
2d21ac55 A |
816 | |
817 | for (i = copy_offset; i < copy_size; i += PAGE_SIZE) { | |
1c79356b | 818 | RETRY_COW_OF_LOCK_REQUEST: |
b0d623f7 A |
819 | fault_info.cluster_size = (vm_size_t) (copy_size - i); |
820 | assert(fault_info.cluster_size == copy_size - i); | |
2d21ac55 | 821 | |
1c79356b | 822 | prot = VM_PROT_WRITE|VM_PROT_READ; |
39236c6e | 823 | page = VM_PAGE_NULL; |
b0d623f7 A |
824 | result = vm_fault_page(copy_object, i, |
825 | VM_PROT_WRITE|VM_PROT_READ, | |
826 | FALSE, | |
39236c6e | 827 | FALSE, /* page not looked up */ |
b0d623f7 A |
828 | &prot, |
829 | &page, | |
830 | &top_page, | |
831 | (int *)0, | |
832 | &error, | |
833 | FALSE, | |
834 | FALSE, &fault_info); | |
835 | ||
836 | switch (result) { | |
1c79356b | 837 | case VM_FAULT_SUCCESS: |
2d21ac55 | 838 | if (top_page) { |
1c79356b A |
839 | vm_fault_cleanup( |
840 | page->object, top_page); | |
1c79356b A |
841 | vm_object_lock(copy_object); |
842 | vm_object_paging_begin(copy_object); | |
1c79356b | 843 | } |
b0d623f7 A |
844 | if (!page->active && |
845 | !page->inactive && | |
846 | !page->throttled) { | |
847 | vm_page_lockspin_queues(); | |
848 | if (!page->active && | |
849 | !page->inactive && | |
850 | !page->throttled) | |
851 | vm_page_deactivate(page); | |
852 | vm_page_unlock_queues(); | |
853 | } | |
2d21ac55 | 854 | PAGE_WAKEUP_DONE(page); |
1c79356b A |
855 | break; |
856 | case VM_FAULT_RETRY: | |
857 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
858 | vm_object_lock(copy_object); | |
859 | vm_object_paging_begin(copy_object); | |
860 | goto RETRY_COW_OF_LOCK_REQUEST; | |
861 | case VM_FAULT_INTERRUPTED: | |
862 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
863 | vm_object_lock(copy_object); | |
864 | vm_object_paging_begin(copy_object); | |
865 | goto RETRY_COW_OF_LOCK_REQUEST; | |
866 | case VM_FAULT_MEMORY_SHORTAGE: | |
867 | VM_PAGE_WAIT(); | |
868 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
869 | vm_object_lock(copy_object); | |
870 | vm_object_paging_begin(copy_object); | |
871 | goto RETRY_COW_OF_LOCK_REQUEST; | |
b0d623f7 A |
872 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
873 | /* success but no VM page: fail */ | |
874 | vm_object_paging_end(copy_object); | |
875 | vm_object_unlock(copy_object); | |
876 | /*FALLTHROUGH*/ | |
1c79356b | 877 | case VM_FAULT_MEMORY_ERROR: |
2d21ac55 A |
878 | if (object != copy_object) |
879 | vm_object_deallocate(copy_object); | |
1c79356b A |
880 | vm_object_lock(object); |
881 | goto BYPASS_COW_COPYIN; | |
b0d623f7 A |
882 | default: |
883 | panic("vm_object_update: unexpected error 0x%x" | |
884 | " from vm_fault_page()\n", result); | |
1c79356b A |
885 | } |
886 | ||
887 | } | |
888 | vm_object_paging_end(copy_object); | |
2d21ac55 A |
889 | } |
890 | if ((flags & (MEMORY_OBJECT_DATA_SYNC | MEMORY_OBJECT_COPY_SYNC))) { | |
891 | if (copy_object != VM_OBJECT_NULL && copy_object != object) { | |
1c79356b | 892 | vm_object_unlock(copy_object); |
2d21ac55 | 893 | vm_object_deallocate(copy_object); |
1c79356b A |
894 | vm_object_lock(object); |
895 | } | |
2d21ac55 | 896 | return KERN_SUCCESS; |
1c79356b | 897 | } |
2d21ac55 A |
898 | if (copy_object != VM_OBJECT_NULL && copy_object != object) { |
899 | if ((flags & MEMORY_OBJECT_DATA_PURGE)) { | |
900 | copy_object->shadow_severed = TRUE; | |
901 | copy_object->shadowed = FALSE; | |
902 | copy_object->shadow = NULL; | |
903 | /* | |
904 | * delete the ref the COW was holding on the target object | |
905 | */ | |
906 | vm_object_deallocate(object); | |
907 | } | |
908 | vm_object_unlock(copy_object); | |
909 | vm_object_deallocate(copy_object); | |
910 | vm_object_lock(object); | |
1c79356b A |
911 | } |
912 | BYPASS_COW_COPYIN: | |
913 | ||
91447636 A |
914 | /* |
915 | * when we have a really large range to check relative | |
916 | * to the number of actual resident pages, we'd like | |
917 | * to use the resident page list to drive our checks | |
918 | * however, the object lock will get dropped while processing | |
919 | * the page which means the resident queue can change which | |
920 | * means we can't walk the queue as we process the pages | |
921 | * we also want to do the processing in offset order to allow | |
922 | * 'runs' of pages to be collected if we're being told to | |
923 | * flush to disk... the resident page queue is NOT ordered. | |
924 | * | |
925 | * a temporary solution (until we figure out how to deal with | |
926 | * large address spaces more generically) is to pre-flight | |
927 | * the resident page queue (if it's small enough) and develop | |
928 | * a collection of extents (that encompass actual resident pages) | |
929 | * to visit. This will at least allow us to deal with some of the | |
930 | * more pathological cases in a more efficient manner. The current | |
931 | * worst case (a single resident page at the end of an extremely large | |
932 | * range) can take minutes to complete for ranges in the terrabyte | |
933 | * category... since this routine is called when truncating a file, | |
934 | * and we currently support files up to 16 Tbytes in size, this | |
935 | * is not a theoretical problem | |
936 | */ | |
1c79356b | 937 | |
91447636 A |
938 | if ((object->resident_page_count < RESIDENT_LIMIT) && |
939 | (atop_64(size) > (unsigned)(object->resident_page_count/(8 * MAX_EXTENTS)))) { | |
940 | vm_page_t next; | |
941 | vm_object_offset_t start; | |
942 | vm_object_offset_t end; | |
943 | vm_object_size_t e_mask; | |
944 | vm_page_t m; | |
1c79356b | 945 | |
91447636 A |
946 | start = offset; |
947 | end = offset + size; | |
948 | num_of_extents = 0; | |
949 | e_mask = ~((vm_object_size_t)(EXTENT_SIZE - 1)); | |
1c79356b | 950 | |
91447636 | 951 | m = (vm_page_t) queue_first(&object->memq); |
1c79356b | 952 | |
91447636 A |
953 | while (!queue_end(&object->memq, (queue_entry_t) m)) { |
954 | next = (vm_page_t) queue_next(&m->listq); | |
1c79356b | 955 | |
91447636 A |
956 | if ((m->offset >= start) && (m->offset < end)) { |
957 | /* | |
958 | * this is a page we're interested in | |
959 | * try to fit it into a current extent | |
1c79356b | 960 | */ |
91447636 A |
961 | for (n = 0; n < num_of_extents; n++) { |
962 | if ((m->offset & e_mask) == extents[n].e_base) { | |
963 | /* | |
964 | * use (PAGE_SIZE - 1) to determine the | |
965 | * max offset so that we don't wrap if | |
966 | * we're at the last page of the space | |
967 | */ | |
968 | if (m->offset < extents[n].e_min) | |
969 | extents[n].e_min = m->offset; | |
970 | else if ((m->offset + (PAGE_SIZE - 1)) > extents[n].e_max) | |
971 | extents[n].e_max = m->offset + (PAGE_SIZE - 1); | |
972 | break; | |
973 | } | |
974 | } | |
975 | if (n == num_of_extents) { | |
976 | /* | |
977 | * didn't find a current extent that can encompass | |
978 | * this page | |
979 | */ | |
980 | if (n < MAX_EXTENTS) { | |
981 | /* | |
982 | * if we still have room, | |
983 | * create a new extent | |
984 | */ | |
985 | extents[n].e_base = m->offset & e_mask; | |
986 | extents[n].e_min = m->offset; | |
987 | extents[n].e_max = m->offset + (PAGE_SIZE - 1); | |
988 | ||
989 | num_of_extents++; | |
990 | } else { | |
991 | /* | |
992 | * no room to create a new extent... | |
993 | * fall back to a single extent based | |
994 | * on the min and max page offsets | |
995 | * we find in the range we're interested in... | |
996 | * first, look through the extent list and | |
997 | * develop the overall min and max for the | |
998 | * pages we've looked at up to this point | |
999 | */ | |
1000 | for (n = 1; n < num_of_extents; n++) { | |
1001 | if (extents[n].e_min < extents[0].e_min) | |
1002 | extents[0].e_min = extents[n].e_min; | |
1003 | if (extents[n].e_max > extents[0].e_max) | |
1004 | extents[0].e_max = extents[n].e_max; | |
1005 | } | |
1006 | /* | |
1007 | * now setup to run through the remaining pages | |
1008 | * to determine the overall min and max | |
1009 | * offset for the specified range | |
1010 | */ | |
1011 | extents[0].e_base = 0; | |
1012 | e_mask = 0; | |
1013 | num_of_extents = 1; | |
1014 | ||
1015 | /* | |
1016 | * by continuing, we'll reprocess the | |
1017 | * page that forced us to abandon trying | |
1018 | * to develop multiple extents | |
1019 | */ | |
1020 | continue; | |
1021 | } | |
1022 | } | |
1c79356b | 1023 | } |
91447636 | 1024 | m = next; |
1c79356b | 1025 | } |
91447636 A |
1026 | } else { |
1027 | extents[0].e_min = offset; | |
1028 | extents[0].e_max = offset + (size - 1); | |
1c79356b | 1029 | |
91447636 A |
1030 | num_of_extents = 1; |
1031 | } | |
1032 | for (n = 0; n < num_of_extents; n++) { | |
1033 | if (vm_object_update_extent(object, extents[n].e_min, extents[n].e_max, resid_offset, io_errno, | |
1034 | should_flush, should_return, should_iosync, protection)) | |
1035 | data_returned = TRUE; | |
1c79356b | 1036 | } |
1c79356b A |
1037 | return (data_returned); |
1038 | } | |
1039 | ||
91447636 | 1040 | |
1c79356b A |
1041 | /* |
1042 | * Routine: memory_object_synchronize_completed [user interface] | |
1043 | * | |
1044 | * Tell kernel that previously synchronized data | |
1045 | * (memory_object_synchronize) has been queue or placed on the | |
1046 | * backing storage. | |
1047 | * | |
1048 | * Note: there may be multiple synchronize requests for a given | |
1049 | * memory object outstanding but they will not overlap. | |
1050 | */ | |
1051 | ||
1052 | kern_return_t | |
1053 | memory_object_synchronize_completed( | |
0b4e3aa0 A |
1054 | memory_object_control_t control, |
1055 | memory_object_offset_t offset, | |
b0d623f7 | 1056 | memory_object_size_t length) |
1c79356b | 1057 | { |
0b4e3aa0 A |
1058 | vm_object_t object; |
1059 | msync_req_t msr; | |
1c79356b | 1060 | |
91447636 A |
1061 | object = memory_object_control_to_vm_object(control); |
1062 | ||
1c79356b A |
1063 | XPR(XPR_MEMORY_OBJECT, |
1064 | "m_o_sync_completed, object 0x%X, offset 0x%X length 0x%X\n", | |
b0d623f7 | 1065 | object, offset, length, 0, 0); |
1c79356b A |
1066 | |
1067 | /* | |
1068 | * Look for bogus arguments | |
1069 | */ | |
1070 | ||
0b4e3aa0 A |
1071 | if (object == VM_OBJECT_NULL) |
1072 | return (KERN_INVALID_ARGUMENT); | |
1c79356b A |
1073 | |
1074 | vm_object_lock(object); | |
1075 | ||
1076 | /* | |
1077 | * search for sync request structure | |
1078 | */ | |
1079 | queue_iterate(&object->msr_q, msr, msync_req_t, msr_q) { | |
1080 | if (msr->offset == offset && msr->length == length) { | |
1081 | queue_remove(&object->msr_q, msr, msync_req_t, msr_q); | |
1082 | break; | |
1083 | } | |
1084 | }/* queue_iterate */ | |
1085 | ||
1086 | if (queue_end(&object->msr_q, (queue_entry_t)msr)) { | |
1087 | vm_object_unlock(object); | |
1c79356b A |
1088 | return KERN_INVALID_ARGUMENT; |
1089 | } | |
1090 | ||
1091 | msr_lock(msr); | |
1092 | vm_object_unlock(object); | |
1093 | msr->flag = VM_MSYNC_DONE; | |
1094 | msr_unlock(msr); | |
1095 | thread_wakeup((event_t) msr); | |
1c79356b A |
1096 | |
1097 | return KERN_SUCCESS; | |
1098 | }/* memory_object_synchronize_completed */ | |
0b4e3aa0 A |
1099 | |
1100 | static kern_return_t | |
1101 | vm_object_set_attributes_common( | |
1c79356b A |
1102 | vm_object_t object, |
1103 | boolean_t may_cache, | |
1104 | memory_object_copy_strategy_t copy_strategy, | |
1105 | boolean_t temporary, | |
39236c6e | 1106 | __unused boolean_t silent_overwrite, |
1c79356b A |
1107 | boolean_t advisory_pageout) |
1108 | { | |
1109 | boolean_t object_became_ready; | |
1110 | ||
1111 | XPR(XPR_MEMORY_OBJECT, | |
1112 | "m_o_set_attr_com, object 0x%X flg %x strat %d\n", | |
b0d623f7 | 1113 | object, (may_cache&1)|((temporary&1)<1), copy_strategy, 0, 0); |
1c79356b A |
1114 | |
1115 | if (object == VM_OBJECT_NULL) | |
1116 | return(KERN_INVALID_ARGUMENT); | |
1117 | ||
1118 | /* | |
1119 | * Verify the attributes of importance | |
1120 | */ | |
1121 | ||
1122 | switch(copy_strategy) { | |
1123 | case MEMORY_OBJECT_COPY_NONE: | |
1124 | case MEMORY_OBJECT_COPY_DELAY: | |
1125 | break; | |
1126 | default: | |
1c79356b A |
1127 | return(KERN_INVALID_ARGUMENT); |
1128 | } | |
1129 | ||
1c79356b A |
1130 | if (may_cache) |
1131 | may_cache = TRUE; | |
1132 | if (temporary) | |
1133 | temporary = TRUE; | |
1c79356b A |
1134 | |
1135 | vm_object_lock(object); | |
1136 | ||
1137 | /* | |
1138 | * Copy the attributes | |
1139 | */ | |
1140 | assert(!object->internal); | |
1141 | object_became_ready = !object->pager_ready; | |
1142 | object->copy_strategy = copy_strategy; | |
1143 | object->can_persist = may_cache; | |
1144 | object->temporary = temporary; | |
39236c6e | 1145 | // object->silent_overwrite = silent_overwrite; |
1c79356b | 1146 | object->advisory_pageout = advisory_pageout; |
1c79356b A |
1147 | |
1148 | /* | |
1149 | * Wake up anyone waiting for the ready attribute | |
1150 | * to become asserted. | |
1151 | */ | |
1152 | ||
1153 | if (object_became_ready) { | |
1154 | object->pager_ready = TRUE; | |
1155 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
1156 | } | |
1157 | ||
1158 | vm_object_unlock(object); | |
1159 | ||
1c79356b A |
1160 | return(KERN_SUCCESS); |
1161 | } | |
1162 | ||
1163 | /* | |
1164 | * Set the memory object attribute as provided. | |
1165 | * | |
1166 | * XXX This routine cannot be completed until the vm_msync, clean | |
1167 | * in place, and cluster work is completed. See ifdef notyet | |
0b4e3aa0 | 1168 | * below and note that vm_object_set_attributes_common() |
1c79356b A |
1169 | * may have to be expanded. |
1170 | */ | |
1171 | kern_return_t | |
1172 | memory_object_change_attributes( | |
0b4e3aa0 A |
1173 | memory_object_control_t control, |
1174 | memory_object_flavor_t flavor, | |
1175 | memory_object_info_t attributes, | |
1176 | mach_msg_type_number_t count) | |
1c79356b | 1177 | { |
0b4e3aa0 A |
1178 | vm_object_t object; |
1179 | kern_return_t result = KERN_SUCCESS; | |
1180 | boolean_t temporary; | |
1181 | boolean_t may_cache; | |
1182 | boolean_t invalidate; | |
1c79356b | 1183 | memory_object_copy_strategy_t copy_strategy; |
0b4e3aa0 | 1184 | boolean_t silent_overwrite; |
1c79356b A |
1185 | boolean_t advisory_pageout; |
1186 | ||
0b4e3aa0 | 1187 | object = memory_object_control_to_vm_object(control); |
1c79356b | 1188 | if (object == VM_OBJECT_NULL) |
0b4e3aa0 | 1189 | return (KERN_INVALID_ARGUMENT); |
1c79356b A |
1190 | |
1191 | vm_object_lock(object); | |
0b4e3aa0 | 1192 | |
1c79356b A |
1193 | temporary = object->temporary; |
1194 | may_cache = object->can_persist; | |
1195 | copy_strategy = object->copy_strategy; | |
39236c6e A |
1196 | // silent_overwrite = object->silent_overwrite; |
1197 | silent_overwrite = FALSE; | |
1c79356b A |
1198 | advisory_pageout = object->advisory_pageout; |
1199 | #if notyet | |
1200 | invalidate = object->invalidate; | |
1201 | #endif | |
1c79356b A |
1202 | vm_object_unlock(object); |
1203 | ||
1204 | switch (flavor) { | |
1205 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: | |
1206 | { | |
1207 | old_memory_object_behave_info_t behave; | |
1208 | ||
1209 | if (count != OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1210 | result = KERN_INVALID_ARGUMENT; | |
1211 | break; | |
1212 | } | |
1213 | ||
1214 | behave = (old_memory_object_behave_info_t) attributes; | |
1215 | ||
1216 | temporary = behave->temporary; | |
1217 | invalidate = behave->invalidate; | |
1218 | copy_strategy = behave->copy_strategy; | |
1219 | ||
1220 | break; | |
1221 | } | |
1222 | ||
1223 | case MEMORY_OBJECT_BEHAVIOR_INFO: | |
1224 | { | |
1225 | memory_object_behave_info_t behave; | |
1226 | ||
1227 | if (count != MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1228 | result = KERN_INVALID_ARGUMENT; | |
1229 | break; | |
1230 | } | |
1231 | ||
1232 | behave = (memory_object_behave_info_t) attributes; | |
1233 | ||
1234 | temporary = behave->temporary; | |
1235 | invalidate = behave->invalidate; | |
1236 | copy_strategy = behave->copy_strategy; | |
1237 | silent_overwrite = behave->silent_overwrite; | |
1238 | advisory_pageout = behave->advisory_pageout; | |
1239 | break; | |
1240 | } | |
1241 | ||
1242 | case MEMORY_OBJECT_PERFORMANCE_INFO: | |
1243 | { | |
1244 | memory_object_perf_info_t perf; | |
1245 | ||
1246 | if (count != MEMORY_OBJECT_PERF_INFO_COUNT) { | |
1247 | result = KERN_INVALID_ARGUMENT; | |
1248 | break; | |
1249 | } | |
1250 | ||
1251 | perf = (memory_object_perf_info_t) attributes; | |
1252 | ||
1253 | may_cache = perf->may_cache; | |
1c79356b A |
1254 | |
1255 | break; | |
1256 | } | |
1257 | ||
1258 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1259 | { | |
1260 | old_memory_object_attr_info_t attr; | |
1261 | ||
1262 | if (count != OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1263 | result = KERN_INVALID_ARGUMENT; | |
1264 | break; | |
1265 | } | |
1266 | ||
1267 | attr = (old_memory_object_attr_info_t) attributes; | |
1268 | ||
1269 | may_cache = attr->may_cache; | |
1270 | copy_strategy = attr->copy_strategy; | |
1c79356b A |
1271 | |
1272 | break; | |
1273 | } | |
1274 | ||
1275 | case MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1276 | { | |
1277 | memory_object_attr_info_t attr; | |
1278 | ||
1279 | if (count != MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1280 | result = KERN_INVALID_ARGUMENT; | |
1281 | break; | |
1282 | } | |
1283 | ||
1284 | attr = (memory_object_attr_info_t) attributes; | |
1285 | ||
1286 | copy_strategy = attr->copy_strategy; | |
1287 | may_cache = attr->may_cache_object; | |
1c79356b A |
1288 | temporary = attr->temporary; |
1289 | ||
1290 | break; | |
1291 | } | |
1292 | ||
1293 | default: | |
1294 | result = KERN_INVALID_ARGUMENT; | |
1295 | break; | |
1296 | } | |
1297 | ||
0b4e3aa0 | 1298 | if (result != KERN_SUCCESS) |
1c79356b | 1299 | return(result); |
1c79356b A |
1300 | |
1301 | if (copy_strategy == MEMORY_OBJECT_COPY_TEMPORARY) { | |
1302 | copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
1303 | temporary = TRUE; | |
1304 | } else { | |
1305 | temporary = FALSE; | |
1306 | } | |
1307 | ||
1308 | /* | |
1c79356b A |
1309 | * XXX may_cache may become a tri-valued variable to handle |
1310 | * XXX uncache if not in use. | |
1311 | */ | |
0b4e3aa0 | 1312 | return (vm_object_set_attributes_common(object, |
1c79356b A |
1313 | may_cache, |
1314 | copy_strategy, | |
1315 | temporary, | |
1c79356b | 1316 | silent_overwrite, |
0b4e3aa0 | 1317 | advisory_pageout)); |
1c79356b A |
1318 | } |
1319 | ||
1320 | kern_return_t | |
1321 | memory_object_get_attributes( | |
0b4e3aa0 | 1322 | memory_object_control_t control, |
1c79356b A |
1323 | memory_object_flavor_t flavor, |
1324 | memory_object_info_t attributes, /* pointer to OUT array */ | |
1325 | mach_msg_type_number_t *count) /* IN/OUT */ | |
1326 | { | |
0b4e3aa0 A |
1327 | kern_return_t ret = KERN_SUCCESS; |
1328 | vm_object_t object; | |
1c79356b | 1329 | |
0b4e3aa0 A |
1330 | object = memory_object_control_to_vm_object(control); |
1331 | if (object == VM_OBJECT_NULL) | |
1332 | return (KERN_INVALID_ARGUMENT); | |
1c79356b A |
1333 | |
1334 | vm_object_lock(object); | |
1335 | ||
1336 | switch (flavor) { | |
1337 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: | |
1338 | { | |
1339 | old_memory_object_behave_info_t behave; | |
1340 | ||
1341 | if (*count < OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1342 | ret = KERN_INVALID_ARGUMENT; | |
1343 | break; | |
1344 | } | |
1345 | ||
1346 | behave = (old_memory_object_behave_info_t) attributes; | |
1347 | behave->copy_strategy = object->copy_strategy; | |
1348 | behave->temporary = object->temporary; | |
1349 | #if notyet /* remove when vm_msync complies and clean in place fini */ | |
1350 | behave->invalidate = object->invalidate; | |
1351 | #else | |
1352 | behave->invalidate = FALSE; | |
1353 | #endif | |
1354 | ||
1355 | *count = OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT; | |
1356 | break; | |
1357 | } | |
1358 | ||
1359 | case MEMORY_OBJECT_BEHAVIOR_INFO: | |
1360 | { | |
1361 | memory_object_behave_info_t behave; | |
1362 | ||
1363 | if (*count < MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1364 | ret = KERN_INVALID_ARGUMENT; | |
1365 | break; | |
1366 | } | |
1367 | ||
1368 | behave = (memory_object_behave_info_t) attributes; | |
1369 | behave->copy_strategy = object->copy_strategy; | |
1370 | behave->temporary = object->temporary; | |
1371 | #if notyet /* remove when vm_msync complies and clean in place fini */ | |
1372 | behave->invalidate = object->invalidate; | |
1373 | #else | |
1374 | behave->invalidate = FALSE; | |
1375 | #endif | |
1376 | behave->advisory_pageout = object->advisory_pageout; | |
39236c6e A |
1377 | // behave->silent_overwrite = object->silent_overwrite; |
1378 | behave->silent_overwrite = FALSE; | |
1c79356b A |
1379 | *count = MEMORY_OBJECT_BEHAVE_INFO_COUNT; |
1380 | break; | |
1381 | } | |
1382 | ||
1383 | case MEMORY_OBJECT_PERFORMANCE_INFO: | |
1384 | { | |
1385 | memory_object_perf_info_t perf; | |
1386 | ||
1387 | if (*count < MEMORY_OBJECT_PERF_INFO_COUNT) { | |
1388 | ret = KERN_INVALID_ARGUMENT; | |
1389 | break; | |
1390 | } | |
1391 | ||
1392 | perf = (memory_object_perf_info_t) attributes; | |
2d21ac55 | 1393 | perf->cluster_size = PAGE_SIZE; |
1c79356b A |
1394 | perf->may_cache = object->can_persist; |
1395 | ||
1396 | *count = MEMORY_OBJECT_PERF_INFO_COUNT; | |
1397 | break; | |
1398 | } | |
1399 | ||
1400 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1401 | { | |
1402 | old_memory_object_attr_info_t attr; | |
1403 | ||
1404 | if (*count < OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1405 | ret = KERN_INVALID_ARGUMENT; | |
1406 | break; | |
1407 | } | |
1408 | ||
1409 | attr = (old_memory_object_attr_info_t) attributes; | |
1410 | attr->may_cache = object->can_persist; | |
1411 | attr->copy_strategy = object->copy_strategy; | |
1412 | ||
1413 | *count = OLD_MEMORY_OBJECT_ATTR_INFO_COUNT; | |
1414 | break; | |
1415 | } | |
1416 | ||
1417 | case MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1418 | { | |
1419 | memory_object_attr_info_t attr; | |
1420 | ||
1421 | if (*count < MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1422 | ret = KERN_INVALID_ARGUMENT; | |
1423 | break; | |
1424 | } | |
1425 | ||
1426 | attr = (memory_object_attr_info_t) attributes; | |
1427 | attr->copy_strategy = object->copy_strategy; | |
2d21ac55 | 1428 | attr->cluster_size = PAGE_SIZE; |
1c79356b A |
1429 | attr->may_cache_object = object->can_persist; |
1430 | attr->temporary = object->temporary; | |
1431 | ||
1432 | *count = MEMORY_OBJECT_ATTR_INFO_COUNT; | |
1433 | break; | |
1434 | } | |
1435 | ||
1436 | default: | |
1437 | ret = KERN_INVALID_ARGUMENT; | |
1438 | break; | |
1439 | } | |
1440 | ||
1441 | vm_object_unlock(object); | |
1442 | ||
1c79356b A |
1443 | return(ret); |
1444 | } | |
1445 | ||
1c79356b | 1446 | |
55e303ae A |
1447 | kern_return_t |
1448 | memory_object_iopl_request( | |
1449 | ipc_port_t port, | |
1450 | memory_object_offset_t offset, | |
91447636 | 1451 | upl_size_t *upl_size, |
55e303ae A |
1452 | upl_t *upl_ptr, |
1453 | upl_page_info_array_t user_page_list, | |
1454 | unsigned int *page_list_count, | |
1455 | int *flags) | |
1456 | { | |
1457 | vm_object_t object; | |
1458 | kern_return_t ret; | |
1459 | int caller_flags; | |
1460 | ||
1461 | caller_flags = *flags; | |
1462 | ||
91447636 A |
1463 | if (caller_flags & ~UPL_VALID_FLAGS) { |
1464 | /* | |
1465 | * For forward compatibility's sake, | |
1466 | * reject any unknown flag. | |
1467 | */ | |
1468 | return KERN_INVALID_VALUE; | |
1469 | } | |
1470 | ||
55e303ae A |
1471 | if (ip_kotype(port) == IKOT_NAMED_ENTRY) { |
1472 | vm_named_entry_t named_entry; | |
1473 | ||
1474 | named_entry = (vm_named_entry_t)port->ip_kobject; | |
1475 | /* a few checks to make sure user is obeying rules */ | |
1476 | if(*upl_size == 0) { | |
1477 | if(offset >= named_entry->size) | |
1478 | return(KERN_INVALID_RIGHT); | |
b0d623f7 A |
1479 | *upl_size = (upl_size_t)(named_entry->size - offset); |
1480 | if (*upl_size != named_entry->size - offset) | |
1481 | return KERN_INVALID_ARGUMENT; | |
55e303ae A |
1482 | } |
1483 | if(caller_flags & UPL_COPYOUT_FROM) { | |
1484 | if((named_entry->protection & VM_PROT_READ) | |
1485 | != VM_PROT_READ) { | |
1486 | return(KERN_INVALID_RIGHT); | |
1487 | } | |
1488 | } else { | |
1489 | if((named_entry->protection & | |
1490 | (VM_PROT_READ | VM_PROT_WRITE)) | |
1491 | != (VM_PROT_READ | VM_PROT_WRITE)) { | |
1492 | return(KERN_INVALID_RIGHT); | |
1493 | } | |
1494 | } | |
1495 | if(named_entry->size < (offset + *upl_size)) | |
1496 | return(KERN_INVALID_ARGUMENT); | |
1497 | ||
1498 | /* the callers parameter offset is defined to be the */ | |
1499 | /* offset from beginning of named entry offset in object */ | |
1500 | offset = offset + named_entry->offset; | |
1501 | ||
39236c6e A |
1502 | if (named_entry->is_sub_map || |
1503 | named_entry->is_copy) | |
1504 | return KERN_INVALID_ARGUMENT; | |
55e303ae A |
1505 | |
1506 | named_entry_lock(named_entry); | |
1507 | ||
91447636 | 1508 | if (named_entry->is_pager) { |
55e303ae A |
1509 | object = vm_object_enter(named_entry->backing.pager, |
1510 | named_entry->offset + named_entry->size, | |
1511 | named_entry->internal, | |
1512 | FALSE, | |
1513 | FALSE); | |
1514 | if (object == VM_OBJECT_NULL) { | |
1515 | named_entry_unlock(named_entry); | |
1516 | return(KERN_INVALID_OBJECT); | |
1517 | } | |
91447636 A |
1518 | |
1519 | /* JMM - drop reference on pager here? */ | |
55e303ae A |
1520 | |
1521 | /* create an extra reference for the named entry */ | |
91447636 | 1522 | vm_object_lock(object); |
55e303ae | 1523 | vm_object_reference_locked(object); |
91447636 A |
1524 | named_entry->backing.object = object; |
1525 | named_entry->is_pager = FALSE; | |
55e303ae A |
1526 | named_entry_unlock(named_entry); |
1527 | ||
1528 | /* wait for object to be ready */ | |
1529 | while (!object->pager_ready) { | |
1530 | vm_object_wait(object, | |
1531 | VM_OBJECT_EVENT_PAGER_READY, | |
1532 | THREAD_UNINT); | |
1533 | vm_object_lock(object); | |
1534 | } | |
1535 | vm_object_unlock(object); | |
91447636 A |
1536 | } else { |
1537 | /* This is the case where we are going to map */ | |
1538 | /* an already mapped object. If the object is */ | |
1539 | /* not ready it is internal. An external */ | |
1540 | /* object cannot be mapped until it is ready */ | |
1541 | /* we can therefore avoid the ready check */ | |
1542 | /* in this case. */ | |
1543 | object = named_entry->backing.object; | |
1544 | vm_object_reference(object); | |
1545 | named_entry_unlock(named_entry); | |
55e303ae | 1546 | } |
0c530ab8 | 1547 | } else if (ip_kotype(port) == IKOT_MEM_OBJ_CONTROL) { |
55e303ae | 1548 | memory_object_control_t control; |
0c530ab8 | 1549 | control = (memory_object_control_t) port; |
55e303ae A |
1550 | if (control == NULL) |
1551 | return (KERN_INVALID_ARGUMENT); | |
1552 | object = memory_object_control_to_vm_object(control); | |
1553 | if (object == VM_OBJECT_NULL) | |
1554 | return (KERN_INVALID_ARGUMENT); | |
1555 | vm_object_reference(object); | |
0c530ab8 A |
1556 | } else { |
1557 | return KERN_INVALID_ARGUMENT; | |
55e303ae A |
1558 | } |
1559 | if (object == VM_OBJECT_NULL) | |
1560 | return (KERN_INVALID_ARGUMENT); | |
1561 | ||
1562 | if (!object->private) { | |
55e303ae A |
1563 | if (object->phys_contiguous) { |
1564 | *flags = UPL_PHYS_CONTIG; | |
1565 | } else { | |
1566 | *flags = 0; | |
1567 | } | |
1568 | } else { | |
1569 | *flags = UPL_DEV_MEMORY | UPL_PHYS_CONTIG; | |
1570 | } | |
1571 | ||
1572 | ret = vm_object_iopl_request(object, | |
1573 | offset, | |
1574 | *upl_size, | |
1575 | upl_ptr, | |
1576 | user_page_list, | |
1577 | page_list_count, | |
1578 | caller_flags); | |
1579 | vm_object_deallocate(object); | |
1580 | return ret; | |
1581 | } | |
1582 | ||
0b4e3aa0 A |
1583 | /* |
1584 | * Routine: memory_object_upl_request [interface] | |
1585 | * Purpose: | |
1586 | * Cause the population of a portion of a vm_object. | |
1587 | * Depending on the nature of the request, the pages | |
1588 | * returned may be contain valid data or be uninitialized. | |
1589 | * | |
1590 | */ | |
1c79356b | 1591 | |
0b4e3aa0 A |
1592 | kern_return_t |
1593 | memory_object_upl_request( | |
1594 | memory_object_control_t control, | |
1595 | memory_object_offset_t offset, | |
91447636 | 1596 | upl_size_t size, |
0b4e3aa0 A |
1597 | upl_t *upl_ptr, |
1598 | upl_page_info_array_t user_page_list, | |
1599 | unsigned int *page_list_count, | |
1600 | int cntrl_flags) | |
1601 | { | |
1602 | vm_object_t object; | |
1603 | ||
1604 | object = memory_object_control_to_vm_object(control); | |
1605 | if (object == VM_OBJECT_NULL) | |
b0d623f7 | 1606 | return (KERN_TERMINATED); |
0b4e3aa0 A |
1607 | |
1608 | return vm_object_upl_request(object, | |
1609 | offset, | |
1610 | size, | |
1611 | upl_ptr, | |
1612 | user_page_list, | |
1613 | page_list_count, | |
1614 | cntrl_flags); | |
1615 | } | |
1616 | ||
1617 | /* | |
1618 | * Routine: memory_object_super_upl_request [interface] | |
1619 | * Purpose: | |
1620 | * Cause the population of a portion of a vm_object | |
1621 | * in much the same way as memory_object_upl_request. | |
1622 | * Depending on the nature of the request, the pages | |
1623 | * returned may be contain valid data or be uninitialized. | |
1624 | * However, the region may be expanded up to the super | |
1625 | * cluster size provided. | |
1c79356b | 1626 | */ |
0b4e3aa0 | 1627 | |
1c79356b | 1628 | kern_return_t |
0b4e3aa0 A |
1629 | memory_object_super_upl_request( |
1630 | memory_object_control_t control, | |
1631 | memory_object_offset_t offset, | |
91447636 A |
1632 | upl_size_t size, |
1633 | upl_size_t super_cluster, | |
0b4e3aa0 A |
1634 | upl_t *upl, |
1635 | upl_page_info_t *user_page_list, | |
1636 | unsigned int *page_list_count, | |
1637 | int cntrl_flags) | |
1c79356b | 1638 | { |
0b4e3aa0 A |
1639 | vm_object_t object; |
1640 | ||
1641 | object = memory_object_control_to_vm_object(control); | |
1642 | if (object == VM_OBJECT_NULL) | |
1643 | return (KERN_INVALID_ARGUMENT); | |
1644 | ||
1645 | return vm_object_super_upl_request(object, | |
1646 | offset, | |
1647 | size, | |
1648 | super_cluster, | |
1649 | upl, | |
1650 | user_page_list, | |
1651 | page_list_count, | |
1652 | cntrl_flags); | |
1c79356b A |
1653 | } |
1654 | ||
2d21ac55 A |
1655 | kern_return_t |
1656 | memory_object_cluster_size(memory_object_control_t control, memory_object_offset_t *start, | |
b0d623f7 | 1657 | vm_size_t *length, uint32_t *io_streaming, memory_object_fault_info_t fault_info) |
2d21ac55 A |
1658 | { |
1659 | vm_object_t object; | |
1660 | ||
1661 | object = memory_object_control_to_vm_object(control); | |
1662 | ||
1663 | if (object == VM_OBJECT_NULL || object->paging_offset > *start) | |
1664 | return (KERN_INVALID_ARGUMENT); | |
1665 | ||
1666 | *start -= object->paging_offset; | |
1667 | ||
b0d623f7 | 1668 | vm_object_cluster_size(object, (vm_object_offset_t *)start, length, (vm_object_fault_info_t)fault_info, io_streaming); |
2d21ac55 A |
1669 | |
1670 | *start += object->paging_offset; | |
1671 | ||
1672 | return (KERN_SUCCESS); | |
1673 | } | |
1674 | ||
1675 | ||
0b4e3aa0 A |
1676 | int vm_stat_discard_cleared_reply = 0; |
1677 | int vm_stat_discard_cleared_unset = 0; | |
1678 | int vm_stat_discard_cleared_too_late = 0; | |
1679 | ||
1680 | ||
1681 | ||
1c79356b | 1682 | /* |
0b4e3aa0 | 1683 | * Routine: host_default_memory_manager [interface] |
1c79356b A |
1684 | * Purpose: |
1685 | * set/get the default memory manager port and default cluster | |
1686 | * size. | |
1687 | * | |
1688 | * If successful, consumes the supplied naked send right. | |
1689 | */ | |
1690 | kern_return_t | |
1691 | host_default_memory_manager( | |
0b4e3aa0 A |
1692 | host_priv_t host_priv, |
1693 | memory_object_default_t *default_manager, | |
2d21ac55 | 1694 | __unused memory_object_cluster_size_t cluster_size) |
1c79356b | 1695 | { |
0b4e3aa0 A |
1696 | memory_object_default_t current_manager; |
1697 | memory_object_default_t new_manager; | |
1698 | memory_object_default_t returned_manager; | |
2d21ac55 | 1699 | kern_return_t result = KERN_SUCCESS; |
1c79356b A |
1700 | |
1701 | if (host_priv == HOST_PRIV_NULL) | |
1702 | return(KERN_INVALID_HOST); | |
1703 | ||
1704 | assert(host_priv == &realhost); | |
1705 | ||
1706 | new_manager = *default_manager; | |
b0d623f7 | 1707 | lck_mtx_lock(&memory_manager_default_lock); |
1c79356b | 1708 | current_manager = memory_manager_default; |
2d21ac55 | 1709 | returned_manager = MEMORY_OBJECT_DEFAULT_NULL; |
1c79356b | 1710 | |
0b4e3aa0 | 1711 | if (new_manager == MEMORY_OBJECT_DEFAULT_NULL) { |
1c79356b A |
1712 | /* |
1713 | * Retrieve the current value. | |
1714 | */ | |
0b4e3aa0 | 1715 | returned_manager = current_manager; |
2d21ac55 | 1716 | memory_object_default_reference(returned_manager); |
1c79356b | 1717 | } else { |
2d21ac55 A |
1718 | |
1719 | /* | |
1720 | * If this is the first non-null manager, start | |
1721 | * up the internal pager support. | |
1722 | */ | |
1723 | if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { | |
1724 | result = vm_pageout_internal_start(); | |
1725 | if (result != KERN_SUCCESS) | |
1726 | goto out; | |
1727 | } | |
1728 | ||
1c79356b A |
1729 | /* |
1730 | * Retrieve the current value, | |
1731 | * and replace it with the supplied value. | |
0b4e3aa0 A |
1732 | * We return the old reference to the caller |
1733 | * but we have to take a reference on the new | |
1734 | * one. | |
1c79356b | 1735 | */ |
1c79356b A |
1736 | returned_manager = current_manager; |
1737 | memory_manager_default = new_manager; | |
0b4e3aa0 A |
1738 | memory_object_default_reference(new_manager); |
1739 | ||
1c79356b A |
1740 | /* |
1741 | * In case anyone's been waiting for a memory | |
1742 | * manager to be established, wake them up. | |
1743 | */ | |
1744 | ||
1745 | thread_wakeup((event_t) &memory_manager_default); | |
b0d623f7 A |
1746 | |
1747 | /* | |
1748 | * Now that we have a default pager for anonymous memory, | |
1749 | * reactivate all the throttled pages (i.e. dirty pages with | |
1750 | * no pager). | |
1751 | */ | |
6d2010ae A |
1752 | if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) |
1753 | { | |
b0d623f7 A |
1754 | vm_page_reactivate_all_throttled(); |
1755 | } | |
1c79356b | 1756 | } |
2d21ac55 | 1757 | out: |
b0d623f7 | 1758 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1759 | |
1760 | *default_manager = returned_manager; | |
2d21ac55 | 1761 | return(result); |
1c79356b A |
1762 | } |
1763 | ||
1764 | /* | |
1765 | * Routine: memory_manager_default_reference | |
1766 | * Purpose: | |
1767 | * Returns a naked send right for the default | |
1768 | * memory manager. The returned right is always | |
1769 | * valid (not IP_NULL or IP_DEAD). | |
1770 | */ | |
1771 | ||
0b4e3aa0 | 1772 | __private_extern__ memory_object_default_t |
2d21ac55 | 1773 | memory_manager_default_reference(void) |
1c79356b | 1774 | { |
0b4e3aa0 | 1775 | memory_object_default_t current_manager; |
1c79356b | 1776 | |
b0d623f7 | 1777 | lck_mtx_lock(&memory_manager_default_lock); |
0b4e3aa0 A |
1778 | current_manager = memory_manager_default; |
1779 | while (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { | |
9bccf70c A |
1780 | wait_result_t res; |
1781 | ||
b0d623f7 A |
1782 | res = lck_mtx_sleep(&memory_manager_default_lock, |
1783 | LCK_SLEEP_DEFAULT, | |
1784 | (event_t) &memory_manager_default, | |
1785 | THREAD_UNINT); | |
9bccf70c | 1786 | assert(res == THREAD_AWAKENED); |
0b4e3aa0 | 1787 | current_manager = memory_manager_default; |
1c79356b | 1788 | } |
0b4e3aa0 | 1789 | memory_object_default_reference(current_manager); |
b0d623f7 | 1790 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1791 | |
1792 | return current_manager; | |
1793 | } | |
1794 | ||
1c79356b A |
1795 | /* |
1796 | * Routine: memory_manager_default_check | |
1797 | * | |
1798 | * Purpose: | |
1799 | * Check whether a default memory manager has been set | |
1800 | * up yet, or not. Returns KERN_SUCCESS if dmm exists, | |
1801 | * and KERN_FAILURE if dmm does not exist. | |
1802 | * | |
1803 | * If there is no default memory manager, log an error, | |
1804 | * but only the first time. | |
1805 | * | |
1806 | */ | |
0b4e3aa0 | 1807 | __private_extern__ kern_return_t |
1c79356b A |
1808 | memory_manager_default_check(void) |
1809 | { | |
0b4e3aa0 | 1810 | memory_object_default_t current; |
1c79356b | 1811 | |
b0d623f7 | 1812 | lck_mtx_lock(&memory_manager_default_lock); |
1c79356b | 1813 | current = memory_manager_default; |
0b4e3aa0 | 1814 | if (current == MEMORY_OBJECT_DEFAULT_NULL) { |
1c79356b A |
1815 | static boolean_t logged; /* initialized to 0 */ |
1816 | boolean_t complain = !logged; | |
1817 | logged = TRUE; | |
b0d623f7 | 1818 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1819 | if (complain) |
1820 | printf("Warning: No default memory manager\n"); | |
1821 | return(KERN_FAILURE); | |
1822 | } else { | |
b0d623f7 | 1823 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1824 | return(KERN_SUCCESS); |
1825 | } | |
1826 | } | |
1827 | ||
0b4e3aa0 | 1828 | __private_extern__ void |
1c79356b A |
1829 | memory_manager_default_init(void) |
1830 | { | |
0b4e3aa0 | 1831 | memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; |
b0d623f7 | 1832 | lck_mtx_init(&memory_manager_default_lock, &vm_object_lck_grp, &vm_object_lck_attr); |
1c79356b A |
1833 | } |
1834 | ||
1835 | ||
1c79356b A |
1836 | |
1837 | /* Allow manipulation of individual page state. This is actually part of */ | |
1838 | /* the UPL regimen but takes place on the object rather than on a UPL */ | |
1839 | ||
1840 | kern_return_t | |
1841 | memory_object_page_op( | |
0b4e3aa0 A |
1842 | memory_object_control_t control, |
1843 | memory_object_offset_t offset, | |
1844 | int ops, | |
55e303ae | 1845 | ppnum_t *phys_entry, |
0b4e3aa0 | 1846 | int *flags) |
1c79356b | 1847 | { |
0b4e3aa0 | 1848 | vm_object_t object; |
0b4e3aa0 A |
1849 | |
1850 | object = memory_object_control_to_vm_object(control); | |
1851 | if (object == VM_OBJECT_NULL) | |
1852 | return (KERN_INVALID_ARGUMENT); | |
1c79356b | 1853 | |
0c530ab8 | 1854 | return vm_object_page_op(object, offset, ops, phys_entry, flags); |
1c79356b A |
1855 | } |
1856 | ||
55e303ae A |
1857 | /* |
1858 | * memory_object_range_op offers performance enhancement over | |
1859 | * memory_object_page_op for page_op functions which do not require page | |
1860 | * level state to be returned from the call. Page_op was created to provide | |
1861 | * a low-cost alternative to page manipulation via UPLs when only a single | |
1862 | * page was involved. The range_op call establishes the ability in the _op | |
1863 | * family of functions to work on multiple pages where the lack of page level | |
1864 | * state handling allows the caller to avoid the overhead of the upl structures. | |
1865 | */ | |
1866 | ||
1867 | kern_return_t | |
1868 | memory_object_range_op( | |
1869 | memory_object_control_t control, | |
1870 | memory_object_offset_t offset_beg, | |
1871 | memory_object_offset_t offset_end, | |
1872 | int ops, | |
1873 | int *range) | |
1874 | { | |
55e303ae | 1875 | vm_object_t object; |
55e303ae A |
1876 | |
1877 | object = memory_object_control_to_vm_object(control); | |
1878 | if (object == VM_OBJECT_NULL) | |
1879 | return (KERN_INVALID_ARGUMENT); | |
1880 | ||
0c530ab8 A |
1881 | return vm_object_range_op(object, |
1882 | offset_beg, | |
1883 | offset_end, | |
1884 | ops, | |
b0d623f7 | 1885 | (uint32_t *) range); |
55e303ae A |
1886 | } |
1887 | ||
91447636 | 1888 | |
6d2010ae A |
1889 | void |
1890 | memory_object_mark_used( | |
1891 | memory_object_control_t control) | |
1892 | { | |
1893 | vm_object_t object; | |
1894 | ||
1895 | if (control == NULL) | |
1896 | return; | |
1897 | ||
1898 | object = memory_object_control_to_vm_object(control); | |
1899 | ||
1900 | if (object != VM_OBJECT_NULL) | |
1901 | vm_object_cache_remove(object); | |
1902 | } | |
1903 | ||
1904 | ||
1905 | void | |
1906 | memory_object_mark_unused( | |
1907 | memory_object_control_t control, | |
1908 | __unused boolean_t rage) | |
1909 | { | |
1910 | vm_object_t object; | |
1911 | ||
1912 | if (control == NULL) | |
1913 | return; | |
1914 | ||
1915 | object = memory_object_control_to_vm_object(control); | |
1916 | ||
1917 | if (object != VM_OBJECT_NULL) | |
1918 | vm_object_cache_add(object); | |
1919 | } | |
1920 | ||
fe8ab488 A |
1921 | void |
1922 | memory_object_mark_io_tracking( | |
1923 | memory_object_control_t control) | |
1924 | { | |
1925 | vm_object_t object; | |
1926 | ||
1927 | if (control == NULL) | |
1928 | return; | |
1929 | object = memory_object_control_to_vm_object(control); | |
1930 | ||
1931 | if (object != VM_OBJECT_NULL) { | |
1932 | vm_object_lock(object); | |
1933 | object->io_tracking = TRUE; | |
1934 | vm_object_unlock(object); | |
1935 | } | |
1936 | } | |
6d2010ae | 1937 | |
91447636 A |
1938 | kern_return_t |
1939 | memory_object_pages_resident( | |
1940 | memory_object_control_t control, | |
1941 | boolean_t * has_pages_resident) | |
1942 | { | |
1943 | vm_object_t object; | |
1944 | ||
1945 | *has_pages_resident = FALSE; | |
1946 | ||
1947 | object = memory_object_control_to_vm_object(control); | |
1948 | if (object == VM_OBJECT_NULL) | |
1949 | return (KERN_INVALID_ARGUMENT); | |
1950 | ||
1951 | if (object->resident_page_count) | |
1952 | *has_pages_resident = TRUE; | |
1953 | ||
1954 | return (KERN_SUCCESS); | |
1955 | } | |
1956 | ||
2d21ac55 A |
1957 | kern_return_t |
1958 | memory_object_signed( | |
1959 | memory_object_control_t control, | |
1960 | boolean_t is_signed) | |
1961 | { | |
1962 | vm_object_t object; | |
1963 | ||
1964 | object = memory_object_control_to_vm_object(control); | |
1965 | if (object == VM_OBJECT_NULL) | |
1966 | return KERN_INVALID_ARGUMENT; | |
1967 | ||
1968 | vm_object_lock(object); | |
1969 | object->code_signed = is_signed; | |
1970 | vm_object_unlock(object); | |
1971 | ||
1972 | return KERN_SUCCESS; | |
1973 | } | |
91447636 | 1974 | |
39236c6e A |
1975 | boolean_t |
1976 | memory_object_is_signed( | |
1977 | memory_object_control_t control) | |
1978 | { | |
1979 | boolean_t is_signed; | |
1980 | vm_object_t object; | |
1981 | ||
1982 | object = memory_object_control_to_vm_object(control); | |
1983 | if (object == VM_OBJECT_NULL) | |
1984 | return FALSE; | |
1985 | ||
1986 | vm_object_lock_shared(object); | |
1987 | is_signed = object->code_signed; | |
1988 | vm_object_unlock(object); | |
1989 | ||
1990 | return is_signed; | |
1991 | } | |
1992 | ||
6d2010ae A |
1993 | boolean_t |
1994 | memory_object_is_slid( | |
1995 | memory_object_control_t control) | |
1996 | { | |
1997 | vm_object_t object = VM_OBJECT_NULL; | |
6d2010ae A |
1998 | |
1999 | object = memory_object_control_to_vm_object(control); | |
2000 | if (object == VM_OBJECT_NULL) | |
2001 | return FALSE; | |
2002 | ||
39236c6e | 2003 | return object->object_slid; |
6d2010ae A |
2004 | } |
2005 | ||
0b4e3aa0 A |
2006 | static zone_t mem_obj_control_zone; |
2007 | ||
2008 | __private_extern__ void | |
2009 | memory_object_control_bootstrap(void) | |
2010 | { | |
2011 | int i; | |
2012 | ||
2013 | i = (vm_size_t) sizeof (struct memory_object_control); | |
2014 | mem_obj_control_zone = zinit (i, 8192*i, 4096, "mem_obj_control"); | |
6d2010ae | 2015 | zone_change(mem_obj_control_zone, Z_CALLERACCT, FALSE); |
0b4c1975 | 2016 | zone_change(mem_obj_control_zone, Z_NOENCRYPT, TRUE); |
0b4e3aa0 A |
2017 | return; |
2018 | } | |
2019 | ||
2020 | __private_extern__ memory_object_control_t | |
2021 | memory_object_control_allocate( | |
2022 | vm_object_t object) | |
2023 | { | |
2024 | memory_object_control_t control; | |
2025 | ||
2026 | control = (memory_object_control_t)zalloc(mem_obj_control_zone); | |
0c530ab8 A |
2027 | if (control != MEMORY_OBJECT_CONTROL_NULL) { |
2028 | control->moc_object = object; | |
2029 | control->moc_ikot = IKOT_MEM_OBJ_CONTROL; /* fake ip_kotype */ | |
2030 | } | |
0b4e3aa0 A |
2031 | return (control); |
2032 | } | |
2033 | ||
2034 | __private_extern__ void | |
2035 | memory_object_control_collapse( | |
2036 | memory_object_control_t control, | |
2037 | vm_object_t object) | |
2038 | { | |
0c530ab8 A |
2039 | assert((control->moc_object != VM_OBJECT_NULL) && |
2040 | (control->moc_object != object)); | |
2041 | control->moc_object = object; | |
0b4e3aa0 A |
2042 | } |
2043 | ||
2044 | __private_extern__ vm_object_t | |
2045 | memory_object_control_to_vm_object( | |
2046 | memory_object_control_t control) | |
2047 | { | |
0c530ab8 A |
2048 | if (control == MEMORY_OBJECT_CONTROL_NULL || |
2049 | control->moc_ikot != IKOT_MEM_OBJ_CONTROL) | |
0b4e3aa0 A |
2050 | return VM_OBJECT_NULL; |
2051 | ||
0c530ab8 | 2052 | return (control->moc_object); |
0b4e3aa0 A |
2053 | } |
2054 | ||
2055 | memory_object_control_t | |
2056 | convert_port_to_mo_control( | |
91447636 | 2057 | __unused mach_port_t port) |
0b4e3aa0 A |
2058 | { |
2059 | return MEMORY_OBJECT_CONTROL_NULL; | |
2060 | } | |
2061 | ||
2062 | ||
2063 | mach_port_t | |
2064 | convert_mo_control_to_port( | |
91447636 | 2065 | __unused memory_object_control_t control) |
0b4e3aa0 A |
2066 | { |
2067 | return MACH_PORT_NULL; | |
2068 | } | |
2069 | ||
2070 | void | |
2071 | memory_object_control_reference( | |
91447636 | 2072 | __unused memory_object_control_t control) |
0b4e3aa0 A |
2073 | { |
2074 | return; | |
2075 | } | |
2076 | ||
2077 | /* | |
2078 | * We only every issue one of these references, so kill it | |
2079 | * when that gets released (should switch the real reference | |
2080 | * counting in true port-less EMMI). | |
2081 | */ | |
2082 | void | |
2083 | memory_object_control_deallocate( | |
2084 | memory_object_control_t control) | |
2085 | { | |
91447636 | 2086 | zfree(mem_obj_control_zone, control); |
0b4e3aa0 A |
2087 | } |
2088 | ||
2089 | void | |
2090 | memory_object_control_disable( | |
2091 | memory_object_control_t control) | |
2092 | { | |
0c530ab8 A |
2093 | assert(control->moc_object != VM_OBJECT_NULL); |
2094 | control->moc_object = VM_OBJECT_NULL; | |
0b4e3aa0 A |
2095 | } |
2096 | ||
2097 | void | |
2098 | memory_object_default_reference( | |
2099 | memory_object_default_t dmm) | |
2100 | { | |
2101 | ipc_port_make_send(dmm); | |
2102 | } | |
2103 | ||
2104 | void | |
2105 | memory_object_default_deallocate( | |
2106 | memory_object_default_t dmm) | |
2107 | { | |
2108 | ipc_port_release_send(dmm); | |
2109 | } | |
2110 | ||
2111 | memory_object_t | |
2112 | convert_port_to_memory_object( | |
91447636 | 2113 | __unused mach_port_t port) |
0b4e3aa0 A |
2114 | { |
2115 | return (MEMORY_OBJECT_NULL); | |
2116 | } | |
2117 | ||
2118 | ||
2119 | mach_port_t | |
2120 | convert_memory_object_to_port( | |
91447636 | 2121 | __unused memory_object_t object) |
0b4e3aa0 A |
2122 | { |
2123 | return (MACH_PORT_NULL); | |
2124 | } | |
2125 | ||
0b4e3aa0 A |
2126 | |
2127 | /* Routine memory_object_reference */ | |
2128 | void memory_object_reference( | |
2129 | memory_object_t memory_object) | |
2130 | { | |
0c530ab8 A |
2131 | (memory_object->mo_pager_ops->memory_object_reference)( |
2132 | memory_object); | |
0b4e3aa0 A |
2133 | } |
2134 | ||
2135 | /* Routine memory_object_deallocate */ | |
2136 | void memory_object_deallocate( | |
2137 | memory_object_t memory_object) | |
2138 | { | |
0c530ab8 A |
2139 | (memory_object->mo_pager_ops->memory_object_deallocate)( |
2140 | memory_object); | |
0b4e3aa0 A |
2141 | } |
2142 | ||
2143 | ||
2144 | /* Routine memory_object_init */ | |
2145 | kern_return_t memory_object_init | |
2146 | ( | |
2147 | memory_object_t memory_object, | |
2148 | memory_object_control_t memory_control, | |
91447636 | 2149 | memory_object_cluster_size_t memory_object_page_size |
0b4e3aa0 A |
2150 | ) |
2151 | { | |
0c530ab8 A |
2152 | return (memory_object->mo_pager_ops->memory_object_init)( |
2153 | memory_object, | |
2154 | memory_control, | |
2155 | memory_object_page_size); | |
0b4e3aa0 A |
2156 | } |
2157 | ||
2158 | /* Routine memory_object_terminate */ | |
2159 | kern_return_t memory_object_terminate | |
2160 | ( | |
2161 | memory_object_t memory_object | |
2162 | ) | |
2163 | { | |
0c530ab8 A |
2164 | return (memory_object->mo_pager_ops->memory_object_terminate)( |
2165 | memory_object); | |
0b4e3aa0 A |
2166 | } |
2167 | ||
2168 | /* Routine memory_object_data_request */ | |
2169 | kern_return_t memory_object_data_request | |
2170 | ( | |
2171 | memory_object_t memory_object, | |
2172 | memory_object_offset_t offset, | |
91447636 | 2173 | memory_object_cluster_size_t length, |
2d21ac55 A |
2174 | vm_prot_t desired_access, |
2175 | memory_object_fault_info_t fault_info | |
0b4e3aa0 A |
2176 | ) |
2177 | { | |
0c530ab8 A |
2178 | return (memory_object->mo_pager_ops->memory_object_data_request)( |
2179 | memory_object, | |
2180 | offset, | |
2181 | length, | |
2d21ac55 A |
2182 | desired_access, |
2183 | fault_info); | |
0b4e3aa0 A |
2184 | } |
2185 | ||
2186 | /* Routine memory_object_data_return */ | |
2187 | kern_return_t memory_object_data_return | |
2188 | ( | |
2189 | memory_object_t memory_object, | |
2190 | memory_object_offset_t offset, | |
b0d623f7 | 2191 | memory_object_cluster_size_t size, |
91447636 A |
2192 | memory_object_offset_t *resid_offset, |
2193 | int *io_error, | |
0b4e3aa0 | 2194 | boolean_t dirty, |
91447636 A |
2195 | boolean_t kernel_copy, |
2196 | int upl_flags | |
0b4e3aa0 A |
2197 | ) |
2198 | { | |
0c530ab8 A |
2199 | return (memory_object->mo_pager_ops->memory_object_data_return)( |
2200 | memory_object, | |
2201 | offset, | |
2202 | size, | |
2203 | resid_offset, | |
2204 | io_error, | |
2205 | dirty, | |
2206 | kernel_copy, | |
2207 | upl_flags); | |
0b4e3aa0 A |
2208 | } |
2209 | ||
2210 | /* Routine memory_object_data_initialize */ | |
2211 | kern_return_t memory_object_data_initialize | |
2212 | ( | |
2213 | memory_object_t memory_object, | |
2214 | memory_object_offset_t offset, | |
b0d623f7 | 2215 | memory_object_cluster_size_t size |
0b4e3aa0 A |
2216 | ) |
2217 | { | |
0c530ab8 A |
2218 | return (memory_object->mo_pager_ops->memory_object_data_initialize)( |
2219 | memory_object, | |
2220 | offset, | |
2221 | size); | |
0b4e3aa0 A |
2222 | } |
2223 | ||
2224 | /* Routine memory_object_data_unlock */ | |
2225 | kern_return_t memory_object_data_unlock | |
2226 | ( | |
2227 | memory_object_t memory_object, | |
2228 | memory_object_offset_t offset, | |
b0d623f7 | 2229 | memory_object_size_t size, |
0b4e3aa0 A |
2230 | vm_prot_t desired_access |
2231 | ) | |
2232 | { | |
0c530ab8 A |
2233 | return (memory_object->mo_pager_ops->memory_object_data_unlock)( |
2234 | memory_object, | |
2235 | offset, | |
2236 | size, | |
2237 | desired_access); | |
0b4e3aa0 A |
2238 | } |
2239 | ||
2240 | /* Routine memory_object_synchronize */ | |
2241 | kern_return_t memory_object_synchronize | |
2242 | ( | |
2243 | memory_object_t memory_object, | |
2244 | memory_object_offset_t offset, | |
b0d623f7 | 2245 | memory_object_size_t size, |
0b4e3aa0 A |
2246 | vm_sync_t sync_flags |
2247 | ) | |
2248 | { | |
0c530ab8 A |
2249 | return (memory_object->mo_pager_ops->memory_object_synchronize)( |
2250 | memory_object, | |
2251 | offset, | |
2252 | size, | |
2253 | sync_flags); | |
0b4e3aa0 A |
2254 | } |
2255 | ||
593a1d5f A |
2256 | |
2257 | /* | |
2258 | * memory_object_map() is called by VM (in vm_map_enter() and its variants) | |
2259 | * each time a "named" VM object gets mapped directly or indirectly | |
2260 | * (copy-on-write mapping). A "named" VM object has an extra reference held | |
2261 | * by the pager to keep it alive until the pager decides that the | |
2262 | * memory object (and its VM object) can be reclaimed. | |
2263 | * VM calls memory_object_last_unmap() (in vm_object_deallocate()) when all | |
2264 | * the mappings of that memory object have been removed. | |
2265 | * | |
2266 | * For a given VM object, calls to memory_object_map() and memory_object_unmap() | |
2267 | * are serialized (through object->mapping_in_progress), to ensure that the | |
2268 | * pager gets a consistent view of the mapping status of the memory object. | |
2269 | * | |
2270 | * This allows the pager to keep track of how many times a memory object | |
2271 | * has been mapped and with which protections, to decide when it can be | |
2272 | * reclaimed. | |
2273 | */ | |
2274 | ||
2275 | /* Routine memory_object_map */ | |
2276 | kern_return_t memory_object_map | |
2277 | ( | |
2278 | memory_object_t memory_object, | |
2279 | vm_prot_t prot | |
2280 | ) | |
2281 | { | |
2282 | return (memory_object->mo_pager_ops->memory_object_map)( | |
2283 | memory_object, | |
2284 | prot); | |
2285 | } | |
2286 | ||
2287 | /* Routine memory_object_last_unmap */ | |
2288 | kern_return_t memory_object_last_unmap | |
0b4e3aa0 A |
2289 | ( |
2290 | memory_object_t memory_object | |
2291 | ) | |
2292 | { | |
593a1d5f | 2293 | return (memory_object->mo_pager_ops->memory_object_last_unmap)( |
0c530ab8 | 2294 | memory_object); |
0b4e3aa0 A |
2295 | } |
2296 | ||
6d2010ae A |
2297 | /* Routine memory_object_data_reclaim */ |
2298 | kern_return_t memory_object_data_reclaim | |
2299 | ( | |
2300 | memory_object_t memory_object, | |
2301 | boolean_t reclaim_backing_store | |
2302 | ) | |
2303 | { | |
2304 | if (memory_object->mo_pager_ops->memory_object_data_reclaim == NULL) | |
2305 | return KERN_NOT_SUPPORTED; | |
2306 | return (memory_object->mo_pager_ops->memory_object_data_reclaim)( | |
2307 | memory_object, | |
2308 | reclaim_backing_store); | |
2309 | } | |
2310 | ||
0b4e3aa0 A |
2311 | /* Routine memory_object_create */ |
2312 | kern_return_t memory_object_create | |
2313 | ( | |
2314 | memory_object_default_t default_memory_manager, | |
2315 | vm_size_t new_memory_object_size, | |
2316 | memory_object_t *new_memory_object | |
2317 | ) | |
2318 | { | |
0b4e3aa0 A |
2319 | return default_pager_memory_object_create(default_memory_manager, |
2320 | new_memory_object_size, | |
2321 | new_memory_object); | |
2322 | } | |
1c79356b | 2323 | |
91447636 A |
2324 | upl_t |
2325 | convert_port_to_upl( | |
2326 | ipc_port_t port) | |
2327 | { | |
2328 | upl_t upl; | |
2329 | ||
2330 | ip_lock(port); | |
2331 | if (!ip_active(port) || (ip_kotype(port) != IKOT_UPL)) { | |
2332 | ip_unlock(port); | |
2333 | return (upl_t)NULL; | |
2334 | } | |
2335 | upl = (upl_t) port->ip_kobject; | |
2336 | ip_unlock(port); | |
2337 | upl_lock(upl); | |
2338 | upl->ref_count+=1; | |
2339 | upl_unlock(upl); | |
2340 | return upl; | |
2341 | } | |
2342 | ||
2343 | mach_port_t | |
2344 | convert_upl_to_port( | |
2345 | __unused upl_t upl) | |
2346 | { | |
2347 | return MACH_PORT_NULL; | |
2348 | } | |
2349 | ||
2350 | __private_extern__ void | |
2351 | upl_no_senders( | |
2352 | __unused ipc_port_t port, | |
2353 | __unused mach_port_mscount_t mscount) | |
2354 | { | |
2355 | return; | |
2356 | } |