]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
fe8ab488 | 2 | * Copyright (c) 2000-2014 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: kern/zalloc.c | |
60 | * Author: Avadis Tevanian, Jr. | |
61 | * | |
62 | * Zone-based memory allocator. A zone is a collection of fixed size | |
63 | * data blocks for which quick allocation/deallocation is possible. | |
64 | */ | |
65 | #include <zone_debug.h> | |
2d21ac55 | 66 | #include <zone_alias_addr.h> |
91447636 A |
67 | |
68 | #include <mach/mach_types.h> | |
69 | #include <mach/vm_param.h> | |
70 | #include <mach/kern_return.h> | |
71 | #include <mach/mach_host_server.h> | |
6d2010ae | 72 | #include <mach/task_server.h> |
91447636 A |
73 | #include <mach/machine/vm_types.h> |
74 | #include <mach_debug/zone_info.h> | |
316670eb | 75 | #include <mach/vm_map.h> |
91447636 A |
76 | |
77 | #include <kern/kern_types.h> | |
1c79356b | 78 | #include <kern/assert.h> |
91447636 | 79 | #include <kern/host.h> |
1c79356b A |
80 | #include <kern/macro_help.h> |
81 | #include <kern/sched.h> | |
b0d623f7 | 82 | #include <kern/locks.h> |
1c79356b A |
83 | #include <kern/sched_prim.h> |
84 | #include <kern/misc_protos.h> | |
0b4e3aa0 | 85 | #include <kern/thread_call.h> |
1c79356b | 86 | #include <kern/zalloc.h> |
91447636 | 87 | #include <kern/kalloc.h> |
39236c6e | 88 | #include <kern/btlog.h> |
91447636 A |
89 | |
90 | #include <vm/pmap.h> | |
91 | #include <vm/vm_map.h> | |
1c79356b | 92 | #include <vm/vm_kern.h> |
91447636 A |
93 | #include <vm/vm_page.h> |
94 | ||
316670eb A |
95 | #include <pexpert/pexpert.h> |
96 | ||
1c79356b | 97 | #include <machine/machparam.h> |
39236c6e | 98 | #include <machine/machine_routines.h> /* ml_cpu_get_info */ |
1c79356b | 99 | |
2d21ac55 | 100 | #include <libkern/OSDebug.h> |
7ddcb079 | 101 | #include <libkern/OSAtomic.h> |
2d21ac55 A |
102 | #include <sys/kdebug.h> |
103 | ||
39236c6e A |
104 | /* |
105 | * ZONE_ALIAS_ADDR | |
106 | * | |
107 | * With this option enabled, zones with alloc_size <= PAGE_SIZE allocate | |
108 | * a virtual page from the zone_map, but before zcram-ing the allocated memory | |
109 | * into the zone, the page is translated to use the alias address of the page | |
110 | * in the static kernel region. zone_gc reverses that translation when | |
111 | * scanning the freelist to collect free pages so that it can look up the page | |
112 | * in the zone_page_table, and free it to kmem_free. | |
113 | * | |
114 | * The static kernel region is a flat 1:1 mapping of physical memory passed | |
115 | * to xnu by the booter. It is mapped to the range: | |
116 | * [gVirtBase, gVirtBase + gPhysSize] | |
117 | * | |
118 | * Accessing memory via the static kernel region is faster due to the | |
119 | * entire region being mapped via large pages, cutting down | |
120 | * on TLB misses. | |
121 | * | |
122 | * zinit favors using PAGE_SIZE backing allocations for a zone unless it would | |
123 | * waste more than 10% space to use a single page, in order to take advantage | |
124 | * of the speed benefit for as many zones as possible. | |
125 | * | |
126 | * Zones with > PAGE_SIZE allocations can't take advantage of this | |
127 | * because kernel_memory_allocate doesn't give out physically contiguous pages. | |
128 | * | |
129 | * zone_virtual_addr() | |
130 | * - translates an address from the static kernel region to the zone_map | |
131 | * - returns the same address if it's not from the static kernel region | |
132 | * It relies on the fact that a physical page mapped to the | |
133 | * zone_map is not mapped anywhere else (except the static kernel region). | |
134 | * | |
135 | * zone_alias_addr() | |
136 | * - translates a virtual memory address from the zone_map to the | |
137 | * corresponding address in the static kernel region | |
138 | * | |
139 | */ | |
140 | ||
141 | #if !ZONE_ALIAS_ADDR | |
142 | #define from_zone_map(addr, size) \ | |
143 | ((vm_offset_t)(addr) >= zone_map_min_address && \ | |
144 | ((vm_offset_t)(addr) + size - 1) < zone_map_max_address ) | |
145 | #else | |
146 | #define from_zone_map(addr, size) \ | |
147 | ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) >= zone_map_min_address && \ | |
148 | ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) + size -1) < zone_map_max_address ) | |
149 | #endif | |
150 | ||
151 | /* | |
c910b4d9 A |
152 | * Zone Corruption Debugging |
153 | * | |
39236c6e A |
154 | * We use three techniques to detect modification of a zone element |
155 | * after it's been freed. | |
316670eb | 156 | * |
39236c6e A |
157 | * (1) Check the freelist next pointer for sanity. |
158 | * (2) Store a backup of the next pointer at the end of the element, | |
159 | * and compare it to the primary next pointer when the element is allocated | |
160 | * to detect corruption of the freelist due to use-after-free bugs. | |
161 | * The backup pointer is also XORed with a per-boot random cookie. | |
162 | * (3) Poison the freed element by overwriting it with 0xdeadbeef, | |
163 | * and check for that value when the element is being reused to make sure | |
164 | * no part of the element has been modified while it was on the freelist. | |
165 | * This will also help catch read-after-frees, as code will now dereference | |
166 | * 0xdeadbeef instead of a valid but freed pointer. | |
316670eb | 167 | * |
39236c6e A |
168 | * (1) and (2) occur for every allocation and free to a zone. |
169 | * This is done to make it slightly more difficult for an attacker to | |
170 | * manipulate the freelist to behave in a specific way. | |
c910b4d9 | 171 | * |
39236c6e A |
172 | * Poisoning (3) occurs periodically for every N frees (counted per-zone) |
173 | * and on every free for zones smaller than a cacheline. If -zp | |
174 | * is passed as a boot arg, poisoning occurs for every free. | |
c910b4d9 | 175 | * |
39236c6e A |
176 | * Performance slowdown is inversely proportional to the frequency of poisoning, |
177 | * with a 4-5% hit around N=1, down to ~0.3% at N=16 and just "noise" at N=32 | |
178 | * and higher. You can expect to find a 100% reproducible bug in an average of | |
179 | * N tries, with a standard deviation of about N, but you will want to set | |
180 | * "-zp" to always poison every free if you are attempting to reproduce | |
181 | * a known bug. | |
316670eb | 182 | * |
39236c6e A |
183 | * For a more heavyweight, but finer-grained method of detecting misuse |
184 | * of zone memory, look up the "Guard mode" zone allocator in gzalloc.c. | |
185 | * | |
186 | * Zone Corruption Logging | |
187 | * | |
188 | * You can also track where corruptions come from by using the boot-arguments | |
189 | * "zlog=<zone name to log> -zc". Search for "Zone corruption logging" later | |
190 | * in this document for more implementation and usage information. | |
191 | * | |
192 | * Zone Leak Detection | |
193 | * | |
194 | * To debug leaks of zone memory, use the zone leak detection tool 'zleaks' | |
195 | * found later in this file via the showtopztrace and showz* macros in kgmacros, | |
196 | * or use zlog without the -zc argument. | |
316670eb | 197 | * |
316670eb A |
198 | */ |
199 | ||
fe8ab488 A |
200 | /* Returns TRUE if we rolled over the counter at factor */ |
201 | static inline boolean_t | |
202 | sample_counter(volatile uint32_t * count_p, uint32_t factor) | |
203 | { | |
204 | uint32_t old_count, new_count; | |
205 | boolean_t rolled_over; | |
206 | ||
207 | do { | |
208 | new_count = old_count = *count_p; | |
209 | ||
210 | if (++new_count >= factor) { | |
211 | rolled_over = TRUE; | |
212 | new_count = 0; | |
213 | } else { | |
214 | rolled_over = FALSE; | |
215 | } | |
216 | ||
217 | } while (!OSCompareAndSwap(old_count, new_count, count_p)); | |
218 | ||
219 | return rolled_over; | |
220 | } | |
316670eb | 221 | |
39236c6e A |
222 | #if defined(__LP64__) |
223 | #define ZP_POISON 0xdeadbeefdeadbeef | |
224 | #else | |
225 | #define ZP_POISON 0xdeadbeef | |
226 | #endif | |
316670eb | 227 | |
39236c6e | 228 | #define ZP_DEFAULT_SAMPLING_FACTOR 16 |
fe8ab488 | 229 | #define ZP_DEFAULT_SCALE_FACTOR 4 |
316670eb | 230 | |
39236c6e A |
231 | /* |
232 | * A zp_factor of 0 indicates zone poisoning is disabled, | |
233 | * however, we still poison zones smaller than zp_tiny_zone_limit (a cacheline). | |
234 | * Passing the -no-zp boot-arg disables even this behavior. | |
235 | * In all cases, we record and check the integrity of a backup pointer. | |
316670eb | 236 | */ |
39236c6e A |
237 | |
238 | /* set by zp-factor=N boot arg, zero indicates non-tiny poisoning disabled */ | |
239 | uint32_t zp_factor = 0; | |
240 | ||
fe8ab488 A |
241 | /* set by zp-scale=N boot arg, scales zp_factor by zone size */ |
242 | uint32_t zp_scale = 0; | |
243 | ||
39236c6e A |
244 | /* set in zp_init, zero indicates -no-zp boot-arg */ |
245 | vm_size_t zp_tiny_zone_limit = 0; | |
246 | ||
247 | /* initialized to a per-boot random value in zp_init */ | |
248 | uintptr_t zp_poisoned_cookie = 0; | |
249 | uintptr_t zp_nopoison_cookie = 0; | |
250 | ||
316670eb A |
251 | |
252 | /* | |
39236c6e A |
253 | * initialize zone poisoning |
254 | * called from zone_bootstrap before any allocations are made from zalloc | |
316670eb A |
255 | */ |
256 | static inline void | |
39236c6e A |
257 | zp_init(void) |
258 | { | |
259 | char temp_buf[16]; | |
260 | ||
261 | /* | |
262 | * Initialize backup pointer random cookie for poisoned elements | |
263 | * Try not to call early_random() back to back, it may return | |
264 | * the same value if mach_absolute_time doesn't have sufficient time | |
265 | * to tick over between calls. <rdar://problem/11597395> | |
266 | * (This is only a problem on embedded devices) | |
267 | */ | |
268 | zp_poisoned_cookie = (uintptr_t) early_random(); | |
269 | ||
270 | /* | |
271 | * Always poison zones smaller than a cacheline, | |
272 | * because it's pretty close to free | |
273 | */ | |
274 | ml_cpu_info_t cpu_info; | |
275 | ml_cpu_get_info(&cpu_info); | |
276 | zp_tiny_zone_limit = (vm_size_t) cpu_info.cache_line_size; | |
277 | ||
278 | zp_factor = ZP_DEFAULT_SAMPLING_FACTOR; | |
fe8ab488 | 279 | zp_scale = ZP_DEFAULT_SCALE_FACTOR; |
39236c6e A |
280 | |
281 | //TODO: Bigger permutation? | |
282 | /* | |
283 | * Permute the default factor +/- 1 to make it less predictable | |
284 | * This adds or subtracts ~4 poisoned objects per 1000 frees. | |
285 | */ | |
286 | if (zp_factor != 0) { | |
287 | uint32_t rand_bits = early_random() & 0x3; | |
288 | ||
289 | if (rand_bits == 0x1) | |
290 | zp_factor += 1; | |
291 | else if (rand_bits == 0x2) | |
292 | zp_factor -= 1; | |
293 | /* if 0x0 or 0x3, leave it alone */ | |
294 | } | |
295 | ||
296 | /* -zp: enable poisoning for every alloc and free */ | |
297 | if (PE_parse_boot_argn("-zp", temp_buf, sizeof(temp_buf))) { | |
298 | zp_factor = 1; | |
299 | } | |
300 | ||
301 | /* -no-zp: disable poisoning completely even for tiny zones */ | |
302 | if (PE_parse_boot_argn("-no-zp", temp_buf, sizeof(temp_buf))) { | |
303 | zp_factor = 0; | |
304 | zp_tiny_zone_limit = 0; | |
305 | printf("Zone poisoning disabled\n"); | |
306 | } | |
307 | ||
308 | /* zp-factor=XXXX: override how often to poison freed zone elements */ | |
309 | if (PE_parse_boot_argn("zp-factor", &zp_factor, sizeof(zp_factor))) { | |
310 | printf("Zone poisoning factor override: %u\n", zp_factor); | |
311 | } | |
312 | ||
fe8ab488 A |
313 | /* zp-scale=XXXX: override how much zone size scales zp-factor by */ |
314 | if (PE_parse_boot_argn("zp-scale", &zp_scale, sizeof(zp_scale))) { | |
315 | printf("Zone poisoning scale factor override: %u\n", zp_scale); | |
316 | } | |
317 | ||
39236c6e A |
318 | /* Initialize backup pointer random cookie for unpoisoned elements */ |
319 | zp_nopoison_cookie = (uintptr_t) early_random(); | |
320 | ||
321 | #if MACH_ASSERT | |
322 | if (zp_poisoned_cookie == zp_nopoison_cookie) | |
323 | panic("early_random() is broken: %p and %p are not random\n", | |
324 | (void *) zp_poisoned_cookie, (void *) zp_nopoison_cookie); | |
325 | #endif | |
326 | ||
327 | /* | |
328 | * Use the last bit in the backup pointer to hint poisoning state | |
329 | * to backup_ptr_mismatch_panic. Valid zone pointers are aligned, so | |
330 | * the low bits are zero. | |
331 | */ | |
332 | zp_poisoned_cookie |= (uintptr_t)0x1ULL; | |
333 | zp_nopoison_cookie &= ~((uintptr_t)0x1ULL); | |
334 | ||
335 | #if defined(__LP64__) | |
336 | /* | |
337 | * Make backup pointers more obvious in GDB for 64 bit | |
338 | * by making OxFFFFFF... ^ cookie = 0xFACADE... | |
339 | * (0xFACADE = 0xFFFFFF ^ 0x053521) | |
340 | * (0xC0FFEE = 0xFFFFFF ^ 0x3f0011) | |
341 | * The high 3 bytes of a zone pointer are always 0xFFFFFF, and are checked | |
342 | * by the sanity check, so it's OK for that part of the cookie to be predictable. | |
343 | * | |
344 | * TODO: Use #defines, xors, and shifts | |
345 | */ | |
346 | ||
347 | zp_poisoned_cookie &= 0x000000FFFFFFFFFF; | |
348 | zp_poisoned_cookie |= 0x0535210000000000; /* 0xFACADE */ | |
349 | ||
350 | zp_nopoison_cookie &= 0x000000FFFFFFFFFF; | |
351 | zp_nopoison_cookie |= 0x3f00110000000000; /* 0xC0FFEE */ | |
352 | #endif | |
353 | } | |
354 | ||
355 | /* zone_map page count for page table structure */ | |
356 | uint64_t zone_map_table_page_count = 0; | |
357 | ||
358 | /* | |
359 | * These macros are used to keep track of the number | |
360 | * of pages being used by the zone currently. The | |
361 | * z->page_count is protected by the zone lock. | |
362 | */ | |
363 | #define ZONE_PAGE_COUNT_INCR(z, count) \ | |
364 | { \ | |
365 | OSAddAtomic64(count, &(z->page_count)); \ | |
366 | } | |
367 | ||
368 | #define ZONE_PAGE_COUNT_DECR(z, count) \ | |
369 | { \ | |
370 | OSAddAtomic64(-count, &(z->page_count)); \ | |
371 | } | |
372 | ||
373 | /* for is_sane_zone_element and garbage collection */ | |
374 | ||
375 | vm_offset_t zone_map_min_address = 0; /* initialized in zone_init */ | |
376 | vm_offset_t zone_map_max_address = 0; | |
377 | ||
4bd07ac2 A |
378 | /* Globals for random boolean generator for elements in free list */ |
379 | #define MAX_ENTROPY_PER_ZCRAM 4 | |
380 | #define RANDOM_BOOL_GEN_SEED_COUNT 4 | |
381 | static unsigned int bool_gen_seed[RANDOM_BOOL_GEN_SEED_COUNT]; | |
382 | static unsigned int bool_gen_global = 0; | |
383 | decl_simple_lock_data(, bool_gen_lock) | |
384 | ||
39236c6e A |
385 | /* Helpful for walking through a zone's free element list. */ |
386 | struct zone_free_element { | |
387 | struct zone_free_element *next; | |
388 | /* ... */ | |
389 | /* void *backup_ptr; */ | |
390 | }; | |
391 | ||
392 | struct zone_page_metadata { | |
393 | queue_chain_t pages; | |
394 | struct zone_free_element *elements; | |
395 | zone_t zone; | |
396 | uint16_t alloc_count; | |
397 | uint16_t free_count; | |
398 | }; | |
399 | ||
400 | /* The backup pointer is stored in the last pointer-sized location in an element. */ | |
401 | static inline vm_offset_t * | |
402 | get_backup_ptr(vm_size_t elem_size, | |
403 | vm_offset_t *element) | |
404 | { | |
405 | return (vm_offset_t *) ((vm_offset_t)element + elem_size - sizeof(vm_offset_t)); | |
406 | } | |
407 | ||
408 | static inline struct zone_page_metadata * | |
409 | get_zone_page_metadata(struct zone_free_element *element) | |
410 | { | |
3e170ce0 | 411 | return (struct zone_page_metadata *)(trunc_page((vm_offset_t)element)); |
39236c6e A |
412 | } |
413 | ||
414 | /* | |
415 | * Zone checking helper function. | |
416 | * A pointer that satisfies these conditions is OK to be a freelist next pointer | |
417 | * A pointer that doesn't satisfy these conditions indicates corruption | |
418 | */ | |
419 | static inline boolean_t | |
420 | is_sane_zone_ptr(zone_t zone, | |
421 | vm_offset_t addr, | |
422 | size_t obj_size) | |
423 | { | |
424 | /* Must be aligned to pointer boundary */ | |
425 | if (__improbable((addr & (sizeof(vm_offset_t) - 1)) != 0)) | |
426 | return FALSE; | |
427 | ||
428 | /* Must be a kernel address */ | |
429 | if (__improbable(!pmap_kernel_va(addr))) | |
430 | return FALSE; | |
431 | ||
432 | /* Must be from zone map if the zone only uses memory from the zone_map */ | |
433 | /* | |
434 | * TODO: Remove the zone->collectable check when every | |
435 | * zone using foreign memory is properly tagged with allows_foreign | |
436 | */ | |
437 | if (zone->collectable && !zone->allows_foreign) { | |
438 | #if ZONE_ALIAS_ADDR | |
439 | /* | |
440 | * If this address is in the static kernel region, it might be | |
441 | * the alias address of a valid zone element. | |
442 | * If we tried to find the zone_virtual_addr() of an invalid | |
443 | * address in the static kernel region, it will panic, so don't | |
444 | * check addresses in this region. | |
445 | * | |
446 | * TODO: Use a safe variant of zone_virtual_addr to | |
447 | * make this check more accurate | |
448 | * | |
449 | * The static kernel region is mapped at: | |
450 | * [gVirtBase, gVirtBase + gPhysSize] | |
451 | */ | |
452 | if ((addr - gVirtBase) < gPhysSize) | |
453 | return TRUE; | |
454 | #endif | |
455 | /* check if addr is from zone map */ | |
456 | if (addr >= zone_map_min_address && | |
457 | (addr + obj_size - 1) < zone_map_max_address ) | |
458 | return TRUE; | |
459 | ||
460 | return FALSE; | |
461 | } | |
462 | ||
463 | return TRUE; | |
464 | } | |
465 | ||
466 | static inline boolean_t | |
467 | is_sane_zone_page_metadata(zone_t zone, | |
468 | vm_offset_t page_meta) | |
469 | { | |
470 | /* NULL page metadata structures are invalid */ | |
471 | if (page_meta == 0) | |
472 | return FALSE; | |
473 | return is_sane_zone_ptr(zone, page_meta, sizeof(struct zone_page_metadata)); | |
474 | } | |
475 | ||
476 | static inline boolean_t | |
477 | is_sane_zone_element(zone_t zone, | |
478 | vm_offset_t addr) | |
479 | { | |
480 | /* NULL is OK because it indicates the tail of the list */ | |
481 | if (addr == 0) | |
482 | return TRUE; | |
483 | return is_sane_zone_ptr(zone, addr, zone->elem_size); | |
484 | } | |
316670eb | 485 | |
39236c6e A |
486 | /* Someone wrote to freed memory. */ |
487 | static inline void /* noreturn */ | |
488 | zone_element_was_modified_panic(zone_t zone, | |
fe8ab488 | 489 | vm_offset_t element, |
39236c6e A |
490 | vm_offset_t found, |
491 | vm_offset_t expected, | |
492 | vm_offset_t offset) | |
493 | { | |
fe8ab488 A |
494 | panic("a freed zone element has been modified in zone %s: expected %p but found %p, bits changed %p, at offset %d of %d in element %p, cookies %p %p", |
495 | zone->zone_name, | |
39236c6e A |
496 | (void *) expected, |
497 | (void *) found, | |
498 | (void *) (expected ^ found), | |
499 | (uint32_t) offset, | |
500 | (uint32_t) zone->elem_size, | |
fe8ab488 A |
501 | (void *) element, |
502 | (void *) zp_nopoison_cookie, | |
503 | (void *) zp_poisoned_cookie); | |
39236c6e A |
504 | } |
505 | ||
506 | /* | |
507 | * The primary and backup pointers don't match. | |
508 | * Determine which one was likely the corrupted pointer, find out what it | |
509 | * probably should have been, and panic. | |
510 | * I would like to mark this as noreturn, but panic() isn't marked noreturn. | |
511 | */ | |
512 | static void /* noreturn */ | |
513 | backup_ptr_mismatch_panic(zone_t zone, | |
fe8ab488 | 514 | vm_offset_t element, |
39236c6e A |
515 | vm_offset_t primary, |
516 | vm_offset_t backup) | |
517 | { | |
518 | vm_offset_t likely_backup; | |
519 | ||
520 | boolean_t sane_backup; | |
521 | boolean_t sane_primary = is_sane_zone_element(zone, primary); | |
522 | boolean_t element_was_poisoned = (backup & 0x1) ? TRUE : FALSE; | |
523 | ||
fe8ab488 A |
524 | #if defined(__LP64__) |
525 | /* We can inspect the tag in the upper bits for additional confirmation */ | |
526 | if ((backup & 0xFFFFFF0000000000) == 0xFACADE0000000000) | |
527 | element_was_poisoned = TRUE; | |
528 | else if ((backup & 0xFFFFFF0000000000) == 0xC0FFEE0000000000) | |
529 | element_was_poisoned = FALSE; | |
530 | #endif | |
531 | ||
39236c6e A |
532 | if (element_was_poisoned) { |
533 | likely_backup = backup ^ zp_poisoned_cookie; | |
534 | sane_backup = is_sane_zone_element(zone, likely_backup); | |
316670eb | 535 | } else { |
39236c6e A |
536 | likely_backup = backup ^ zp_nopoison_cookie; |
537 | sane_backup = is_sane_zone_element(zone, likely_backup); | |
316670eb | 538 | } |
39236c6e A |
539 | |
540 | /* The primary is definitely the corrupted one */ | |
541 | if (!sane_primary && sane_backup) | |
fe8ab488 | 542 | zone_element_was_modified_panic(zone, element, primary, likely_backup, 0); |
39236c6e A |
543 | |
544 | /* The backup is definitely the corrupted one */ | |
545 | if (sane_primary && !sane_backup) | |
fe8ab488 A |
546 | zone_element_was_modified_panic(zone, element, backup, |
547 | (primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)), | |
39236c6e A |
548 | zone->elem_size - sizeof(vm_offset_t)); |
549 | ||
550 | /* | |
551 | * Not sure which is the corrupted one. | |
552 | * It's less likely that the backup pointer was overwritten with | |
553 | * ( (sane address) ^ (valid cookie) ), so we'll guess that the | |
554 | * primary pointer has been overwritten with a sane but incorrect address. | |
555 | */ | |
556 | if (sane_primary && sane_backup) | |
fe8ab488 | 557 | zone_element_was_modified_panic(zone, element, primary, likely_backup, 0); |
39236c6e A |
558 | |
559 | /* Neither are sane, so just guess. */ | |
fe8ab488 | 560 | zone_element_was_modified_panic(zone, element, primary, likely_backup, 0); |
316670eb A |
561 | } |
562 | ||
563 | /* | |
39236c6e A |
564 | * Sets the next element of tail to elem. |
565 | * elem can be NULL. | |
566 | * Preserves the poisoning state of the element. | |
1c79356b | 567 | */ |
316670eb | 568 | static inline void |
39236c6e A |
569 | append_zone_element(zone_t zone, |
570 | struct zone_free_element *tail, | |
571 | struct zone_free_element *elem) | |
572 | { | |
573 | vm_offset_t *backup = get_backup_ptr(zone->elem_size, (vm_offset_t *) tail); | |
574 | ||
575 | vm_offset_t old_backup = *backup; | |
576 | ||
577 | vm_offset_t old_next = (vm_offset_t) tail->next; | |
578 | vm_offset_t new_next = (vm_offset_t) elem; | |
579 | ||
580 | if (old_next == (old_backup ^ zp_nopoison_cookie)) | |
581 | *backup = new_next ^ zp_nopoison_cookie; | |
582 | else if (old_next == (old_backup ^ zp_poisoned_cookie)) | |
583 | *backup = new_next ^ zp_poisoned_cookie; | |
584 | else | |
585 | backup_ptr_mismatch_panic(zone, | |
fe8ab488 | 586 | (vm_offset_t) tail, |
39236c6e A |
587 | old_next, |
588 | old_backup); | |
589 | ||
590 | tail->next = elem; | |
591 | } | |
592 | ||
593 | ||
594 | /* | |
595 | * Insert a linked list of elements (delineated by head and tail) at the head of | |
596 | * the zone free list. Every element in the list being added has already gone | |
597 | * through append_zone_element, so their backup pointers are already | |
598 | * set properly. | |
599 | * Precondition: There should be no elements after tail | |
600 | */ | |
601 | static inline void | |
602 | add_list_to_zone(zone_t zone, | |
603 | struct zone_free_element *head, | |
604 | struct zone_free_element *tail) | |
605 | { | |
606 | assert(tail->next == NULL); | |
607 | assert(!zone->use_page_list); | |
608 | ||
609 | append_zone_element(zone, tail, zone->free_elements); | |
610 | ||
611 | zone->free_elements = head; | |
612 | } | |
613 | ||
614 | ||
615 | /* | |
616 | * Adds the element to the head of the zone's free list | |
617 | * Keeps a backup next-pointer at the end of the element | |
39236c6e A |
618 | */ |
619 | static inline void | |
620 | free_to_zone(zone_t zone, | |
fe8ab488 A |
621 | vm_offset_t element, |
622 | boolean_t poison) | |
39236c6e A |
623 | { |
624 | vm_offset_t old_head; | |
625 | struct zone_page_metadata *page_meta; | |
626 | ||
627 | vm_offset_t *primary = (vm_offset_t *) element; | |
628 | vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary); | |
629 | ||
630 | if (zone->use_page_list) { | |
631 | page_meta = get_zone_page_metadata((struct zone_free_element *)element); | |
632 | assert(page_meta->zone == zone); | |
633 | old_head = (vm_offset_t)page_meta->elements; | |
634 | } else { | |
635 | old_head = (vm_offset_t)zone->free_elements; | |
636 | } | |
637 | ||
638 | #if MACH_ASSERT | |
639 | if (__improbable(!is_sane_zone_element(zone, old_head))) | |
640 | panic("zfree: invalid head pointer %p for freelist of zone %s\n", | |
641 | (void *) old_head, zone->zone_name); | |
642 | #endif | |
643 | ||
644 | if (__improbable(!is_sane_zone_element(zone, element))) | |
645 | panic("zfree: freeing invalid pointer %p to zone %s\n", | |
646 | (void *) element, zone->zone_name); | |
647 | ||
39236c6e A |
648 | /* |
649 | * Always write a redundant next pointer | |
650 | * So that it is more difficult to forge, xor it with a random cookie | |
651 | * A poisoned element is indicated by using zp_poisoned_cookie | |
652 | * instead of zp_nopoison_cookie | |
653 | */ | |
654 | ||
655 | *backup = old_head ^ (poison ? zp_poisoned_cookie : zp_nopoison_cookie); | |
656 | ||
657 | /* Insert this element at the head of the free list */ | |
658 | *primary = old_head; | |
659 | if (zone->use_page_list) { | |
660 | page_meta->elements = (struct zone_free_element *)element; | |
661 | page_meta->free_count++; | |
662 | if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) { | |
663 | if (page_meta->free_count == 1) { | |
664 | /* first foreign element freed on page, move from all_used */ | |
665 | remqueue((queue_entry_t)page_meta); | |
666 | enqueue_tail(&zone->pages.any_free_foreign, (queue_entry_t)page_meta); | |
667 | } else { | |
668 | /* no other list transitions */ | |
316670eb | 669 | } |
39236c6e A |
670 | } else if (page_meta->free_count == page_meta->alloc_count) { |
671 | /* whether the page was on the intermediate or all_used, queue, move it to free */ | |
672 | remqueue((queue_entry_t)page_meta); | |
673 | enqueue_tail(&zone->pages.all_free, (queue_entry_t)page_meta); | |
674 | } else if (page_meta->free_count == 1) { | |
675 | /* first free element on page, move from all_used */ | |
676 | remqueue((queue_entry_t)page_meta); | |
677 | enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta); | |
678 | } | |
679 | } else { | |
680 | zone->free_elements = (struct zone_free_element *)element; | |
681 | } | |
682 | zone->count--; | |
683 | zone->countfree++; | |
684 | } | |
685 | ||
686 | ||
687 | /* | |
688 | * Removes an element from the zone's free list, returning 0 if the free list is empty. | |
689 | * Verifies that the next-pointer and backup next-pointer are intact, | |
690 | * and verifies that a poisoned element hasn't been modified. | |
691 | */ | |
692 | static inline vm_offset_t | |
fe8ab488 A |
693 | try_alloc_from_zone(zone_t zone, |
694 | boolean_t* check_poison) | |
39236c6e A |
695 | { |
696 | vm_offset_t element; | |
697 | struct zone_page_metadata *page_meta; | |
698 | ||
fe8ab488 A |
699 | *check_poison = FALSE; |
700 | ||
39236c6e A |
701 | /* if zone is empty, bail */ |
702 | if (zone->use_page_list) { | |
703 | if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign)) | |
704 | page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); | |
705 | else if (!queue_empty(&zone->pages.intermediate)) | |
706 | page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); | |
707 | else if (!queue_empty(&zone->pages.all_free)) | |
708 | page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); | |
709 | else { | |
710 | return 0; | |
711 | } | |
712 | ||
713 | /* Check if page_meta passes is_sane_zone_element */ | |
714 | if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta))) | |
715 | panic("zalloc: invalid metadata structure %p for freelist of zone %s\n", | |
716 | (void *) page_meta, zone->zone_name); | |
717 | assert(page_meta->zone == zone); | |
718 | element = (vm_offset_t)page_meta->elements; | |
719 | } else { | |
720 | if (zone->free_elements == NULL) | |
721 | return 0; | |
722 | ||
723 | element = (vm_offset_t)zone->free_elements; | |
724 | } | |
725 | ||
726 | #if MACH_ASSERT | |
727 | if (__improbable(!is_sane_zone_element(zone, element))) | |
728 | panic("zfree: invalid head pointer %p for freelist of zone %s\n", | |
729 | (void *) element, zone->zone_name); | |
730 | #endif | |
731 | ||
732 | vm_offset_t *primary = (vm_offset_t *) element; | |
733 | vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary); | |
734 | ||
735 | vm_offset_t next_element = *primary; | |
736 | vm_offset_t next_element_backup = *backup; | |
737 | ||
738 | /* | |
739 | * backup_ptr_mismatch_panic will determine what next_element | |
740 | * should have been, and print it appropriately | |
741 | */ | |
742 | if (__improbable(!is_sane_zone_element(zone, next_element))) | |
fe8ab488 | 743 | backup_ptr_mismatch_panic(zone, element, next_element, next_element_backup); |
39236c6e A |
744 | |
745 | /* Check the backup pointer for the regular cookie */ | |
746 | if (__improbable(next_element != (next_element_backup ^ zp_nopoison_cookie))) { | |
747 | ||
748 | /* Check for the poisoned cookie instead */ | |
749 | if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie))) | |
750 | /* Neither cookie is valid, corruption has occurred */ | |
fe8ab488 | 751 | backup_ptr_mismatch_panic(zone, element, next_element, next_element_backup); |
39236c6e A |
752 | |
753 | /* | |
fe8ab488 | 754 | * Element was marked as poisoned, so check its integrity before using it. |
39236c6e | 755 | */ |
fe8ab488 | 756 | *check_poison = TRUE; |
39236c6e A |
757 | } |
758 | ||
759 | if (zone->use_page_list) { | |
316670eb | 760 | |
39236c6e A |
761 | /* Make sure the page_meta is at the correct offset from the start of page */ |
762 | if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element))) | |
763 | panic("zalloc: metadata located at incorrect location on page of zone %s\n", | |
764 | zone->zone_name); | |
765 | ||
766 | /* Make sure next_element belongs to the same page as page_meta */ | |
767 | if (next_element) { | |
768 | if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element))) | |
769 | panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n", | |
770 | (void *)next_element, (void *)element, zone->zone_name); | |
771 | } | |
772 | } | |
773 | ||
39236c6e A |
774 | /* Remove this element from the free list */ |
775 | if (zone->use_page_list) { | |
776 | ||
777 | page_meta->elements = (struct zone_free_element *)next_element; | |
778 | page_meta->free_count--; | |
779 | ||
780 | if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) { | |
781 | if (page_meta->free_count == 0) { | |
782 | /* move to all used */ | |
783 | remqueue((queue_entry_t)page_meta); | |
784 | enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta); | |
785 | } else { | |
786 | /* no other list transitions */ | |
316670eb | 787 | } |
39236c6e A |
788 | } else if (page_meta->free_count == 0) { |
789 | /* remove from intermediate or free, move to all_used */ | |
790 | remqueue((queue_entry_t)page_meta); | |
791 | enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta); | |
792 | } else if (page_meta->alloc_count == page_meta->free_count + 1) { | |
793 | /* remove from free, move to intermediate */ | |
794 | remqueue((queue_entry_t)page_meta); | |
795 | enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta); | |
316670eb | 796 | } |
39236c6e A |
797 | } else { |
798 | zone->free_elements = (struct zone_free_element *)next_element; | |
316670eb | 799 | } |
39236c6e A |
800 | zone->countfree--; |
801 | zone->count++; | |
802 | zone->sum_count++; | |
803 | ||
804 | return element; | |
316670eb | 805 | } |
1c79356b | 806 | |
1c79356b | 807 | |
39236c6e A |
808 | /* |
809 | * End of zone poisoning | |
810 | */ | |
811 | ||
6d2010ae A |
812 | /* |
813 | * Fake zones for things that want to report via zprint but are not actually zones. | |
814 | */ | |
815 | struct fake_zone_info { | |
816 | const char* name; | |
817 | void (*init)(int); | |
818 | void (*query)(int *, | |
819 | vm_size_t *, vm_size_t *, vm_size_t *, vm_size_t *, | |
820 | uint64_t *, int *, int *, int *); | |
821 | }; | |
822 | ||
316670eb | 823 | static const struct fake_zone_info fake_zones[] = { |
6d2010ae | 824 | }; |
316670eb A |
825 | static const unsigned int num_fake_zones = |
826 | sizeof (fake_zones) / sizeof (fake_zones[0]); | |
6d2010ae A |
827 | |
828 | /* | |
829 | * Zone info options | |
830 | */ | |
831 | boolean_t zinfo_per_task = FALSE; /* enabled by -zinfop in boot-args */ | |
832 | #define ZINFO_SLOTS 200 /* for now */ | |
833 | #define ZONES_MAX (ZINFO_SLOTS - num_fake_zones - 1) | |
834 | ||
1c79356b | 835 | /* |
7ddcb079 A |
836 | * Support for garbage collection of unused zone pages |
837 | * | |
838 | * The kernel virtually allocates the "zone map" submap of the kernel | |
839 | * map. When an individual zone needs more storage, memory is allocated | |
840 | * out of the zone map, and the two-level "zone_page_table" is | |
841 | * on-demand expanded so that it has entries for those pages. | |
842 | * zone_page_init()/zone_page_alloc() initialize "alloc_count" | |
843 | * to the number of zone elements that occupy the zone page (which may | |
844 | * be a minimum of 1, including if a zone element spans multiple | |
845 | * pages). | |
846 | * | |
847 | * Asynchronously, the zone_gc() logic attempts to walk zone free | |
848 | * lists to see if all the elements on a zone page are free. If | |
849 | * "collect_count" (which it increments during the scan) matches | |
850 | * "alloc_count", the zone page is a candidate for collection and the | |
851 | * physical page is returned to the VM system. During this process, the | |
852 | * first word of the zone page is re-used to maintain a linked list of | |
853 | * to-be-collected zone pages. | |
1c79356b | 854 | */ |
7ddcb079 A |
855 | typedef uint32_t zone_page_index_t; |
856 | #define ZONE_PAGE_INDEX_INVALID ((zone_page_index_t)0xFFFFFFFFU) | |
1c79356b A |
857 | |
858 | struct zone_page_table_entry { | |
7ddcb079 A |
859 | volatile uint16_t alloc_count; |
860 | volatile uint16_t collect_count; | |
1c79356b A |
861 | }; |
862 | ||
7ddcb079 A |
863 | #define ZONE_PAGE_USED 0 |
864 | #define ZONE_PAGE_UNUSED 0xffff | |
865 | ||
1c79356b A |
866 | /* Forwards */ |
867 | void zone_page_init( | |
868 | vm_offset_t addr, | |
7ddcb079 | 869 | vm_size_t size); |
1c79356b A |
870 | |
871 | void zone_page_alloc( | |
872 | vm_offset_t addr, | |
873 | vm_size_t size); | |
874 | ||
55e303ae | 875 | void zone_page_free_element( |
316670eb A |
876 | zone_page_index_t *free_page_head, |
877 | zone_page_index_t *free_page_tail, | |
1c79356b A |
878 | vm_offset_t addr, |
879 | vm_size_t size); | |
880 | ||
55e303ae | 881 | void zone_page_collect( |
1c79356b A |
882 | vm_offset_t addr, |
883 | vm_size_t size); | |
884 | ||
885 | boolean_t zone_page_collectable( | |
886 | vm_offset_t addr, | |
887 | vm_size_t size); | |
888 | ||
889 | void zone_page_keep( | |
890 | vm_offset_t addr, | |
891 | vm_size_t size); | |
892 | ||
39236c6e A |
893 | void zone_display_zprint(void); |
894 | ||
895 | zone_t zone_find_largest(void); | |
896 | ||
897 | /* | |
898 | * Async allocation of zones | |
899 | * This mechanism allows for bootstrapping an empty zone which is setup with | |
900 | * non-blocking flags. The first call to zalloc_noblock() will kick off a thread_call | |
901 | * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free. | |
902 | * This will prime the zone for the next use. | |
903 | * | |
904 | * Currently the thread_callout function (zalloc_async) will loop through all zones | |
905 | * looking for any zone with async_pending set and do the work for it. | |
906 | * | |
907 | * NOTE: If the calling thread for zalloc_noblock is lower priority than thread_call, | |
908 | * then zalloc_noblock to an empty zone may succeed. | |
909 | */ | |
0b4e3aa0 A |
910 | void zalloc_async( |
911 | thread_call_param_t p0, | |
912 | thread_call_param_t p1); | |
913 | ||
39236c6e | 914 | static thread_call_data_t call_async_alloc; |
0b4e3aa0 | 915 | |
1c79356b A |
916 | vm_map_t zone_map = VM_MAP_NULL; |
917 | ||
918 | zone_t zone_zone = ZONE_NULL; /* the zone containing other zones */ | |
919 | ||
6d2010ae A |
920 | zone_t zinfo_zone = ZONE_NULL; /* zone of per-task zone info */ |
921 | ||
1c79356b A |
922 | /* |
923 | * The VM system gives us an initial chunk of memory. | |
924 | * It has to be big enough to allocate the zone_zone | |
7ddcb079 | 925 | * all the way through the pmap zone. |
1c79356b A |
926 | */ |
927 | ||
928 | vm_offset_t zdata; | |
929 | vm_size_t zdata_size; | |
3e170ce0 A |
930 | /* |
931 | * Align elements that use the zone page list to 32 byte boundaries. | |
932 | */ | |
933 | #define ZONE_ELEMENT_ALIGNMENT 32 | |
1c79356b | 934 | |
9bccf70c A |
935 | #define zone_wakeup(zone) thread_wakeup((event_t)(zone)) |
936 | #define zone_sleep(zone) \ | |
b0d623f7 | 937 | (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT); |
2d21ac55 | 938 | |
39236c6e A |
939 | /* |
940 | * The zone_locks_grp allows for collecting lock statistics. | |
941 | * All locks are associated to this group in zinit. | |
942 | * Look at tools/lockstat for debugging lock contention. | |
943 | */ | |
944 | ||
945 | lck_grp_t zone_locks_grp; | |
946 | lck_grp_attr_t zone_locks_grp_attr; | |
9bccf70c | 947 | |
1c79356b A |
948 | #define lock_zone_init(zone) \ |
949 | MACRO_BEGIN \ | |
2d21ac55 A |
950 | lck_attr_setdefault(&(zone)->lock_attr); \ |
951 | lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \ | |
39236c6e | 952 | &zone_locks_grp, &(zone)->lock_attr); \ |
1c79356b A |
953 | MACRO_END |
954 | ||
b0d623f7 | 955 | #define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock) |
1c79356b | 956 | |
1c79356b A |
957 | /* |
958 | * Garbage collection map information | |
959 | */ | |
7ddcb079 A |
960 | #define ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE (32) |
961 | struct zone_page_table_entry * volatile zone_page_table[ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE]; | |
962 | vm_size_t zone_page_table_used_size; | |
91447636 | 963 | unsigned int zone_pages; |
7ddcb079 A |
964 | unsigned int zone_page_table_second_level_size; /* power of 2 */ |
965 | unsigned int zone_page_table_second_level_shift_amount; | |
966 | ||
967 | #define zone_page_table_first_level_slot(x) ((x) >> zone_page_table_second_level_shift_amount) | |
968 | #define zone_page_table_second_level_slot(x) ((x) & (zone_page_table_second_level_size - 1)) | |
969 | ||
970 | void zone_page_table_expand(zone_page_index_t pindex); | |
971 | struct zone_page_table_entry *zone_page_table_lookup(zone_page_index_t pindex); | |
1c79356b A |
972 | |
973 | /* | |
974 | * Exclude more than one concurrent garbage collection | |
975 | */ | |
39236c6e | 976 | decl_lck_mtx_data(, zone_gc_lock) |
b0d623f7 | 977 | |
39236c6e A |
978 | lck_attr_t zone_gc_lck_attr; |
979 | lck_grp_t zone_gc_lck_grp; | |
980 | lck_grp_attr_t zone_gc_lck_grp_attr; | |
981 | lck_mtx_ext_t zone_gc_lck_ext; | |
1c79356b | 982 | |
1c79356b A |
983 | /* |
984 | * Protects first_zone, last_zone, num_zones, | |
985 | * and the next_zone field of zones. | |
986 | */ | |
987 | decl_simple_lock_data(, all_zones_lock) | |
988 | zone_t first_zone; | |
989 | zone_t *last_zone; | |
91447636 | 990 | unsigned int num_zones; |
1c79356b | 991 | |
0b4e3aa0 A |
992 | boolean_t zone_gc_allowed = TRUE; |
993 | boolean_t zone_gc_forced = FALSE; | |
c910b4d9 | 994 | boolean_t panic_include_zprint = FALSE; |
6d2010ae | 995 | boolean_t zone_gc_allowed_by_time_throttle = TRUE; |
0b4e3aa0 | 996 | |
3e170ce0 A |
997 | vm_offset_t panic_kext_memory_info = 0; |
998 | vm_size_t panic_kext_memory_size = 0; | |
999 | ||
39236c6e A |
1000 | #define ZALLOC_DEBUG_ZONEGC 0x00000001 |
1001 | #define ZALLOC_DEBUG_ZCRAM 0x00000002 | |
1002 | uint32_t zalloc_debug = 0; | |
1003 | ||
c910b4d9 A |
1004 | /* |
1005 | * Zone leak debugging code | |
1006 | * | |
1007 | * When enabled, this code keeps a log to track allocations to a particular zone that have not | |
1008 | * yet been freed. Examining this log will reveal the source of a zone leak. The log is allocated | |
1009 | * only when logging is enabled, so there is no effect on the system when it's turned off. Logging is | |
1010 | * off by default. | |
1011 | * | |
1012 | * Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone> | |
1013 | * is the name of the zone you wish to log. | |
1014 | * | |
1015 | * This code only tracks one zone, so you need to identify which one is leaking first. | |
1016 | * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone | |
1017 | * garbage collector. Note that the zone name printed in the panic message is not necessarily the one | |
1018 | * containing the leak. So do a zprint from gdb and locate the zone with the bloated size. This | |
1019 | * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test. The | |
1020 | * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs. | |
1021 | * See the help in the kgmacros for usage info. | |
1022 | * | |
1023 | * | |
1024 | * Zone corruption logging | |
1025 | * | |
1026 | * Logging can also be used to help identify the source of a zone corruption. First, identify the zone | |
1027 | * that is being corrupted, then add "-zc zlog=<zone name>" to the boot-args. When -zc is used in conjunction | |
1028 | * with zlog, it changes the logging style to track both allocations and frees to the zone. So when the | |
1029 | * corruption is detected, examining the log will show you the stack traces of the callers who last allocated | |
1030 | * and freed any particular element in the zone. Use the findelem kgmacro with the address of the element that's been | |
1031 | * corrupted to examine its history. This should lead to the source of the corruption. | |
1032 | */ | |
1033 | ||
1034 | static int log_records; /* size of the log, expressed in number of records */ | |
1035 | ||
1036 | #define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */ | |
1037 | ||
1038 | static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */ | |
1039 | ||
39236c6e A |
1040 | /* Log allocations and frees to help debug a zone element corruption */ |
1041 | boolean_t corruption_debug_flag = FALSE; /* enabled by "-zc" boot-arg */ | |
1042 | ||
c910b4d9 A |
1043 | /* |
1044 | * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to | |
1045 | * the number of records you want in the log. For example, "zrecs=1000" sets it to 1000 records. Note | |
1046 | * that the larger the size of the log, the slower the system will run due to linear searching in the log, | |
1047 | * but one doesn't generally care about performance when tracking down a leak. The log is capped at 8000 | |
1048 | * records since going much larger than this tends to make the system unresponsive and unbootable on small | |
1049 | * memory configurations. The default value is 4000 records. | |
c910b4d9 | 1050 | */ |
316670eb | 1051 | |
6d2010ae | 1052 | #if defined(__LP64__) |
316670eb | 1053 | #define ZRECORDS_MAX 128000 /* Max records allowed in the log */ |
6d2010ae | 1054 | #else |
c910b4d9 | 1055 | #define ZRECORDS_MAX 8000 /* Max records allowed in the log */ |
6d2010ae | 1056 | #endif |
c910b4d9 | 1057 | #define ZRECORDS_DEFAULT 4000 /* default records in log if zrecs is not specificed in boot-args */ |
0b4e3aa0 | 1058 | |
c910b4d9 | 1059 | /* |
39236c6e A |
1060 | * Each record in the log contains a pointer to the zone element it refers to, |
1061 | * and a small array to hold the pc's from the stack trace. A | |
c910b4d9 A |
1062 | * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging, |
1063 | * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees. | |
1064 | * If the log fills, old records are replaced as if it were a circular buffer. | |
1065 | */ | |
1066 | ||
c910b4d9 A |
1067 | |
1068 | /* | |
39236c6e | 1069 | * Opcodes for the btlog operation field: |
c910b4d9 A |
1070 | */ |
1071 | ||
1072 | #define ZOP_ALLOC 1 | |
1073 | #define ZOP_FREE 0 | |
1074 | ||
1075 | /* | |
1076 | * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest | |
1077 | */ | |
39236c6e | 1078 | static btlog_t *zlog_btlog; /* the log itself, dynamically allocated when logging is enabled */ |
c910b4d9 A |
1079 | static zone_t zone_of_interest = NULL; /* the zone being watched; corresponds to zone_name_to_log */ |
1080 | ||
1081 | /* | |
1082 | * Decide if we want to log this zone by doing a string compare between a zone name and the name | |
1083 | * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not | |
1084 | * possible to include spaces in strings passed in via the boot-args, a period in the logname will | |
1085 | * match a space in the zone name. | |
1086 | */ | |
1087 | ||
1088 | static int | |
1089 | log_this_zone(const char *zonename, const char *logname) | |
1090 | { | |
1091 | int len; | |
1092 | const char *zc = zonename; | |
1093 | const char *lc = logname; | |
1094 | ||
1095 | /* | |
1096 | * Compare the strings. We bound the compare by MAX_ZONE_NAME. | |
1097 | */ | |
1098 | ||
1099 | for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) { | |
1100 | ||
1101 | /* | |
1102 | * If the current characters don't match, check for a space in | |
1103 | * in the zone name and a corresponding period in the log name. | |
1104 | * If that's not there, then the strings don't match. | |
1105 | */ | |
1106 | ||
1107 | if (*zc != *lc && !(*zc == ' ' && *lc == '.')) | |
1108 | break; | |
1109 | ||
1110 | /* | |
1111 | * The strings are equal so far. If we're at the end, then it's a match. | |
1112 | */ | |
1113 | ||
1114 | if (*zc == '\0') | |
1115 | return TRUE; | |
1116 | } | |
1117 | ||
1118 | return FALSE; | |
1119 | } | |
1120 | ||
1121 | ||
1122 | /* | |
1123 | * Test if we want to log this zalloc/zfree event. We log if this is the zone we're interested in and | |
1124 | * the buffer for the records has been allocated. | |
1125 | */ | |
1126 | ||
39236c6e | 1127 | #define DO_LOGGING(z) (zlog_btlog && (z) == zone_of_interest) |
c910b4d9 | 1128 | |
39236c6e | 1129 | extern boolean_t kmem_alloc_ready; |
c910b4d9 | 1130 | |
6d2010ae A |
1131 | #if CONFIG_ZLEAKS |
1132 | #pragma mark - | |
1133 | #pragma mark Zone Leak Detection | |
1134 | ||
1135 | /* | |
1136 | * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding | |
316670eb | 1137 | * allocations made by the zone allocator. Every zleak_sample_factor allocations in each zone, we capture a |
6d2010ae A |
1138 | * backtrace. Every free, we examine the table and determine if the allocation was being tracked, |
1139 | * and stop tracking it if it was being tracked. | |
1140 | * | |
1141 | * We track the allocations in the zallocations hash table, which stores the address that was returned from | |
1142 | * the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which | |
1143 | * stores the backtrace associated with that allocation. This provides uniquing for the relatively large | |
1144 | * backtraces - we don't store them more than once. | |
1145 | * | |
1146 | * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up | |
1147 | * a large amount of virtual space. | |
1148 | */ | |
1149 | #define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */ | |
1150 | #define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */ | |
1151 | #define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */ | |
1152 | #define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */ | |
1153 | uint32_t zleak_state = 0; /* State of collection, as above */ | |
1154 | ||
1155 | boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */ | |
1156 | vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */ | |
1157 | vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */ | |
316670eb | 1158 | unsigned int zleak_sample_factor = 1000; /* Allocations per sample attempt */ |
6d2010ae A |
1159 | |
1160 | /* | |
1161 | * Counters for allocation statistics. | |
1162 | */ | |
1163 | ||
1164 | /* Times two active records want to occupy the same spot */ | |
1165 | unsigned int z_alloc_collisions = 0; | |
1166 | unsigned int z_trace_collisions = 0; | |
1167 | ||
1168 | /* Times a new record lands on a spot previously occupied by a freed allocation */ | |
1169 | unsigned int z_alloc_overwrites = 0; | |
1170 | unsigned int z_trace_overwrites = 0; | |
1171 | ||
1172 | /* Times a new alloc or trace is put into the hash table */ | |
1173 | unsigned int z_alloc_recorded = 0; | |
1174 | unsigned int z_trace_recorded = 0; | |
1175 | ||
1176 | /* Times zleak_log returned false due to not being able to acquire the lock */ | |
1177 | unsigned int z_total_conflicts = 0; | |
1178 | ||
1179 | ||
1180 | #pragma mark struct zallocation | |
1181 | /* | |
1182 | * Structure for keeping track of an allocation | |
1183 | * An allocation bucket is in use if its element is not NULL | |
1184 | */ | |
1185 | struct zallocation { | |
1186 | uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */ | |
1187 | vm_size_t za_size; /* how much memory did this allocation take up? */ | |
1188 | uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */ | |
1189 | /* TODO: #if this out */ | |
1190 | uint32_t za_hit_count; /* for determining effectiveness of hash function */ | |
1191 | }; | |
1192 | ||
1193 | /* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */ | |
316670eb A |
1194 | uint32_t zleak_alloc_buckets = CONFIG_ZLEAK_ALLOCATION_MAP_NUM; |
1195 | uint32_t zleak_trace_buckets = CONFIG_ZLEAK_TRACE_MAP_NUM; | |
6d2010ae A |
1196 | |
1197 | vm_size_t zleak_max_zonemap_size; | |
1198 | ||
1199 | /* Hashmaps of allocations and their corresponding traces */ | |
1200 | static struct zallocation* zallocations; | |
1201 | static struct ztrace* ztraces; | |
1202 | ||
1203 | /* not static so that panic can see this, see kern/debug.c */ | |
1204 | struct ztrace* top_ztrace; | |
1205 | ||
1206 | /* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */ | |
316670eb | 1207 | static lck_spin_t zleak_lock; |
6d2010ae A |
1208 | static lck_attr_t zleak_lock_attr; |
1209 | static lck_grp_t zleak_lock_grp; | |
1210 | static lck_grp_attr_t zleak_lock_grp_attr; | |
1211 | ||
1212 | /* | |
1213 | * Initializes the zone leak monitor. Called from zone_init() | |
1214 | */ | |
1215 | static void | |
1216 | zleak_init(vm_size_t max_zonemap_size) | |
1217 | { | |
1218 | char scratch_buf[16]; | |
1219 | boolean_t zleak_enable_flag = FALSE; | |
1220 | ||
1221 | zleak_max_zonemap_size = max_zonemap_size; | |
1222 | zleak_global_tracking_threshold = max_zonemap_size / 2; | |
1223 | zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8; | |
1224 | ||
1225 | /* -zleakoff (flag to disable zone leak monitor) */ | |
1226 | if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) { | |
1227 | zleak_enable_flag = FALSE; | |
1228 | printf("zone leak detection disabled\n"); | |
1229 | } else { | |
1230 | zleak_enable_flag = TRUE; | |
1231 | printf("zone leak detection enabled\n"); | |
1232 | } | |
1233 | ||
1234 | /* zfactor=XXXX (override how often to sample the zone allocator) */ | |
316670eb | 1235 | if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) { |
39236c6e | 1236 | printf("Zone leak factor override: %u\n", zleak_sample_factor); |
6d2010ae | 1237 | } |
316670eb | 1238 | |
6d2010ae A |
1239 | /* zleak-allocs=XXXX (override number of buckets in zallocations) */ |
1240 | if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets, sizeof(zleak_alloc_buckets))) { | |
39236c6e | 1241 | printf("Zone leak alloc buckets override: %u\n", zleak_alloc_buckets); |
6d2010ae A |
1242 | /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ |
1243 | if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets-1))) { | |
39236c6e | 1244 | printf("Override isn't a power of two, bad things might happen!\n"); |
6d2010ae A |
1245 | } |
1246 | } | |
1247 | ||
1248 | /* zleak-traces=XXXX (override number of buckets in ztraces) */ | |
1249 | if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets, sizeof(zleak_trace_buckets))) { | |
39236c6e | 1250 | printf("Zone leak trace buckets override: %u\n", zleak_trace_buckets); |
6d2010ae A |
1251 | /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ |
1252 | if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets-1))) { | |
39236c6e | 1253 | printf("Override isn't a power of two, bad things might happen!\n"); |
6d2010ae A |
1254 | } |
1255 | } | |
1256 | ||
1257 | /* allocate the zleak_lock */ | |
1258 | lck_grp_attr_setdefault(&zleak_lock_grp_attr); | |
1259 | lck_grp_init(&zleak_lock_grp, "zleak_lock", &zleak_lock_grp_attr); | |
1260 | lck_attr_setdefault(&zleak_lock_attr); | |
316670eb | 1261 | lck_spin_init(&zleak_lock, &zleak_lock_grp, &zleak_lock_attr); |
6d2010ae A |
1262 | |
1263 | if (zleak_enable_flag) { | |
1264 | zleak_state = ZLEAK_STATE_ENABLED; | |
1265 | } | |
1266 | } | |
1267 | ||
1268 | #if CONFIG_ZLEAKS | |
1269 | ||
1270 | /* | |
1271 | * Support for kern.zleak.active sysctl - a simplified | |
316670eb | 1272 | * version of the zleak_state variable. |
6d2010ae A |
1273 | */ |
1274 | int | |
1275 | get_zleak_state(void) | |
1276 | { | |
1277 | if (zleak_state & ZLEAK_STATE_FAILED) | |
1278 | return (-1); | |
1279 | if (zleak_state & ZLEAK_STATE_ACTIVE) | |
1280 | return (1); | |
1281 | return (0); | |
1282 | } | |
1283 | ||
1284 | #endif | |
1285 | ||
1286 | ||
1287 | kern_return_t | |
1288 | zleak_activate(void) | |
1289 | { | |
1290 | kern_return_t retval; | |
1291 | vm_size_t z_alloc_size = zleak_alloc_buckets * sizeof(struct zallocation); | |
1292 | vm_size_t z_trace_size = zleak_trace_buckets * sizeof(struct ztrace); | |
1293 | void *allocations_ptr = NULL; | |
1294 | void *traces_ptr = NULL; | |
1295 | ||
1296 | /* Only one thread attempts to activate at a time */ | |
1297 | if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) { | |
1298 | return KERN_SUCCESS; | |
1299 | } | |
1300 | ||
1301 | /* Indicate that we're doing the setup */ | |
316670eb | 1302 | lck_spin_lock(&zleak_lock); |
6d2010ae | 1303 | if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) { |
316670eb | 1304 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1305 | return KERN_SUCCESS; |
1306 | } | |
1307 | ||
1308 | zleak_state |= ZLEAK_STATE_ACTIVATING; | |
316670eb | 1309 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1310 | |
1311 | /* Allocate and zero tables */ | |
3e170ce0 | 1312 | retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&allocations_ptr, z_alloc_size, VM_KERN_MEMORY_OSFMK); |
6d2010ae A |
1313 | if (retval != KERN_SUCCESS) { |
1314 | goto fail; | |
1315 | } | |
1316 | ||
3e170ce0 | 1317 | retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&traces_ptr, z_trace_size, VM_KERN_MEMORY_OSFMK); |
6d2010ae A |
1318 | if (retval != KERN_SUCCESS) { |
1319 | goto fail; | |
1320 | } | |
1321 | ||
1322 | bzero(allocations_ptr, z_alloc_size); | |
1323 | bzero(traces_ptr, z_trace_size); | |
1324 | ||
1325 | /* Everything's set. Install tables, mark active. */ | |
1326 | zallocations = allocations_ptr; | |
1327 | ztraces = traces_ptr; | |
1328 | ||
1329 | /* | |
1330 | * Initialize the top_ztrace to the first entry in ztraces, | |
1331 | * so we don't have to check for null in zleak_log | |
1332 | */ | |
1333 | top_ztrace = &ztraces[0]; | |
1334 | ||
1335 | /* | |
1336 | * Note that we do need a barrier between installing | |
1337 | * the tables and setting the active flag, because the zfree() | |
1338 | * path accesses the table without a lock if we're active. | |
1339 | */ | |
316670eb | 1340 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
1341 | zleak_state |= ZLEAK_STATE_ACTIVE; |
1342 | zleak_state &= ~ZLEAK_STATE_ACTIVATING; | |
316670eb | 1343 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1344 | |
1345 | return 0; | |
1346 | ||
1347 | fail: | |
1348 | /* | |
1349 | * If we fail to allocate memory, don't further tax | |
1350 | * the system by trying again. | |
1351 | */ | |
316670eb | 1352 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
1353 | zleak_state |= ZLEAK_STATE_FAILED; |
1354 | zleak_state &= ~ZLEAK_STATE_ACTIVATING; | |
316670eb | 1355 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1356 | |
1357 | if (allocations_ptr != NULL) { | |
1358 | kmem_free(kernel_map, (vm_offset_t)allocations_ptr, z_alloc_size); | |
1359 | } | |
1360 | ||
1361 | if (traces_ptr != NULL) { | |
1362 | kmem_free(kernel_map, (vm_offset_t)traces_ptr, z_trace_size); | |
1363 | } | |
1364 | ||
1365 | return retval; | |
1366 | } | |
1367 | ||
1368 | /* | |
1369 | * TODO: What about allocations that never get deallocated, | |
1370 | * especially ones with unique backtraces? Should we wait to record | |
1371 | * until after boot has completed? | |
1372 | * (How many persistent zallocs are there?) | |
1373 | */ | |
1374 | ||
1375 | /* | |
1376 | * This function records the allocation in the allocations table, | |
1377 | * and stores the associated backtrace in the traces table | |
1378 | * (or just increments the refcount if the trace is already recorded) | |
1379 | * If the allocation slot is in use, the old allocation is replaced with the new allocation, and | |
1380 | * the associated trace's refcount is decremented. | |
1381 | * If the trace slot is in use, it returns. | |
1382 | * The refcount is incremented by the amount of memory the allocation consumes. | |
1383 | * The return value indicates whether to try again next time. | |
1384 | */ | |
1385 | static boolean_t | |
1386 | zleak_log(uintptr_t* bt, | |
1387 | uintptr_t addr, | |
1388 | uint32_t depth, | |
1389 | vm_size_t allocation_size) | |
1390 | { | |
1391 | /* Quit if there's someone else modifying the hash tables */ | |
316670eb | 1392 | if (!lck_spin_try_lock(&zleak_lock)) { |
6d2010ae A |
1393 | z_total_conflicts++; |
1394 | return FALSE; | |
1395 | } | |
1396 | ||
1397 | struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; | |
1398 | ||
1399 | uint32_t trace_index = hashbacktrace(bt, depth, zleak_trace_buckets); | |
1400 | struct ztrace* trace = &ztraces[trace_index]; | |
1401 | ||
1402 | allocation->za_hit_count++; | |
1403 | trace->zt_hit_count++; | |
1404 | ||
1405 | /* | |
1406 | * If the allocation bucket we want to be in is occupied, and if the occupier | |
1407 | * has the same trace as us, just bail. | |
1408 | */ | |
1409 | if (allocation->za_element != (uintptr_t) 0 && trace_index == allocation->za_trace_index) { | |
1410 | z_alloc_collisions++; | |
1411 | ||
316670eb | 1412 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1413 | return TRUE; |
1414 | } | |
1415 | ||
1416 | /* STEP 1: Store the backtrace in the traces array. */ | |
1417 | /* A size of zero indicates that the trace bucket is free. */ | |
1418 | ||
1419 | if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0 ) { | |
1420 | /* | |
1421 | * Different unique trace with same hash! | |
1422 | * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated | |
1423 | * and get out of the way for later chances | |
1424 | */ | |
1425 | trace->zt_collisions++; | |
1426 | z_trace_collisions++; | |
1427 | ||
316670eb | 1428 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1429 | return TRUE; |
1430 | } else if (trace->zt_size > 0) { | |
1431 | /* Same trace, already added, so increment refcount */ | |
1432 | trace->zt_size += allocation_size; | |
1433 | } else { | |
1434 | /* Found an unused trace bucket, record the trace here! */ | |
1435 | if (trace->zt_depth != 0) /* if this slot was previously used but not currently in use */ | |
1436 | z_trace_overwrites++; | |
1437 | ||
1438 | z_trace_recorded++; | |
1439 | trace->zt_size = allocation_size; | |
1440 | memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t)) ); | |
1441 | ||
1442 | trace->zt_depth = depth; | |
1443 | trace->zt_collisions = 0; | |
1444 | } | |
1445 | ||
1446 | /* STEP 2: Store the allocation record in the allocations array. */ | |
1447 | ||
1448 | if (allocation->za_element != (uintptr_t) 0) { | |
1449 | /* | |
1450 | * Straight up replace any allocation record that was there. We don't want to do the work | |
1451 | * to preserve the allocation entries that were there, because we only record a subset of the | |
1452 | * allocations anyways. | |
1453 | */ | |
1454 | ||
1455 | z_alloc_collisions++; | |
1456 | ||
1457 | struct ztrace* associated_trace = &ztraces[allocation->za_trace_index]; | |
1458 | /* Knock off old allocation's size, not the new allocation */ | |
1459 | associated_trace->zt_size -= allocation->za_size; | |
1460 | } else if (allocation->za_trace_index != 0) { | |
1461 | /* Slot previously used but not currently in use */ | |
1462 | z_alloc_overwrites++; | |
1463 | } | |
1464 | ||
1465 | allocation->za_element = addr; | |
1466 | allocation->za_trace_index = trace_index; | |
1467 | allocation->za_size = allocation_size; | |
1468 | ||
1469 | z_alloc_recorded++; | |
1470 | ||
1471 | if (top_ztrace->zt_size < trace->zt_size) | |
1472 | top_ztrace = trace; | |
1473 | ||
316670eb | 1474 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1475 | return TRUE; |
1476 | } | |
1477 | ||
1478 | /* | |
1479 | * Free the allocation record and release the stacktrace. | |
1480 | * This should be as fast as possible because it will be called for every free. | |
1481 | */ | |
1482 | static void | |
1483 | zleak_free(uintptr_t addr, | |
1484 | vm_size_t allocation_size) | |
1485 | { | |
1486 | if (addr == (uintptr_t) 0) | |
1487 | return; | |
1488 | ||
1489 | struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; | |
1490 | ||
1491 | /* Double-checked locking: check to find out if we're interested, lock, check to make | |
1492 | * sure it hasn't changed, then modify it, and release the lock. | |
1493 | */ | |
c910b4d9 | 1494 | |
6d2010ae A |
1495 | if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { |
1496 | /* if the allocation was the one, grab the lock, check again, then delete it */ | |
316670eb | 1497 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
1498 | |
1499 | if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { | |
1500 | struct ztrace *trace; | |
1501 | ||
1502 | /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */ | |
1503 | if (allocation->za_size != allocation_size) { | |
1504 | panic("Freeing as size %lu memory that was allocated with size %lu\n", | |
1505 | (uintptr_t)allocation_size, (uintptr_t)allocation->za_size); | |
1506 | } | |
1507 | ||
1508 | trace = &ztraces[allocation->za_trace_index]; | |
1509 | ||
1510 | /* size of 0 indicates trace bucket is unused */ | |
1511 | if (trace->zt_size > 0) { | |
1512 | trace->zt_size -= allocation_size; | |
1513 | } | |
1514 | ||
1515 | /* A NULL element means the allocation bucket is unused */ | |
1516 | allocation->za_element = 0; | |
1517 | } | |
316670eb | 1518 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1519 | } |
1520 | } | |
1521 | ||
1522 | #endif /* CONFIG_ZLEAKS */ | |
1523 | ||
1524 | /* These functions outside of CONFIG_ZLEAKS because they are also used in | |
1525 | * mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix. | |
1526 | */ | |
1527 | ||
1528 | /* | |
1529 | * This function captures a backtrace from the current stack and | |
1530 | * returns the number of frames captured, limited by max_frames. | |
1531 | * It's fast because it does no checking to make sure there isn't bad data. | |
1532 | * Since it's only called from threads that we're going to keep executing, | |
1533 | * if there's bad data we were going to die eventually. | |
6d2010ae A |
1534 | * If this function is inlined, it doesn't record the frame of the function it's inside. |
1535 | * (because there's no stack frame!) | |
1536 | */ | |
316670eb | 1537 | |
6d2010ae A |
1538 | uint32_t |
1539 | fastbacktrace(uintptr_t* bt, uint32_t max_frames) | |
1540 | { | |
6d2010ae A |
1541 | uintptr_t* frameptr = NULL, *frameptr_next = NULL; |
1542 | uintptr_t retaddr = 0; | |
1543 | uint32_t frame_index = 0, frames = 0; | |
1544 | uintptr_t kstackb, kstackt; | |
316670eb | 1545 | thread_t cthread = current_thread(); |
6d2010ae | 1546 | |
316670eb A |
1547 | if (__improbable(cthread == NULL)) |
1548 | return 0; | |
1549 | ||
1550 | kstackb = cthread->kernel_stack; | |
6d2010ae A |
1551 | kstackt = kstackb + kernel_stack_size; |
1552 | /* Load stack frame pointer (EBP on x86) into frameptr */ | |
1553 | frameptr = __builtin_frame_address(0); | |
39236c6e A |
1554 | if (((uintptr_t)frameptr > kstackt) || ((uintptr_t)frameptr < kstackb)) |
1555 | frameptr = NULL; | |
6d2010ae A |
1556 | |
1557 | while (frameptr != NULL && frame_index < max_frames ) { | |
1558 | /* Next frame pointer is pointed to by the previous one */ | |
1559 | frameptr_next = (uintptr_t*) *frameptr; | |
1560 | ||
1561 | /* Bail if we see a zero in the stack frame, that means we've reached the top of the stack */ | |
1562 | /* That also means the return address is worthless, so don't record it */ | |
1563 | if (frameptr_next == NULL) | |
1564 | break; | |
1565 | /* Verify thread stack bounds */ | |
1566 | if (((uintptr_t)frameptr_next > kstackt) || ((uintptr_t)frameptr_next < kstackb)) | |
1567 | break; | |
1568 | /* Pull return address from one spot above the frame pointer */ | |
1569 | retaddr = *(frameptr + 1); | |
1570 | ||
1571 | /* Store it in the backtrace array */ | |
1572 | bt[frame_index++] = retaddr; | |
1573 | ||
1574 | frameptr = frameptr_next; | |
1575 | } | |
1576 | ||
1577 | /* Save the number of frames captured for return value */ | |
1578 | frames = frame_index; | |
1579 | ||
1580 | /* Fill in the rest of the backtrace with zeros */ | |
1581 | while (frame_index < max_frames) | |
1582 | bt[frame_index++] = 0; | |
1583 | ||
1584 | return frames; | |
6d2010ae A |
1585 | } |
1586 | ||
1587 | /* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */ | |
1588 | uintptr_t | |
1589 | hash_mix(uintptr_t x) | |
1590 | { | |
1591 | #ifndef __LP64__ | |
1592 | x += ~(x << 15); | |
1593 | x ^= (x >> 10); | |
1594 | x += (x << 3 ); | |
1595 | x ^= (x >> 6 ); | |
1596 | x += ~(x << 11); | |
1597 | x ^= (x >> 16); | |
1598 | #else | |
1599 | x += ~(x << 32); | |
1600 | x ^= (x >> 22); | |
1601 | x += ~(x << 13); | |
1602 | x ^= (x >> 8 ); | |
1603 | x += (x << 3 ); | |
1604 | x ^= (x >> 15); | |
1605 | x += ~(x << 27); | |
1606 | x ^= (x >> 31); | |
1607 | #endif | |
1608 | return x; | |
1609 | } | |
1610 | ||
1611 | uint32_t | |
1612 | hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size) | |
1613 | { | |
1614 | ||
1615 | uintptr_t hash = 0; | |
1616 | uintptr_t mask = max_size - 1; | |
1617 | ||
316670eb A |
1618 | while (depth) { |
1619 | hash += bt[--depth]; | |
6d2010ae A |
1620 | } |
1621 | ||
1622 | hash = hash_mix(hash) & mask; | |
1623 | ||
1624 | assert(hash < max_size); | |
1625 | ||
1626 | return (uint32_t) hash; | |
1627 | } | |
1628 | ||
1629 | /* | |
1630 | * TODO: Determine how well distributed this is | |
1631 | * max_size must be a power of 2. i.e 0x10000 because 0x10000-1 is 0x0FFFF which is a great bitmask | |
1632 | */ | |
1633 | uint32_t | |
1634 | hashaddr(uintptr_t pt, uint32_t max_size) | |
1635 | { | |
1636 | uintptr_t hash = 0; | |
1637 | uintptr_t mask = max_size - 1; | |
1638 | ||
1639 | hash = hash_mix(pt) & mask; | |
1640 | ||
1641 | assert(hash < max_size); | |
1642 | ||
1643 | return (uint32_t) hash; | |
1644 | } | |
1645 | ||
1646 | /* End of all leak-detection code */ | |
1647 | #pragma mark - | |
1648 | ||
1c79356b A |
1649 | /* |
1650 | * zinit initializes a new zone. The zone data structures themselves | |
1651 | * are stored in a zone, which is initially a static structure that | |
1652 | * is initialized by zone_init. | |
1653 | */ | |
1654 | zone_t | |
1655 | zinit( | |
1656 | vm_size_t size, /* the size of an element */ | |
1657 | vm_size_t max, /* maximum memory to use */ | |
1658 | vm_size_t alloc, /* allocation size */ | |
91447636 | 1659 | const char *name) /* a name for the zone */ |
1c79356b A |
1660 | { |
1661 | zone_t z; | |
39236c6e | 1662 | boolean_t use_page_list = FALSE; |
1c79356b A |
1663 | |
1664 | if (zone_zone == ZONE_NULL) { | |
7ddcb079 A |
1665 | |
1666 | z = (struct zone *)zdata; | |
39236c6e | 1667 | /* special handling in zcram() because the first element is being used */ |
1c79356b A |
1668 | } else |
1669 | z = (zone_t) zalloc(zone_zone); | |
316670eb | 1670 | |
1c79356b A |
1671 | if (z == ZONE_NULL) |
1672 | return(ZONE_NULL); | |
1673 | ||
39236c6e A |
1674 | /* Zone elements must fit both a next pointer and a backup pointer */ |
1675 | vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2; | |
1676 | if (size < minimum_element_size) | |
1677 | size = minimum_element_size; | |
1678 | ||
1c79356b | 1679 | /* |
39236c6e A |
1680 | * Round element size to a multiple of sizeof(pointer) |
1681 | * This also enforces that allocations will be aligned on pointer boundaries | |
1c79356b | 1682 | */ |
39236c6e A |
1683 | size = ((size-1) + sizeof(vm_offset_t)) - |
1684 | ((size-1) % sizeof(vm_offset_t)); | |
1685 | ||
1686 | if (alloc == 0) | |
1c79356b | 1687 | alloc = PAGE_SIZE; |
39236c6e | 1688 | |
91447636 A |
1689 | alloc = round_page(alloc); |
1690 | max = round_page(max); | |
39236c6e | 1691 | |
1c79356b | 1692 | /* |
91447636 A |
1693 | * we look for an allocation size with less than 1% waste |
1694 | * up to 5 pages in size... | |
1695 | * otherwise, we look for an allocation size with least fragmentation | |
1696 | * in the range of 1 - 5 pages | |
1697 | * This size will be used unless | |
1c79356b A |
1698 | * the user suggestion is larger AND has less fragmentation |
1699 | */ | |
2d21ac55 | 1700 | #if ZONE_ALIAS_ADDR |
39236c6e | 1701 | /* Favor PAGE_SIZE allocations unless we waste >10% space */ |
2d21ac55 A |
1702 | if ((size < PAGE_SIZE) && (PAGE_SIZE % size <= PAGE_SIZE / 10)) |
1703 | alloc = PAGE_SIZE; | |
1704 | else | |
1705 | #endif | |
7ddcb079 A |
1706 | #if defined(__LP64__) |
1707 | if (((alloc % size) != 0) || (alloc > PAGE_SIZE * 8)) | |
1708 | #endif | |
1709 | { | |
1710 | vm_size_t best, waste; unsigned int i; | |
1c79356b A |
1711 | best = PAGE_SIZE; |
1712 | waste = best % size; | |
91447636 A |
1713 | |
1714 | for (i = 1; i <= 5; i++) { | |
39236c6e | 1715 | vm_size_t tsize, twaste; |
91447636 A |
1716 | |
1717 | tsize = i * PAGE_SIZE; | |
1718 | ||
1719 | if ((tsize % size) < (tsize / 100)) { | |
1720 | alloc = tsize; | |
1721 | goto use_this_allocation; | |
1722 | } | |
1c79356b A |
1723 | twaste = tsize % size; |
1724 | if (twaste < waste) | |
1725 | best = tsize, waste = twaste; | |
1726 | } | |
1727 | if (alloc <= best || (alloc % size >= waste)) | |
1728 | alloc = best; | |
1729 | } | |
91447636 | 1730 | use_this_allocation: |
1c79356b A |
1731 | if (max && (max < alloc)) |
1732 | max = alloc; | |
1733 | ||
39236c6e A |
1734 | /* |
1735 | * Opt into page list tracking if we can reliably map an allocation | |
1736 | * to its page_metadata, and if the wastage in the tail of | |
1737 | * the allocation is not too large | |
1738 | */ | |
3e170ce0 A |
1739 | |
1740 | /* zone_zone can't use page metadata since the page metadata will overwrite zone metadata */ | |
1741 | if (alloc == PAGE_SIZE && zone_zone != ZONE_NULL) { | |
1742 | vm_offset_t first_element_offset; | |
1743 | size_t zone_page_metadata_size = sizeof(struct zone_page_metadata); | |
1744 | ||
1745 | if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0) { | |
1746 | first_element_offset = zone_page_metadata_size; | |
1747 | } else { | |
1748 | first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT)); | |
1749 | } | |
1750 | ||
1751 | if (((PAGE_SIZE - first_element_offset) % size) <= PAGE_SIZE / 100) { | |
39236c6e A |
1752 | use_page_list = TRUE; |
1753 | } | |
1754 | } | |
1755 | ||
1756 | z->free_elements = NULL; | |
1757 | queue_init(&z->pages.any_free_foreign); | |
1758 | queue_init(&z->pages.all_free); | |
1759 | queue_init(&z->pages.intermediate); | |
1760 | queue_init(&z->pages.all_used); | |
1c79356b | 1761 | z->cur_size = 0; |
39236c6e | 1762 | z->page_count = 0; |
1c79356b A |
1763 | z->max_size = max; |
1764 | z->elem_size = size; | |
1765 | z->alloc_size = alloc; | |
1766 | z->zone_name = name; | |
1767 | z->count = 0; | |
39236c6e | 1768 | z->countfree = 0; |
6d2010ae | 1769 | z->sum_count = 0LL; |
3e170ce0 A |
1770 | z->doing_alloc_without_vm_priv = FALSE; |
1771 | z->doing_alloc_with_vm_priv = FALSE; | |
a3d08fcd | 1772 | z->doing_gc = FALSE; |
1c79356b A |
1773 | z->exhaustible = FALSE; |
1774 | z->collectable = TRUE; | |
1775 | z->allows_foreign = FALSE; | |
1776 | z->expandable = TRUE; | |
1777 | z->waiting = FALSE; | |
0b4e3aa0 | 1778 | z->async_pending = FALSE; |
6d2010ae | 1779 | z->caller_acct = TRUE; |
0b4c1975 | 1780 | z->noencrypt = FALSE; |
7ddcb079 A |
1781 | z->no_callout = FALSE; |
1782 | z->async_prio_refill = FALSE; | |
316670eb A |
1783 | z->gzalloc_exempt = FALSE; |
1784 | z->alignment_required = FALSE; | |
39236c6e | 1785 | z->use_page_list = use_page_list; |
7ddcb079 A |
1786 | z->prio_refill_watermark = 0; |
1787 | z->zone_replenish_thread = NULL; | |
39236c6e | 1788 | z->zp_count = 0; |
6d2010ae | 1789 | #if CONFIG_ZLEAKS |
6d2010ae A |
1790 | z->zleak_capture = 0; |
1791 | z->zleak_on = FALSE; | |
1792 | #endif /* CONFIG_ZLEAKS */ | |
1793 | ||
1c79356b | 1794 | #if ZONE_DEBUG |
2d21ac55 | 1795 | z->active_zones.next = z->active_zones.prev = NULL; |
1c79356b A |
1796 | zone_debug_enable(z); |
1797 | #endif /* ZONE_DEBUG */ | |
1798 | lock_zone_init(z); | |
1799 | ||
1800 | /* | |
1801 | * Add the zone to the all-zones list. | |
6d2010ae A |
1802 | * If we are tracking zone info per task, and we have |
1803 | * already used all the available stat slots, then keep | |
1804 | * using the overflow zone slot. | |
1c79356b | 1805 | */ |
1c79356b A |
1806 | z->next_zone = ZONE_NULL; |
1807 | simple_lock(&all_zones_lock); | |
1808 | *last_zone = z; | |
1809 | last_zone = &z->next_zone; | |
6d2010ae A |
1810 | z->index = num_zones; |
1811 | if (zinfo_per_task) { | |
1812 | if (num_zones > ZONES_MAX) | |
1813 | z->index = ZONES_MAX; | |
1814 | } | |
1c79356b A |
1815 | num_zones++; |
1816 | simple_unlock(&all_zones_lock); | |
1817 | ||
c910b4d9 A |
1818 | /* |
1819 | * Check if we should be logging this zone. If so, remember the zone pointer. | |
1820 | */ | |
316670eb | 1821 | if (log_this_zone(z->zone_name, zone_name_to_log)) { |
c910b4d9 A |
1822 | zone_of_interest = z; |
1823 | } | |
1824 | ||
1825 | /* | |
1826 | * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are | |
39236c6e | 1827 | * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to |
c910b4d9 A |
1828 | * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one |
1829 | * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again | |
1830 | * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized | |
1831 | * right now. | |
1832 | */ | |
39236c6e A |
1833 | if (zone_of_interest != NULL && zlog_btlog == NULL && kmem_alloc_ready) { |
1834 | zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, NULL, NULL, NULL); | |
1835 | if (zlog_btlog) { | |
1836 | printf("zone: logging started for zone %s\n", zone_of_interest->zone_name); | |
c910b4d9 A |
1837 | } else { |
1838 | printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n"); | |
1839 | zone_of_interest = NULL; | |
1840 | } | |
1841 | } | |
316670eb A |
1842 | #if CONFIG_GZALLOC |
1843 | gzalloc_zone_init(z); | |
1844 | #endif | |
1c79356b A |
1845 | return(z); |
1846 | } | |
39236c6e | 1847 | unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated, zone_replenish_throttle_count; |
7ddcb079 A |
1848 | |
1849 | static void zone_replenish_thread(zone_t); | |
1850 | ||
1851 | /* High priority VM privileged thread used to asynchronously refill a designated | |
1852 | * zone, such as the reserved VM map entry zone. | |
1853 | */ | |
1854 | static void zone_replenish_thread(zone_t z) { | |
1855 | vm_size_t free_size; | |
1856 | current_thread()->options |= TH_OPT_VMPRIV; | |
1857 | ||
1858 | for (;;) { | |
1859 | lock_zone(z); | |
1860 | assert(z->prio_refill_watermark != 0); | |
1861 | while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) { | |
3e170ce0 A |
1862 | assert(z->doing_alloc_without_vm_priv == FALSE); |
1863 | assert(z->doing_alloc_with_vm_priv == FALSE); | |
7ddcb079 A |
1864 | assert(z->async_prio_refill == TRUE); |
1865 | ||
1866 | unlock_zone(z); | |
1867 | int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT; | |
1868 | vm_offset_t space, alloc_size; | |
1869 | kern_return_t kr; | |
1870 | ||
1871 | if (vm_pool_low()) | |
1872 | alloc_size = round_page(z->elem_size); | |
1873 | else | |
1874 | alloc_size = z->alloc_size; | |
1875 | ||
1876 | if (z->noencrypt) | |
1877 | zflags |= KMA_NOENCRYPT; | |
1878 | ||
3e170ce0 | 1879 | kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); |
7ddcb079 A |
1880 | |
1881 | if (kr == KERN_SUCCESS) { | |
1882 | #if ZONE_ALIAS_ADDR | |
1883 | if (alloc_size == PAGE_SIZE) | |
1884 | space = zone_alias_addr(space); | |
1885 | #endif | |
1886 | zcram(z, space, alloc_size); | |
1887 | } else if (kr == KERN_RESOURCE_SHORTAGE) { | |
1888 | VM_PAGE_WAIT(); | |
1889 | } else if (kr == KERN_NO_SPACE) { | |
3e170ce0 | 1890 | kr = kernel_memory_allocate(kernel_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); |
7ddcb079 A |
1891 | if (kr == KERN_SUCCESS) { |
1892 | #if ZONE_ALIAS_ADDR | |
1893 | if (alloc_size == PAGE_SIZE) | |
1894 | space = zone_alias_addr(space); | |
1895 | #endif | |
1896 | zcram(z, space, alloc_size); | |
1897 | } else { | |
1898 | assert_wait_timeout(&z->zone_replenish_thread, THREAD_UNINT, 1, 100 * NSEC_PER_USEC); | |
1899 | thread_block(THREAD_CONTINUE_NULL); | |
1900 | } | |
1901 | } | |
1902 | ||
1903 | lock_zone(z); | |
1904 | zone_replenish_loops++; | |
1905 | } | |
1906 | ||
1907 | unlock_zone(z); | |
39236c6e A |
1908 | /* Signal any potential throttled consumers, terminating |
1909 | * their timer-bounded waits. | |
1910 | */ | |
1911 | thread_wakeup(z); | |
1912 | ||
7ddcb079 A |
1913 | assert_wait(&z->zone_replenish_thread, THREAD_UNINT); |
1914 | thread_block(THREAD_CONTINUE_NULL); | |
1915 | zone_replenish_wakeups++; | |
1916 | } | |
1917 | } | |
1918 | ||
1919 | void | |
1920 | zone_prio_refill_configure(zone_t z, vm_size_t low_water_mark) { | |
1921 | z->prio_refill_watermark = low_water_mark; | |
1922 | ||
1923 | z->async_prio_refill = TRUE; | |
1924 | OSMemoryBarrier(); | |
1925 | kern_return_t tres = kernel_thread_start_priority((thread_continue_t)zone_replenish_thread, z, MAXPRI_KERNEL, &z->zone_replenish_thread); | |
1926 | ||
1927 | if (tres != KERN_SUCCESS) { | |
1928 | panic("zone_prio_refill_configure, thread create: 0x%x", tres); | |
1929 | } | |
1930 | ||
1931 | thread_deallocate(z->zone_replenish_thread); | |
1932 | } | |
1c79356b | 1933 | |
4bd07ac2 A |
1934 | /* |
1935 | * Boolean Random Number Generator for generating booleans to randomize | |
1936 | * the order of elements in newly zcram()'ed memory. The algorithm is a | |
1937 | * modified version of the KISS RNG proposed in the paper: | |
1938 | * http://stat.fsu.edu/techreports/M802.pdf | |
1939 | * The modifications have been documented in the technical paper | |
1940 | * paper from UCL: | |
1941 | * http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf | |
1942 | */ | |
1943 | ||
1944 | static void random_bool_gen_entropy( | |
1945 | int *buffer, | |
1946 | int count) | |
1947 | { | |
1948 | ||
1949 | int i, t; | |
1950 | simple_lock(&bool_gen_lock); | |
1951 | for (i = 0; i < count; i++) { | |
1952 | bool_gen_seed[1] ^= (bool_gen_seed[1] << 5); | |
1953 | bool_gen_seed[1] ^= (bool_gen_seed[1] >> 7); | |
1954 | bool_gen_seed[1] ^= (bool_gen_seed[1] << 22); | |
1955 | t = bool_gen_seed[2] + bool_gen_seed[3] + bool_gen_global; | |
1956 | bool_gen_seed[2] = bool_gen_seed[3]; | |
1957 | bool_gen_global = t < 0; | |
1958 | bool_gen_seed[3] = t &2147483647; | |
1959 | bool_gen_seed[0] += 1411392427; | |
1960 | buffer[i] = (bool_gen_seed[0] + bool_gen_seed[1] + bool_gen_seed[3]); | |
1961 | } | |
1962 | simple_unlock(&bool_gen_lock); | |
1963 | } | |
1964 | ||
1965 | static boolean_t random_bool_gen( | |
1966 | int *buffer, | |
1967 | int index, | |
1968 | int bufsize) | |
1969 | { | |
1970 | int valindex, bitpos; | |
1971 | valindex = (index / (8 * sizeof(int))) % bufsize; | |
1972 | bitpos = index % (8 * sizeof(int)); | |
1973 | return (boolean_t)(buffer[valindex] & (1 << bitpos)); | |
1974 | } | |
1975 | ||
1976 | static void | |
1977 | random_free_to_zone( | |
1978 | zone_t zone, | |
1979 | vm_offset_t newmem, | |
1980 | vm_offset_t first_element_offset, | |
1981 | int element_count, | |
1982 | boolean_t from_zm, | |
1983 | int *entropy_buffer) | |
1984 | { | |
1985 | vm_offset_t last_element_offset; | |
1986 | vm_offset_t element_addr; | |
1987 | vm_size_t elem_size; | |
1988 | int index; | |
1989 | ||
1990 | elem_size = zone->elem_size; | |
1991 | last_element_offset = first_element_offset + ((element_count * elem_size) - elem_size); | |
1992 | for (index = 0; index < element_count; index++) { | |
1993 | assert(first_element_offset <= last_element_offset); | |
1994 | if (random_bool_gen(entropy_buffer, index, MAX_ENTROPY_PER_ZCRAM)) { | |
1995 | element_addr = newmem + first_element_offset; | |
1996 | first_element_offset += elem_size; | |
1997 | } else { | |
1998 | element_addr = newmem + last_element_offset; | |
1999 | last_element_offset -= elem_size; | |
2000 | } | |
2001 | if (element_addr != (vm_offset_t)zone) { | |
2002 | zone->count++; /* compensate for free_to_zone */ | |
2003 | free_to_zone(zone, element_addr, FALSE); | |
2004 | } | |
2005 | if (!zone->use_page_list && from_zm) { | |
2006 | zone_page_alloc(element_addr, elem_size); | |
2007 | } | |
2008 | zone->cur_size += elem_size; | |
2009 | } | |
2010 | } | |
2011 | ||
1c79356b | 2012 | /* |
3e170ce0 | 2013 | * Cram the given memory into the specified zone. Update the zone page count accordingly. |
1c79356b A |
2014 | */ |
2015 | void | |
2016 | zcram( | |
7ddcb079 A |
2017 | zone_t zone, |
2018 | vm_offset_t newmem, | |
1c79356b A |
2019 | vm_size_t size) |
2020 | { | |
7ddcb079 A |
2021 | vm_size_t elem_size; |
2022 | boolean_t from_zm = FALSE; | |
4bd07ac2 A |
2023 | vm_offset_t first_element_offset; |
2024 | int element_count; | |
2025 | int entropy_buffer[MAX_ENTROPY_PER_ZCRAM]; | |
1c79356b A |
2026 | |
2027 | /* Basic sanity checks */ | |
2028 | assert(zone != ZONE_NULL && newmem != (vm_offset_t)0); | |
2029 | assert(!zone->collectable || zone->allows_foreign | |
55e303ae | 2030 | || (from_zone_map(newmem, size))); |
1c79356b A |
2031 | |
2032 | elem_size = zone->elem_size; | |
2033 | ||
4bd07ac2 A |
2034 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, VM_KERNEL_ADDRPERM(zone), size, 0, 0, 0); |
2035 | ||
7ddcb079 A |
2036 | if (from_zone_map(newmem, size)) |
2037 | from_zm = TRUE; | |
2038 | ||
39236c6e A |
2039 | if (zalloc_debug & ZALLOC_DEBUG_ZCRAM) |
2040 | kprintf("zcram(%p[%s], 0x%lx%s, 0x%lx)\n", zone, zone->zone_name, | |
2041 | (unsigned long)newmem, from_zm ? "" : "[F]", (unsigned long)size); | |
2042 | ||
2043 | if (from_zm && !zone->use_page_list) | |
7ddcb079 A |
2044 | zone_page_init(newmem, size); |
2045 | ||
3e170ce0 A |
2046 | ZONE_PAGE_COUNT_INCR(zone, (size / PAGE_SIZE)); |
2047 | ||
4bd07ac2 A |
2048 | random_bool_gen_entropy(entropy_buffer, MAX_ENTROPY_PER_ZCRAM); |
2049 | ||
1c79356b | 2050 | lock_zone(zone); |
39236c6e A |
2051 | |
2052 | if (zone->use_page_list) { | |
2053 | struct zone_page_metadata *page_metadata; | |
3e170ce0 | 2054 | size_t zone_page_metadata_size = sizeof(struct zone_page_metadata); |
39236c6e A |
2055 | |
2056 | assert((newmem & PAGE_MASK) == 0); | |
2057 | assert((size & PAGE_MASK) == 0); | |
2058 | for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) { | |
2059 | ||
3e170ce0 | 2060 | page_metadata = (struct zone_page_metadata *)(newmem); |
39236c6e A |
2061 | |
2062 | page_metadata->pages.next = NULL; | |
2063 | page_metadata->pages.prev = NULL; | |
2064 | page_metadata->elements = NULL; | |
2065 | page_metadata->zone = zone; | |
2066 | page_metadata->alloc_count = 0; | |
2067 | page_metadata->free_count = 0; | |
2068 | ||
2069 | enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_metadata); | |
2070 | ||
3e170ce0 A |
2071 | if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0){ |
2072 | first_element_offset = zone_page_metadata_size; | |
2073 | } else { | |
2074 | first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT)); | |
2075 | } | |
4bd07ac2 A |
2076 | element_count = (int)((PAGE_SIZE - first_element_offset) / elem_size); |
2077 | page_metadata->alloc_count += element_count; | |
2078 | random_free_to_zone(zone, newmem, first_element_offset, element_count, from_zm, entropy_buffer); | |
39236c6e | 2079 | } |
4bd07ac2 A |
2080 | } else { |
2081 | first_element_offset = 0; | |
2082 | element_count = (int)((size - first_element_offset) / elem_size); | |
2083 | random_free_to_zone(zone, newmem, first_element_offset, element_count, from_zm, entropy_buffer); | |
1c79356b A |
2084 | } |
2085 | unlock_zone(zone); | |
4bd07ac2 A |
2086 | |
2087 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, VM_KERNEL_ADDRPERM(zone), 0, 0, 0, 0); | |
2088 | ||
1c79356b A |
2089 | } |
2090 | ||
1c79356b A |
2091 | |
2092 | /* | |
2093 | * Steal memory for the zone package. Called from | |
2094 | * vm_page_bootstrap(). | |
2095 | */ | |
2096 | void | |
2097 | zone_steal_memory(void) | |
2098 | { | |
316670eb A |
2099 | #if CONFIG_GZALLOC |
2100 | gzalloc_configure(); | |
2101 | #endif | |
7ddcb079 A |
2102 | /* Request enough early memory to get to the pmap zone */ |
2103 | zdata_size = 12 * sizeof(struct zone); | |
39236c6e A |
2104 | zdata_size = round_page(zdata_size); |
2105 | zdata = (vm_offset_t)pmap_steal_memory(zdata_size); | |
1c79356b A |
2106 | } |
2107 | ||
2108 | ||
2109 | /* | |
2110 | * Fill a zone with enough memory to contain at least nelem elements. | |
b0d623f7 | 2111 | * Memory is obtained with kmem_alloc_kobject from the kernel_map. |
1c79356b A |
2112 | * Return the number of elements actually put into the zone, which may |
2113 | * be more than the caller asked for since the memory allocation is | |
2114 | * rounded up to a full page. | |
2115 | */ | |
2116 | int | |
2117 | zfill( | |
2118 | zone_t zone, | |
2119 | int nelem) | |
2120 | { | |
2121 | kern_return_t kr; | |
2122 | vm_size_t size; | |
2123 | vm_offset_t memory; | |
2124 | int nalloc; | |
2125 | ||
2126 | assert(nelem > 0); | |
2127 | if (nelem <= 0) | |
2128 | return 0; | |
2129 | size = nelem * zone->elem_size; | |
91447636 | 2130 | size = round_page(size); |
3e170ce0 | 2131 | kr = kmem_alloc_kobject(kernel_map, &memory, size, VM_KERN_MEMORY_ZONE); |
1c79356b A |
2132 | if (kr != KERN_SUCCESS) |
2133 | return 0; | |
2134 | ||
2135 | zone_change(zone, Z_FOREIGN, TRUE); | |
7ddcb079 | 2136 | zcram(zone, memory, size); |
b0d623f7 | 2137 | nalloc = (int)(size / zone->elem_size); |
1c79356b A |
2138 | assert(nalloc >= nelem); |
2139 | ||
2140 | return nalloc; | |
2141 | } | |
2142 | ||
2143 | /* | |
2144 | * Initialize the "zone of zones" which uses fixed memory allocated | |
2145 | * earlier in memory initialization. zone_bootstrap is called | |
2146 | * before zone_init. | |
2147 | */ | |
2148 | void | |
2149 | zone_bootstrap(void) | |
2150 | { | |
2d21ac55 | 2151 | char temp_buf[16]; |
4bd07ac2 | 2152 | unsigned int i; |
2d21ac55 | 2153 | |
316670eb A |
2154 | if (PE_parse_boot_argn("-zinfop", temp_buf, sizeof(temp_buf))) { |
2155 | zinfo_per_task = TRUE; | |
6d2010ae | 2156 | } |
6d2010ae | 2157 | |
39236c6e A |
2158 | if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug, sizeof(zalloc_debug))) |
2159 | zalloc_debug = 0; | |
316670eb | 2160 | |
39236c6e A |
2161 | /* Set up zone element poisoning */ |
2162 | zp_init(); | |
c910b4d9 | 2163 | |
4bd07ac2 A |
2164 | /* Seed the random boolean generator for elements in zone free list */ |
2165 | for (i = 0; i < RANDOM_BOOL_GEN_SEED_COUNT; i++) { | |
2166 | bool_gen_seed[i] = (unsigned int)early_random(); | |
2167 | } | |
2168 | simple_lock_init(&bool_gen_lock, 0); | |
2169 | ||
39236c6e A |
2170 | /* should zlog log to debug zone corruption instead of leaks? */ |
2171 | if (PE_parse_boot_argn("-zc", temp_buf, sizeof(temp_buf))) { | |
2172 | corruption_debug_flag = TRUE; | |
2173 | } | |
6d2010ae | 2174 | |
c910b4d9 A |
2175 | /* |
2176 | * Check for and set up zone leak detection if requested via boot-args. We recognized two | |
2177 | * boot-args: | |
2178 | * | |
2179 | * zlog=<zone_to_log> | |
2180 | * zrecs=<num_records_in_log> | |
2181 | * | |
2182 | * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to | |
2183 | * control the size of the log. If zrecs is not specified, a default value is used. | |
2184 | */ | |
2185 | ||
2186 | if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) { | |
2187 | if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) { | |
2188 | ||
2189 | /* | |
2190 | * Don't allow more than ZRECORDS_MAX records even if the user asked for more. | |
2191 | * This prevents accidentally hogging too much kernel memory and making the system | |
2192 | * unusable. | |
2193 | */ | |
2194 | ||
2195 | log_records = MIN(ZRECORDS_MAX, log_records); | |
2196 | ||
2197 | } else { | |
2198 | log_records = ZRECORDS_DEFAULT; | |
2199 | } | |
2d21ac55 | 2200 | } |
1c79356b | 2201 | |
91447636 | 2202 | simple_lock_init(&all_zones_lock, 0); |
1c79356b A |
2203 | |
2204 | first_zone = ZONE_NULL; | |
2205 | last_zone = &first_zone; | |
2206 | num_zones = 0; | |
39236c6e | 2207 | thread_call_setup(&call_async_alloc, zalloc_async, NULL); |
1c79356b | 2208 | |
1c79356b A |
2209 | /* assertion: nobody else called zinit before us */ |
2210 | assert(zone_zone == ZONE_NULL); | |
39236c6e A |
2211 | |
2212 | /* initializing global lock group for zones */ | |
2213 | lck_grp_attr_setdefault(&zone_locks_grp_attr); | |
2214 | lck_grp_init(&zone_locks_grp, "zone_locks", &zone_locks_grp_attr); | |
2215 | ||
1c79356b A |
2216 | zone_zone = zinit(sizeof(struct zone), 128 * sizeof(struct zone), |
2217 | sizeof(struct zone), "zones"); | |
2218 | zone_change(zone_zone, Z_COLLECT, FALSE); | |
6d2010ae | 2219 | zone_change(zone_zone, Z_CALLERACCT, FALSE); |
0b4c1975 A |
2220 | zone_change(zone_zone, Z_NOENCRYPT, TRUE); |
2221 | ||
7ddcb079 | 2222 | zcram(zone_zone, zdata, zdata_size); |
3e170ce0 | 2223 | VM_PAGE_MOVE_STOLEN(atop_64(zdata_size)); |
6d2010ae A |
2224 | |
2225 | /* initialize fake zones and zone info if tracking by task */ | |
2226 | if (zinfo_per_task) { | |
2227 | vm_size_t zisize = sizeof(zinfo_usage_store_t) * ZINFO_SLOTS; | |
6d2010ae A |
2228 | |
2229 | for (i = 0; i < num_fake_zones; i++) | |
2230 | fake_zones[i].init(ZINFO_SLOTS - num_fake_zones + i); | |
2231 | zinfo_zone = zinit(zisize, zisize * CONFIG_TASK_MAX, | |
2232 | zisize, "per task zinfo"); | |
2233 | zone_change(zinfo_zone, Z_CALLERACCT, FALSE); | |
2234 | } | |
2235 | } | |
2236 | ||
2237 | void | |
2238 | zinfo_task_init(task_t task) | |
2239 | { | |
2240 | if (zinfo_per_task) { | |
2241 | task->tkm_zinfo = zalloc(zinfo_zone); | |
2242 | memset(task->tkm_zinfo, 0, sizeof(zinfo_usage_store_t) * ZINFO_SLOTS); | |
2243 | } else { | |
2244 | task->tkm_zinfo = NULL; | |
2245 | } | |
1c79356b A |
2246 | } |
2247 | ||
6d2010ae A |
2248 | void |
2249 | zinfo_task_free(task_t task) | |
2250 | { | |
2251 | assert(task != kernel_task); | |
2252 | if (task->tkm_zinfo != NULL) { | |
2253 | zfree(zinfo_zone, task->tkm_zinfo); | |
2254 | task->tkm_zinfo = NULL; | |
2255 | } | |
2256 | } | |
2257 | ||
39236c6e A |
2258 | /* Global initialization of Zone Allocator. |
2259 | * Runs after zone_bootstrap. | |
2260 | */ | |
1c79356b A |
2261 | void |
2262 | zone_init( | |
2263 | vm_size_t max_zonemap_size) | |
2264 | { | |
2265 | kern_return_t retval; | |
2266 | vm_offset_t zone_min; | |
2267 | vm_offset_t zone_max; | |
1c79356b A |
2268 | |
2269 | retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size, | |
3e170ce0 | 2270 | FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT | VM_MAKE_TAG(VM_KERN_MEMORY_ZONE), |
b0d623f7 | 2271 | &zone_map); |
91447636 | 2272 | |
1c79356b A |
2273 | if (retval != KERN_SUCCESS) |
2274 | panic("zone_init: kmem_suballoc failed"); | |
91447636 | 2275 | zone_max = zone_min + round_page(max_zonemap_size); |
316670eb A |
2276 | #if CONFIG_GZALLOC |
2277 | gzalloc_init(max_zonemap_size); | |
2278 | #endif | |
1c79356b A |
2279 | /* |
2280 | * Setup garbage collection information: | |
2281 | */ | |
1c79356b A |
2282 | zone_map_min_address = zone_min; |
2283 | zone_map_max_address = zone_max; | |
7ddcb079 | 2284 | |
fe8ab488 A |
2285 | #if defined(__LP64__) |
2286 | /* | |
2287 | * ensure that any vm_page_t that gets created from | |
2288 | * the vm_page zone can be packed properly (see vm_page.h | |
2289 | * for the packing requirements | |
2290 | */ | |
2291 | if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_min_address)) != (vm_page_t)zone_map_min_address) | |
2292 | panic("VM_PAGE_PACK_PTR failed on zone_map_min_address - %p", (void *)zone_map_min_address); | |
2293 | ||
2294 | if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address)) != (vm_page_t)zone_map_max_address) | |
2295 | panic("VM_PAGE_PACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address); | |
2296 | #endif | |
2297 | ||
7ddcb079 A |
2298 | zone_pages = (unsigned int)atop_kernel(zone_max - zone_min); |
2299 | zone_page_table_used_size = sizeof(zone_page_table); | |
2300 | ||
2301 | zone_page_table_second_level_size = 1; | |
2302 | zone_page_table_second_level_shift_amount = 0; | |
2303 | ||
2304 | /* | |
2305 | * Find the power of 2 for the second level that allows | |
2306 | * the first level to fit in ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE | |
2307 | * slots. | |
2308 | */ | |
2309 | while ((zone_page_table_first_level_slot(zone_pages-1)) >= ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE) { | |
2310 | zone_page_table_second_level_size <<= 1; | |
2311 | zone_page_table_second_level_shift_amount++; | |
2312 | } | |
b0d623f7 | 2313 | |
39236c6e A |
2314 | lck_grp_attr_setdefault(&zone_gc_lck_grp_attr); |
2315 | lck_grp_init(&zone_gc_lck_grp, "zone_gc", &zone_gc_lck_grp_attr); | |
2316 | lck_attr_setdefault(&zone_gc_lck_attr); | |
2317 | lck_mtx_init_ext(&zone_gc_lock, &zone_gc_lck_ext, &zone_gc_lck_grp, &zone_gc_lck_attr); | |
b0d623f7 | 2318 | |
6d2010ae A |
2319 | #if CONFIG_ZLEAKS |
2320 | /* | |
2321 | * Initialize the zone leak monitor | |
2322 | */ | |
2323 | zleak_init(max_zonemap_size); | |
2324 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2325 | } |
2326 | ||
7ddcb079 A |
2327 | void |
2328 | zone_page_table_expand(zone_page_index_t pindex) | |
2329 | { | |
2330 | unsigned int first_index; | |
2331 | struct zone_page_table_entry * volatile * first_level_ptr; | |
2332 | ||
2333 | assert(pindex < zone_pages); | |
2334 | ||
2335 | first_index = zone_page_table_first_level_slot(pindex); | |
2336 | first_level_ptr = &zone_page_table[first_index]; | |
2337 | ||
2338 | if (*first_level_ptr == NULL) { | |
2339 | /* | |
2340 | * We were able to verify the old first-level slot | |
2341 | * had NULL, so attempt to populate it. | |
2342 | */ | |
2343 | ||
2344 | vm_offset_t second_level_array = 0; | |
2345 | vm_size_t second_level_size = round_page(zone_page_table_second_level_size * sizeof(struct zone_page_table_entry)); | |
2346 | zone_page_index_t i; | |
2347 | struct zone_page_table_entry *entry_array; | |
2348 | ||
2349 | if (kmem_alloc_kobject(zone_map, &second_level_array, | |
3e170ce0 | 2350 | second_level_size, VM_KERN_MEMORY_OSFMK) != KERN_SUCCESS) { |
7ddcb079 A |
2351 | panic("zone_page_table_expand"); |
2352 | } | |
39236c6e | 2353 | zone_map_table_page_count += (second_level_size / PAGE_SIZE); |
7ddcb079 A |
2354 | |
2355 | /* | |
2356 | * zone_gc() may scan the "zone_page_table" directly, | |
2357 | * so make sure any slots have a valid unused state. | |
2358 | */ | |
2359 | entry_array = (struct zone_page_table_entry *)second_level_array; | |
2360 | for (i=0; i < zone_page_table_second_level_size; i++) { | |
2361 | entry_array[i].alloc_count = ZONE_PAGE_UNUSED; | |
2362 | entry_array[i].collect_count = 0; | |
2363 | } | |
2364 | ||
2365 | if (OSCompareAndSwapPtr(NULL, entry_array, first_level_ptr)) { | |
2366 | /* Old slot was NULL, replaced with expanded level */ | |
2367 | OSAddAtomicLong(second_level_size, &zone_page_table_used_size); | |
2368 | } else { | |
2369 | /* Old slot was not NULL, someone else expanded first */ | |
2370 | kmem_free(zone_map, second_level_array, second_level_size); | |
39236c6e | 2371 | zone_map_table_page_count -= (second_level_size / PAGE_SIZE); |
7ddcb079 A |
2372 | } |
2373 | } else { | |
2374 | /* Old slot was not NULL, already been expanded */ | |
2375 | } | |
2376 | } | |
2377 | ||
2378 | struct zone_page_table_entry * | |
2379 | zone_page_table_lookup(zone_page_index_t pindex) | |
2380 | { | |
2381 | unsigned int first_index = zone_page_table_first_level_slot(pindex); | |
2382 | struct zone_page_table_entry *second_level = zone_page_table[first_index]; | |
2383 | ||
2384 | if (second_level) { | |
2385 | return &second_level[zone_page_table_second_level_slot(pindex)]; | |
2386 | } | |
2387 | ||
2388 | return NULL; | |
2389 | } | |
2390 | ||
b0d623f7 | 2391 | extern volatile SInt32 kfree_nop_count; |
1c79356b | 2392 | |
6d2010ae A |
2393 | #pragma mark - |
2394 | #pragma mark zalloc_canblock | |
2395 | ||
1c79356b A |
2396 | /* |
2397 | * zalloc returns an element from the specified zone. | |
2398 | */ | |
fe8ab488 A |
2399 | static void * |
2400 | zalloc_internal( | |
39236c6e | 2401 | zone_t zone, |
fe8ab488 A |
2402 | boolean_t canblock, |
2403 | boolean_t nopagewait) | |
1c79356b | 2404 | { |
316670eb A |
2405 | vm_offset_t addr = 0; |
2406 | kern_return_t retval; | |
6d2010ae | 2407 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */ |
c910b4d9 | 2408 | int numsaved = 0; |
39236c6e A |
2409 | boolean_t zone_replenish_wakeup = FALSE, zone_alloc_throttle = FALSE; |
2410 | #if CONFIG_GZALLOC || ZONE_DEBUG | |
2411 | boolean_t did_gzalloc = FALSE; | |
2412 | #endif | |
2413 | thread_t thr = current_thread(); | |
fe8ab488 | 2414 | boolean_t check_poison = FALSE; |
3e170ce0 | 2415 | boolean_t set_doing_alloc_with_vm_priv = FALSE; |
6d2010ae A |
2416 | |
2417 | #if CONFIG_ZLEAKS | |
2418 | uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ | |
2419 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2420 | |
2421 | assert(zone != ZONE_NULL); | |
316670eb A |
2422 | |
2423 | #if CONFIG_GZALLOC | |
2424 | addr = gzalloc_alloc(zone, canblock); | |
2425 | did_gzalloc = (addr != 0); | |
2426 | #endif | |
2427 | ||
c910b4d9 A |
2428 | /* |
2429 | * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. | |
2430 | */ | |
39236c6e | 2431 | if (__improbable(DO_LOGGING(zone))) |
6d2010ae | 2432 | numsaved = OSBacktrace((void*) zbt, MAX_ZTRACE_DEPTH); |
39236c6e | 2433 | |
6d2010ae | 2434 | #if CONFIG_ZLEAKS |
fe8ab488 | 2435 | /* |
316670eb | 2436 | * Zone leak detection: capture a backtrace every zleak_sample_factor |
fe8ab488 | 2437 | * allocations in this zone. |
6d2010ae | 2438 | */ |
fe8ab488 | 2439 | if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) { |
6d2010ae | 2440 | /* Avoid backtracing twice if zone logging is on */ |
fe8ab488 | 2441 | if (numsaved == 0) |
6d2010ae A |
2442 | zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH); |
2443 | else | |
2444 | zleak_tracedepth = numsaved; | |
2445 | } | |
2446 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b | 2447 | |
fe8ab488 A |
2448 | lock_zone(zone); |
2449 | ||
39236c6e A |
2450 | if (zone->async_prio_refill && zone->zone_replenish_thread) { |
2451 | do { | |
2452 | vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size)); | |
2453 | vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size; | |
2454 | zone_replenish_wakeup = (zfreec < zrefillwm); | |
2455 | zone_alloc_throttle = (zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0); | |
2456 | ||
2457 | if (zone_replenish_wakeup) { | |
2458 | zone_replenish_wakeups_initiated++; | |
2459 | unlock_zone(zone); | |
2460 | /* Signal the potentially waiting | |
2461 | * refill thread. | |
2462 | */ | |
2463 | thread_wakeup(&zone->zone_replenish_thread); | |
2464 | ||
2465 | /* Scheduling latencies etc. may prevent | |
2466 | * the refill thread from keeping up | |
2467 | * with demand. Throttle consumers | |
2468 | * when we fall below half the | |
2469 | * watermark, unless VM privileged | |
2470 | */ | |
2471 | if (zone_alloc_throttle) { | |
2472 | zone_replenish_throttle_count++; | |
2473 | assert_wait_timeout(zone, THREAD_UNINT, 1, NSEC_PER_MSEC); | |
2474 | thread_block(THREAD_CONTINUE_NULL); | |
2475 | } | |
2476 | lock_zone(zone); | |
2477 | } | |
2478 | } while (zone_alloc_throttle == TRUE); | |
2479 | } | |
2480 | ||
316670eb | 2481 | if (__probable(addr == 0)) |
fe8ab488 | 2482 | addr = try_alloc_from_zone(zone, &check_poison); |
0b4e3aa0 | 2483 | |
a3d08fcd | 2484 | |
0b4e3aa0 | 2485 | while ((addr == 0) && canblock) { |
1c79356b | 2486 | /* |
3e170ce0 A |
2487 | * zone is empty, try to expand it |
2488 | * | |
2489 | * Note that we now allow up to 2 threads (1 vm_privliged and 1 non-vm_privliged) | |
2490 | * to expand the zone concurrently... this is necessary to avoid stalling | |
2491 | * vm_privileged threads running critical code necessary to continue compressing/swapping | |
2492 | * pages (i.e. making new free pages) from stalling behind non-vm_privileged threads | |
2493 | * waiting to acquire free pages when the vm_page_free_count is below the | |
2494 | * vm_page_free_reserved limit. | |
1c79356b | 2495 | */ |
3e170ce0 A |
2496 | if ((zone->doing_alloc_without_vm_priv || zone->doing_alloc_with_vm_priv) && |
2497 | (((thr->options & TH_OPT_VMPRIV) == 0) || zone->doing_alloc_with_vm_priv)) { | |
1c79356b | 2498 | /* |
3e170ce0 A |
2499 | * This is a non-vm_privileged thread and a non-vm_privileged or |
2500 | * a vm_privileged thread is already expanding the zone... | |
2501 | * OR | |
2502 | * this is a vm_privileged thread and a vm_privileged thread is | |
2503 | * already expanding the zone... | |
2504 | * | |
2505 | * In either case wait for a thread to finish, then try again. | |
1c79356b | 2506 | */ |
1c79356b | 2507 | zone->waiting = TRUE; |
9bccf70c | 2508 | zone_sleep(zone); |
7ddcb079 | 2509 | } else if (zone->doing_gc) { |
3e170ce0 A |
2510 | /* |
2511 | * zone_gc() is running. Since we need an element | |
7ddcb079 | 2512 | * from the free list that is currently being |
3e170ce0 A |
2513 | * collected, set the waiting bit and |
2514 | * wait for the GC process to finish | |
2515 | * before trying again | |
7ddcb079 A |
2516 | */ |
2517 | zone->waiting = TRUE; | |
2518 | zone_sleep(zone); | |
2519 | } else { | |
2520 | vm_offset_t space; | |
2521 | vm_size_t alloc_size; | |
2522 | int retry = 0; | |
2523 | ||
1c79356b A |
2524 | if ((zone->cur_size + zone->elem_size) > |
2525 | zone->max_size) { | |
2526 | if (zone->exhaustible) | |
2527 | break; | |
2528 | if (zone->expandable) { | |
2529 | /* | |
2530 | * We're willing to overflow certain | |
2531 | * zones, but not without complaining. | |
2532 | * | |
2533 | * This is best used in conjunction | |
2534 | * with the collectable flag. What we | |
2535 | * want is an assurance we can get the | |
2536 | * memory back, assuming there's no | |
2537 | * leak. | |
2538 | */ | |
2539 | zone->max_size += (zone->max_size >> 1); | |
2540 | } else { | |
2541 | unlock_zone(zone); | |
2542 | ||
316670eb A |
2543 | panic_include_zprint = TRUE; |
2544 | #if CONFIG_ZLEAKS | |
2545 | if (zleak_state & ZLEAK_STATE_ACTIVE) | |
2546 | panic_include_ztrace = TRUE; | |
2547 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2548 | panic("zalloc: zone \"%s\" empty.", zone->zone_name); |
2549 | } | |
2550 | } | |
3e170ce0 A |
2551 | if ((thr->options & TH_OPT_VMPRIV)) { |
2552 | zone->doing_alloc_with_vm_priv = TRUE; | |
2553 | set_doing_alloc_with_vm_priv = TRUE; | |
2554 | } else { | |
2555 | zone->doing_alloc_without_vm_priv = TRUE; | |
2556 | } | |
1c79356b A |
2557 | unlock_zone(zone); |
2558 | ||
7ddcb079 A |
2559 | for (;;) { |
2560 | int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT; | |
fe8ab488 | 2561 | |
7ddcb079 A |
2562 | if (vm_pool_low() || retry >= 1) |
2563 | alloc_size = | |
2564 | round_page(zone->elem_size); | |
2565 | else | |
2566 | alloc_size = zone->alloc_size; | |
2567 | ||
2568 | if (zone->noencrypt) | |
2569 | zflags |= KMA_NOENCRYPT; | |
2570 | ||
3e170ce0 | 2571 | retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); |
7ddcb079 | 2572 | if (retval == KERN_SUCCESS) { |
2d21ac55 | 2573 | #if ZONE_ALIAS_ADDR |
7ddcb079 A |
2574 | if (alloc_size == PAGE_SIZE) |
2575 | space = zone_alias_addr(space); | |
2d21ac55 | 2576 | #endif |
7ddcb079 | 2577 | |
6d2010ae | 2578 | #if CONFIG_ZLEAKS |
7ddcb079 A |
2579 | if ((zleak_state & (ZLEAK_STATE_ENABLED | ZLEAK_STATE_ACTIVE)) == ZLEAK_STATE_ENABLED) { |
2580 | if (zone_map->size >= zleak_global_tracking_threshold) { | |
2581 | kern_return_t kr; | |
2582 | ||
2583 | kr = zleak_activate(); | |
2584 | if (kr != KERN_SUCCESS) { | |
2585 | printf("Failed to activate live zone leak debugging (%d).\n", kr); | |
6d2010ae A |
2586 | } |
2587 | } | |
55e303ae | 2588 | } |
1c79356b | 2589 | |
7ddcb079 A |
2590 | if ((zleak_state & ZLEAK_STATE_ACTIVE) && !(zone->zleak_on)) { |
2591 | if (zone->cur_size > zleak_per_zone_tracking_threshold) { | |
2592 | zone->zleak_on = TRUE; | |
2593 | } | |
1c79356b | 2594 | } |
7ddcb079 | 2595 | #endif /* CONFIG_ZLEAKS */ |
7ddcb079 A |
2596 | zcram(zone, space, alloc_size); |
2597 | ||
2598 | break; | |
2599 | } else if (retval != KERN_RESOURCE_SHORTAGE) { | |
2600 | retry++; | |
2601 | ||
2602 | if (retry == 2) { | |
316670eb | 2603 | zone_gc(TRUE); |
7ddcb079 A |
2604 | printf("zalloc did gc\n"); |
2605 | zone_display_zprint(); | |
2606 | } | |
2607 | if (retry == 3) { | |
6d2010ae A |
2608 | panic_include_zprint = TRUE; |
2609 | #if CONFIG_ZLEAKS | |
7ddcb079 | 2610 | if ((zleak_state & ZLEAK_STATE_ACTIVE)) { |
6d2010ae A |
2611 | panic_include_ztrace = TRUE; |
2612 | } | |
7ddcb079 | 2613 | #endif /* CONFIG_ZLEAKS */ |
39236c6e A |
2614 | if (retval == KERN_NO_SPACE) { |
2615 | zone_t zone_largest = zone_find_largest(); | |
2616 | panic("zalloc: zone map exhausted while allocating from zone %s, likely due to memory leak in zone %s (%lu total bytes, %d elements allocated)", | |
2617 | zone->zone_name, zone_largest->zone_name, | |
2618 | (unsigned long)zone_largest->cur_size, zone_largest->count); | |
2619 | ||
2620 | } | |
7ddcb079 | 2621 | panic("zalloc: \"%s\" (%d elements) retry fail %d, kfree_nop_count: %d", zone->zone_name, zone->count, retval, (int)kfree_nop_count); |
6d2010ae | 2622 | } |
7ddcb079 A |
2623 | } else { |
2624 | break; | |
1c79356b A |
2625 | } |
2626 | } | |
7ddcb079 | 2627 | lock_zone(zone); |
3e170ce0 A |
2628 | |
2629 | if (set_doing_alloc_with_vm_priv == TRUE) | |
2630 | zone->doing_alloc_with_vm_priv = FALSE; | |
2631 | else | |
2632 | zone->doing_alloc_without_vm_priv = FALSE; | |
2633 | ||
7ddcb079 | 2634 | if (zone->waiting) { |
3e170ce0 | 2635 | zone->waiting = FALSE; |
7ddcb079 A |
2636 | zone_wakeup(zone); |
2637 | } | |
fe8ab488 | 2638 | addr = try_alloc_from_zone(zone, &check_poison); |
7ddcb079 | 2639 | if (addr == 0 && |
fe8ab488 A |
2640 | retval == KERN_RESOURCE_SHORTAGE) { |
2641 | if (nopagewait == TRUE) | |
2642 | break; /* out of the main while loop */ | |
7ddcb079 | 2643 | unlock_zone(zone); |
fe8ab488 | 2644 | |
7ddcb079 A |
2645 | VM_PAGE_WAIT(); |
2646 | lock_zone(zone); | |
2647 | } | |
1c79356b A |
2648 | } |
2649 | if (addr == 0) | |
fe8ab488 | 2650 | addr = try_alloc_from_zone(zone, &check_poison); |
1c79356b A |
2651 | } |
2652 | ||
6d2010ae A |
2653 | #if CONFIG_ZLEAKS |
2654 | /* Zone leak detection: | |
2655 | * If we're sampling this allocation, add it to the zleaks hash table. | |
2656 | */ | |
2657 | if (addr && zleak_tracedepth > 0) { | |
2658 | /* Sampling can fail if another sample is happening at the same time in a different zone. */ | |
2659 | if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) { | |
2660 | /* If it failed, roll back the counter so we sample the next allocation instead. */ | |
316670eb | 2661 | zone->zleak_capture = zleak_sample_factor; |
6d2010ae A |
2662 | } |
2663 | } | |
2664 | #endif /* CONFIG_ZLEAKS */ | |
2665 | ||
2666 | ||
fe8ab488 | 2667 | if ((addr == 0) && (!canblock || nopagewait) && (zone->async_pending == FALSE) && (zone->no_callout == FALSE) && (zone->exhaustible == FALSE) && (!vm_pool_low())) { |
39236c6e A |
2668 | zone->async_pending = TRUE; |
2669 | unlock_zone(zone); | |
2670 | thread_call_enter(&call_async_alloc); | |
2671 | lock_zone(zone); | |
fe8ab488 | 2672 | addr = try_alloc_from_zone(zone, &check_poison); |
39236c6e A |
2673 | } |
2674 | ||
c910b4d9 A |
2675 | /* |
2676 | * See if we should be logging allocations in this zone. Logging is rarely done except when a leak is | |
2677 | * suspected, so this code rarely executes. We need to do this code while still holding the zone lock | |
2678 | * since it protects the various log related data structures. | |
2679 | */ | |
2680 | ||
39236c6e A |
2681 | if (__improbable(DO_LOGGING(zone) && addr)) { |
2682 | btlog_add_entry(zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved); | |
0b4e3aa0 A |
2683 | } |
2684 | ||
fe8ab488 A |
2685 | vm_offset_t inner_size = zone->elem_size; |
2686 | ||
1c79356b | 2687 | #if ZONE_DEBUG |
316670eb | 2688 | if (!did_gzalloc && addr && zone_debug_enabled(zone)) { |
1c79356b | 2689 | enqueue_tail(&zone->active_zones, (queue_entry_t)addr); |
55e303ae | 2690 | addr += ZONE_DEBUG_OFFSET; |
fe8ab488 | 2691 | inner_size -= ZONE_DEBUG_OFFSET; |
1c79356b A |
2692 | } |
2693 | #endif | |
2694 | ||
2695 | unlock_zone(zone); | |
0b4e3aa0 | 2696 | |
fe8ab488 A |
2697 | if (__improbable(check_poison && addr)) { |
2698 | vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1; | |
2699 | vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr); | |
2700 | ||
2701 | for ( ; element_cursor < backup ; element_cursor++) | |
2702 | if (__improbable(*element_cursor != ZP_POISON)) | |
2703 | zone_element_was_modified_panic(zone, | |
2704 | addr, | |
2705 | *element_cursor, | |
2706 | ZP_POISON, | |
2707 | ((vm_offset_t)element_cursor) - addr); | |
2708 | } | |
2709 | ||
2710 | if (addr) { | |
2711 | /* | |
2712 | * Clear out the old next pointer and backup to avoid leaking the cookie | |
2713 | * and so that only values on the freelist have a valid cookie | |
2714 | */ | |
2715 | ||
2716 | vm_offset_t *primary = (vm_offset_t *) addr; | |
2717 | vm_offset_t *backup = get_backup_ptr(inner_size, primary); | |
2718 | ||
2719 | *primary = ZP_POISON; | |
2720 | *backup = ZP_POISON; | |
2721 | } | |
2722 | ||
2d21ac55 A |
2723 | TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr); |
2724 | ||
6d2010ae | 2725 | if (addr) { |
6d2010ae A |
2726 | task_t task; |
2727 | zinfo_usage_t zinfo; | |
316670eb | 2728 | vm_size_t sz = zone->elem_size; |
6d2010ae A |
2729 | |
2730 | if (zone->caller_acct) | |
316670eb | 2731 | ledger_credit(thr->t_ledger, task_ledgers.tkm_private, sz); |
6d2010ae | 2732 | else |
316670eb | 2733 | ledger_credit(thr->t_ledger, task_ledgers.tkm_shared, sz); |
6d2010ae A |
2734 | |
2735 | if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) | |
316670eb | 2736 | OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].alloc); |
6d2010ae | 2737 | } |
91447636 | 2738 | return((void *)addr); |
1c79356b A |
2739 | } |
2740 | ||
2741 | ||
91447636 | 2742 | void * |
fe8ab488 A |
2743 | zalloc(zone_t zone) |
2744 | { | |
2745 | return (zalloc_internal(zone, TRUE, FALSE)); | |
2746 | } | |
2747 | ||
2748 | void * | |
2749 | zalloc_noblock(zone_t zone) | |
2750 | { | |
2751 | return (zalloc_internal(zone, FALSE, FALSE)); | |
2752 | } | |
2753 | ||
2754 | void * | |
2755 | zalloc_nopagewait(zone_t zone) | |
1c79356b | 2756 | { |
fe8ab488 | 2757 | return (zalloc_internal(zone, TRUE, TRUE)); |
1c79356b A |
2758 | } |
2759 | ||
91447636 | 2760 | void * |
fe8ab488 | 2761 | zalloc_canblock(zone_t zone, boolean_t canblock) |
1c79356b | 2762 | { |
fe8ab488 | 2763 | return (zalloc_internal(zone, canblock, FALSE)); |
1c79356b A |
2764 | } |
2765 | ||
fe8ab488 | 2766 | |
0b4e3aa0 A |
2767 | void |
2768 | zalloc_async( | |
39236c6e | 2769 | __unused thread_call_param_t p0, |
91447636 | 2770 | __unused thread_call_param_t p1) |
0b4e3aa0 | 2771 | { |
39236c6e A |
2772 | zone_t current_z = NULL, head_z; |
2773 | unsigned int max_zones, i; | |
2774 | void *elt = NULL; | |
2775 | boolean_t pending = FALSE; | |
2776 | ||
2777 | simple_lock(&all_zones_lock); | |
2778 | head_z = first_zone; | |
2779 | max_zones = num_zones; | |
2780 | simple_unlock(&all_zones_lock); | |
2781 | current_z = head_z; | |
2782 | for (i = 0; i < max_zones; i++) { | |
2783 | lock_zone(current_z); | |
2784 | if (current_z->async_pending == TRUE) { | |
2785 | current_z->async_pending = FALSE; | |
2786 | pending = TRUE; | |
2787 | } | |
2788 | unlock_zone(current_z); | |
0b4e3aa0 | 2789 | |
39236c6e A |
2790 | if (pending == TRUE) { |
2791 | elt = zalloc_canblock(current_z, TRUE); | |
2792 | zfree(current_z, elt); | |
2793 | pending = FALSE; | |
2794 | } | |
2795 | /* | |
2796 | * This is based on assumption that zones never get | |
2797 | * freed once allocated and linked. | |
2798 | * Hence a read outside of lock is OK. | |
2799 | */ | |
2800 | current_z = current_z->next_zone; | |
2801 | } | |
0b4e3aa0 A |
2802 | } |
2803 | ||
1c79356b A |
2804 | /* |
2805 | * zget returns an element from the specified zone | |
2806 | * and immediately returns nothing if there is nothing there. | |
2807 | * | |
2808 | * This form should be used when you can not block (like when | |
2809 | * processing an interrupt). | |
6d2010ae A |
2810 | * |
2811 | * XXX: It seems like only vm_page_grab_fictitious_common uses this, and its | |
2812 | * friend vm_page_more_fictitious can block, so it doesn't seem like | |
2813 | * this is used for interrupts any more.... | |
1c79356b | 2814 | */ |
91447636 | 2815 | void * |
1c79356b A |
2816 | zget( |
2817 | register zone_t zone) | |
2818 | { | |
316670eb | 2819 | vm_offset_t addr; |
fe8ab488 | 2820 | boolean_t check_poison = FALSE; |
6d2010ae A |
2821 | |
2822 | #if CONFIG_ZLEAKS | |
2823 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used for zone leak detection */ | |
2824 | uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ | |
2825 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2826 | |
2827 | assert( zone != ZONE_NULL ); | |
2828 | ||
6d2010ae A |
2829 | #if CONFIG_ZLEAKS |
2830 | /* | |
2831 | * Zone leak detection: capture a backtrace | |
2832 | */ | |
fe8ab488 | 2833 | if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) { |
6d2010ae A |
2834 | zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH); |
2835 | } | |
2836 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b | 2837 | |
fe8ab488 A |
2838 | if (!lock_try_zone(zone)) |
2839 | return NULL; | |
2840 | ||
2841 | addr = try_alloc_from_zone(zone, &check_poison); | |
2842 | ||
2843 | vm_offset_t inner_size = zone->elem_size; | |
2844 | ||
1c79356b A |
2845 | #if ZONE_DEBUG |
2846 | if (addr && zone_debug_enabled(zone)) { | |
2847 | enqueue_tail(&zone->active_zones, (queue_entry_t)addr); | |
55e303ae | 2848 | addr += ZONE_DEBUG_OFFSET; |
fe8ab488 | 2849 | inner_size -= ZONE_DEBUG_OFFSET; |
1c79356b A |
2850 | } |
2851 | #endif /* ZONE_DEBUG */ | |
6d2010ae A |
2852 | |
2853 | #if CONFIG_ZLEAKS | |
2854 | /* | |
2855 | * Zone leak detection: record the allocation | |
2856 | */ | |
2857 | if (zone->zleak_on && zleak_tracedepth > 0 && addr) { | |
2858 | /* Sampling can fail if another sample is happening at the same time in a different zone. */ | |
2859 | if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) { | |
2860 | /* If it failed, roll back the counter so we sample the next allocation instead. */ | |
316670eb | 2861 | zone->zleak_capture = zleak_sample_factor; |
6d2010ae A |
2862 | } |
2863 | } | |
6d2010ae A |
2864 | #endif /* CONFIG_ZLEAKS */ |
2865 | ||
1c79356b A |
2866 | unlock_zone(zone); |
2867 | ||
fe8ab488 A |
2868 | if (__improbable(check_poison && addr)) { |
2869 | vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1; | |
2870 | vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr); | |
2871 | ||
2872 | for ( ; element_cursor < backup ; element_cursor++) | |
2873 | if (__improbable(*element_cursor != ZP_POISON)) | |
2874 | zone_element_was_modified_panic(zone, | |
2875 | addr, | |
2876 | *element_cursor, | |
2877 | ZP_POISON, | |
2878 | ((vm_offset_t)element_cursor) - addr); | |
2879 | } | |
2880 | ||
2881 | if (addr) { | |
2882 | /* | |
2883 | * Clear out the old next pointer and backup to avoid leaking the cookie | |
2884 | * and so that only values on the freelist have a valid cookie | |
2885 | */ | |
2886 | vm_offset_t *primary = (vm_offset_t *) addr; | |
2887 | vm_offset_t *backup = get_backup_ptr(inner_size, primary); | |
2888 | ||
2889 | *primary = ZP_POISON; | |
2890 | *backup = ZP_POISON; | |
2891 | } | |
2892 | ||
91447636 | 2893 | return((void *) addr); |
1c79356b A |
2894 | } |
2895 | ||
2896 | /* Keep this FALSE by default. Large memory machine run orders of magnitude | |
2897 | slower in debug mode when true. Use debugger to enable if needed */ | |
55e303ae A |
2898 | /* static */ boolean_t zone_check = FALSE; |
2899 | ||
39236c6e A |
2900 | static void zone_check_freelist(zone_t zone, vm_offset_t elem) |
2901 | { | |
2902 | struct zone_free_element *this; | |
2903 | struct zone_page_metadata *thispage; | |
2904 | ||
2905 | if (zone->use_page_list) { | |
2906 | if (zone->allows_foreign) { | |
2907 | for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); | |
2908 | !queue_end(&zone->pages.any_free_foreign, (queue_entry_t)thispage); | |
2909 | thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { | |
2910 | for (this = thispage->elements; | |
2911 | this != NULL; | |
2912 | this = this->next) { | |
2913 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2914 | panic("zone_check_freelist"); | |
2915 | } | |
2916 | } | |
2917 | } | |
2918 | for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); | |
2919 | !queue_end(&zone->pages.all_free, (queue_entry_t)thispage); | |
2920 | thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { | |
2921 | for (this = thispage->elements; | |
2922 | this != NULL; | |
2923 | this = this->next) { | |
2924 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2925 | panic("zone_check_freelist"); | |
2926 | } | |
2927 | } | |
2928 | for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); | |
2929 | !queue_end(&zone->pages.intermediate, (queue_entry_t)thispage); | |
2930 | thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { | |
2931 | for (this = thispage->elements; | |
2932 | this != NULL; | |
2933 | this = this->next) { | |
2934 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2935 | panic("zone_check_freelist"); | |
2936 | } | |
2937 | } | |
2938 | } else { | |
2939 | for (this = zone->free_elements; | |
2940 | this != NULL; | |
2941 | this = this->next) { | |
2942 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2943 | panic("zone_check_freelist"); | |
2944 | } | |
2945 | } | |
2946 | } | |
2947 | ||
55e303ae A |
2948 | static zone_t zone_last_bogus_zone = ZONE_NULL; |
2949 | static vm_offset_t zone_last_bogus_elem = 0; | |
1c79356b A |
2950 | |
2951 | void | |
2952 | zfree( | |
2953 | register zone_t zone, | |
91447636 | 2954 | void *addr) |
1c79356b | 2955 | { |
91447636 | 2956 | vm_offset_t elem = (vm_offset_t) addr; |
39236c6e | 2957 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* only used if zone logging is enabled via boot-args */ |
c910b4d9 | 2958 | int numsaved = 0; |
316670eb | 2959 | boolean_t gzfreed = FALSE; |
fe8ab488 | 2960 | boolean_t poison = FALSE; |
c910b4d9 A |
2961 | |
2962 | assert(zone != ZONE_NULL); | |
2963 | ||
39236c6e A |
2964 | #if 1 |
2965 | if (zone->use_page_list) { | |
2966 | struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr); | |
2967 | if (zone != page_meta->zone) { | |
2968 | /* | |
2969 | * Something bad has happened. Someone tried to zfree a pointer but the metadata says it is from | |
2970 | * a different zone (or maybe it's from a zone that doesn't use page free lists at all). We can repair | |
2971 | * some cases of this, if: | |
2972 | * 1) The specified zone had use_page_list, and the true zone also has use_page_list set. In that case | |
2973 | * we can swap the zone_t | |
2974 | * 2) The specified zone had use_page_list, but the true zone does not. In this case page_meta is garbage, | |
2975 | * and dereferencing page_meta->zone might panic. | |
2976 | * To distinguish the two, we enumerate the zone list to match it up. | |
2977 | * We do not handle the case where an incorrect zone is passed that does not have use_page_list set, | |
2978 | * even if the true zone did have this set. | |
2979 | */ | |
2980 | zone_t fixed_zone = NULL; | |
2981 | int fixed_i, max_zones; | |
2982 | ||
2983 | simple_lock(&all_zones_lock); | |
2984 | max_zones = num_zones; | |
2985 | fixed_zone = first_zone; | |
2986 | simple_unlock(&all_zones_lock); | |
2987 | ||
2988 | for (fixed_i=0; fixed_i < max_zones; fixed_i++, fixed_zone = fixed_zone->next_zone) { | |
2989 | if (fixed_zone == page_meta->zone && fixed_zone->use_page_list) { | |
2990 | /* we can fix this */ | |
2991 | printf("Fixing incorrect zfree from zone %s to zone %s\n", zone->zone_name, fixed_zone->zone_name); | |
2992 | zone = fixed_zone; | |
2993 | break; | |
2994 | } | |
2995 | } | |
2996 | } | |
2997 | } | |
2998 | #endif | |
2999 | ||
c910b4d9 A |
3000 | /* |
3001 | * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. | |
3002 | */ | |
3003 | ||
39236c6e A |
3004 | if (__improbable(DO_LOGGING(zone) && corruption_debug_flag)) |
3005 | numsaved = OSBacktrace((void *)zbt, MAX_ZTRACE_DEPTH); | |
1c79356b A |
3006 | |
3007 | #if MACH_ASSERT | |
3008 | /* Basic sanity checks */ | |
3009 | if (zone == ZONE_NULL || elem == (vm_offset_t)0) | |
3010 | panic("zfree: NULL"); | |
3011 | /* zone_gc assumes zones are never freed */ | |
3012 | if (zone == zone_zone) | |
3013 | panic("zfree: freeing to zone_zone breaks zone_gc!"); | |
55e303ae A |
3014 | #endif |
3015 | ||
316670eb A |
3016 | #if CONFIG_GZALLOC |
3017 | gzfreed = gzalloc_free(zone, addr); | |
3018 | #endif | |
3019 | ||
b0d623f7 | 3020 | TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (uintptr_t)addr); |
2d21ac55 | 3021 | |
316670eb A |
3022 | if (__improbable(!gzfreed && zone->collectable && !zone->allows_foreign && |
3023 | !from_zone_map(elem, zone->elem_size))) { | |
55e303ae | 3024 | #if MACH_ASSERT |
1c79356b | 3025 | panic("zfree: non-allocated memory in collectable zone!"); |
91447636 | 3026 | #endif |
55e303ae A |
3027 | zone_last_bogus_zone = zone; |
3028 | zone_last_bogus_elem = elem; | |
3029 | return; | |
55e303ae | 3030 | } |
1c79356b | 3031 | |
fe8ab488 A |
3032 | if ((zp_factor != 0 || zp_tiny_zone_limit != 0) && !gzfreed) { |
3033 | /* | |
3034 | * Poison the memory before it ends up on the freelist to catch | |
3035 | * use-after-free and use of uninitialized memory | |
3036 | * | |
3037 | * Always poison tiny zones' elements (limit is 0 if -no-zp is set) | |
3038 | * Also poison larger elements periodically | |
3039 | */ | |
3040 | ||
3041 | vm_offset_t inner_size = zone->elem_size; | |
3042 | ||
3043 | #if ZONE_DEBUG | |
3044 | if (!gzfreed && zone_debug_enabled(zone)) { | |
3045 | inner_size -= ZONE_DEBUG_OFFSET; | |
3046 | } | |
3047 | #endif | |
3048 | uint32_t sample_factor = zp_factor + (((uint32_t)inner_size) >> zp_scale); | |
3049 | ||
3050 | if (inner_size <= zp_tiny_zone_limit) | |
3051 | poison = TRUE; | |
3052 | else if (zp_factor != 0 && sample_counter(&zone->zp_count, sample_factor) == TRUE) | |
3053 | poison = TRUE; | |
3054 | ||
3055 | if (__improbable(poison)) { | |
3056 | ||
3057 | /* memset_pattern{4|8} could help make this faster: <rdar://problem/4662004> */ | |
3058 | /* Poison everything but primary and backup */ | |
3059 | vm_offset_t *element_cursor = ((vm_offset_t *) elem) + 1; | |
3060 | vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *)elem); | |
3061 | ||
3062 | for ( ; element_cursor < backup; element_cursor++) | |
3063 | *element_cursor = ZP_POISON; | |
3064 | } | |
3065 | } | |
3066 | ||
1c79356b | 3067 | lock_zone(zone); |
c910b4d9 A |
3068 | |
3069 | /* | |
3070 | * See if we're doing logging on this zone. There are two styles of logging used depending on | |
3071 | * whether we're trying to catch a leak or corruption. See comments above in zalloc for details. | |
3072 | */ | |
3073 | ||
39236c6e | 3074 | if (__improbable(DO_LOGGING(zone))) { |
316670eb | 3075 | if (corruption_debug_flag) { |
c910b4d9 A |
3076 | /* |
3077 | * We're logging to catch a corruption. Add a record of this zfree operation | |
3078 | * to log. | |
3079 | */ | |
39236c6e | 3080 | btlog_add_entry(zlog_btlog, (void *)addr, ZOP_FREE, (void **)zbt, numsaved); |
c910b4d9 | 3081 | } else { |
c910b4d9 A |
3082 | /* |
3083 | * We're logging to catch a leak. Remove any record we might have for this | |
3084 | * element since it's being freed. Note that we may not find it if the buffer | |
3085 | * overflowed and that's OK. Since the log is of a limited size, old records | |
3086 | * get overwritten if there are more zallocs than zfrees. | |
3087 | */ | |
39236c6e | 3088 | btlog_remove_entries_for_element(zlog_btlog, (void *)addr); |
c910b4d9 A |
3089 | } |
3090 | } | |
3091 | ||
1c79356b | 3092 | #if ZONE_DEBUG |
316670eb | 3093 | if (!gzfreed && zone_debug_enabled(zone)) { |
1c79356b A |
3094 | queue_t tmp_elem; |
3095 | ||
55e303ae | 3096 | elem -= ZONE_DEBUG_OFFSET; |
1c79356b A |
3097 | if (zone_check) { |
3098 | /* check the zone's consistency */ | |
3099 | ||
3100 | for (tmp_elem = queue_first(&zone->active_zones); | |
3101 | !queue_end(tmp_elem, &zone->active_zones); | |
3102 | tmp_elem = queue_next(tmp_elem)) | |
3103 | if (elem == (vm_offset_t)tmp_elem) | |
3104 | break; | |
3105 | if (elem != (vm_offset_t)tmp_elem) | |
3106 | panic("zfree()ing element from wrong zone"); | |
3107 | } | |
6d2010ae | 3108 | remqueue((queue_t) elem); |
1c79356b A |
3109 | } |
3110 | #endif /* ZONE_DEBUG */ | |
3111 | if (zone_check) { | |
39236c6e | 3112 | zone_check_freelist(zone, elem); |
1c79356b | 3113 | } |
316670eb A |
3114 | |
3115 | if (__probable(!gzfreed)) | |
fe8ab488 | 3116 | free_to_zone(zone, elem, poison); |
316670eb | 3117 | |
b0d623f7 A |
3118 | #if MACH_ASSERT |
3119 | if (zone->count < 0) | |
39236c6e A |
3120 | panic("zfree: zone count underflow in zone %s while freeing element %p, possible cause: double frees or freeing memory that did not come from this zone", |
3121 | zone->zone_name, addr); | |
b0d623f7 | 3122 | #endif |
6d2010ae | 3123 | |
0b4e3aa0 | 3124 | |
6d2010ae | 3125 | #if CONFIG_ZLEAKS |
6d2010ae A |
3126 | /* |
3127 | * Zone leak detection: un-track the allocation | |
3128 | */ | |
3129 | if (zone->zleak_on) { | |
3130 | zleak_free(elem, zone->elem_size); | |
3131 | } | |
3132 | #endif /* CONFIG_ZLEAKS */ | |
3133 | ||
1c79356b A |
3134 | /* |
3135 | * If elements have one or more pages, and memory is low, | |
0b4e3aa0 A |
3136 | * request to run the garbage collection in the zone the next |
3137 | * time the pageout thread runs. | |
1c79356b A |
3138 | */ |
3139 | if (zone->elem_size >= PAGE_SIZE && | |
3140 | vm_pool_low()){ | |
0b4e3aa0 | 3141 | zone_gc_forced = TRUE; |
1c79356b | 3142 | } |
1c79356b | 3143 | unlock_zone(zone); |
6d2010ae A |
3144 | |
3145 | { | |
3146 | thread_t thr = current_thread(); | |
3147 | task_t task; | |
3148 | zinfo_usage_t zinfo; | |
316670eb | 3149 | vm_size_t sz = zone->elem_size; |
6d2010ae A |
3150 | |
3151 | if (zone->caller_acct) | |
316670eb | 3152 | ledger_debit(thr->t_ledger, task_ledgers.tkm_private, sz); |
6d2010ae | 3153 | else |
316670eb A |
3154 | ledger_debit(thr->t_ledger, task_ledgers.tkm_shared, sz); |
3155 | ||
6d2010ae | 3156 | if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) |
316670eb | 3157 | OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].free); |
6d2010ae | 3158 | } |
1c79356b A |
3159 | } |
3160 | ||
3161 | ||
3162 | /* Change a zone's flags. | |
3163 | * This routine must be called immediately after zinit. | |
3164 | */ | |
3165 | void | |
3166 | zone_change( | |
3167 | zone_t zone, | |
3168 | unsigned int item, | |
3169 | boolean_t value) | |
3170 | { | |
3171 | assert( zone != ZONE_NULL ); | |
3172 | assert( value == TRUE || value == FALSE ); | |
3173 | ||
3174 | switch(item){ | |
0b4c1975 A |
3175 | case Z_NOENCRYPT: |
3176 | zone->noencrypt = value; | |
3177 | break; | |
1c79356b A |
3178 | case Z_EXHAUST: |
3179 | zone->exhaustible = value; | |
3180 | break; | |
3181 | case Z_COLLECT: | |
3182 | zone->collectable = value; | |
3183 | break; | |
3184 | case Z_EXPAND: | |
3185 | zone->expandable = value; | |
3186 | break; | |
3187 | case Z_FOREIGN: | |
3188 | zone->allows_foreign = value; | |
3189 | break; | |
6d2010ae A |
3190 | case Z_CALLERACCT: |
3191 | zone->caller_acct = value; | |
3192 | break; | |
7ddcb079 A |
3193 | case Z_NOCALLOUT: |
3194 | zone->no_callout = value; | |
3195 | break; | |
316670eb A |
3196 | case Z_GZALLOC_EXEMPT: |
3197 | zone->gzalloc_exempt = value; | |
3198 | #if CONFIG_GZALLOC | |
3199 | gzalloc_reconfigure(zone); | |
3200 | #endif | |
3201 | break; | |
3202 | case Z_ALIGNMENT_REQUIRED: | |
3203 | zone->alignment_required = value; | |
3e170ce0 A |
3204 | /* |
3205 | * Disable the page list optimization here to provide | |
3206 | * more of an alignment guarantee. This prevents | |
3207 | * the alignment from being modified by the metadata stored | |
3208 | * at the beginning of the page. | |
3209 | */ | |
3210 | zone->use_page_list = FALSE; | |
316670eb A |
3211 | #if ZONE_DEBUG |
3212 | zone_debug_disable(zone); | |
3213 | #endif | |
3214 | #if CONFIG_GZALLOC | |
3215 | gzalloc_reconfigure(zone); | |
3216 | #endif | |
3217 | break; | |
1c79356b A |
3218 | default: |
3219 | panic("Zone_change: Wrong Item Type!"); | |
3220 | /* break; */ | |
1c79356b | 3221 | } |
1c79356b A |
3222 | } |
3223 | ||
3224 | /* | |
3225 | * Return the expected number of free elements in the zone. | |
3226 | * This calculation will be incorrect if items are zfree'd that | |
3227 | * were never zalloc'd/zget'd. The correct way to stuff memory | |
3228 | * into a zone is by zcram. | |
3229 | */ | |
3230 | ||
3231 | integer_t | |
3232 | zone_free_count(zone_t zone) | |
3233 | { | |
3234 | integer_t free_count; | |
3235 | ||
3236 | lock_zone(zone); | |
39236c6e | 3237 | free_count = zone->countfree; |
1c79356b A |
3238 | unlock_zone(zone); |
3239 | ||
3240 | assert(free_count >= 0); | |
3241 | ||
3242 | return(free_count); | |
3243 | } | |
3244 | ||
1c79356b A |
3245 | /* |
3246 | * Zone garbage collection subroutines | |
1c79356b | 3247 | */ |
55e303ae | 3248 | |
1c79356b A |
3249 | boolean_t |
3250 | zone_page_collectable( | |
3251 | vm_offset_t addr, | |
3252 | vm_size_t size) | |
3253 | { | |
55e303ae | 3254 | struct zone_page_table_entry *zp; |
7ddcb079 | 3255 | zone_page_index_t i, j; |
1c79356b | 3256 | |
2d21ac55 A |
3257 | #if ZONE_ALIAS_ADDR |
3258 | addr = zone_virtual_addr(addr); | |
3259 | #endif | |
1c79356b | 3260 | #if MACH_ASSERT |
55e303ae | 3261 | if (!from_zone_map(addr, size)) |
1c79356b A |
3262 | panic("zone_page_collectable"); |
3263 | #endif | |
3264 | ||
7ddcb079 A |
3265 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3266 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
55e303ae | 3267 | |
7ddcb079 A |
3268 | for (; i <= j; i++) { |
3269 | zp = zone_page_table_lookup(i); | |
55e303ae | 3270 | if (zp->collect_count == zp->alloc_count) |
1c79356b | 3271 | return (TRUE); |
7ddcb079 | 3272 | } |
55e303ae | 3273 | |
1c79356b A |
3274 | return (FALSE); |
3275 | } | |
3276 | ||
3277 | void | |
3278 | zone_page_keep( | |
3279 | vm_offset_t addr, | |
3280 | vm_size_t size) | |
3281 | { | |
55e303ae | 3282 | struct zone_page_table_entry *zp; |
7ddcb079 | 3283 | zone_page_index_t i, j; |
1c79356b | 3284 | |
2d21ac55 A |
3285 | #if ZONE_ALIAS_ADDR |
3286 | addr = zone_virtual_addr(addr); | |
3287 | #endif | |
1c79356b | 3288 | #if MACH_ASSERT |
55e303ae | 3289 | if (!from_zone_map(addr, size)) |
1c79356b A |
3290 | panic("zone_page_keep"); |
3291 | #endif | |
3292 | ||
7ddcb079 A |
3293 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3294 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
1c79356b | 3295 | |
7ddcb079 A |
3296 | for (; i <= j; i++) { |
3297 | zp = zone_page_table_lookup(i); | |
55e303ae | 3298 | zp->collect_count = 0; |
7ddcb079 | 3299 | } |
1c79356b A |
3300 | } |
3301 | ||
3302 | void | |
55e303ae | 3303 | zone_page_collect( |
1c79356b A |
3304 | vm_offset_t addr, |
3305 | vm_size_t size) | |
3306 | { | |
55e303ae | 3307 | struct zone_page_table_entry *zp; |
7ddcb079 | 3308 | zone_page_index_t i, j; |
1c79356b | 3309 | |
2d21ac55 A |
3310 | #if ZONE_ALIAS_ADDR |
3311 | addr = zone_virtual_addr(addr); | |
3312 | #endif | |
1c79356b | 3313 | #if MACH_ASSERT |
55e303ae A |
3314 | if (!from_zone_map(addr, size)) |
3315 | panic("zone_page_collect"); | |
1c79356b A |
3316 | #endif |
3317 | ||
7ddcb079 A |
3318 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3319 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
55e303ae | 3320 | |
7ddcb079 A |
3321 | for (; i <= j; i++) { |
3322 | zp = zone_page_table_lookup(i); | |
55e303ae | 3323 | ++zp->collect_count; |
7ddcb079 | 3324 | } |
1c79356b A |
3325 | } |
3326 | ||
3327 | void | |
3328 | zone_page_init( | |
3329 | vm_offset_t addr, | |
7ddcb079 | 3330 | vm_size_t size) |
1c79356b | 3331 | { |
55e303ae | 3332 | struct zone_page_table_entry *zp; |
7ddcb079 | 3333 | zone_page_index_t i, j; |
1c79356b | 3334 | |
2d21ac55 A |
3335 | #if ZONE_ALIAS_ADDR |
3336 | addr = zone_virtual_addr(addr); | |
3337 | #endif | |
1c79356b | 3338 | #if MACH_ASSERT |
55e303ae | 3339 | if (!from_zone_map(addr, size)) |
1c79356b A |
3340 | panic("zone_page_init"); |
3341 | #endif | |
3342 | ||
7ddcb079 A |
3343 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3344 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
3345 | ||
3346 | for (; i <= j; i++) { | |
3347 | /* make sure entry exists before marking unused */ | |
3348 | zone_page_table_expand(i); | |
55e303ae | 3349 | |
7ddcb079 A |
3350 | zp = zone_page_table_lookup(i); |
3351 | assert(zp); | |
3352 | zp->alloc_count = ZONE_PAGE_UNUSED; | |
55e303ae | 3353 | zp->collect_count = 0; |
1c79356b | 3354 | } |
1c79356b A |
3355 | } |
3356 | ||
3357 | void | |
3358 | zone_page_alloc( | |
3359 | vm_offset_t addr, | |
3360 | vm_size_t size) | |
3361 | { | |
55e303ae | 3362 | struct zone_page_table_entry *zp; |
7ddcb079 | 3363 | zone_page_index_t i, j; |
1c79356b | 3364 | |
2d21ac55 A |
3365 | #if ZONE_ALIAS_ADDR |
3366 | addr = zone_virtual_addr(addr); | |
3367 | #endif | |
1c79356b | 3368 | #if MACH_ASSERT |
55e303ae | 3369 | if (!from_zone_map(addr, size)) |
1c79356b A |
3370 | panic("zone_page_alloc"); |
3371 | #endif | |
3372 | ||
7ddcb079 A |
3373 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3374 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
3375 | ||
3376 | for (; i <= j; i++) { | |
3377 | zp = zone_page_table_lookup(i); | |
3378 | assert(zp); | |
55e303ae | 3379 | |
55e303ae | 3380 | /* |
7ddcb079 | 3381 | * Set alloc_count to ZONE_PAGE_USED if |
1c79356b A |
3382 | * it was previously set to ZONE_PAGE_UNUSED. |
3383 | */ | |
55e303ae | 3384 | if (zp->alloc_count == ZONE_PAGE_UNUSED) |
7ddcb079 A |
3385 | zp->alloc_count = ZONE_PAGE_USED; |
3386 | ||
3387 | ++zp->alloc_count; | |
1c79356b | 3388 | } |
1c79356b A |
3389 | } |
3390 | ||
3391 | void | |
55e303ae | 3392 | zone_page_free_element( |
316670eb A |
3393 | zone_page_index_t *free_page_head, |
3394 | zone_page_index_t *free_page_tail, | |
1c79356b A |
3395 | vm_offset_t addr, |
3396 | vm_size_t size) | |
3397 | { | |
55e303ae | 3398 | struct zone_page_table_entry *zp; |
7ddcb079 | 3399 | zone_page_index_t i, j; |
1c79356b | 3400 | |
2d21ac55 A |
3401 | #if ZONE_ALIAS_ADDR |
3402 | addr = zone_virtual_addr(addr); | |
3403 | #endif | |
1c79356b | 3404 | #if MACH_ASSERT |
55e303ae A |
3405 | if (!from_zone_map(addr, size)) |
3406 | panic("zone_page_free_element"); | |
1c79356b A |
3407 | #endif |
3408 | ||
39236c6e A |
3409 | /* Clear out the old next and backup pointers */ |
3410 | vm_offset_t *primary = (vm_offset_t *) addr; | |
3411 | vm_offset_t *backup = get_backup_ptr(size, primary); | |
3412 | ||
3413 | *primary = ZP_POISON; | |
3414 | *backup = ZP_POISON; | |
3415 | ||
7ddcb079 A |
3416 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3417 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
3418 | ||
3419 | for (; i <= j; i++) { | |
3420 | zp = zone_page_table_lookup(i); | |
1c79356b | 3421 | |
55e303ae A |
3422 | if (zp->collect_count > 0) |
3423 | --zp->collect_count; | |
3424 | if (--zp->alloc_count == 0) { | |
7ddcb079 | 3425 | vm_address_t free_page_address; |
316670eb | 3426 | vm_address_t prev_free_page_address; |
7ddcb079 | 3427 | |
55e303ae A |
3428 | zp->alloc_count = ZONE_PAGE_UNUSED; |
3429 | zp->collect_count = 0; | |
1c79356b | 3430 | |
7ddcb079 A |
3431 | |
3432 | /* | |
3433 | * This element was the last one on this page, re-use the page's | |
3434 | * storage for a page freelist | |
3435 | */ | |
3436 | free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)i); | |
316670eb A |
3437 | *(zone_page_index_t *)free_page_address = ZONE_PAGE_INDEX_INVALID; |
3438 | ||
3439 | if (*free_page_head == ZONE_PAGE_INDEX_INVALID) { | |
3440 | *free_page_head = i; | |
3441 | *free_page_tail = i; | |
3442 | } else { | |
3443 | prev_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)(*free_page_tail)); | |
3444 | *(zone_page_index_t *)prev_free_page_address = i; | |
3445 | *free_page_tail = i; | |
3446 | } | |
1c79356b A |
3447 | } |
3448 | } | |
1c79356b A |
3449 | } |
3450 | ||
3451 | ||
3e170ce0 | 3452 | #define ZONEGC_SMALL_ELEMENT_SIZE 4096 |
2d21ac55 | 3453 | |
55e303ae | 3454 | struct { |
39236c6e A |
3455 | uint64_t zgc_invoked; |
3456 | uint64_t zgc_bailed; | |
55e303ae A |
3457 | uint32_t pgs_freed; |
3458 | ||
3459 | uint32_t elems_collected, | |
3460 | elems_freed, | |
3461 | elems_kept; | |
3462 | } zgc_stats; | |
1c79356b A |
3463 | |
3464 | /* Zone garbage collection | |
3465 | * | |
3466 | * zone_gc will walk through all the free elements in all the | |
3467 | * zones that are marked collectable looking for reclaimable | |
3468 | * pages. zone_gc is called by consider_zone_gc when the system | |
3469 | * begins to run out of memory. | |
3470 | */ | |
3471 | void | |
316670eb | 3472 | zone_gc(boolean_t all_zones) |
1c79356b A |
3473 | { |
3474 | unsigned int max_zones; | |
55e303ae | 3475 | zone_t z; |
1c79356b | 3476 | unsigned int i; |
39236c6e | 3477 | uint32_t old_pgs_freed; |
7ddcb079 | 3478 | zone_page_index_t zone_free_page_head; |
316670eb A |
3479 | zone_page_index_t zone_free_page_tail; |
3480 | thread_t mythread = current_thread(); | |
1c79356b | 3481 | |
b0d623f7 | 3482 | lck_mtx_lock(&zone_gc_lock); |
1c79356b | 3483 | |
39236c6e A |
3484 | zgc_stats.zgc_invoked++; |
3485 | old_pgs_freed = zgc_stats.pgs_freed; | |
3486 | ||
1c79356b A |
3487 | simple_lock(&all_zones_lock); |
3488 | max_zones = num_zones; | |
3489 | z = first_zone; | |
3490 | simple_unlock(&all_zones_lock); | |
3491 | ||
39236c6e A |
3492 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) |
3493 | kprintf("zone_gc(all_zones=%s) starting...\n", all_zones ? "TRUE" : "FALSE"); | |
316670eb A |
3494 | |
3495 | /* | |
3496 | * it's ok to allow eager kernel preemption while | |
3497 | * while holding a zone lock since it's taken | |
3498 | * as a spin lock (which prevents preemption) | |
3499 | */ | |
3500 | thread_set_eager_preempt(mythread); | |
3501 | ||
1c79356b | 3502 | #if MACH_ASSERT |
7ddcb079 A |
3503 | for (i = 0; i < zone_pages; i++) { |
3504 | struct zone_page_table_entry *zp; | |
3505 | ||
3506 | zp = zone_page_table_lookup(i); | |
3507 | assert(!zp || (zp->collect_count == 0)); | |
3508 | } | |
1c79356b A |
3509 | #endif /* MACH_ASSERT */ |
3510 | ||
1c79356b | 3511 | for (i = 0; i < max_zones; i++, z = z->next_zone) { |
316670eb A |
3512 | unsigned int n, m; |
3513 | vm_size_t elt_size, size_freed; | |
a3d08fcd | 3514 | struct zone_free_element *elt, *base_elt, *base_prev, *prev, *scan, *keep, *tail; |
39236c6e A |
3515 | int kmem_frees = 0, total_freed_pages = 0; |
3516 | struct zone_page_metadata *page_meta; | |
3517 | queue_head_t page_meta_head; | |
1c79356b A |
3518 | |
3519 | assert(z != ZONE_NULL); | |
3520 | ||
3521 | if (!z->collectable) | |
3522 | continue; | |
3523 | ||
3e170ce0 | 3524 | if (all_zones == FALSE && z->elem_size < ZONEGC_SMALL_ELEMENT_SIZE && !z->use_page_list) |
316670eb A |
3525 | continue; |
3526 | ||
1c79356b A |
3527 | lock_zone(z); |
3528 | ||
55e303ae A |
3529 | elt_size = z->elem_size; |
3530 | ||
1c79356b | 3531 | /* |
316670eb | 3532 | * Do a quick feasibility check before we scan the zone: |
91447636 A |
3533 | * skip unless there is likelihood of getting pages back |
3534 | * (i.e we need a whole allocation block's worth of free | |
3535 | * elements before we can garbage collect) and | |
3536 | * the zone has more than 10 percent of it's elements free | |
2d21ac55 | 3537 | * or the element size is a multiple of the PAGE_SIZE |
1c79356b | 3538 | */ |
2d21ac55 | 3539 | if ((elt_size & PAGE_MASK) && |
39236c6e | 3540 | !z->use_page_list && |
2d21ac55 A |
3541 | (((z->cur_size - z->count * elt_size) <= (2 * z->alloc_size)) || |
3542 | ((z->cur_size - z->count * elt_size) <= (z->cur_size / 10)))) { | |
1c79356b A |
3543 | unlock_zone(z); |
3544 | continue; | |
3545 | } | |
3546 | ||
a3d08fcd A |
3547 | z->doing_gc = TRUE; |
3548 | ||
55e303ae A |
3549 | /* |
3550 | * Snatch all of the free elements away from the zone. | |
1c79356b | 3551 | */ |
1c79356b | 3552 | |
39236c6e A |
3553 | if (z->use_page_list) { |
3554 | queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages); | |
3555 | queue_init(&z->pages.all_free); | |
3556 | } else { | |
3557 | scan = (void *)z->free_elements; | |
3558 | z->free_elements = 0; | |
3559 | } | |
55e303ae A |
3560 | |
3561 | unlock_zone(z); | |
3562 | ||
39236c6e A |
3563 | if (z->use_page_list) { |
3564 | /* | |
3565 | * For zones that maintain page lists (which in turn | |
3566 | * track free elements on those pages), zone_gc() | |
3567 | * is incredibly easy, and we bypass all the logic | |
3568 | * for scanning elements and mapping them to | |
3569 | * collectable pages | |
3570 | */ | |
3571 | ||
3572 | size_freed = 0; | |
3573 | ||
3574 | queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) { | |
3575 | assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */ | |
3576 | ||
3577 | zgc_stats.elems_freed += page_meta->free_count; | |
3578 | size_freed += elt_size * page_meta->free_count; | |
3579 | zgc_stats.elems_collected += page_meta->free_count; | |
3580 | } | |
3581 | ||
3582 | lock_zone(z); | |
3583 | ||
3584 | if (size_freed > 0) { | |
3585 | z->cur_size -= size_freed; | |
3586 | z->countfree -= size_freed/elt_size; | |
3587 | } | |
3588 | ||
3589 | z->doing_gc = FALSE; | |
3590 | if (z->waiting) { | |
3591 | z->waiting = FALSE; | |
3592 | zone_wakeup(z); | |
3593 | } | |
3594 | ||
3595 | unlock_zone(z); | |
3596 | ||
3597 | if (queue_empty(&page_meta_head)) | |
3598 | continue; | |
3599 | ||
3600 | thread_clear_eager_preempt(mythread); | |
3601 | ||
3602 | while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) { | |
3603 | vm_address_t free_page_address; | |
3604 | ||
3605 | free_page_address = trunc_page((vm_address_t)page_meta); | |
3606 | #if ZONE_ALIAS_ADDR | |
3607 | free_page_address = zone_virtual_addr(free_page_address); | |
3608 | #endif | |
3609 | kmem_free(zone_map, free_page_address, PAGE_SIZE); | |
3610 | ZONE_PAGE_COUNT_DECR(z, 1); | |
3611 | total_freed_pages++; | |
3612 | zgc_stats.pgs_freed += 1; | |
3613 | ||
3614 | if (++kmem_frees == 32) { | |
3615 | thread_yield_internal(1); | |
3616 | kmem_frees = 0; | |
3617 | } | |
3618 | } | |
3619 | ||
3620 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) | |
3621 | kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages); | |
3622 | ||
3623 | thread_set_eager_preempt(mythread); | |
3624 | continue; /* go to next zone */ | |
3625 | } | |
3626 | ||
55e303ae A |
3627 | /* |
3628 | * Pass 1: | |
3629 | * | |
3630 | * Determine which elements we can attempt to collect | |
3631 | * and count them up in the page table. Foreign elements | |
3632 | * are returned to the zone. | |
1c79356b | 3633 | */ |
55e303ae A |
3634 | |
3635 | prev = (void *)&scan; | |
3636 | elt = scan; | |
3637 | n = 0; tail = keep = NULL; | |
316670eb A |
3638 | |
3639 | zone_free_page_head = ZONE_PAGE_INDEX_INVALID; | |
3640 | zone_free_page_tail = ZONE_PAGE_INDEX_INVALID; | |
3641 | ||
3642 | ||
55e303ae A |
3643 | while (elt != NULL) { |
3644 | if (from_zone_map(elt, elt_size)) { | |
3645 | zone_page_collect((vm_offset_t)elt, elt_size); | |
3646 | ||
1c79356b A |
3647 | prev = elt; |
3648 | elt = elt->next; | |
55e303ae A |
3649 | |
3650 | ++zgc_stats.elems_collected; | |
1c79356b | 3651 | } |
55e303ae A |
3652 | else { |
3653 | if (keep == NULL) | |
3654 | keep = tail = elt; | |
2d21ac55 | 3655 | else { |
39236c6e | 3656 | append_zone_element(z, tail, elt); |
2d21ac55 A |
3657 | tail = elt; |
3658 | } | |
55e303ae | 3659 | |
39236c6e | 3660 | append_zone_element(z, prev, elt->next); |
2d21ac55 | 3661 | elt = elt->next; |
39236c6e | 3662 | append_zone_element(z, tail, NULL); |
1c79356b | 3663 | } |
1c79356b | 3664 | |
55e303ae A |
3665 | /* |
3666 | * Dribble back the elements we are keeping. | |
39236c6e A |
3667 | * If there are none, give some elements that we haven't looked at yet |
3668 | * back to the freelist so that others waiting on the zone don't get stuck | |
3669 | * for too long. This might prevent us from recovering some memory, | |
3670 | * but allows us to avoid having to allocate new memory to serve requests | |
3671 | * while zone_gc has all the free memory tied up. | |
3672 | * <rdar://problem/3893406> | |
55e303ae A |
3673 | */ |
3674 | ||
a3d08fcd A |
3675 | if (++n >= 50) { |
3676 | if (z->waiting == TRUE) { | |
7ddcb079 | 3677 | /* z->waiting checked without lock held, rechecked below after locking */ |
a3d08fcd | 3678 | lock_zone(z); |
55e303ae | 3679 | |
a3d08fcd | 3680 | if (keep != NULL) { |
39236c6e | 3681 | add_list_to_zone(z, keep, tail); |
a3d08fcd A |
3682 | tail = keep = NULL; |
3683 | } else { | |
3684 | m =0; | |
3685 | base_elt = elt; | |
3686 | base_prev = prev; | |
3687 | while ((elt != NULL) && (++m < 50)) { | |
3688 | prev = elt; | |
3689 | elt = elt->next; | |
3690 | } | |
3691 | if (m !=0 ) { | |
39236c6e A |
3692 | /* Extract the elements from the list and |
3693 | * give them back */ | |
3694 | append_zone_element(z, prev, NULL); | |
3695 | add_list_to_zone(z, base_elt, prev); | |
3696 | append_zone_element(z, base_prev, elt); | |
a3d08fcd A |
3697 | prev = base_prev; |
3698 | } | |
3699 | } | |
55e303ae | 3700 | |
a3d08fcd A |
3701 | if (z->waiting) { |
3702 | z->waiting = FALSE; | |
3703 | zone_wakeup(z); | |
3704 | } | |
55e303ae | 3705 | |
a3d08fcd A |
3706 | unlock_zone(z); |
3707 | } | |
3708 | n =0; | |
55e303ae A |
3709 | } |
3710 | } | |
3711 | ||
3712 | /* | |
3713 | * Return any remaining elements. | |
3714 | */ | |
3715 | ||
3716 | if (keep != NULL) { | |
3717 | lock_zone(z); | |
3718 | ||
39236c6e | 3719 | add_list_to_zone(z, keep, tail); |
55e303ae | 3720 | |
7ddcb079 A |
3721 | if (z->waiting) { |
3722 | z->waiting = FALSE; | |
3723 | zone_wakeup(z); | |
3724 | } | |
3725 | ||
55e303ae A |
3726 | unlock_zone(z); |
3727 | } | |
3728 | ||
3729 | /* | |
3730 | * Pass 2: | |
3731 | * | |
3732 | * Determine which pages we can reclaim and | |
3733 | * free those elements. | |
3734 | */ | |
3735 | ||
3736 | size_freed = 0; | |
55e303ae A |
3737 | elt = scan; |
3738 | n = 0; tail = keep = NULL; | |
316670eb | 3739 | |
55e303ae A |
3740 | while (elt != NULL) { |
3741 | if (zone_page_collectable((vm_offset_t)elt, elt_size)) { | |
7ddcb079 A |
3742 | struct zone_free_element *next_elt = elt->next; |
3743 | ||
55e303ae | 3744 | size_freed += elt_size; |
7ddcb079 A |
3745 | |
3746 | /* | |
3747 | * If this is the last allocation on the page(s), | |
3748 | * we may use their storage to maintain the linked | |
3749 | * list of free-able pages. So store elt->next because | |
3750 | * "elt" may be scribbled over. | |
3751 | */ | |
316670eb | 3752 | zone_page_free_element(&zone_free_page_head, &zone_free_page_tail, (vm_offset_t)elt, elt_size); |
55e303ae | 3753 | |
7ddcb079 | 3754 | elt = next_elt; |
55e303ae A |
3755 | |
3756 | ++zgc_stats.elems_freed; | |
3757 | } | |
3758 | else { | |
3759 | zone_page_keep((vm_offset_t)elt, elt_size); | |
3760 | ||
3761 | if (keep == NULL) | |
3762 | keep = tail = elt; | |
2d21ac55 | 3763 | else { |
39236c6e | 3764 | append_zone_element(z, tail, elt); |
2d21ac55 A |
3765 | tail = elt; |
3766 | } | |
55e303ae | 3767 | |
2d21ac55 | 3768 | elt = elt->next; |
39236c6e | 3769 | append_zone_element(z, tail, NULL); |
55e303ae A |
3770 | |
3771 | ++zgc_stats.elems_kept; | |
3772 | } | |
3773 | ||
3774 | /* | |
3775 | * Dribble back the elements we are keeping, | |
3776 | * and update the zone size info. | |
3777 | */ | |
3778 | ||
a3d08fcd | 3779 | if (++n >= 50) { |
55e303ae A |
3780 | lock_zone(z); |
3781 | ||
3782 | z->cur_size -= size_freed; | |
39236c6e | 3783 | z->countfree -= size_freed/elt_size; |
55e303ae A |
3784 | size_freed = 0; |
3785 | ||
a3d08fcd | 3786 | if (keep != NULL) { |
39236c6e | 3787 | add_list_to_zone(z, keep, tail); |
a3d08fcd A |
3788 | } |
3789 | ||
3790 | if (z->waiting) { | |
3791 | z->waiting = FALSE; | |
3792 | zone_wakeup(z); | |
3793 | } | |
55e303ae A |
3794 | |
3795 | unlock_zone(z); | |
3796 | ||
3797 | n = 0; tail = keep = NULL; | |
3798 | } | |
3799 | } | |
3800 | ||
3801 | /* | |
3802 | * Return any remaining elements, and update | |
3803 | * the zone size info. | |
3804 | */ | |
3805 | ||
a3d08fcd A |
3806 | lock_zone(z); |
3807 | ||
55e303ae | 3808 | if (size_freed > 0 || keep != NULL) { |
55e303ae A |
3809 | |
3810 | z->cur_size -= size_freed; | |
39236c6e | 3811 | z->countfree -= size_freed/elt_size; |
55e303ae A |
3812 | |
3813 | if (keep != NULL) { | |
39236c6e | 3814 | add_list_to_zone(z, keep, tail); |
55e303ae A |
3815 | } |
3816 | ||
55e303ae | 3817 | } |
a3d08fcd A |
3818 | |
3819 | z->doing_gc = FALSE; | |
3820 | if (z->waiting) { | |
3821 | z->waiting = FALSE; | |
3822 | zone_wakeup(z); | |
3823 | } | |
3824 | unlock_zone(z); | |
1c79356b | 3825 | |
316670eb A |
3826 | if (zone_free_page_head == ZONE_PAGE_INDEX_INVALID) |
3827 | continue; | |
3828 | ||
3829 | /* | |
3830 | * we don't want to allow eager kernel preemption while holding the | |
3831 | * various locks taken in the kmem_free path of execution | |
3832 | */ | |
3833 | thread_clear_eager_preempt(mythread); | |
3834 | ||
39236c6e A |
3835 | |
3836 | /* | |
3837 | * This loop counts the number of pages that should be freed by the | |
3838 | * next loop that tries to coalesce the kmem_frees() | |
3839 | */ | |
3840 | uint32_t pages_to_free_count = 0; | |
3841 | vm_address_t fpa; | |
3842 | zone_page_index_t index; | |
3843 | for (index = zone_free_page_head; index != ZONE_PAGE_INDEX_INVALID;) { | |
3844 | pages_to_free_count++; | |
3845 | fpa = zone_map_min_address + PAGE_SIZE * ((vm_size_t)index); | |
3846 | index = *(zone_page_index_t *)fpa; | |
3847 | } | |
3848 | ||
316670eb A |
3849 | /* |
3850 | * Reclaim the pages we are freeing. | |
3851 | */ | |
3852 | while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) { | |
3853 | zone_page_index_t zind = zone_free_page_head; | |
3854 | vm_address_t free_page_address; | |
3855 | int page_count; | |
3856 | ||
3857 | /* | |
3858 | * Use the first word of the page about to be freed to find the next free page | |
3859 | */ | |
3860 | free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)zind); | |
3861 | zone_free_page_head = *(zone_page_index_t *)free_page_address; | |
3862 | ||
3863 | page_count = 1; | |
39236c6e | 3864 | total_freed_pages++; |
316670eb A |
3865 | |
3866 | while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) { | |
3867 | zone_page_index_t next_zind = zone_free_page_head; | |
3868 | vm_address_t next_free_page_address; | |
3869 | ||
3870 | next_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)next_zind); | |
3871 | ||
3872 | if (next_free_page_address == (free_page_address - PAGE_SIZE)) { | |
3873 | free_page_address = next_free_page_address; | |
3874 | } else if (next_free_page_address != (free_page_address + (PAGE_SIZE * page_count))) | |
3875 | break; | |
3876 | ||
3877 | zone_free_page_head = *(zone_page_index_t *)next_free_page_address; | |
3878 | page_count++; | |
39236c6e | 3879 | total_freed_pages++; |
316670eb A |
3880 | } |
3881 | kmem_free(zone_map, free_page_address, page_count * PAGE_SIZE); | |
39236c6e | 3882 | ZONE_PAGE_COUNT_DECR(z, page_count); |
316670eb | 3883 | zgc_stats.pgs_freed += page_count; |
39236c6e | 3884 | pages_to_free_count -= page_count; |
7ddcb079 | 3885 | |
316670eb A |
3886 | if (++kmem_frees == 32) { |
3887 | thread_yield_internal(1); | |
3888 | kmem_frees = 0; | |
3889 | } | |
3890 | } | |
39236c6e A |
3891 | |
3892 | /* Check that we actually free the exact number of pages we were supposed to */ | |
3893 | assert(pages_to_free_count == 0); | |
3894 | ||
3895 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) | |
3896 | kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages); | |
3897 | ||
316670eb | 3898 | thread_set_eager_preempt(mythread); |
1c79356b | 3899 | } |
39236c6e A |
3900 | |
3901 | if (old_pgs_freed == zgc_stats.pgs_freed) | |
3902 | zgc_stats.zgc_bailed++; | |
3903 | ||
316670eb | 3904 | thread_clear_eager_preempt(mythread); |
55e303ae | 3905 | |
b0d623f7 | 3906 | lck_mtx_unlock(&zone_gc_lock); |
316670eb | 3907 | |
1c79356b A |
3908 | } |
3909 | ||
316670eb A |
3910 | extern vm_offset_t kmapoff_kaddr; |
3911 | extern unsigned int kmapoff_pgcnt; | |
3912 | ||
1c79356b A |
3913 | /* |
3914 | * consider_zone_gc: | |
3915 | * | |
3916 | * Called by the pageout daemon when the system needs more free pages. | |
3917 | */ | |
3918 | ||
3919 | void | |
b0d623f7 | 3920 | consider_zone_gc(boolean_t force) |
1c79356b | 3921 | { |
316670eb A |
3922 | boolean_t all_zones = FALSE; |
3923 | ||
3924 | if (kmapoff_kaddr != 0) { | |
3925 | /* | |
3926 | * One-time reclaim of kernel_map resources we allocated in | |
3927 | * early boot. | |
3928 | */ | |
3929 | (void) vm_deallocate(kernel_map, | |
3930 | kmapoff_kaddr, kmapoff_pgcnt * PAGE_SIZE_64); | |
3931 | kmapoff_kaddr = 0; | |
3932 | } | |
1c79356b A |
3933 | |
3934 | if (zone_gc_allowed && | |
6d2010ae | 3935 | (zone_gc_allowed_by_time_throttle || |
b0d623f7 A |
3936 | zone_gc_forced || |
3937 | force)) { | |
316670eb A |
3938 | if (zone_gc_allowed_by_time_throttle == TRUE) { |
3939 | zone_gc_allowed_by_time_throttle = FALSE; | |
3940 | all_zones = TRUE; | |
3941 | } | |
0b4e3aa0 | 3942 | zone_gc_forced = FALSE; |
316670eb A |
3943 | |
3944 | zone_gc(all_zones); | |
1c79356b A |
3945 | } |
3946 | } | |
3947 | ||
6d2010ae A |
3948 | /* |
3949 | * By default, don't attempt zone GC more frequently | |
3950 | * than once / 1 minutes. | |
3951 | */ | |
3952 | void | |
3953 | compute_zone_gc_throttle(void *arg __unused) | |
3954 | { | |
3955 | zone_gc_allowed_by_time_throttle = TRUE; | |
3956 | } | |
2d21ac55 | 3957 | |
1c79356b | 3958 | |
316670eb A |
3959 | #if CONFIG_TASK_ZONE_INFO |
3960 | ||
6d2010ae A |
3961 | kern_return_t |
3962 | task_zone_info( | |
3963 | task_t task, | |
3964 | mach_zone_name_array_t *namesp, | |
3965 | mach_msg_type_number_t *namesCntp, | |
3966 | task_zone_info_array_t *infop, | |
3967 | mach_msg_type_number_t *infoCntp) | |
3968 | { | |
3969 | mach_zone_name_t *names; | |
3970 | vm_offset_t names_addr; | |
3971 | vm_size_t names_size; | |
3972 | task_zone_info_t *info; | |
3973 | vm_offset_t info_addr; | |
3974 | vm_size_t info_size; | |
3975 | unsigned int max_zones, i; | |
3976 | zone_t z; | |
3977 | mach_zone_name_t *zn; | |
3978 | task_zone_info_t *zi; | |
3979 | kern_return_t kr; | |
3980 | ||
3981 | vm_size_t used; | |
3982 | vm_map_copy_t copy; | |
3983 | ||
3984 | ||
3985 | if (task == TASK_NULL) | |
3986 | return KERN_INVALID_TASK; | |
3987 | ||
3988 | /* | |
3989 | * We assume that zones aren't freed once allocated. | |
3990 | * We won't pick up any zones that are allocated later. | |
3991 | */ | |
3992 | ||
3993 | simple_lock(&all_zones_lock); | |
3994 | max_zones = (unsigned int)(num_zones + num_fake_zones); | |
3995 | z = first_zone; | |
3996 | simple_unlock(&all_zones_lock); | |
3997 | ||
3998 | names_size = round_page(max_zones * sizeof *names); | |
3999 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 4000 | &names_addr, names_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
4001 | if (kr != KERN_SUCCESS) |
4002 | return kr; | |
4003 | names = (mach_zone_name_t *) names_addr; | |
4004 | ||
4005 | info_size = round_page(max_zones * sizeof *info); | |
4006 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 4007 | &info_addr, info_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
4008 | if (kr != KERN_SUCCESS) { |
4009 | kmem_free(ipc_kernel_map, | |
4010 | names_addr, names_size); | |
4011 | return kr; | |
4012 | } | |
4013 | ||
4014 | info = (task_zone_info_t *) info_addr; | |
4015 | ||
4016 | zn = &names[0]; | |
4017 | zi = &info[0]; | |
4018 | ||
4019 | for (i = 0; i < max_zones - num_fake_zones; i++) { | |
4020 | struct zone zcopy; | |
4021 | ||
4022 | assert(z != ZONE_NULL); | |
4023 | ||
4024 | lock_zone(z); | |
4025 | zcopy = *z; | |
4026 | unlock_zone(z); | |
4027 | ||
4028 | simple_lock(&all_zones_lock); | |
4029 | z = z->next_zone; | |
4030 | simple_unlock(&all_zones_lock); | |
4031 | ||
4032 | /* assuming here the name data is static */ | |
4033 | (void) strncpy(zn->mzn_name, zcopy.zone_name, | |
4034 | sizeof zn->mzn_name); | |
4035 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
4036 | ||
4037 | zi->tzi_count = (uint64_t)zcopy.count; | |
3e170ce0 | 4038 | zi->tzi_cur_size = ptoa_64(zcopy.page_count); |
6d2010ae A |
4039 | zi->tzi_max_size = (uint64_t)zcopy.max_size; |
4040 | zi->tzi_elem_size = (uint64_t)zcopy.elem_size; | |
4041 | zi->tzi_alloc_size = (uint64_t)zcopy.alloc_size; | |
4042 | zi->tzi_sum_size = zcopy.sum_count * zcopy.elem_size; | |
4043 | zi->tzi_exhaustible = (uint64_t)zcopy.exhaustible; | |
4044 | zi->tzi_collectable = (uint64_t)zcopy.collectable; | |
4045 | zi->tzi_caller_acct = (uint64_t)zcopy.caller_acct; | |
4046 | if (task->tkm_zinfo != NULL) { | |
4047 | zi->tzi_task_alloc = task->tkm_zinfo[zcopy.index].alloc; | |
4048 | zi->tzi_task_free = task->tkm_zinfo[zcopy.index].free; | |
4049 | } else { | |
4050 | zi->tzi_task_alloc = 0; | |
4051 | zi->tzi_task_free = 0; | |
4052 | } | |
4053 | zn++; | |
4054 | zi++; | |
4055 | } | |
4056 | ||
4057 | /* | |
4058 | * loop through the fake zones and fill them using the specialized | |
4059 | * functions | |
4060 | */ | |
4061 | for (i = 0; i < num_fake_zones; i++) { | |
4062 | int count, collectable, exhaustible, caller_acct, index; | |
4063 | vm_size_t cur_size, max_size, elem_size, alloc_size; | |
4064 | uint64_t sum_size; | |
4065 | ||
4066 | strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name); | |
4067 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
4068 | fake_zones[i].query(&count, &cur_size, | |
4069 | &max_size, &elem_size, | |
4070 | &alloc_size, &sum_size, | |
4071 | &collectable, &exhaustible, &caller_acct); | |
4072 | zi->tzi_count = (uint64_t)count; | |
4073 | zi->tzi_cur_size = (uint64_t)cur_size; | |
4074 | zi->tzi_max_size = (uint64_t)max_size; | |
4075 | zi->tzi_elem_size = (uint64_t)elem_size; | |
4076 | zi->tzi_alloc_size = (uint64_t)alloc_size; | |
4077 | zi->tzi_sum_size = sum_size; | |
4078 | zi->tzi_collectable = (uint64_t)collectable; | |
4079 | zi->tzi_exhaustible = (uint64_t)exhaustible; | |
4080 | zi->tzi_caller_acct = (uint64_t)caller_acct; | |
4081 | if (task->tkm_zinfo != NULL) { | |
4082 | index = ZINFO_SLOTS - num_fake_zones + i; | |
4083 | zi->tzi_task_alloc = task->tkm_zinfo[index].alloc; | |
4084 | zi->tzi_task_free = task->tkm_zinfo[index].free; | |
4085 | } else { | |
4086 | zi->tzi_task_alloc = 0; | |
4087 | zi->tzi_task_free = 0; | |
4088 | } | |
4089 | zn++; | |
4090 | zi++; | |
4091 | } | |
4092 | ||
4093 | used = max_zones * sizeof *names; | |
4094 | if (used != names_size) | |
4095 | bzero((char *) (names_addr + used), names_size - used); | |
4096 | ||
4097 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, | |
2dced7af | 4098 | (vm_map_size_t)used, TRUE, ©); |
6d2010ae A |
4099 | assert(kr == KERN_SUCCESS); |
4100 | ||
4101 | *namesp = (mach_zone_name_t *) copy; | |
4102 | *namesCntp = max_zones; | |
4103 | ||
4104 | used = max_zones * sizeof *info; | |
4105 | ||
4106 | if (used != info_size) | |
4107 | bzero((char *) (info_addr + used), info_size - used); | |
4108 | ||
4109 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, | |
2dced7af | 4110 | (vm_map_size_t)used, TRUE, ©); |
6d2010ae A |
4111 | assert(kr == KERN_SUCCESS); |
4112 | ||
4113 | *infop = (task_zone_info_t *) copy; | |
4114 | *infoCntp = max_zones; | |
4115 | ||
4116 | return KERN_SUCCESS; | |
4117 | } | |
4118 | ||
316670eb A |
4119 | #else /* CONFIG_TASK_ZONE_INFO */ |
4120 | ||
4121 | kern_return_t | |
4122 | task_zone_info( | |
4123 | __unused task_t task, | |
4124 | __unused mach_zone_name_array_t *namesp, | |
4125 | __unused mach_msg_type_number_t *namesCntp, | |
4126 | __unused task_zone_info_array_t *infop, | |
4127 | __unused mach_msg_type_number_t *infoCntp) | |
4128 | { | |
4129 | return KERN_FAILURE; | |
4130 | } | |
4131 | ||
4132 | #endif /* CONFIG_TASK_ZONE_INFO */ | |
4133 | ||
6d2010ae A |
4134 | kern_return_t |
4135 | mach_zone_info( | |
316670eb | 4136 | host_priv_t host, |
6d2010ae A |
4137 | mach_zone_name_array_t *namesp, |
4138 | mach_msg_type_number_t *namesCntp, | |
4139 | mach_zone_info_array_t *infop, | |
4140 | mach_msg_type_number_t *infoCntp) | |
3e170ce0 A |
4141 | { |
4142 | return (mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL)); | |
4143 | } | |
4144 | ||
4145 | kern_return_t | |
4146 | mach_memory_info( | |
4147 | host_priv_t host, | |
4148 | mach_zone_name_array_t *namesp, | |
4149 | mach_msg_type_number_t *namesCntp, | |
4150 | mach_zone_info_array_t *infop, | |
4151 | mach_msg_type_number_t *infoCntp, | |
4152 | mach_memory_info_array_t *memoryInfop, | |
4153 | mach_msg_type_number_t *memoryInfoCntp) | |
6d2010ae A |
4154 | { |
4155 | mach_zone_name_t *names; | |
4156 | vm_offset_t names_addr; | |
4157 | vm_size_t names_size; | |
3e170ce0 | 4158 | |
6d2010ae A |
4159 | mach_zone_info_t *info; |
4160 | vm_offset_t info_addr; | |
4161 | vm_size_t info_size; | |
3e170ce0 A |
4162 | |
4163 | mach_memory_info_t *memory_info; | |
4164 | vm_offset_t memory_info_addr; | |
4165 | vm_size_t memory_info_size; | |
2dced7af | 4166 | vm_size_t memory_info_vmsize; |
3e170ce0 A |
4167 | unsigned int num_sites; |
4168 | ||
6d2010ae A |
4169 | unsigned int max_zones, i; |
4170 | zone_t z; | |
4171 | mach_zone_name_t *zn; | |
4172 | mach_zone_info_t *zi; | |
4173 | kern_return_t kr; | |
4174 | ||
4175 | vm_size_t used; | |
4176 | vm_map_copy_t copy; | |
4177 | ||
4178 | ||
4179 | if (host == HOST_NULL) | |
4180 | return KERN_INVALID_HOST; | |
316670eb A |
4181 | #if CONFIG_DEBUGGER_FOR_ZONE_INFO |
4182 | if (!PE_i_can_has_debugger(NULL)) | |
4183 | return KERN_INVALID_HOST; | |
4184 | #endif | |
6d2010ae A |
4185 | |
4186 | /* | |
4187 | * We assume that zones aren't freed once allocated. | |
4188 | * We won't pick up any zones that are allocated later. | |
4189 | */ | |
4190 | ||
4191 | simple_lock(&all_zones_lock); | |
4192 | max_zones = (unsigned int)(num_zones + num_fake_zones); | |
4193 | z = first_zone; | |
4194 | simple_unlock(&all_zones_lock); | |
4195 | ||
4196 | names_size = round_page(max_zones * sizeof *names); | |
4197 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 4198 | &names_addr, names_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
4199 | if (kr != KERN_SUCCESS) |
4200 | return kr; | |
4201 | names = (mach_zone_name_t *) names_addr; | |
4202 | ||
4203 | info_size = round_page(max_zones * sizeof *info); | |
4204 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 4205 | &info_addr, info_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
4206 | if (kr != KERN_SUCCESS) { |
4207 | kmem_free(ipc_kernel_map, | |
4208 | names_addr, names_size); | |
4209 | return kr; | |
4210 | } | |
6d2010ae A |
4211 | info = (mach_zone_info_t *) info_addr; |
4212 | ||
3e170ce0 A |
4213 | num_sites = 0; |
4214 | memory_info_addr = 0; | |
4215 | if (memoryInfop && memoryInfoCntp) | |
4216 | { | |
4217 | num_sites = VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT; | |
2dced7af A |
4218 | memory_info_size = num_sites * sizeof(*info); |
4219 | memory_info_vmsize = round_page(memory_info_size); | |
3e170ce0 | 4220 | kr = kmem_alloc_pageable(ipc_kernel_map, |
2dced7af | 4221 | &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC); |
3e170ce0 A |
4222 | if (kr != KERN_SUCCESS) { |
4223 | kmem_free(ipc_kernel_map, | |
4224 | names_addr, names_size); | |
4225 | kmem_free(ipc_kernel_map, | |
4226 | info_addr, info_size); | |
4227 | return kr; | |
4228 | } | |
4229 | ||
2dced7af | 4230 | kr = vm_map_wire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, |
3e170ce0 A |
4231 | VM_PROT_READ|VM_PROT_WRITE|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_IPC), FALSE); |
4232 | assert(kr == KERN_SUCCESS); | |
4233 | ||
4234 | memory_info = (mach_memory_info_t *) memory_info_addr; | |
4235 | vm_page_diagnose(memory_info, num_sites); | |
4236 | ||
2dced7af | 4237 | kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE); |
3e170ce0 A |
4238 | assert(kr == KERN_SUCCESS); |
4239 | } | |
4240 | ||
6d2010ae A |
4241 | zn = &names[0]; |
4242 | zi = &info[0]; | |
4243 | ||
4244 | for (i = 0; i < max_zones - num_fake_zones; i++) { | |
4245 | struct zone zcopy; | |
4246 | ||
4247 | assert(z != ZONE_NULL); | |
4248 | ||
4249 | lock_zone(z); | |
4250 | zcopy = *z; | |
4251 | unlock_zone(z); | |
4252 | ||
4253 | simple_lock(&all_zones_lock); | |
4254 | z = z->next_zone; | |
4255 | simple_unlock(&all_zones_lock); | |
4256 | ||
4257 | /* assuming here the name data is static */ | |
4258 | (void) strncpy(zn->mzn_name, zcopy.zone_name, | |
4259 | sizeof zn->mzn_name); | |
4260 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
4261 | ||
4262 | zi->mzi_count = (uint64_t)zcopy.count; | |
3e170ce0 | 4263 | zi->mzi_cur_size = ptoa_64(zcopy.page_count); |
6d2010ae A |
4264 | zi->mzi_max_size = (uint64_t)zcopy.max_size; |
4265 | zi->mzi_elem_size = (uint64_t)zcopy.elem_size; | |
4266 | zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size; | |
4267 | zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size; | |
4268 | zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible; | |
4269 | zi->mzi_collectable = (uint64_t)zcopy.collectable; | |
4270 | zn++; | |
4271 | zi++; | |
4272 | } | |
4273 | ||
4274 | /* | |
4275 | * loop through the fake zones and fill them using the specialized | |
4276 | * functions | |
4277 | */ | |
4278 | for (i = 0; i < num_fake_zones; i++) { | |
4279 | int count, collectable, exhaustible, caller_acct; | |
4280 | vm_size_t cur_size, max_size, elem_size, alloc_size; | |
4281 | uint64_t sum_size; | |
4282 | ||
4283 | strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name); | |
4284 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
4285 | fake_zones[i].query(&count, &cur_size, | |
4286 | &max_size, &elem_size, | |
4287 | &alloc_size, &sum_size, | |
4288 | &collectable, &exhaustible, &caller_acct); | |
4289 | zi->mzi_count = (uint64_t)count; | |
4290 | zi->mzi_cur_size = (uint64_t)cur_size; | |
4291 | zi->mzi_max_size = (uint64_t)max_size; | |
4292 | zi->mzi_elem_size = (uint64_t)elem_size; | |
4293 | zi->mzi_alloc_size = (uint64_t)alloc_size; | |
4294 | zi->mzi_sum_size = sum_size; | |
4295 | zi->mzi_collectable = (uint64_t)collectable; | |
4296 | zi->mzi_exhaustible = (uint64_t)exhaustible; | |
4297 | ||
4298 | zn++; | |
4299 | zi++; | |
4300 | } | |
4301 | ||
4302 | used = max_zones * sizeof *names; | |
4303 | if (used != names_size) | |
4304 | bzero((char *) (names_addr + used), names_size - used); | |
4305 | ||
4306 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, | |
2dced7af | 4307 | (vm_map_size_t)used, TRUE, ©); |
6d2010ae A |
4308 | assert(kr == KERN_SUCCESS); |
4309 | ||
4310 | *namesp = (mach_zone_name_t *) copy; | |
4311 | *namesCntp = max_zones; | |
4312 | ||
4313 | used = max_zones * sizeof *info; | |
4314 | ||
4315 | if (used != info_size) | |
4316 | bzero((char *) (info_addr + used), info_size - used); | |
4317 | ||
4318 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, | |
2dced7af | 4319 | (vm_map_size_t)used, TRUE, ©); |
6d2010ae A |
4320 | assert(kr == KERN_SUCCESS); |
4321 | ||
4322 | *infop = (mach_zone_info_t *) copy; | |
4323 | *infoCntp = max_zones; | |
4324 | ||
3e170ce0 A |
4325 | if (memoryInfop && memoryInfoCntp) |
4326 | { | |
4327 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr, | |
4328 | (vm_map_size_t)memory_info_size, TRUE, ©); | |
4329 | assert(kr == KERN_SUCCESS); | |
4330 | ||
4331 | *memoryInfop = (mach_memory_info_t *) copy; | |
4332 | *memoryInfoCntp = num_sites; | |
4333 | } | |
4334 | ||
6d2010ae A |
4335 | return KERN_SUCCESS; |
4336 | } | |
4337 | ||
4338 | /* | |
4339 | * host_zone_info - LEGACY user interface for Mach zone information | |
4340 | * Should use mach_zone_info() instead! | |
4341 | */ | |
1c79356b A |
4342 | kern_return_t |
4343 | host_zone_info( | |
316670eb | 4344 | host_priv_t host, |
1c79356b A |
4345 | zone_name_array_t *namesp, |
4346 | mach_msg_type_number_t *namesCntp, | |
4347 | zone_info_array_t *infop, | |
4348 | mach_msg_type_number_t *infoCntp) | |
4349 | { | |
4350 | zone_name_t *names; | |
4351 | vm_offset_t names_addr; | |
4352 | vm_size_t names_size; | |
4353 | zone_info_t *info; | |
4354 | vm_offset_t info_addr; | |
4355 | vm_size_t info_size; | |
4356 | unsigned int max_zones, i; | |
4357 | zone_t z; | |
4358 | zone_name_t *zn; | |
4359 | zone_info_t *zi; | |
4360 | kern_return_t kr; | |
6d2010ae A |
4361 | |
4362 | vm_size_t used; | |
4363 | vm_map_copy_t copy; | |
1c79356b | 4364 | |
b0d623f7 | 4365 | |
1c79356b A |
4366 | if (host == HOST_NULL) |
4367 | return KERN_INVALID_HOST; | |
316670eb A |
4368 | #if CONFIG_DEBUGGER_FOR_ZONE_INFO |
4369 | if (!PE_i_can_has_debugger(NULL)) | |
4370 | return KERN_INVALID_HOST; | |
4371 | #endif | |
1c79356b | 4372 | |
b0d623f7 A |
4373 | #if defined(__LP64__) |
4374 | if (!thread_is_64bit(current_thread())) | |
4375 | return KERN_NOT_SUPPORTED; | |
4376 | #else | |
4377 | if (thread_is_64bit(current_thread())) | |
4378 | return KERN_NOT_SUPPORTED; | |
4379 | #endif | |
4380 | ||
1c79356b A |
4381 | /* |
4382 | * We assume that zones aren't freed once allocated. | |
4383 | * We won't pick up any zones that are allocated later. | |
4384 | */ | |
4385 | ||
4386 | simple_lock(&all_zones_lock); | |
b0d623f7 | 4387 | max_zones = (unsigned int)(num_zones + num_fake_zones); |
1c79356b A |
4388 | z = first_zone; |
4389 | simple_unlock(&all_zones_lock); | |
4390 | ||
6d2010ae A |
4391 | names_size = round_page(max_zones * sizeof *names); |
4392 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 4393 | &names_addr, names_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
4394 | if (kr != KERN_SUCCESS) |
4395 | return kr; | |
4396 | names = (zone_name_t *) names_addr; | |
4397 | ||
4398 | info_size = round_page(max_zones * sizeof *info); | |
4399 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 4400 | &info_addr, info_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
4401 | if (kr != KERN_SUCCESS) { |
4402 | kmem_free(ipc_kernel_map, | |
4403 | names_addr, names_size); | |
4404 | return kr; | |
1c79356b | 4405 | } |
6d2010ae A |
4406 | |
4407 | info = (zone_info_t *) info_addr; | |
4408 | ||
1c79356b A |
4409 | zn = &names[0]; |
4410 | zi = &info[0]; | |
4411 | ||
6d2010ae | 4412 | for (i = 0; i < max_zones - num_fake_zones; i++) { |
1c79356b A |
4413 | struct zone zcopy; |
4414 | ||
4415 | assert(z != ZONE_NULL); | |
4416 | ||
4417 | lock_zone(z); | |
4418 | zcopy = *z; | |
4419 | unlock_zone(z); | |
4420 | ||
4421 | simple_lock(&all_zones_lock); | |
4422 | z = z->next_zone; | |
4423 | simple_unlock(&all_zones_lock); | |
4424 | ||
4425 | /* assuming here the name data is static */ | |
4426 | (void) strncpy(zn->zn_name, zcopy.zone_name, | |
4427 | sizeof zn->zn_name); | |
2d21ac55 | 4428 | zn->zn_name[sizeof zn->zn_name - 1] = '\0'; |
1c79356b A |
4429 | |
4430 | zi->zi_count = zcopy.count; | |
3e170ce0 | 4431 | zi->zi_cur_size = ptoa(zcopy.page_count); |
1c79356b A |
4432 | zi->zi_max_size = zcopy.max_size; |
4433 | zi->zi_elem_size = zcopy.elem_size; | |
4434 | zi->zi_alloc_size = zcopy.alloc_size; | |
4435 | zi->zi_exhaustible = zcopy.exhaustible; | |
4436 | zi->zi_collectable = zcopy.collectable; | |
4437 | ||
4438 | zn++; | |
4439 | zi++; | |
4440 | } | |
0c530ab8 | 4441 | |
2d21ac55 A |
4442 | /* |
4443 | * loop through the fake zones and fill them using the specialized | |
4444 | * functions | |
4445 | */ | |
4446 | for (i = 0; i < num_fake_zones; i++) { | |
6d2010ae A |
4447 | int caller_acct; |
4448 | uint64_t sum_space; | |
2d21ac55 A |
4449 | strncpy(zn->zn_name, fake_zones[i].name, sizeof zn->zn_name); |
4450 | zn->zn_name[sizeof zn->zn_name - 1] = '\0'; | |
6d2010ae A |
4451 | fake_zones[i].query(&zi->zi_count, &zi->zi_cur_size, |
4452 | &zi->zi_max_size, &zi->zi_elem_size, | |
4453 | &zi->zi_alloc_size, &sum_space, | |
4454 | &zi->zi_collectable, &zi->zi_exhaustible, &caller_acct); | |
2d21ac55 A |
4455 | zn++; |
4456 | zi++; | |
4457 | } | |
1c79356b | 4458 | |
6d2010ae A |
4459 | used = max_zones * sizeof *names; |
4460 | if (used != names_size) | |
4461 | bzero((char *) (names_addr + used), names_size - used); | |
1c79356b | 4462 | |
6d2010ae | 4463 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, |
2dced7af | 4464 | (vm_map_size_t)used, TRUE, ©); |
6d2010ae | 4465 | assert(kr == KERN_SUCCESS); |
1c79356b | 4466 | |
6d2010ae | 4467 | *namesp = (zone_name_t *) copy; |
1c79356b A |
4468 | *namesCntp = max_zones; |
4469 | ||
6d2010ae A |
4470 | used = max_zones * sizeof *info; |
4471 | if (used != info_size) | |
4472 | bzero((char *) (info_addr + used), info_size - used); | |
1c79356b | 4473 | |
6d2010ae | 4474 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, |
2dced7af | 4475 | (vm_map_size_t)used, TRUE, ©); |
6d2010ae | 4476 | assert(kr == KERN_SUCCESS); |
1c79356b | 4477 | |
6d2010ae | 4478 | *infop = (zone_info_t *) copy; |
1c79356b A |
4479 | *infoCntp = max_zones; |
4480 | ||
4481 | return KERN_SUCCESS; | |
4482 | } | |
4483 | ||
316670eb A |
4484 | kern_return_t |
4485 | mach_zone_force_gc( | |
4486 | host_t host) | |
4487 | { | |
4488 | ||
4489 | if (host == HOST_NULL) | |
4490 | return KERN_INVALID_HOST; | |
4491 | ||
4492 | consider_zone_gc(TRUE); | |
4493 | ||
4494 | return (KERN_SUCCESS); | |
4495 | } | |
4496 | ||
b0d623f7 | 4497 | extern unsigned int stack_total; |
6d2010ae | 4498 | extern unsigned long long stack_allocs; |
b0d623f7 A |
4499 | |
4500 | #if defined(__i386__) || defined (__x86_64__) | |
4501 | extern unsigned int inuse_ptepages_count; | |
6d2010ae | 4502 | extern long long alloc_ptepages_count; |
b0d623f7 A |
4503 | #endif |
4504 | ||
4505 | void zone_display_zprint() | |
4506 | { | |
4507 | unsigned int i; | |
4508 | zone_t the_zone; | |
4509 | ||
4510 | if(first_zone!=NULL) { | |
4511 | the_zone = first_zone; | |
4512 | for (i = 0; i < num_zones; i++) { | |
4513 | if(the_zone->cur_size > (1024*1024)) { | |
4514 | printf("%.20s:\t%lu\n",the_zone->zone_name,(uintptr_t)the_zone->cur_size); | |
4515 | } | |
4516 | ||
4517 | if(the_zone->next_zone == NULL) { | |
4518 | break; | |
4519 | } | |
4520 | ||
4521 | the_zone = the_zone->next_zone; | |
4522 | } | |
4523 | } | |
4524 | ||
4525 | printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size * stack_total)); | |
4526 | ||
4527 | #if defined(__i386__) || defined (__x86_64__) | |
4528 | printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE * inuse_ptepages_count)); | |
4529 | #endif | |
4530 | ||
4531 | printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total); | |
4532 | } | |
4533 | ||
39236c6e A |
4534 | zone_t |
4535 | zone_find_largest(void) | |
4536 | { | |
4537 | unsigned int i; | |
4538 | unsigned int max_zones; | |
4539 | zone_t the_zone; | |
4540 | zone_t zone_largest; | |
4541 | ||
4542 | simple_lock(&all_zones_lock); | |
4543 | the_zone = first_zone; | |
4544 | max_zones = num_zones; | |
4545 | simple_unlock(&all_zones_lock); | |
4546 | ||
4547 | zone_largest = the_zone; | |
4548 | for (i = 0; i < max_zones; i++) { | |
4549 | if (the_zone->cur_size > zone_largest->cur_size) { | |
4550 | zone_largest = the_zone; | |
4551 | } | |
4552 | ||
4553 | if (the_zone->next_zone == NULL) { | |
4554 | break; | |
4555 | } | |
4556 | ||
4557 | the_zone = the_zone->next_zone; | |
4558 | } | |
4559 | return zone_largest; | |
4560 | } | |
4561 | ||
1c79356b A |
4562 | #if ZONE_DEBUG |
4563 | ||
4564 | /* should we care about locks here ? */ | |
4565 | ||
39236c6e A |
4566 | #define zone_in_use(z) ( z->count || z->free_elements \ |
4567 | || !queue_empty(&z->pages.all_free) \ | |
4568 | || !queue_empty(&z->pages.intermediate) \ | |
4569 | || (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign))) | |
1c79356b A |
4570 | |
4571 | void | |
4572 | zone_debug_enable( | |
4573 | zone_t z) | |
4574 | { | |
4575 | if (zone_debug_enabled(z) || zone_in_use(z) || | |
55e303ae | 4576 | z->alloc_size < (z->elem_size + ZONE_DEBUG_OFFSET)) |
1c79356b A |
4577 | return; |
4578 | queue_init(&z->active_zones); | |
55e303ae | 4579 | z->elem_size += ZONE_DEBUG_OFFSET; |
1c79356b A |
4580 | } |
4581 | ||
4582 | void | |
4583 | zone_debug_disable( | |
4584 | zone_t z) | |
4585 | { | |
4586 | if (!zone_debug_enabled(z) || zone_in_use(z)) | |
4587 | return; | |
55e303ae | 4588 | z->elem_size -= ZONE_DEBUG_OFFSET; |
2d21ac55 | 4589 | z->active_zones.next = z->active_zones.prev = NULL; |
1c79356b | 4590 | } |
b0d623f7 A |
4591 | |
4592 | ||
1c79356b | 4593 | #endif /* ZONE_DEBUG */ |