]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
fe8ab488 | 2 | * Copyright (c) 2000-2014 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: kern/zalloc.c | |
60 | * Author: Avadis Tevanian, Jr. | |
61 | * | |
62 | * Zone-based memory allocator. A zone is a collection of fixed size | |
63 | * data blocks for which quick allocation/deallocation is possible. | |
64 | */ | |
65 | #include <zone_debug.h> | |
2d21ac55 | 66 | #include <zone_alias_addr.h> |
91447636 A |
67 | |
68 | #include <mach/mach_types.h> | |
69 | #include <mach/vm_param.h> | |
70 | #include <mach/kern_return.h> | |
71 | #include <mach/mach_host_server.h> | |
6d2010ae | 72 | #include <mach/task_server.h> |
91447636 A |
73 | #include <mach/machine/vm_types.h> |
74 | #include <mach_debug/zone_info.h> | |
316670eb | 75 | #include <mach/vm_map.h> |
91447636 A |
76 | |
77 | #include <kern/kern_types.h> | |
1c79356b | 78 | #include <kern/assert.h> |
91447636 | 79 | #include <kern/host.h> |
1c79356b A |
80 | #include <kern/macro_help.h> |
81 | #include <kern/sched.h> | |
b0d623f7 | 82 | #include <kern/locks.h> |
1c79356b A |
83 | #include <kern/sched_prim.h> |
84 | #include <kern/misc_protos.h> | |
0b4e3aa0 | 85 | #include <kern/thread_call.h> |
1c79356b | 86 | #include <kern/zalloc.h> |
91447636 | 87 | #include <kern/kalloc.h> |
39236c6e | 88 | #include <kern/btlog.h> |
91447636 A |
89 | |
90 | #include <vm/pmap.h> | |
91 | #include <vm/vm_map.h> | |
1c79356b | 92 | #include <vm/vm_kern.h> |
91447636 A |
93 | #include <vm/vm_page.h> |
94 | ||
316670eb A |
95 | #include <pexpert/pexpert.h> |
96 | ||
1c79356b | 97 | #include <machine/machparam.h> |
39236c6e | 98 | #include <machine/machine_routines.h> /* ml_cpu_get_info */ |
1c79356b | 99 | |
2d21ac55 | 100 | #include <libkern/OSDebug.h> |
7ddcb079 | 101 | #include <libkern/OSAtomic.h> |
2d21ac55 A |
102 | #include <sys/kdebug.h> |
103 | ||
39236c6e A |
104 | /* |
105 | * ZONE_ALIAS_ADDR | |
106 | * | |
107 | * With this option enabled, zones with alloc_size <= PAGE_SIZE allocate | |
108 | * a virtual page from the zone_map, but before zcram-ing the allocated memory | |
109 | * into the zone, the page is translated to use the alias address of the page | |
110 | * in the static kernel region. zone_gc reverses that translation when | |
111 | * scanning the freelist to collect free pages so that it can look up the page | |
112 | * in the zone_page_table, and free it to kmem_free. | |
113 | * | |
114 | * The static kernel region is a flat 1:1 mapping of physical memory passed | |
115 | * to xnu by the booter. It is mapped to the range: | |
116 | * [gVirtBase, gVirtBase + gPhysSize] | |
117 | * | |
118 | * Accessing memory via the static kernel region is faster due to the | |
119 | * entire region being mapped via large pages, cutting down | |
120 | * on TLB misses. | |
121 | * | |
122 | * zinit favors using PAGE_SIZE backing allocations for a zone unless it would | |
123 | * waste more than 10% space to use a single page, in order to take advantage | |
124 | * of the speed benefit for as many zones as possible. | |
125 | * | |
126 | * Zones with > PAGE_SIZE allocations can't take advantage of this | |
127 | * because kernel_memory_allocate doesn't give out physically contiguous pages. | |
128 | * | |
129 | * zone_virtual_addr() | |
130 | * - translates an address from the static kernel region to the zone_map | |
131 | * - returns the same address if it's not from the static kernel region | |
132 | * It relies on the fact that a physical page mapped to the | |
133 | * zone_map is not mapped anywhere else (except the static kernel region). | |
134 | * | |
135 | * zone_alias_addr() | |
136 | * - translates a virtual memory address from the zone_map to the | |
137 | * corresponding address in the static kernel region | |
138 | * | |
139 | */ | |
140 | ||
141 | #if !ZONE_ALIAS_ADDR | |
142 | #define from_zone_map(addr, size) \ | |
143 | ((vm_offset_t)(addr) >= zone_map_min_address && \ | |
144 | ((vm_offset_t)(addr) + size - 1) < zone_map_max_address ) | |
145 | #else | |
146 | #define from_zone_map(addr, size) \ | |
147 | ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) >= zone_map_min_address && \ | |
148 | ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) + size -1) < zone_map_max_address ) | |
149 | #endif | |
150 | ||
151 | /* | |
c910b4d9 A |
152 | * Zone Corruption Debugging |
153 | * | |
39236c6e A |
154 | * We use three techniques to detect modification of a zone element |
155 | * after it's been freed. | |
316670eb | 156 | * |
39236c6e A |
157 | * (1) Check the freelist next pointer for sanity. |
158 | * (2) Store a backup of the next pointer at the end of the element, | |
159 | * and compare it to the primary next pointer when the element is allocated | |
160 | * to detect corruption of the freelist due to use-after-free bugs. | |
161 | * The backup pointer is also XORed with a per-boot random cookie. | |
162 | * (3) Poison the freed element by overwriting it with 0xdeadbeef, | |
163 | * and check for that value when the element is being reused to make sure | |
164 | * no part of the element has been modified while it was on the freelist. | |
165 | * This will also help catch read-after-frees, as code will now dereference | |
166 | * 0xdeadbeef instead of a valid but freed pointer. | |
316670eb | 167 | * |
39236c6e A |
168 | * (1) and (2) occur for every allocation and free to a zone. |
169 | * This is done to make it slightly more difficult for an attacker to | |
170 | * manipulate the freelist to behave in a specific way. | |
c910b4d9 | 171 | * |
39236c6e A |
172 | * Poisoning (3) occurs periodically for every N frees (counted per-zone) |
173 | * and on every free for zones smaller than a cacheline. If -zp | |
174 | * is passed as a boot arg, poisoning occurs for every free. | |
c910b4d9 | 175 | * |
39236c6e A |
176 | * Performance slowdown is inversely proportional to the frequency of poisoning, |
177 | * with a 4-5% hit around N=1, down to ~0.3% at N=16 and just "noise" at N=32 | |
178 | * and higher. You can expect to find a 100% reproducible bug in an average of | |
179 | * N tries, with a standard deviation of about N, but you will want to set | |
180 | * "-zp" to always poison every free if you are attempting to reproduce | |
181 | * a known bug. | |
316670eb | 182 | * |
39236c6e A |
183 | * For a more heavyweight, but finer-grained method of detecting misuse |
184 | * of zone memory, look up the "Guard mode" zone allocator in gzalloc.c. | |
185 | * | |
186 | * Zone Corruption Logging | |
187 | * | |
188 | * You can also track where corruptions come from by using the boot-arguments | |
189 | * "zlog=<zone name to log> -zc". Search for "Zone corruption logging" later | |
190 | * in this document for more implementation and usage information. | |
191 | * | |
192 | * Zone Leak Detection | |
193 | * | |
194 | * To debug leaks of zone memory, use the zone leak detection tool 'zleaks' | |
195 | * found later in this file via the showtopztrace and showz* macros in kgmacros, | |
196 | * or use zlog without the -zc argument. | |
316670eb | 197 | * |
316670eb A |
198 | */ |
199 | ||
fe8ab488 A |
200 | /* Returns TRUE if we rolled over the counter at factor */ |
201 | static inline boolean_t | |
202 | sample_counter(volatile uint32_t * count_p, uint32_t factor) | |
203 | { | |
204 | uint32_t old_count, new_count; | |
205 | boolean_t rolled_over; | |
206 | ||
207 | do { | |
208 | new_count = old_count = *count_p; | |
209 | ||
210 | if (++new_count >= factor) { | |
211 | rolled_over = TRUE; | |
212 | new_count = 0; | |
213 | } else { | |
214 | rolled_over = FALSE; | |
215 | } | |
216 | ||
217 | } while (!OSCompareAndSwap(old_count, new_count, count_p)); | |
218 | ||
219 | return rolled_over; | |
220 | } | |
316670eb | 221 | |
39236c6e A |
222 | #if defined(__LP64__) |
223 | #define ZP_POISON 0xdeadbeefdeadbeef | |
224 | #else | |
225 | #define ZP_POISON 0xdeadbeef | |
226 | #endif | |
316670eb | 227 | |
39236c6e | 228 | #define ZP_DEFAULT_SAMPLING_FACTOR 16 |
fe8ab488 | 229 | #define ZP_DEFAULT_SCALE_FACTOR 4 |
316670eb | 230 | |
39236c6e A |
231 | /* |
232 | * A zp_factor of 0 indicates zone poisoning is disabled, | |
233 | * however, we still poison zones smaller than zp_tiny_zone_limit (a cacheline). | |
234 | * Passing the -no-zp boot-arg disables even this behavior. | |
235 | * In all cases, we record and check the integrity of a backup pointer. | |
316670eb | 236 | */ |
39236c6e A |
237 | |
238 | /* set by zp-factor=N boot arg, zero indicates non-tiny poisoning disabled */ | |
239 | uint32_t zp_factor = 0; | |
240 | ||
fe8ab488 A |
241 | /* set by zp-scale=N boot arg, scales zp_factor by zone size */ |
242 | uint32_t zp_scale = 0; | |
243 | ||
39236c6e A |
244 | /* set in zp_init, zero indicates -no-zp boot-arg */ |
245 | vm_size_t zp_tiny_zone_limit = 0; | |
246 | ||
247 | /* initialized to a per-boot random value in zp_init */ | |
248 | uintptr_t zp_poisoned_cookie = 0; | |
249 | uintptr_t zp_nopoison_cookie = 0; | |
250 | ||
316670eb A |
251 | |
252 | /* | |
39236c6e A |
253 | * initialize zone poisoning |
254 | * called from zone_bootstrap before any allocations are made from zalloc | |
316670eb A |
255 | */ |
256 | static inline void | |
39236c6e A |
257 | zp_init(void) |
258 | { | |
259 | char temp_buf[16]; | |
260 | ||
261 | /* | |
262 | * Initialize backup pointer random cookie for poisoned elements | |
263 | * Try not to call early_random() back to back, it may return | |
264 | * the same value if mach_absolute_time doesn't have sufficient time | |
265 | * to tick over between calls. <rdar://problem/11597395> | |
266 | * (This is only a problem on embedded devices) | |
267 | */ | |
268 | zp_poisoned_cookie = (uintptr_t) early_random(); | |
269 | ||
270 | /* | |
271 | * Always poison zones smaller than a cacheline, | |
272 | * because it's pretty close to free | |
273 | */ | |
274 | ml_cpu_info_t cpu_info; | |
275 | ml_cpu_get_info(&cpu_info); | |
276 | zp_tiny_zone_limit = (vm_size_t) cpu_info.cache_line_size; | |
277 | ||
278 | zp_factor = ZP_DEFAULT_SAMPLING_FACTOR; | |
fe8ab488 | 279 | zp_scale = ZP_DEFAULT_SCALE_FACTOR; |
39236c6e A |
280 | |
281 | //TODO: Bigger permutation? | |
282 | /* | |
283 | * Permute the default factor +/- 1 to make it less predictable | |
284 | * This adds or subtracts ~4 poisoned objects per 1000 frees. | |
285 | */ | |
286 | if (zp_factor != 0) { | |
287 | uint32_t rand_bits = early_random() & 0x3; | |
288 | ||
289 | if (rand_bits == 0x1) | |
290 | zp_factor += 1; | |
291 | else if (rand_bits == 0x2) | |
292 | zp_factor -= 1; | |
293 | /* if 0x0 or 0x3, leave it alone */ | |
294 | } | |
295 | ||
296 | /* -zp: enable poisoning for every alloc and free */ | |
297 | if (PE_parse_boot_argn("-zp", temp_buf, sizeof(temp_buf))) { | |
298 | zp_factor = 1; | |
299 | } | |
300 | ||
301 | /* -no-zp: disable poisoning completely even for tiny zones */ | |
302 | if (PE_parse_boot_argn("-no-zp", temp_buf, sizeof(temp_buf))) { | |
303 | zp_factor = 0; | |
304 | zp_tiny_zone_limit = 0; | |
305 | printf("Zone poisoning disabled\n"); | |
306 | } | |
307 | ||
308 | /* zp-factor=XXXX: override how often to poison freed zone elements */ | |
309 | if (PE_parse_boot_argn("zp-factor", &zp_factor, sizeof(zp_factor))) { | |
310 | printf("Zone poisoning factor override: %u\n", zp_factor); | |
311 | } | |
312 | ||
fe8ab488 A |
313 | /* zp-scale=XXXX: override how much zone size scales zp-factor by */ |
314 | if (PE_parse_boot_argn("zp-scale", &zp_scale, sizeof(zp_scale))) { | |
315 | printf("Zone poisoning scale factor override: %u\n", zp_scale); | |
316 | } | |
317 | ||
39236c6e A |
318 | /* Initialize backup pointer random cookie for unpoisoned elements */ |
319 | zp_nopoison_cookie = (uintptr_t) early_random(); | |
320 | ||
321 | #if MACH_ASSERT | |
322 | if (zp_poisoned_cookie == zp_nopoison_cookie) | |
323 | panic("early_random() is broken: %p and %p are not random\n", | |
324 | (void *) zp_poisoned_cookie, (void *) zp_nopoison_cookie); | |
325 | #endif | |
326 | ||
327 | /* | |
328 | * Use the last bit in the backup pointer to hint poisoning state | |
329 | * to backup_ptr_mismatch_panic. Valid zone pointers are aligned, so | |
330 | * the low bits are zero. | |
331 | */ | |
332 | zp_poisoned_cookie |= (uintptr_t)0x1ULL; | |
333 | zp_nopoison_cookie &= ~((uintptr_t)0x1ULL); | |
334 | ||
335 | #if defined(__LP64__) | |
336 | /* | |
337 | * Make backup pointers more obvious in GDB for 64 bit | |
338 | * by making OxFFFFFF... ^ cookie = 0xFACADE... | |
339 | * (0xFACADE = 0xFFFFFF ^ 0x053521) | |
340 | * (0xC0FFEE = 0xFFFFFF ^ 0x3f0011) | |
341 | * The high 3 bytes of a zone pointer are always 0xFFFFFF, and are checked | |
342 | * by the sanity check, so it's OK for that part of the cookie to be predictable. | |
343 | * | |
344 | * TODO: Use #defines, xors, and shifts | |
345 | */ | |
346 | ||
347 | zp_poisoned_cookie &= 0x000000FFFFFFFFFF; | |
348 | zp_poisoned_cookie |= 0x0535210000000000; /* 0xFACADE */ | |
349 | ||
350 | zp_nopoison_cookie &= 0x000000FFFFFFFFFF; | |
351 | zp_nopoison_cookie |= 0x3f00110000000000; /* 0xC0FFEE */ | |
352 | #endif | |
353 | } | |
354 | ||
355 | /* zone_map page count for page table structure */ | |
356 | uint64_t zone_map_table_page_count = 0; | |
357 | ||
358 | /* | |
359 | * These macros are used to keep track of the number | |
360 | * of pages being used by the zone currently. The | |
361 | * z->page_count is protected by the zone lock. | |
362 | */ | |
363 | #define ZONE_PAGE_COUNT_INCR(z, count) \ | |
364 | { \ | |
365 | OSAddAtomic64(count, &(z->page_count)); \ | |
366 | } | |
367 | ||
368 | #define ZONE_PAGE_COUNT_DECR(z, count) \ | |
369 | { \ | |
370 | OSAddAtomic64(-count, &(z->page_count)); \ | |
371 | } | |
372 | ||
373 | /* for is_sane_zone_element and garbage collection */ | |
374 | ||
375 | vm_offset_t zone_map_min_address = 0; /* initialized in zone_init */ | |
376 | vm_offset_t zone_map_max_address = 0; | |
377 | ||
378 | /* Helpful for walking through a zone's free element list. */ | |
379 | struct zone_free_element { | |
380 | struct zone_free_element *next; | |
381 | /* ... */ | |
382 | /* void *backup_ptr; */ | |
383 | }; | |
384 | ||
385 | struct zone_page_metadata { | |
386 | queue_chain_t pages; | |
387 | struct zone_free_element *elements; | |
388 | zone_t zone; | |
389 | uint16_t alloc_count; | |
390 | uint16_t free_count; | |
391 | }; | |
392 | ||
393 | /* The backup pointer is stored in the last pointer-sized location in an element. */ | |
394 | static inline vm_offset_t * | |
395 | get_backup_ptr(vm_size_t elem_size, | |
396 | vm_offset_t *element) | |
397 | { | |
398 | return (vm_offset_t *) ((vm_offset_t)element + elem_size - sizeof(vm_offset_t)); | |
399 | } | |
400 | ||
401 | static inline struct zone_page_metadata * | |
402 | get_zone_page_metadata(struct zone_free_element *element) | |
403 | { | |
3e170ce0 | 404 | return (struct zone_page_metadata *)(trunc_page((vm_offset_t)element)); |
39236c6e A |
405 | } |
406 | ||
407 | /* | |
408 | * Zone checking helper function. | |
409 | * A pointer that satisfies these conditions is OK to be a freelist next pointer | |
410 | * A pointer that doesn't satisfy these conditions indicates corruption | |
411 | */ | |
412 | static inline boolean_t | |
413 | is_sane_zone_ptr(zone_t zone, | |
414 | vm_offset_t addr, | |
415 | size_t obj_size) | |
416 | { | |
417 | /* Must be aligned to pointer boundary */ | |
418 | if (__improbable((addr & (sizeof(vm_offset_t) - 1)) != 0)) | |
419 | return FALSE; | |
420 | ||
421 | /* Must be a kernel address */ | |
422 | if (__improbable(!pmap_kernel_va(addr))) | |
423 | return FALSE; | |
424 | ||
425 | /* Must be from zone map if the zone only uses memory from the zone_map */ | |
426 | /* | |
427 | * TODO: Remove the zone->collectable check when every | |
428 | * zone using foreign memory is properly tagged with allows_foreign | |
429 | */ | |
430 | if (zone->collectable && !zone->allows_foreign) { | |
431 | #if ZONE_ALIAS_ADDR | |
432 | /* | |
433 | * If this address is in the static kernel region, it might be | |
434 | * the alias address of a valid zone element. | |
435 | * If we tried to find the zone_virtual_addr() of an invalid | |
436 | * address in the static kernel region, it will panic, so don't | |
437 | * check addresses in this region. | |
438 | * | |
439 | * TODO: Use a safe variant of zone_virtual_addr to | |
440 | * make this check more accurate | |
441 | * | |
442 | * The static kernel region is mapped at: | |
443 | * [gVirtBase, gVirtBase + gPhysSize] | |
444 | */ | |
445 | if ((addr - gVirtBase) < gPhysSize) | |
446 | return TRUE; | |
447 | #endif | |
448 | /* check if addr is from zone map */ | |
449 | if (addr >= zone_map_min_address && | |
450 | (addr + obj_size - 1) < zone_map_max_address ) | |
451 | return TRUE; | |
452 | ||
453 | return FALSE; | |
454 | } | |
455 | ||
456 | return TRUE; | |
457 | } | |
458 | ||
459 | static inline boolean_t | |
460 | is_sane_zone_page_metadata(zone_t zone, | |
461 | vm_offset_t page_meta) | |
462 | { | |
463 | /* NULL page metadata structures are invalid */ | |
464 | if (page_meta == 0) | |
465 | return FALSE; | |
466 | return is_sane_zone_ptr(zone, page_meta, sizeof(struct zone_page_metadata)); | |
467 | } | |
468 | ||
469 | static inline boolean_t | |
470 | is_sane_zone_element(zone_t zone, | |
471 | vm_offset_t addr) | |
472 | { | |
473 | /* NULL is OK because it indicates the tail of the list */ | |
474 | if (addr == 0) | |
475 | return TRUE; | |
476 | return is_sane_zone_ptr(zone, addr, zone->elem_size); | |
477 | } | |
316670eb | 478 | |
39236c6e A |
479 | /* Someone wrote to freed memory. */ |
480 | static inline void /* noreturn */ | |
481 | zone_element_was_modified_panic(zone_t zone, | |
fe8ab488 | 482 | vm_offset_t element, |
39236c6e A |
483 | vm_offset_t found, |
484 | vm_offset_t expected, | |
485 | vm_offset_t offset) | |
486 | { | |
fe8ab488 A |
487 | panic("a freed zone element has been modified in zone %s: expected %p but found %p, bits changed %p, at offset %d of %d in element %p, cookies %p %p", |
488 | zone->zone_name, | |
39236c6e A |
489 | (void *) expected, |
490 | (void *) found, | |
491 | (void *) (expected ^ found), | |
492 | (uint32_t) offset, | |
493 | (uint32_t) zone->elem_size, | |
fe8ab488 A |
494 | (void *) element, |
495 | (void *) zp_nopoison_cookie, | |
496 | (void *) zp_poisoned_cookie); | |
39236c6e A |
497 | } |
498 | ||
499 | /* | |
500 | * The primary and backup pointers don't match. | |
501 | * Determine which one was likely the corrupted pointer, find out what it | |
502 | * probably should have been, and panic. | |
503 | * I would like to mark this as noreturn, but panic() isn't marked noreturn. | |
504 | */ | |
505 | static void /* noreturn */ | |
506 | backup_ptr_mismatch_panic(zone_t zone, | |
fe8ab488 | 507 | vm_offset_t element, |
39236c6e A |
508 | vm_offset_t primary, |
509 | vm_offset_t backup) | |
510 | { | |
511 | vm_offset_t likely_backup; | |
512 | ||
513 | boolean_t sane_backup; | |
514 | boolean_t sane_primary = is_sane_zone_element(zone, primary); | |
515 | boolean_t element_was_poisoned = (backup & 0x1) ? TRUE : FALSE; | |
516 | ||
fe8ab488 A |
517 | #if defined(__LP64__) |
518 | /* We can inspect the tag in the upper bits for additional confirmation */ | |
519 | if ((backup & 0xFFFFFF0000000000) == 0xFACADE0000000000) | |
520 | element_was_poisoned = TRUE; | |
521 | else if ((backup & 0xFFFFFF0000000000) == 0xC0FFEE0000000000) | |
522 | element_was_poisoned = FALSE; | |
523 | #endif | |
524 | ||
39236c6e A |
525 | if (element_was_poisoned) { |
526 | likely_backup = backup ^ zp_poisoned_cookie; | |
527 | sane_backup = is_sane_zone_element(zone, likely_backup); | |
316670eb | 528 | } else { |
39236c6e A |
529 | likely_backup = backup ^ zp_nopoison_cookie; |
530 | sane_backup = is_sane_zone_element(zone, likely_backup); | |
316670eb | 531 | } |
39236c6e A |
532 | |
533 | /* The primary is definitely the corrupted one */ | |
534 | if (!sane_primary && sane_backup) | |
fe8ab488 | 535 | zone_element_was_modified_panic(zone, element, primary, likely_backup, 0); |
39236c6e A |
536 | |
537 | /* The backup is definitely the corrupted one */ | |
538 | if (sane_primary && !sane_backup) | |
fe8ab488 A |
539 | zone_element_was_modified_panic(zone, element, backup, |
540 | (primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)), | |
39236c6e A |
541 | zone->elem_size - sizeof(vm_offset_t)); |
542 | ||
543 | /* | |
544 | * Not sure which is the corrupted one. | |
545 | * It's less likely that the backup pointer was overwritten with | |
546 | * ( (sane address) ^ (valid cookie) ), so we'll guess that the | |
547 | * primary pointer has been overwritten with a sane but incorrect address. | |
548 | */ | |
549 | if (sane_primary && sane_backup) | |
fe8ab488 | 550 | zone_element_was_modified_panic(zone, element, primary, likely_backup, 0); |
39236c6e A |
551 | |
552 | /* Neither are sane, so just guess. */ | |
fe8ab488 | 553 | zone_element_was_modified_panic(zone, element, primary, likely_backup, 0); |
316670eb A |
554 | } |
555 | ||
556 | /* | |
39236c6e A |
557 | * Sets the next element of tail to elem. |
558 | * elem can be NULL. | |
559 | * Preserves the poisoning state of the element. | |
1c79356b | 560 | */ |
316670eb | 561 | static inline void |
39236c6e A |
562 | append_zone_element(zone_t zone, |
563 | struct zone_free_element *tail, | |
564 | struct zone_free_element *elem) | |
565 | { | |
566 | vm_offset_t *backup = get_backup_ptr(zone->elem_size, (vm_offset_t *) tail); | |
567 | ||
568 | vm_offset_t old_backup = *backup; | |
569 | ||
570 | vm_offset_t old_next = (vm_offset_t) tail->next; | |
571 | vm_offset_t new_next = (vm_offset_t) elem; | |
572 | ||
573 | if (old_next == (old_backup ^ zp_nopoison_cookie)) | |
574 | *backup = new_next ^ zp_nopoison_cookie; | |
575 | else if (old_next == (old_backup ^ zp_poisoned_cookie)) | |
576 | *backup = new_next ^ zp_poisoned_cookie; | |
577 | else | |
578 | backup_ptr_mismatch_panic(zone, | |
fe8ab488 | 579 | (vm_offset_t) tail, |
39236c6e A |
580 | old_next, |
581 | old_backup); | |
582 | ||
583 | tail->next = elem; | |
584 | } | |
585 | ||
586 | ||
587 | /* | |
588 | * Insert a linked list of elements (delineated by head and tail) at the head of | |
589 | * the zone free list. Every element in the list being added has already gone | |
590 | * through append_zone_element, so their backup pointers are already | |
591 | * set properly. | |
592 | * Precondition: There should be no elements after tail | |
593 | */ | |
594 | static inline void | |
595 | add_list_to_zone(zone_t zone, | |
596 | struct zone_free_element *head, | |
597 | struct zone_free_element *tail) | |
598 | { | |
599 | assert(tail->next == NULL); | |
600 | assert(!zone->use_page_list); | |
601 | ||
602 | append_zone_element(zone, tail, zone->free_elements); | |
603 | ||
604 | zone->free_elements = head; | |
605 | } | |
606 | ||
607 | ||
608 | /* | |
609 | * Adds the element to the head of the zone's free list | |
610 | * Keeps a backup next-pointer at the end of the element | |
39236c6e A |
611 | */ |
612 | static inline void | |
613 | free_to_zone(zone_t zone, | |
fe8ab488 A |
614 | vm_offset_t element, |
615 | boolean_t poison) | |
39236c6e A |
616 | { |
617 | vm_offset_t old_head; | |
618 | struct zone_page_metadata *page_meta; | |
619 | ||
620 | vm_offset_t *primary = (vm_offset_t *) element; | |
621 | vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary); | |
622 | ||
623 | if (zone->use_page_list) { | |
624 | page_meta = get_zone_page_metadata((struct zone_free_element *)element); | |
625 | assert(page_meta->zone == zone); | |
626 | old_head = (vm_offset_t)page_meta->elements; | |
627 | } else { | |
628 | old_head = (vm_offset_t)zone->free_elements; | |
629 | } | |
630 | ||
631 | #if MACH_ASSERT | |
632 | if (__improbable(!is_sane_zone_element(zone, old_head))) | |
633 | panic("zfree: invalid head pointer %p for freelist of zone %s\n", | |
634 | (void *) old_head, zone->zone_name); | |
635 | #endif | |
636 | ||
637 | if (__improbable(!is_sane_zone_element(zone, element))) | |
638 | panic("zfree: freeing invalid pointer %p to zone %s\n", | |
639 | (void *) element, zone->zone_name); | |
640 | ||
39236c6e A |
641 | /* |
642 | * Always write a redundant next pointer | |
643 | * So that it is more difficult to forge, xor it with a random cookie | |
644 | * A poisoned element is indicated by using zp_poisoned_cookie | |
645 | * instead of zp_nopoison_cookie | |
646 | */ | |
647 | ||
648 | *backup = old_head ^ (poison ? zp_poisoned_cookie : zp_nopoison_cookie); | |
649 | ||
650 | /* Insert this element at the head of the free list */ | |
651 | *primary = old_head; | |
652 | if (zone->use_page_list) { | |
653 | page_meta->elements = (struct zone_free_element *)element; | |
654 | page_meta->free_count++; | |
655 | if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) { | |
656 | if (page_meta->free_count == 1) { | |
657 | /* first foreign element freed on page, move from all_used */ | |
658 | remqueue((queue_entry_t)page_meta); | |
659 | enqueue_tail(&zone->pages.any_free_foreign, (queue_entry_t)page_meta); | |
660 | } else { | |
661 | /* no other list transitions */ | |
316670eb | 662 | } |
39236c6e A |
663 | } else if (page_meta->free_count == page_meta->alloc_count) { |
664 | /* whether the page was on the intermediate or all_used, queue, move it to free */ | |
665 | remqueue((queue_entry_t)page_meta); | |
666 | enqueue_tail(&zone->pages.all_free, (queue_entry_t)page_meta); | |
667 | } else if (page_meta->free_count == 1) { | |
668 | /* first free element on page, move from all_used */ | |
669 | remqueue((queue_entry_t)page_meta); | |
670 | enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta); | |
671 | } | |
672 | } else { | |
673 | zone->free_elements = (struct zone_free_element *)element; | |
674 | } | |
675 | zone->count--; | |
676 | zone->countfree++; | |
677 | } | |
678 | ||
679 | ||
680 | /* | |
681 | * Removes an element from the zone's free list, returning 0 if the free list is empty. | |
682 | * Verifies that the next-pointer and backup next-pointer are intact, | |
683 | * and verifies that a poisoned element hasn't been modified. | |
684 | */ | |
685 | static inline vm_offset_t | |
fe8ab488 A |
686 | try_alloc_from_zone(zone_t zone, |
687 | boolean_t* check_poison) | |
39236c6e A |
688 | { |
689 | vm_offset_t element; | |
690 | struct zone_page_metadata *page_meta; | |
691 | ||
fe8ab488 A |
692 | *check_poison = FALSE; |
693 | ||
39236c6e A |
694 | /* if zone is empty, bail */ |
695 | if (zone->use_page_list) { | |
696 | if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign)) | |
697 | page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); | |
698 | else if (!queue_empty(&zone->pages.intermediate)) | |
699 | page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); | |
700 | else if (!queue_empty(&zone->pages.all_free)) | |
701 | page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); | |
702 | else { | |
703 | return 0; | |
704 | } | |
705 | ||
706 | /* Check if page_meta passes is_sane_zone_element */ | |
707 | if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta))) | |
708 | panic("zalloc: invalid metadata structure %p for freelist of zone %s\n", | |
709 | (void *) page_meta, zone->zone_name); | |
710 | assert(page_meta->zone == zone); | |
711 | element = (vm_offset_t)page_meta->elements; | |
712 | } else { | |
713 | if (zone->free_elements == NULL) | |
714 | return 0; | |
715 | ||
716 | element = (vm_offset_t)zone->free_elements; | |
717 | } | |
718 | ||
719 | #if MACH_ASSERT | |
720 | if (__improbable(!is_sane_zone_element(zone, element))) | |
721 | panic("zfree: invalid head pointer %p for freelist of zone %s\n", | |
722 | (void *) element, zone->zone_name); | |
723 | #endif | |
724 | ||
725 | vm_offset_t *primary = (vm_offset_t *) element; | |
726 | vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary); | |
727 | ||
728 | vm_offset_t next_element = *primary; | |
729 | vm_offset_t next_element_backup = *backup; | |
730 | ||
731 | /* | |
732 | * backup_ptr_mismatch_panic will determine what next_element | |
733 | * should have been, and print it appropriately | |
734 | */ | |
735 | if (__improbable(!is_sane_zone_element(zone, next_element))) | |
fe8ab488 | 736 | backup_ptr_mismatch_panic(zone, element, next_element, next_element_backup); |
39236c6e A |
737 | |
738 | /* Check the backup pointer for the regular cookie */ | |
739 | if (__improbable(next_element != (next_element_backup ^ zp_nopoison_cookie))) { | |
740 | ||
741 | /* Check for the poisoned cookie instead */ | |
742 | if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie))) | |
743 | /* Neither cookie is valid, corruption has occurred */ | |
fe8ab488 | 744 | backup_ptr_mismatch_panic(zone, element, next_element, next_element_backup); |
39236c6e A |
745 | |
746 | /* | |
fe8ab488 | 747 | * Element was marked as poisoned, so check its integrity before using it. |
39236c6e | 748 | */ |
fe8ab488 | 749 | *check_poison = TRUE; |
39236c6e A |
750 | } |
751 | ||
752 | if (zone->use_page_list) { | |
316670eb | 753 | |
39236c6e A |
754 | /* Make sure the page_meta is at the correct offset from the start of page */ |
755 | if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element))) | |
756 | panic("zalloc: metadata located at incorrect location on page of zone %s\n", | |
757 | zone->zone_name); | |
758 | ||
759 | /* Make sure next_element belongs to the same page as page_meta */ | |
760 | if (next_element) { | |
761 | if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element))) | |
762 | panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n", | |
763 | (void *)next_element, (void *)element, zone->zone_name); | |
764 | } | |
765 | } | |
766 | ||
39236c6e A |
767 | /* Remove this element from the free list */ |
768 | if (zone->use_page_list) { | |
769 | ||
770 | page_meta->elements = (struct zone_free_element *)next_element; | |
771 | page_meta->free_count--; | |
772 | ||
773 | if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) { | |
774 | if (page_meta->free_count == 0) { | |
775 | /* move to all used */ | |
776 | remqueue((queue_entry_t)page_meta); | |
777 | enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta); | |
778 | } else { | |
779 | /* no other list transitions */ | |
316670eb | 780 | } |
39236c6e A |
781 | } else if (page_meta->free_count == 0) { |
782 | /* remove from intermediate or free, move to all_used */ | |
783 | remqueue((queue_entry_t)page_meta); | |
784 | enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta); | |
785 | } else if (page_meta->alloc_count == page_meta->free_count + 1) { | |
786 | /* remove from free, move to intermediate */ | |
787 | remqueue((queue_entry_t)page_meta); | |
788 | enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta); | |
316670eb | 789 | } |
39236c6e A |
790 | } else { |
791 | zone->free_elements = (struct zone_free_element *)next_element; | |
316670eb | 792 | } |
39236c6e A |
793 | zone->countfree--; |
794 | zone->count++; | |
795 | zone->sum_count++; | |
796 | ||
797 | return element; | |
316670eb | 798 | } |
1c79356b | 799 | |
1c79356b | 800 | |
39236c6e A |
801 | /* |
802 | * End of zone poisoning | |
803 | */ | |
804 | ||
6d2010ae A |
805 | /* |
806 | * Fake zones for things that want to report via zprint but are not actually zones. | |
807 | */ | |
808 | struct fake_zone_info { | |
809 | const char* name; | |
810 | void (*init)(int); | |
811 | void (*query)(int *, | |
812 | vm_size_t *, vm_size_t *, vm_size_t *, vm_size_t *, | |
813 | uint64_t *, int *, int *, int *); | |
814 | }; | |
815 | ||
316670eb | 816 | static const struct fake_zone_info fake_zones[] = { |
6d2010ae | 817 | }; |
316670eb A |
818 | static const unsigned int num_fake_zones = |
819 | sizeof (fake_zones) / sizeof (fake_zones[0]); | |
6d2010ae A |
820 | |
821 | /* | |
822 | * Zone info options | |
823 | */ | |
824 | boolean_t zinfo_per_task = FALSE; /* enabled by -zinfop in boot-args */ | |
825 | #define ZINFO_SLOTS 200 /* for now */ | |
826 | #define ZONES_MAX (ZINFO_SLOTS - num_fake_zones - 1) | |
827 | ||
1c79356b | 828 | /* |
7ddcb079 A |
829 | * Support for garbage collection of unused zone pages |
830 | * | |
831 | * The kernel virtually allocates the "zone map" submap of the kernel | |
832 | * map. When an individual zone needs more storage, memory is allocated | |
833 | * out of the zone map, and the two-level "zone_page_table" is | |
834 | * on-demand expanded so that it has entries for those pages. | |
835 | * zone_page_init()/zone_page_alloc() initialize "alloc_count" | |
836 | * to the number of zone elements that occupy the zone page (which may | |
837 | * be a minimum of 1, including if a zone element spans multiple | |
838 | * pages). | |
839 | * | |
840 | * Asynchronously, the zone_gc() logic attempts to walk zone free | |
841 | * lists to see if all the elements on a zone page are free. If | |
842 | * "collect_count" (which it increments during the scan) matches | |
843 | * "alloc_count", the zone page is a candidate for collection and the | |
844 | * physical page is returned to the VM system. During this process, the | |
845 | * first word of the zone page is re-used to maintain a linked list of | |
846 | * to-be-collected zone pages. | |
1c79356b | 847 | */ |
7ddcb079 A |
848 | typedef uint32_t zone_page_index_t; |
849 | #define ZONE_PAGE_INDEX_INVALID ((zone_page_index_t)0xFFFFFFFFU) | |
1c79356b A |
850 | |
851 | struct zone_page_table_entry { | |
7ddcb079 A |
852 | volatile uint16_t alloc_count; |
853 | volatile uint16_t collect_count; | |
1c79356b A |
854 | }; |
855 | ||
7ddcb079 A |
856 | #define ZONE_PAGE_USED 0 |
857 | #define ZONE_PAGE_UNUSED 0xffff | |
858 | ||
1c79356b A |
859 | /* Forwards */ |
860 | void zone_page_init( | |
861 | vm_offset_t addr, | |
7ddcb079 | 862 | vm_size_t size); |
1c79356b A |
863 | |
864 | void zone_page_alloc( | |
865 | vm_offset_t addr, | |
866 | vm_size_t size); | |
867 | ||
55e303ae | 868 | void zone_page_free_element( |
316670eb A |
869 | zone_page_index_t *free_page_head, |
870 | zone_page_index_t *free_page_tail, | |
1c79356b A |
871 | vm_offset_t addr, |
872 | vm_size_t size); | |
873 | ||
55e303ae | 874 | void zone_page_collect( |
1c79356b A |
875 | vm_offset_t addr, |
876 | vm_size_t size); | |
877 | ||
878 | boolean_t zone_page_collectable( | |
879 | vm_offset_t addr, | |
880 | vm_size_t size); | |
881 | ||
882 | void zone_page_keep( | |
883 | vm_offset_t addr, | |
884 | vm_size_t size); | |
885 | ||
39236c6e A |
886 | void zone_display_zprint(void); |
887 | ||
888 | zone_t zone_find_largest(void); | |
889 | ||
890 | /* | |
891 | * Async allocation of zones | |
892 | * This mechanism allows for bootstrapping an empty zone which is setup with | |
893 | * non-blocking flags. The first call to zalloc_noblock() will kick off a thread_call | |
894 | * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free. | |
895 | * This will prime the zone for the next use. | |
896 | * | |
897 | * Currently the thread_callout function (zalloc_async) will loop through all zones | |
898 | * looking for any zone with async_pending set and do the work for it. | |
899 | * | |
900 | * NOTE: If the calling thread for zalloc_noblock is lower priority than thread_call, | |
901 | * then zalloc_noblock to an empty zone may succeed. | |
902 | */ | |
0b4e3aa0 A |
903 | void zalloc_async( |
904 | thread_call_param_t p0, | |
905 | thread_call_param_t p1); | |
906 | ||
39236c6e | 907 | static thread_call_data_t call_async_alloc; |
0b4e3aa0 | 908 | |
1c79356b A |
909 | vm_map_t zone_map = VM_MAP_NULL; |
910 | ||
911 | zone_t zone_zone = ZONE_NULL; /* the zone containing other zones */ | |
912 | ||
6d2010ae A |
913 | zone_t zinfo_zone = ZONE_NULL; /* zone of per-task zone info */ |
914 | ||
1c79356b A |
915 | /* |
916 | * The VM system gives us an initial chunk of memory. | |
917 | * It has to be big enough to allocate the zone_zone | |
7ddcb079 | 918 | * all the way through the pmap zone. |
1c79356b A |
919 | */ |
920 | ||
921 | vm_offset_t zdata; | |
922 | vm_size_t zdata_size; | |
3e170ce0 A |
923 | /* |
924 | * Align elements that use the zone page list to 32 byte boundaries. | |
925 | */ | |
926 | #define ZONE_ELEMENT_ALIGNMENT 32 | |
1c79356b | 927 | |
9bccf70c A |
928 | #define zone_wakeup(zone) thread_wakeup((event_t)(zone)) |
929 | #define zone_sleep(zone) \ | |
b0d623f7 | 930 | (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT); |
2d21ac55 | 931 | |
39236c6e A |
932 | /* |
933 | * The zone_locks_grp allows for collecting lock statistics. | |
934 | * All locks are associated to this group in zinit. | |
935 | * Look at tools/lockstat for debugging lock contention. | |
936 | */ | |
937 | ||
938 | lck_grp_t zone_locks_grp; | |
939 | lck_grp_attr_t zone_locks_grp_attr; | |
9bccf70c | 940 | |
1c79356b A |
941 | #define lock_zone_init(zone) \ |
942 | MACRO_BEGIN \ | |
2d21ac55 A |
943 | lck_attr_setdefault(&(zone)->lock_attr); \ |
944 | lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \ | |
39236c6e | 945 | &zone_locks_grp, &(zone)->lock_attr); \ |
1c79356b A |
946 | MACRO_END |
947 | ||
b0d623f7 | 948 | #define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock) |
1c79356b | 949 | |
1c79356b A |
950 | /* |
951 | * Garbage collection map information | |
952 | */ | |
7ddcb079 A |
953 | #define ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE (32) |
954 | struct zone_page_table_entry * volatile zone_page_table[ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE]; | |
955 | vm_size_t zone_page_table_used_size; | |
91447636 | 956 | unsigned int zone_pages; |
7ddcb079 A |
957 | unsigned int zone_page_table_second_level_size; /* power of 2 */ |
958 | unsigned int zone_page_table_second_level_shift_amount; | |
959 | ||
960 | #define zone_page_table_first_level_slot(x) ((x) >> zone_page_table_second_level_shift_amount) | |
961 | #define zone_page_table_second_level_slot(x) ((x) & (zone_page_table_second_level_size - 1)) | |
962 | ||
963 | void zone_page_table_expand(zone_page_index_t pindex); | |
964 | struct zone_page_table_entry *zone_page_table_lookup(zone_page_index_t pindex); | |
1c79356b A |
965 | |
966 | /* | |
967 | * Exclude more than one concurrent garbage collection | |
968 | */ | |
39236c6e | 969 | decl_lck_mtx_data(, zone_gc_lock) |
b0d623f7 | 970 | |
39236c6e A |
971 | lck_attr_t zone_gc_lck_attr; |
972 | lck_grp_t zone_gc_lck_grp; | |
973 | lck_grp_attr_t zone_gc_lck_grp_attr; | |
974 | lck_mtx_ext_t zone_gc_lck_ext; | |
1c79356b | 975 | |
1c79356b A |
976 | /* |
977 | * Protects first_zone, last_zone, num_zones, | |
978 | * and the next_zone field of zones. | |
979 | */ | |
980 | decl_simple_lock_data(, all_zones_lock) | |
981 | zone_t first_zone; | |
982 | zone_t *last_zone; | |
91447636 | 983 | unsigned int num_zones; |
1c79356b | 984 | |
0b4e3aa0 A |
985 | boolean_t zone_gc_allowed = TRUE; |
986 | boolean_t zone_gc_forced = FALSE; | |
c910b4d9 | 987 | boolean_t panic_include_zprint = FALSE; |
6d2010ae | 988 | boolean_t zone_gc_allowed_by_time_throttle = TRUE; |
0b4e3aa0 | 989 | |
3e170ce0 A |
990 | vm_offset_t panic_kext_memory_info = 0; |
991 | vm_size_t panic_kext_memory_size = 0; | |
992 | ||
39236c6e A |
993 | #define ZALLOC_DEBUG_ZONEGC 0x00000001 |
994 | #define ZALLOC_DEBUG_ZCRAM 0x00000002 | |
995 | uint32_t zalloc_debug = 0; | |
996 | ||
c910b4d9 A |
997 | /* |
998 | * Zone leak debugging code | |
999 | * | |
1000 | * When enabled, this code keeps a log to track allocations to a particular zone that have not | |
1001 | * yet been freed. Examining this log will reveal the source of a zone leak. The log is allocated | |
1002 | * only when logging is enabled, so there is no effect on the system when it's turned off. Logging is | |
1003 | * off by default. | |
1004 | * | |
1005 | * Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone> | |
1006 | * is the name of the zone you wish to log. | |
1007 | * | |
1008 | * This code only tracks one zone, so you need to identify which one is leaking first. | |
1009 | * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone | |
1010 | * garbage collector. Note that the zone name printed in the panic message is not necessarily the one | |
1011 | * containing the leak. So do a zprint from gdb and locate the zone with the bloated size. This | |
1012 | * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test. The | |
1013 | * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs. | |
1014 | * See the help in the kgmacros for usage info. | |
1015 | * | |
1016 | * | |
1017 | * Zone corruption logging | |
1018 | * | |
1019 | * Logging can also be used to help identify the source of a zone corruption. First, identify the zone | |
1020 | * that is being corrupted, then add "-zc zlog=<zone name>" to the boot-args. When -zc is used in conjunction | |
1021 | * with zlog, it changes the logging style to track both allocations and frees to the zone. So when the | |
1022 | * corruption is detected, examining the log will show you the stack traces of the callers who last allocated | |
1023 | * and freed any particular element in the zone. Use the findelem kgmacro with the address of the element that's been | |
1024 | * corrupted to examine its history. This should lead to the source of the corruption. | |
1025 | */ | |
1026 | ||
1027 | static int log_records; /* size of the log, expressed in number of records */ | |
1028 | ||
1029 | #define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */ | |
1030 | ||
1031 | static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */ | |
1032 | ||
39236c6e A |
1033 | /* Log allocations and frees to help debug a zone element corruption */ |
1034 | boolean_t corruption_debug_flag = FALSE; /* enabled by "-zc" boot-arg */ | |
1035 | ||
c910b4d9 A |
1036 | /* |
1037 | * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to | |
1038 | * the number of records you want in the log. For example, "zrecs=1000" sets it to 1000 records. Note | |
1039 | * that the larger the size of the log, the slower the system will run due to linear searching in the log, | |
1040 | * but one doesn't generally care about performance when tracking down a leak. The log is capped at 8000 | |
1041 | * records since going much larger than this tends to make the system unresponsive and unbootable on small | |
1042 | * memory configurations. The default value is 4000 records. | |
c910b4d9 | 1043 | */ |
316670eb | 1044 | |
6d2010ae | 1045 | #if defined(__LP64__) |
316670eb | 1046 | #define ZRECORDS_MAX 128000 /* Max records allowed in the log */ |
6d2010ae | 1047 | #else |
c910b4d9 | 1048 | #define ZRECORDS_MAX 8000 /* Max records allowed in the log */ |
6d2010ae | 1049 | #endif |
c910b4d9 | 1050 | #define ZRECORDS_DEFAULT 4000 /* default records in log if zrecs is not specificed in boot-args */ |
0b4e3aa0 | 1051 | |
c910b4d9 | 1052 | /* |
39236c6e A |
1053 | * Each record in the log contains a pointer to the zone element it refers to, |
1054 | * and a small array to hold the pc's from the stack trace. A | |
c910b4d9 A |
1055 | * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging, |
1056 | * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees. | |
1057 | * If the log fills, old records are replaced as if it were a circular buffer. | |
1058 | */ | |
1059 | ||
c910b4d9 A |
1060 | |
1061 | /* | |
39236c6e | 1062 | * Opcodes for the btlog operation field: |
c910b4d9 A |
1063 | */ |
1064 | ||
1065 | #define ZOP_ALLOC 1 | |
1066 | #define ZOP_FREE 0 | |
1067 | ||
1068 | /* | |
1069 | * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest | |
1070 | */ | |
39236c6e | 1071 | static btlog_t *zlog_btlog; /* the log itself, dynamically allocated when logging is enabled */ |
c910b4d9 A |
1072 | static zone_t zone_of_interest = NULL; /* the zone being watched; corresponds to zone_name_to_log */ |
1073 | ||
1074 | /* | |
1075 | * Decide if we want to log this zone by doing a string compare between a zone name and the name | |
1076 | * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not | |
1077 | * possible to include spaces in strings passed in via the boot-args, a period in the logname will | |
1078 | * match a space in the zone name. | |
1079 | */ | |
1080 | ||
1081 | static int | |
1082 | log_this_zone(const char *zonename, const char *logname) | |
1083 | { | |
1084 | int len; | |
1085 | const char *zc = zonename; | |
1086 | const char *lc = logname; | |
1087 | ||
1088 | /* | |
1089 | * Compare the strings. We bound the compare by MAX_ZONE_NAME. | |
1090 | */ | |
1091 | ||
1092 | for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) { | |
1093 | ||
1094 | /* | |
1095 | * If the current characters don't match, check for a space in | |
1096 | * in the zone name and a corresponding period in the log name. | |
1097 | * If that's not there, then the strings don't match. | |
1098 | */ | |
1099 | ||
1100 | if (*zc != *lc && !(*zc == ' ' && *lc == '.')) | |
1101 | break; | |
1102 | ||
1103 | /* | |
1104 | * The strings are equal so far. If we're at the end, then it's a match. | |
1105 | */ | |
1106 | ||
1107 | if (*zc == '\0') | |
1108 | return TRUE; | |
1109 | } | |
1110 | ||
1111 | return FALSE; | |
1112 | } | |
1113 | ||
1114 | ||
1115 | /* | |
1116 | * Test if we want to log this zalloc/zfree event. We log if this is the zone we're interested in and | |
1117 | * the buffer for the records has been allocated. | |
1118 | */ | |
1119 | ||
39236c6e | 1120 | #define DO_LOGGING(z) (zlog_btlog && (z) == zone_of_interest) |
c910b4d9 | 1121 | |
39236c6e | 1122 | extern boolean_t kmem_alloc_ready; |
c910b4d9 | 1123 | |
6d2010ae A |
1124 | #if CONFIG_ZLEAKS |
1125 | #pragma mark - | |
1126 | #pragma mark Zone Leak Detection | |
1127 | ||
1128 | /* | |
1129 | * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding | |
316670eb | 1130 | * allocations made by the zone allocator. Every zleak_sample_factor allocations in each zone, we capture a |
6d2010ae A |
1131 | * backtrace. Every free, we examine the table and determine if the allocation was being tracked, |
1132 | * and stop tracking it if it was being tracked. | |
1133 | * | |
1134 | * We track the allocations in the zallocations hash table, which stores the address that was returned from | |
1135 | * the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which | |
1136 | * stores the backtrace associated with that allocation. This provides uniquing for the relatively large | |
1137 | * backtraces - we don't store them more than once. | |
1138 | * | |
1139 | * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up | |
1140 | * a large amount of virtual space. | |
1141 | */ | |
1142 | #define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */ | |
1143 | #define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */ | |
1144 | #define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */ | |
1145 | #define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */ | |
1146 | uint32_t zleak_state = 0; /* State of collection, as above */ | |
1147 | ||
1148 | boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */ | |
1149 | vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */ | |
1150 | vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */ | |
316670eb | 1151 | unsigned int zleak_sample_factor = 1000; /* Allocations per sample attempt */ |
6d2010ae A |
1152 | |
1153 | /* | |
1154 | * Counters for allocation statistics. | |
1155 | */ | |
1156 | ||
1157 | /* Times two active records want to occupy the same spot */ | |
1158 | unsigned int z_alloc_collisions = 0; | |
1159 | unsigned int z_trace_collisions = 0; | |
1160 | ||
1161 | /* Times a new record lands on a spot previously occupied by a freed allocation */ | |
1162 | unsigned int z_alloc_overwrites = 0; | |
1163 | unsigned int z_trace_overwrites = 0; | |
1164 | ||
1165 | /* Times a new alloc or trace is put into the hash table */ | |
1166 | unsigned int z_alloc_recorded = 0; | |
1167 | unsigned int z_trace_recorded = 0; | |
1168 | ||
1169 | /* Times zleak_log returned false due to not being able to acquire the lock */ | |
1170 | unsigned int z_total_conflicts = 0; | |
1171 | ||
1172 | ||
1173 | #pragma mark struct zallocation | |
1174 | /* | |
1175 | * Structure for keeping track of an allocation | |
1176 | * An allocation bucket is in use if its element is not NULL | |
1177 | */ | |
1178 | struct zallocation { | |
1179 | uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */ | |
1180 | vm_size_t za_size; /* how much memory did this allocation take up? */ | |
1181 | uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */ | |
1182 | /* TODO: #if this out */ | |
1183 | uint32_t za_hit_count; /* for determining effectiveness of hash function */ | |
1184 | }; | |
1185 | ||
1186 | /* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */ | |
316670eb A |
1187 | uint32_t zleak_alloc_buckets = CONFIG_ZLEAK_ALLOCATION_MAP_NUM; |
1188 | uint32_t zleak_trace_buckets = CONFIG_ZLEAK_TRACE_MAP_NUM; | |
6d2010ae A |
1189 | |
1190 | vm_size_t zleak_max_zonemap_size; | |
1191 | ||
1192 | /* Hashmaps of allocations and their corresponding traces */ | |
1193 | static struct zallocation* zallocations; | |
1194 | static struct ztrace* ztraces; | |
1195 | ||
1196 | /* not static so that panic can see this, see kern/debug.c */ | |
1197 | struct ztrace* top_ztrace; | |
1198 | ||
1199 | /* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */ | |
316670eb | 1200 | static lck_spin_t zleak_lock; |
6d2010ae A |
1201 | static lck_attr_t zleak_lock_attr; |
1202 | static lck_grp_t zleak_lock_grp; | |
1203 | static lck_grp_attr_t zleak_lock_grp_attr; | |
1204 | ||
1205 | /* | |
1206 | * Initializes the zone leak monitor. Called from zone_init() | |
1207 | */ | |
1208 | static void | |
1209 | zleak_init(vm_size_t max_zonemap_size) | |
1210 | { | |
1211 | char scratch_buf[16]; | |
1212 | boolean_t zleak_enable_flag = FALSE; | |
1213 | ||
1214 | zleak_max_zonemap_size = max_zonemap_size; | |
1215 | zleak_global_tracking_threshold = max_zonemap_size / 2; | |
1216 | zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8; | |
1217 | ||
1218 | /* -zleakoff (flag to disable zone leak monitor) */ | |
1219 | if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) { | |
1220 | zleak_enable_flag = FALSE; | |
1221 | printf("zone leak detection disabled\n"); | |
1222 | } else { | |
1223 | zleak_enable_flag = TRUE; | |
1224 | printf("zone leak detection enabled\n"); | |
1225 | } | |
1226 | ||
1227 | /* zfactor=XXXX (override how often to sample the zone allocator) */ | |
316670eb | 1228 | if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) { |
39236c6e | 1229 | printf("Zone leak factor override: %u\n", zleak_sample_factor); |
6d2010ae | 1230 | } |
316670eb | 1231 | |
6d2010ae A |
1232 | /* zleak-allocs=XXXX (override number of buckets in zallocations) */ |
1233 | if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets, sizeof(zleak_alloc_buckets))) { | |
39236c6e | 1234 | printf("Zone leak alloc buckets override: %u\n", zleak_alloc_buckets); |
6d2010ae A |
1235 | /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ |
1236 | if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets-1))) { | |
39236c6e | 1237 | printf("Override isn't a power of two, bad things might happen!\n"); |
6d2010ae A |
1238 | } |
1239 | } | |
1240 | ||
1241 | /* zleak-traces=XXXX (override number of buckets in ztraces) */ | |
1242 | if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets, sizeof(zleak_trace_buckets))) { | |
39236c6e | 1243 | printf("Zone leak trace buckets override: %u\n", zleak_trace_buckets); |
6d2010ae A |
1244 | /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ |
1245 | if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets-1))) { | |
39236c6e | 1246 | printf("Override isn't a power of two, bad things might happen!\n"); |
6d2010ae A |
1247 | } |
1248 | } | |
1249 | ||
1250 | /* allocate the zleak_lock */ | |
1251 | lck_grp_attr_setdefault(&zleak_lock_grp_attr); | |
1252 | lck_grp_init(&zleak_lock_grp, "zleak_lock", &zleak_lock_grp_attr); | |
1253 | lck_attr_setdefault(&zleak_lock_attr); | |
316670eb | 1254 | lck_spin_init(&zleak_lock, &zleak_lock_grp, &zleak_lock_attr); |
6d2010ae A |
1255 | |
1256 | if (zleak_enable_flag) { | |
1257 | zleak_state = ZLEAK_STATE_ENABLED; | |
1258 | } | |
1259 | } | |
1260 | ||
1261 | #if CONFIG_ZLEAKS | |
1262 | ||
1263 | /* | |
1264 | * Support for kern.zleak.active sysctl - a simplified | |
316670eb | 1265 | * version of the zleak_state variable. |
6d2010ae A |
1266 | */ |
1267 | int | |
1268 | get_zleak_state(void) | |
1269 | { | |
1270 | if (zleak_state & ZLEAK_STATE_FAILED) | |
1271 | return (-1); | |
1272 | if (zleak_state & ZLEAK_STATE_ACTIVE) | |
1273 | return (1); | |
1274 | return (0); | |
1275 | } | |
1276 | ||
1277 | #endif | |
1278 | ||
1279 | ||
1280 | kern_return_t | |
1281 | zleak_activate(void) | |
1282 | { | |
1283 | kern_return_t retval; | |
1284 | vm_size_t z_alloc_size = zleak_alloc_buckets * sizeof(struct zallocation); | |
1285 | vm_size_t z_trace_size = zleak_trace_buckets * sizeof(struct ztrace); | |
1286 | void *allocations_ptr = NULL; | |
1287 | void *traces_ptr = NULL; | |
1288 | ||
1289 | /* Only one thread attempts to activate at a time */ | |
1290 | if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) { | |
1291 | return KERN_SUCCESS; | |
1292 | } | |
1293 | ||
1294 | /* Indicate that we're doing the setup */ | |
316670eb | 1295 | lck_spin_lock(&zleak_lock); |
6d2010ae | 1296 | if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) { |
316670eb | 1297 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1298 | return KERN_SUCCESS; |
1299 | } | |
1300 | ||
1301 | zleak_state |= ZLEAK_STATE_ACTIVATING; | |
316670eb | 1302 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1303 | |
1304 | /* Allocate and zero tables */ | |
3e170ce0 | 1305 | retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&allocations_ptr, z_alloc_size, VM_KERN_MEMORY_OSFMK); |
6d2010ae A |
1306 | if (retval != KERN_SUCCESS) { |
1307 | goto fail; | |
1308 | } | |
1309 | ||
3e170ce0 | 1310 | retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&traces_ptr, z_trace_size, VM_KERN_MEMORY_OSFMK); |
6d2010ae A |
1311 | if (retval != KERN_SUCCESS) { |
1312 | goto fail; | |
1313 | } | |
1314 | ||
1315 | bzero(allocations_ptr, z_alloc_size); | |
1316 | bzero(traces_ptr, z_trace_size); | |
1317 | ||
1318 | /* Everything's set. Install tables, mark active. */ | |
1319 | zallocations = allocations_ptr; | |
1320 | ztraces = traces_ptr; | |
1321 | ||
1322 | /* | |
1323 | * Initialize the top_ztrace to the first entry in ztraces, | |
1324 | * so we don't have to check for null in zleak_log | |
1325 | */ | |
1326 | top_ztrace = &ztraces[0]; | |
1327 | ||
1328 | /* | |
1329 | * Note that we do need a barrier between installing | |
1330 | * the tables and setting the active flag, because the zfree() | |
1331 | * path accesses the table without a lock if we're active. | |
1332 | */ | |
316670eb | 1333 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
1334 | zleak_state |= ZLEAK_STATE_ACTIVE; |
1335 | zleak_state &= ~ZLEAK_STATE_ACTIVATING; | |
316670eb | 1336 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1337 | |
1338 | return 0; | |
1339 | ||
1340 | fail: | |
1341 | /* | |
1342 | * If we fail to allocate memory, don't further tax | |
1343 | * the system by trying again. | |
1344 | */ | |
316670eb | 1345 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
1346 | zleak_state |= ZLEAK_STATE_FAILED; |
1347 | zleak_state &= ~ZLEAK_STATE_ACTIVATING; | |
316670eb | 1348 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1349 | |
1350 | if (allocations_ptr != NULL) { | |
1351 | kmem_free(kernel_map, (vm_offset_t)allocations_ptr, z_alloc_size); | |
1352 | } | |
1353 | ||
1354 | if (traces_ptr != NULL) { | |
1355 | kmem_free(kernel_map, (vm_offset_t)traces_ptr, z_trace_size); | |
1356 | } | |
1357 | ||
1358 | return retval; | |
1359 | } | |
1360 | ||
1361 | /* | |
1362 | * TODO: What about allocations that never get deallocated, | |
1363 | * especially ones with unique backtraces? Should we wait to record | |
1364 | * until after boot has completed? | |
1365 | * (How many persistent zallocs are there?) | |
1366 | */ | |
1367 | ||
1368 | /* | |
1369 | * This function records the allocation in the allocations table, | |
1370 | * and stores the associated backtrace in the traces table | |
1371 | * (or just increments the refcount if the trace is already recorded) | |
1372 | * If the allocation slot is in use, the old allocation is replaced with the new allocation, and | |
1373 | * the associated trace's refcount is decremented. | |
1374 | * If the trace slot is in use, it returns. | |
1375 | * The refcount is incremented by the amount of memory the allocation consumes. | |
1376 | * The return value indicates whether to try again next time. | |
1377 | */ | |
1378 | static boolean_t | |
1379 | zleak_log(uintptr_t* bt, | |
1380 | uintptr_t addr, | |
1381 | uint32_t depth, | |
1382 | vm_size_t allocation_size) | |
1383 | { | |
1384 | /* Quit if there's someone else modifying the hash tables */ | |
316670eb | 1385 | if (!lck_spin_try_lock(&zleak_lock)) { |
6d2010ae A |
1386 | z_total_conflicts++; |
1387 | return FALSE; | |
1388 | } | |
1389 | ||
1390 | struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; | |
1391 | ||
1392 | uint32_t trace_index = hashbacktrace(bt, depth, zleak_trace_buckets); | |
1393 | struct ztrace* trace = &ztraces[trace_index]; | |
1394 | ||
1395 | allocation->za_hit_count++; | |
1396 | trace->zt_hit_count++; | |
1397 | ||
1398 | /* | |
1399 | * If the allocation bucket we want to be in is occupied, and if the occupier | |
1400 | * has the same trace as us, just bail. | |
1401 | */ | |
1402 | if (allocation->za_element != (uintptr_t) 0 && trace_index == allocation->za_trace_index) { | |
1403 | z_alloc_collisions++; | |
1404 | ||
316670eb | 1405 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1406 | return TRUE; |
1407 | } | |
1408 | ||
1409 | /* STEP 1: Store the backtrace in the traces array. */ | |
1410 | /* A size of zero indicates that the trace bucket is free. */ | |
1411 | ||
1412 | if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0 ) { | |
1413 | /* | |
1414 | * Different unique trace with same hash! | |
1415 | * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated | |
1416 | * and get out of the way for later chances | |
1417 | */ | |
1418 | trace->zt_collisions++; | |
1419 | z_trace_collisions++; | |
1420 | ||
316670eb | 1421 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1422 | return TRUE; |
1423 | } else if (trace->zt_size > 0) { | |
1424 | /* Same trace, already added, so increment refcount */ | |
1425 | trace->zt_size += allocation_size; | |
1426 | } else { | |
1427 | /* Found an unused trace bucket, record the trace here! */ | |
1428 | if (trace->zt_depth != 0) /* if this slot was previously used but not currently in use */ | |
1429 | z_trace_overwrites++; | |
1430 | ||
1431 | z_trace_recorded++; | |
1432 | trace->zt_size = allocation_size; | |
1433 | memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t)) ); | |
1434 | ||
1435 | trace->zt_depth = depth; | |
1436 | trace->zt_collisions = 0; | |
1437 | } | |
1438 | ||
1439 | /* STEP 2: Store the allocation record in the allocations array. */ | |
1440 | ||
1441 | if (allocation->za_element != (uintptr_t) 0) { | |
1442 | /* | |
1443 | * Straight up replace any allocation record that was there. We don't want to do the work | |
1444 | * to preserve the allocation entries that were there, because we only record a subset of the | |
1445 | * allocations anyways. | |
1446 | */ | |
1447 | ||
1448 | z_alloc_collisions++; | |
1449 | ||
1450 | struct ztrace* associated_trace = &ztraces[allocation->za_trace_index]; | |
1451 | /* Knock off old allocation's size, not the new allocation */ | |
1452 | associated_trace->zt_size -= allocation->za_size; | |
1453 | } else if (allocation->za_trace_index != 0) { | |
1454 | /* Slot previously used but not currently in use */ | |
1455 | z_alloc_overwrites++; | |
1456 | } | |
1457 | ||
1458 | allocation->za_element = addr; | |
1459 | allocation->za_trace_index = trace_index; | |
1460 | allocation->za_size = allocation_size; | |
1461 | ||
1462 | z_alloc_recorded++; | |
1463 | ||
1464 | if (top_ztrace->zt_size < trace->zt_size) | |
1465 | top_ztrace = trace; | |
1466 | ||
316670eb | 1467 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1468 | return TRUE; |
1469 | } | |
1470 | ||
1471 | /* | |
1472 | * Free the allocation record and release the stacktrace. | |
1473 | * This should be as fast as possible because it will be called for every free. | |
1474 | */ | |
1475 | static void | |
1476 | zleak_free(uintptr_t addr, | |
1477 | vm_size_t allocation_size) | |
1478 | { | |
1479 | if (addr == (uintptr_t) 0) | |
1480 | return; | |
1481 | ||
1482 | struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; | |
1483 | ||
1484 | /* Double-checked locking: check to find out if we're interested, lock, check to make | |
1485 | * sure it hasn't changed, then modify it, and release the lock. | |
1486 | */ | |
c910b4d9 | 1487 | |
6d2010ae A |
1488 | if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { |
1489 | /* if the allocation was the one, grab the lock, check again, then delete it */ | |
316670eb | 1490 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
1491 | |
1492 | if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { | |
1493 | struct ztrace *trace; | |
1494 | ||
1495 | /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */ | |
1496 | if (allocation->za_size != allocation_size) { | |
1497 | panic("Freeing as size %lu memory that was allocated with size %lu\n", | |
1498 | (uintptr_t)allocation_size, (uintptr_t)allocation->za_size); | |
1499 | } | |
1500 | ||
1501 | trace = &ztraces[allocation->za_trace_index]; | |
1502 | ||
1503 | /* size of 0 indicates trace bucket is unused */ | |
1504 | if (trace->zt_size > 0) { | |
1505 | trace->zt_size -= allocation_size; | |
1506 | } | |
1507 | ||
1508 | /* A NULL element means the allocation bucket is unused */ | |
1509 | allocation->za_element = 0; | |
1510 | } | |
316670eb | 1511 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1512 | } |
1513 | } | |
1514 | ||
1515 | #endif /* CONFIG_ZLEAKS */ | |
1516 | ||
1517 | /* These functions outside of CONFIG_ZLEAKS because they are also used in | |
1518 | * mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix. | |
1519 | */ | |
1520 | ||
1521 | /* | |
1522 | * This function captures a backtrace from the current stack and | |
1523 | * returns the number of frames captured, limited by max_frames. | |
1524 | * It's fast because it does no checking to make sure there isn't bad data. | |
1525 | * Since it's only called from threads that we're going to keep executing, | |
1526 | * if there's bad data we were going to die eventually. | |
6d2010ae A |
1527 | * If this function is inlined, it doesn't record the frame of the function it's inside. |
1528 | * (because there's no stack frame!) | |
1529 | */ | |
316670eb | 1530 | |
6d2010ae A |
1531 | uint32_t |
1532 | fastbacktrace(uintptr_t* bt, uint32_t max_frames) | |
1533 | { | |
6d2010ae A |
1534 | uintptr_t* frameptr = NULL, *frameptr_next = NULL; |
1535 | uintptr_t retaddr = 0; | |
1536 | uint32_t frame_index = 0, frames = 0; | |
1537 | uintptr_t kstackb, kstackt; | |
316670eb | 1538 | thread_t cthread = current_thread(); |
6d2010ae | 1539 | |
316670eb A |
1540 | if (__improbable(cthread == NULL)) |
1541 | return 0; | |
1542 | ||
1543 | kstackb = cthread->kernel_stack; | |
6d2010ae A |
1544 | kstackt = kstackb + kernel_stack_size; |
1545 | /* Load stack frame pointer (EBP on x86) into frameptr */ | |
1546 | frameptr = __builtin_frame_address(0); | |
39236c6e A |
1547 | if (((uintptr_t)frameptr > kstackt) || ((uintptr_t)frameptr < kstackb)) |
1548 | frameptr = NULL; | |
6d2010ae A |
1549 | |
1550 | while (frameptr != NULL && frame_index < max_frames ) { | |
1551 | /* Next frame pointer is pointed to by the previous one */ | |
1552 | frameptr_next = (uintptr_t*) *frameptr; | |
1553 | ||
1554 | /* Bail if we see a zero in the stack frame, that means we've reached the top of the stack */ | |
1555 | /* That also means the return address is worthless, so don't record it */ | |
1556 | if (frameptr_next == NULL) | |
1557 | break; | |
1558 | /* Verify thread stack bounds */ | |
1559 | if (((uintptr_t)frameptr_next > kstackt) || ((uintptr_t)frameptr_next < kstackb)) | |
1560 | break; | |
1561 | /* Pull return address from one spot above the frame pointer */ | |
1562 | retaddr = *(frameptr + 1); | |
1563 | ||
1564 | /* Store it in the backtrace array */ | |
1565 | bt[frame_index++] = retaddr; | |
1566 | ||
1567 | frameptr = frameptr_next; | |
1568 | } | |
1569 | ||
1570 | /* Save the number of frames captured for return value */ | |
1571 | frames = frame_index; | |
1572 | ||
1573 | /* Fill in the rest of the backtrace with zeros */ | |
1574 | while (frame_index < max_frames) | |
1575 | bt[frame_index++] = 0; | |
1576 | ||
1577 | return frames; | |
6d2010ae A |
1578 | } |
1579 | ||
1580 | /* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */ | |
1581 | uintptr_t | |
1582 | hash_mix(uintptr_t x) | |
1583 | { | |
1584 | #ifndef __LP64__ | |
1585 | x += ~(x << 15); | |
1586 | x ^= (x >> 10); | |
1587 | x += (x << 3 ); | |
1588 | x ^= (x >> 6 ); | |
1589 | x += ~(x << 11); | |
1590 | x ^= (x >> 16); | |
1591 | #else | |
1592 | x += ~(x << 32); | |
1593 | x ^= (x >> 22); | |
1594 | x += ~(x << 13); | |
1595 | x ^= (x >> 8 ); | |
1596 | x += (x << 3 ); | |
1597 | x ^= (x >> 15); | |
1598 | x += ~(x << 27); | |
1599 | x ^= (x >> 31); | |
1600 | #endif | |
1601 | return x; | |
1602 | } | |
1603 | ||
1604 | uint32_t | |
1605 | hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size) | |
1606 | { | |
1607 | ||
1608 | uintptr_t hash = 0; | |
1609 | uintptr_t mask = max_size - 1; | |
1610 | ||
316670eb A |
1611 | while (depth) { |
1612 | hash += bt[--depth]; | |
6d2010ae A |
1613 | } |
1614 | ||
1615 | hash = hash_mix(hash) & mask; | |
1616 | ||
1617 | assert(hash < max_size); | |
1618 | ||
1619 | return (uint32_t) hash; | |
1620 | } | |
1621 | ||
1622 | /* | |
1623 | * TODO: Determine how well distributed this is | |
1624 | * max_size must be a power of 2. i.e 0x10000 because 0x10000-1 is 0x0FFFF which is a great bitmask | |
1625 | */ | |
1626 | uint32_t | |
1627 | hashaddr(uintptr_t pt, uint32_t max_size) | |
1628 | { | |
1629 | uintptr_t hash = 0; | |
1630 | uintptr_t mask = max_size - 1; | |
1631 | ||
1632 | hash = hash_mix(pt) & mask; | |
1633 | ||
1634 | assert(hash < max_size); | |
1635 | ||
1636 | return (uint32_t) hash; | |
1637 | } | |
1638 | ||
1639 | /* End of all leak-detection code */ | |
1640 | #pragma mark - | |
1641 | ||
1c79356b A |
1642 | /* |
1643 | * zinit initializes a new zone. The zone data structures themselves | |
1644 | * are stored in a zone, which is initially a static structure that | |
1645 | * is initialized by zone_init. | |
1646 | */ | |
1647 | zone_t | |
1648 | zinit( | |
1649 | vm_size_t size, /* the size of an element */ | |
1650 | vm_size_t max, /* maximum memory to use */ | |
1651 | vm_size_t alloc, /* allocation size */ | |
91447636 | 1652 | const char *name) /* a name for the zone */ |
1c79356b A |
1653 | { |
1654 | zone_t z; | |
39236c6e | 1655 | boolean_t use_page_list = FALSE; |
1c79356b A |
1656 | |
1657 | if (zone_zone == ZONE_NULL) { | |
7ddcb079 A |
1658 | |
1659 | z = (struct zone *)zdata; | |
39236c6e | 1660 | /* special handling in zcram() because the first element is being used */ |
1c79356b A |
1661 | } else |
1662 | z = (zone_t) zalloc(zone_zone); | |
316670eb | 1663 | |
1c79356b A |
1664 | if (z == ZONE_NULL) |
1665 | return(ZONE_NULL); | |
1666 | ||
39236c6e A |
1667 | /* Zone elements must fit both a next pointer and a backup pointer */ |
1668 | vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2; | |
1669 | if (size < minimum_element_size) | |
1670 | size = minimum_element_size; | |
1671 | ||
1c79356b | 1672 | /* |
39236c6e A |
1673 | * Round element size to a multiple of sizeof(pointer) |
1674 | * This also enforces that allocations will be aligned on pointer boundaries | |
1c79356b | 1675 | */ |
39236c6e A |
1676 | size = ((size-1) + sizeof(vm_offset_t)) - |
1677 | ((size-1) % sizeof(vm_offset_t)); | |
1678 | ||
1679 | if (alloc == 0) | |
1c79356b | 1680 | alloc = PAGE_SIZE; |
39236c6e | 1681 | |
91447636 A |
1682 | alloc = round_page(alloc); |
1683 | max = round_page(max); | |
39236c6e | 1684 | |
1c79356b | 1685 | /* |
91447636 A |
1686 | * we look for an allocation size with less than 1% waste |
1687 | * up to 5 pages in size... | |
1688 | * otherwise, we look for an allocation size with least fragmentation | |
1689 | * in the range of 1 - 5 pages | |
1690 | * This size will be used unless | |
1c79356b A |
1691 | * the user suggestion is larger AND has less fragmentation |
1692 | */ | |
2d21ac55 | 1693 | #if ZONE_ALIAS_ADDR |
39236c6e | 1694 | /* Favor PAGE_SIZE allocations unless we waste >10% space */ |
2d21ac55 A |
1695 | if ((size < PAGE_SIZE) && (PAGE_SIZE % size <= PAGE_SIZE / 10)) |
1696 | alloc = PAGE_SIZE; | |
1697 | else | |
1698 | #endif | |
7ddcb079 A |
1699 | #if defined(__LP64__) |
1700 | if (((alloc % size) != 0) || (alloc > PAGE_SIZE * 8)) | |
1701 | #endif | |
1702 | { | |
1703 | vm_size_t best, waste; unsigned int i; | |
1c79356b A |
1704 | best = PAGE_SIZE; |
1705 | waste = best % size; | |
91447636 A |
1706 | |
1707 | for (i = 1; i <= 5; i++) { | |
39236c6e | 1708 | vm_size_t tsize, twaste; |
91447636 A |
1709 | |
1710 | tsize = i * PAGE_SIZE; | |
1711 | ||
1712 | if ((tsize % size) < (tsize / 100)) { | |
1713 | alloc = tsize; | |
1714 | goto use_this_allocation; | |
1715 | } | |
1c79356b A |
1716 | twaste = tsize % size; |
1717 | if (twaste < waste) | |
1718 | best = tsize, waste = twaste; | |
1719 | } | |
1720 | if (alloc <= best || (alloc % size >= waste)) | |
1721 | alloc = best; | |
1722 | } | |
91447636 | 1723 | use_this_allocation: |
1c79356b A |
1724 | if (max && (max < alloc)) |
1725 | max = alloc; | |
1726 | ||
39236c6e A |
1727 | /* |
1728 | * Opt into page list tracking if we can reliably map an allocation | |
1729 | * to its page_metadata, and if the wastage in the tail of | |
1730 | * the allocation is not too large | |
1731 | */ | |
3e170ce0 A |
1732 | |
1733 | /* zone_zone can't use page metadata since the page metadata will overwrite zone metadata */ | |
1734 | if (alloc == PAGE_SIZE && zone_zone != ZONE_NULL) { | |
1735 | vm_offset_t first_element_offset; | |
1736 | size_t zone_page_metadata_size = sizeof(struct zone_page_metadata); | |
1737 | ||
1738 | if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0) { | |
1739 | first_element_offset = zone_page_metadata_size; | |
1740 | } else { | |
1741 | first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT)); | |
1742 | } | |
1743 | ||
1744 | if (((PAGE_SIZE - first_element_offset) % size) <= PAGE_SIZE / 100) { | |
39236c6e A |
1745 | use_page_list = TRUE; |
1746 | } | |
1747 | } | |
1748 | ||
1749 | z->free_elements = NULL; | |
1750 | queue_init(&z->pages.any_free_foreign); | |
1751 | queue_init(&z->pages.all_free); | |
1752 | queue_init(&z->pages.intermediate); | |
1753 | queue_init(&z->pages.all_used); | |
1c79356b | 1754 | z->cur_size = 0; |
39236c6e | 1755 | z->page_count = 0; |
1c79356b A |
1756 | z->max_size = max; |
1757 | z->elem_size = size; | |
1758 | z->alloc_size = alloc; | |
1759 | z->zone_name = name; | |
1760 | z->count = 0; | |
39236c6e | 1761 | z->countfree = 0; |
6d2010ae | 1762 | z->sum_count = 0LL; |
3e170ce0 A |
1763 | z->doing_alloc_without_vm_priv = FALSE; |
1764 | z->doing_alloc_with_vm_priv = FALSE; | |
a3d08fcd | 1765 | z->doing_gc = FALSE; |
1c79356b A |
1766 | z->exhaustible = FALSE; |
1767 | z->collectable = TRUE; | |
1768 | z->allows_foreign = FALSE; | |
1769 | z->expandable = TRUE; | |
1770 | z->waiting = FALSE; | |
0b4e3aa0 | 1771 | z->async_pending = FALSE; |
6d2010ae | 1772 | z->caller_acct = TRUE; |
0b4c1975 | 1773 | z->noencrypt = FALSE; |
7ddcb079 A |
1774 | z->no_callout = FALSE; |
1775 | z->async_prio_refill = FALSE; | |
316670eb A |
1776 | z->gzalloc_exempt = FALSE; |
1777 | z->alignment_required = FALSE; | |
39236c6e | 1778 | z->use_page_list = use_page_list; |
7ddcb079 A |
1779 | z->prio_refill_watermark = 0; |
1780 | z->zone_replenish_thread = NULL; | |
39236c6e | 1781 | z->zp_count = 0; |
6d2010ae | 1782 | #if CONFIG_ZLEAKS |
6d2010ae A |
1783 | z->zleak_capture = 0; |
1784 | z->zleak_on = FALSE; | |
1785 | #endif /* CONFIG_ZLEAKS */ | |
1786 | ||
1c79356b | 1787 | #if ZONE_DEBUG |
2d21ac55 | 1788 | z->active_zones.next = z->active_zones.prev = NULL; |
1c79356b A |
1789 | zone_debug_enable(z); |
1790 | #endif /* ZONE_DEBUG */ | |
1791 | lock_zone_init(z); | |
1792 | ||
1793 | /* | |
1794 | * Add the zone to the all-zones list. | |
6d2010ae A |
1795 | * If we are tracking zone info per task, and we have |
1796 | * already used all the available stat slots, then keep | |
1797 | * using the overflow zone slot. | |
1c79356b | 1798 | */ |
1c79356b A |
1799 | z->next_zone = ZONE_NULL; |
1800 | simple_lock(&all_zones_lock); | |
1801 | *last_zone = z; | |
1802 | last_zone = &z->next_zone; | |
6d2010ae A |
1803 | z->index = num_zones; |
1804 | if (zinfo_per_task) { | |
1805 | if (num_zones > ZONES_MAX) | |
1806 | z->index = ZONES_MAX; | |
1807 | } | |
1c79356b A |
1808 | num_zones++; |
1809 | simple_unlock(&all_zones_lock); | |
1810 | ||
c910b4d9 A |
1811 | /* |
1812 | * Check if we should be logging this zone. If so, remember the zone pointer. | |
1813 | */ | |
316670eb | 1814 | if (log_this_zone(z->zone_name, zone_name_to_log)) { |
c910b4d9 A |
1815 | zone_of_interest = z; |
1816 | } | |
1817 | ||
1818 | /* | |
1819 | * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are | |
39236c6e | 1820 | * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to |
c910b4d9 A |
1821 | * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one |
1822 | * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again | |
1823 | * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized | |
1824 | * right now. | |
1825 | */ | |
39236c6e A |
1826 | if (zone_of_interest != NULL && zlog_btlog == NULL && kmem_alloc_ready) { |
1827 | zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, NULL, NULL, NULL); | |
1828 | if (zlog_btlog) { | |
1829 | printf("zone: logging started for zone %s\n", zone_of_interest->zone_name); | |
c910b4d9 A |
1830 | } else { |
1831 | printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n"); | |
1832 | zone_of_interest = NULL; | |
1833 | } | |
1834 | } | |
316670eb A |
1835 | #if CONFIG_GZALLOC |
1836 | gzalloc_zone_init(z); | |
1837 | #endif | |
1c79356b A |
1838 | return(z); |
1839 | } | |
39236c6e | 1840 | unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated, zone_replenish_throttle_count; |
7ddcb079 A |
1841 | |
1842 | static void zone_replenish_thread(zone_t); | |
1843 | ||
1844 | /* High priority VM privileged thread used to asynchronously refill a designated | |
1845 | * zone, such as the reserved VM map entry zone. | |
1846 | */ | |
1847 | static void zone_replenish_thread(zone_t z) { | |
1848 | vm_size_t free_size; | |
1849 | current_thread()->options |= TH_OPT_VMPRIV; | |
1850 | ||
1851 | for (;;) { | |
1852 | lock_zone(z); | |
1853 | assert(z->prio_refill_watermark != 0); | |
1854 | while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) { | |
3e170ce0 A |
1855 | assert(z->doing_alloc_without_vm_priv == FALSE); |
1856 | assert(z->doing_alloc_with_vm_priv == FALSE); | |
7ddcb079 A |
1857 | assert(z->async_prio_refill == TRUE); |
1858 | ||
1859 | unlock_zone(z); | |
1860 | int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT; | |
1861 | vm_offset_t space, alloc_size; | |
1862 | kern_return_t kr; | |
1863 | ||
1864 | if (vm_pool_low()) | |
1865 | alloc_size = round_page(z->elem_size); | |
1866 | else | |
1867 | alloc_size = z->alloc_size; | |
1868 | ||
1869 | if (z->noencrypt) | |
1870 | zflags |= KMA_NOENCRYPT; | |
1871 | ||
3e170ce0 | 1872 | kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); |
7ddcb079 A |
1873 | |
1874 | if (kr == KERN_SUCCESS) { | |
1875 | #if ZONE_ALIAS_ADDR | |
1876 | if (alloc_size == PAGE_SIZE) | |
1877 | space = zone_alias_addr(space); | |
1878 | #endif | |
1879 | zcram(z, space, alloc_size); | |
1880 | } else if (kr == KERN_RESOURCE_SHORTAGE) { | |
1881 | VM_PAGE_WAIT(); | |
1882 | } else if (kr == KERN_NO_SPACE) { | |
3e170ce0 | 1883 | kr = kernel_memory_allocate(kernel_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); |
7ddcb079 A |
1884 | if (kr == KERN_SUCCESS) { |
1885 | #if ZONE_ALIAS_ADDR | |
1886 | if (alloc_size == PAGE_SIZE) | |
1887 | space = zone_alias_addr(space); | |
1888 | #endif | |
1889 | zcram(z, space, alloc_size); | |
1890 | } else { | |
1891 | assert_wait_timeout(&z->zone_replenish_thread, THREAD_UNINT, 1, 100 * NSEC_PER_USEC); | |
1892 | thread_block(THREAD_CONTINUE_NULL); | |
1893 | } | |
1894 | } | |
1895 | ||
1896 | lock_zone(z); | |
1897 | zone_replenish_loops++; | |
1898 | } | |
1899 | ||
1900 | unlock_zone(z); | |
39236c6e A |
1901 | /* Signal any potential throttled consumers, terminating |
1902 | * their timer-bounded waits. | |
1903 | */ | |
1904 | thread_wakeup(z); | |
1905 | ||
7ddcb079 A |
1906 | assert_wait(&z->zone_replenish_thread, THREAD_UNINT); |
1907 | thread_block(THREAD_CONTINUE_NULL); | |
1908 | zone_replenish_wakeups++; | |
1909 | } | |
1910 | } | |
1911 | ||
1912 | void | |
1913 | zone_prio_refill_configure(zone_t z, vm_size_t low_water_mark) { | |
1914 | z->prio_refill_watermark = low_water_mark; | |
1915 | ||
1916 | z->async_prio_refill = TRUE; | |
1917 | OSMemoryBarrier(); | |
1918 | kern_return_t tres = kernel_thread_start_priority((thread_continue_t)zone_replenish_thread, z, MAXPRI_KERNEL, &z->zone_replenish_thread); | |
1919 | ||
1920 | if (tres != KERN_SUCCESS) { | |
1921 | panic("zone_prio_refill_configure, thread create: 0x%x", tres); | |
1922 | } | |
1923 | ||
1924 | thread_deallocate(z->zone_replenish_thread); | |
1925 | } | |
1c79356b A |
1926 | |
1927 | /* | |
3e170ce0 | 1928 | * Cram the given memory into the specified zone. Update the zone page count accordingly. |
1c79356b A |
1929 | */ |
1930 | void | |
1931 | zcram( | |
7ddcb079 A |
1932 | zone_t zone, |
1933 | vm_offset_t newmem, | |
1c79356b A |
1934 | vm_size_t size) |
1935 | { | |
7ddcb079 A |
1936 | vm_size_t elem_size; |
1937 | boolean_t from_zm = FALSE; | |
1c79356b A |
1938 | |
1939 | /* Basic sanity checks */ | |
1940 | assert(zone != ZONE_NULL && newmem != (vm_offset_t)0); | |
1941 | assert(!zone->collectable || zone->allows_foreign | |
55e303ae | 1942 | || (from_zone_map(newmem, size))); |
1c79356b A |
1943 | |
1944 | elem_size = zone->elem_size; | |
1945 | ||
7ddcb079 A |
1946 | if (from_zone_map(newmem, size)) |
1947 | from_zm = TRUE; | |
1948 | ||
39236c6e A |
1949 | if (zalloc_debug & ZALLOC_DEBUG_ZCRAM) |
1950 | kprintf("zcram(%p[%s], 0x%lx%s, 0x%lx)\n", zone, zone->zone_name, | |
1951 | (unsigned long)newmem, from_zm ? "" : "[F]", (unsigned long)size); | |
1952 | ||
1953 | if (from_zm && !zone->use_page_list) | |
7ddcb079 A |
1954 | zone_page_init(newmem, size); |
1955 | ||
3e170ce0 A |
1956 | ZONE_PAGE_COUNT_INCR(zone, (size / PAGE_SIZE)); |
1957 | ||
1c79356b | 1958 | lock_zone(zone); |
39236c6e A |
1959 | |
1960 | if (zone->use_page_list) { | |
1961 | struct zone_page_metadata *page_metadata; | |
3e170ce0 | 1962 | size_t zone_page_metadata_size = sizeof(struct zone_page_metadata); |
39236c6e A |
1963 | |
1964 | assert((newmem & PAGE_MASK) == 0); | |
1965 | assert((size & PAGE_MASK) == 0); | |
1966 | for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) { | |
1967 | ||
1968 | vm_size_t pos_in_page; | |
3e170ce0 | 1969 | page_metadata = (struct zone_page_metadata *)(newmem); |
39236c6e A |
1970 | |
1971 | page_metadata->pages.next = NULL; | |
1972 | page_metadata->pages.prev = NULL; | |
1973 | page_metadata->elements = NULL; | |
1974 | page_metadata->zone = zone; | |
1975 | page_metadata->alloc_count = 0; | |
1976 | page_metadata->free_count = 0; | |
1977 | ||
1978 | enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_metadata); | |
1979 | ||
3e170ce0 A |
1980 | vm_offset_t first_element_offset; |
1981 | if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0){ | |
1982 | first_element_offset = zone_page_metadata_size; | |
1983 | } else { | |
1984 | first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT)); | |
1985 | } | |
1986 | ||
1987 | for (pos_in_page = first_element_offset; (newmem + pos_in_page + elem_size) < (vm_offset_t)(newmem + PAGE_SIZE); pos_in_page += elem_size) { | |
39236c6e A |
1988 | page_metadata->alloc_count++; |
1989 | zone->count++; /* compensate for free_to_zone */ | |
3e170ce0 | 1990 | free_to_zone(zone, newmem + pos_in_page, FALSE); |
39236c6e A |
1991 | zone->cur_size += elem_size; |
1992 | } | |
1993 | } | |
1994 | } else { | |
1995 | while (size >= elem_size) { | |
1996 | zone->count++; /* compensate for free_to_zone */ | |
1997 | if (newmem == (vm_offset_t)zone) { | |
1998 | /* Don't free zone_zone zone */ | |
1999 | } else { | |
fe8ab488 | 2000 | free_to_zone(zone, newmem, FALSE); |
39236c6e A |
2001 | } |
2002 | if (from_zm) | |
2003 | zone_page_alloc(newmem, elem_size); | |
2004 | size -= elem_size; | |
2005 | newmem += elem_size; | |
2006 | zone->cur_size += elem_size; | |
2007 | } | |
1c79356b A |
2008 | } |
2009 | unlock_zone(zone); | |
2010 | } | |
2011 | ||
1c79356b A |
2012 | |
2013 | /* | |
2014 | * Steal memory for the zone package. Called from | |
2015 | * vm_page_bootstrap(). | |
2016 | */ | |
2017 | void | |
2018 | zone_steal_memory(void) | |
2019 | { | |
316670eb A |
2020 | #if CONFIG_GZALLOC |
2021 | gzalloc_configure(); | |
2022 | #endif | |
7ddcb079 A |
2023 | /* Request enough early memory to get to the pmap zone */ |
2024 | zdata_size = 12 * sizeof(struct zone); | |
39236c6e A |
2025 | zdata_size = round_page(zdata_size); |
2026 | zdata = (vm_offset_t)pmap_steal_memory(zdata_size); | |
1c79356b A |
2027 | } |
2028 | ||
2029 | ||
2030 | /* | |
2031 | * Fill a zone with enough memory to contain at least nelem elements. | |
b0d623f7 | 2032 | * Memory is obtained with kmem_alloc_kobject from the kernel_map. |
1c79356b A |
2033 | * Return the number of elements actually put into the zone, which may |
2034 | * be more than the caller asked for since the memory allocation is | |
2035 | * rounded up to a full page. | |
2036 | */ | |
2037 | int | |
2038 | zfill( | |
2039 | zone_t zone, | |
2040 | int nelem) | |
2041 | { | |
2042 | kern_return_t kr; | |
2043 | vm_size_t size; | |
2044 | vm_offset_t memory; | |
2045 | int nalloc; | |
2046 | ||
2047 | assert(nelem > 0); | |
2048 | if (nelem <= 0) | |
2049 | return 0; | |
2050 | size = nelem * zone->elem_size; | |
91447636 | 2051 | size = round_page(size); |
3e170ce0 | 2052 | kr = kmem_alloc_kobject(kernel_map, &memory, size, VM_KERN_MEMORY_ZONE); |
1c79356b A |
2053 | if (kr != KERN_SUCCESS) |
2054 | return 0; | |
2055 | ||
2056 | zone_change(zone, Z_FOREIGN, TRUE); | |
7ddcb079 | 2057 | zcram(zone, memory, size); |
b0d623f7 | 2058 | nalloc = (int)(size / zone->elem_size); |
1c79356b A |
2059 | assert(nalloc >= nelem); |
2060 | ||
2061 | return nalloc; | |
2062 | } | |
2063 | ||
2064 | /* | |
2065 | * Initialize the "zone of zones" which uses fixed memory allocated | |
2066 | * earlier in memory initialization. zone_bootstrap is called | |
2067 | * before zone_init. | |
2068 | */ | |
2069 | void | |
2070 | zone_bootstrap(void) | |
2071 | { | |
2d21ac55 A |
2072 | char temp_buf[16]; |
2073 | ||
316670eb A |
2074 | if (PE_parse_boot_argn("-zinfop", temp_buf, sizeof(temp_buf))) { |
2075 | zinfo_per_task = TRUE; | |
6d2010ae | 2076 | } |
6d2010ae | 2077 | |
39236c6e A |
2078 | if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug, sizeof(zalloc_debug))) |
2079 | zalloc_debug = 0; | |
316670eb | 2080 | |
39236c6e A |
2081 | /* Set up zone element poisoning */ |
2082 | zp_init(); | |
c910b4d9 | 2083 | |
39236c6e A |
2084 | /* should zlog log to debug zone corruption instead of leaks? */ |
2085 | if (PE_parse_boot_argn("-zc", temp_buf, sizeof(temp_buf))) { | |
2086 | corruption_debug_flag = TRUE; | |
2087 | } | |
6d2010ae | 2088 | |
c910b4d9 A |
2089 | /* |
2090 | * Check for and set up zone leak detection if requested via boot-args. We recognized two | |
2091 | * boot-args: | |
2092 | * | |
2093 | * zlog=<zone_to_log> | |
2094 | * zrecs=<num_records_in_log> | |
2095 | * | |
2096 | * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to | |
2097 | * control the size of the log. If zrecs is not specified, a default value is used. | |
2098 | */ | |
2099 | ||
2100 | if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) { | |
2101 | if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) { | |
2102 | ||
2103 | /* | |
2104 | * Don't allow more than ZRECORDS_MAX records even if the user asked for more. | |
2105 | * This prevents accidentally hogging too much kernel memory and making the system | |
2106 | * unusable. | |
2107 | */ | |
2108 | ||
2109 | log_records = MIN(ZRECORDS_MAX, log_records); | |
2110 | ||
2111 | } else { | |
2112 | log_records = ZRECORDS_DEFAULT; | |
2113 | } | |
2d21ac55 | 2114 | } |
1c79356b | 2115 | |
91447636 | 2116 | simple_lock_init(&all_zones_lock, 0); |
1c79356b A |
2117 | |
2118 | first_zone = ZONE_NULL; | |
2119 | last_zone = &first_zone; | |
2120 | num_zones = 0; | |
39236c6e | 2121 | thread_call_setup(&call_async_alloc, zalloc_async, NULL); |
1c79356b | 2122 | |
1c79356b A |
2123 | /* assertion: nobody else called zinit before us */ |
2124 | assert(zone_zone == ZONE_NULL); | |
39236c6e A |
2125 | |
2126 | /* initializing global lock group for zones */ | |
2127 | lck_grp_attr_setdefault(&zone_locks_grp_attr); | |
2128 | lck_grp_init(&zone_locks_grp, "zone_locks", &zone_locks_grp_attr); | |
2129 | ||
1c79356b A |
2130 | zone_zone = zinit(sizeof(struct zone), 128 * sizeof(struct zone), |
2131 | sizeof(struct zone), "zones"); | |
2132 | zone_change(zone_zone, Z_COLLECT, FALSE); | |
6d2010ae | 2133 | zone_change(zone_zone, Z_CALLERACCT, FALSE); |
0b4c1975 A |
2134 | zone_change(zone_zone, Z_NOENCRYPT, TRUE); |
2135 | ||
7ddcb079 | 2136 | zcram(zone_zone, zdata, zdata_size); |
3e170ce0 | 2137 | VM_PAGE_MOVE_STOLEN(atop_64(zdata_size)); |
6d2010ae A |
2138 | |
2139 | /* initialize fake zones and zone info if tracking by task */ | |
2140 | if (zinfo_per_task) { | |
2141 | vm_size_t zisize = sizeof(zinfo_usage_store_t) * ZINFO_SLOTS; | |
2142 | unsigned int i; | |
2143 | ||
2144 | for (i = 0; i < num_fake_zones; i++) | |
2145 | fake_zones[i].init(ZINFO_SLOTS - num_fake_zones + i); | |
2146 | zinfo_zone = zinit(zisize, zisize * CONFIG_TASK_MAX, | |
2147 | zisize, "per task zinfo"); | |
2148 | zone_change(zinfo_zone, Z_CALLERACCT, FALSE); | |
2149 | } | |
2150 | } | |
2151 | ||
2152 | void | |
2153 | zinfo_task_init(task_t task) | |
2154 | { | |
2155 | if (zinfo_per_task) { | |
2156 | task->tkm_zinfo = zalloc(zinfo_zone); | |
2157 | memset(task->tkm_zinfo, 0, sizeof(zinfo_usage_store_t) * ZINFO_SLOTS); | |
2158 | } else { | |
2159 | task->tkm_zinfo = NULL; | |
2160 | } | |
1c79356b A |
2161 | } |
2162 | ||
6d2010ae A |
2163 | void |
2164 | zinfo_task_free(task_t task) | |
2165 | { | |
2166 | assert(task != kernel_task); | |
2167 | if (task->tkm_zinfo != NULL) { | |
2168 | zfree(zinfo_zone, task->tkm_zinfo); | |
2169 | task->tkm_zinfo = NULL; | |
2170 | } | |
2171 | } | |
2172 | ||
39236c6e A |
2173 | /* Global initialization of Zone Allocator. |
2174 | * Runs after zone_bootstrap. | |
2175 | */ | |
1c79356b A |
2176 | void |
2177 | zone_init( | |
2178 | vm_size_t max_zonemap_size) | |
2179 | { | |
2180 | kern_return_t retval; | |
2181 | vm_offset_t zone_min; | |
2182 | vm_offset_t zone_max; | |
1c79356b A |
2183 | |
2184 | retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size, | |
3e170ce0 | 2185 | FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT | VM_MAKE_TAG(VM_KERN_MEMORY_ZONE), |
b0d623f7 | 2186 | &zone_map); |
91447636 | 2187 | |
1c79356b A |
2188 | if (retval != KERN_SUCCESS) |
2189 | panic("zone_init: kmem_suballoc failed"); | |
91447636 | 2190 | zone_max = zone_min + round_page(max_zonemap_size); |
316670eb A |
2191 | #if CONFIG_GZALLOC |
2192 | gzalloc_init(max_zonemap_size); | |
2193 | #endif | |
1c79356b A |
2194 | /* |
2195 | * Setup garbage collection information: | |
2196 | */ | |
1c79356b A |
2197 | zone_map_min_address = zone_min; |
2198 | zone_map_max_address = zone_max; | |
7ddcb079 | 2199 | |
fe8ab488 A |
2200 | #if defined(__LP64__) |
2201 | /* | |
2202 | * ensure that any vm_page_t that gets created from | |
2203 | * the vm_page zone can be packed properly (see vm_page.h | |
2204 | * for the packing requirements | |
2205 | */ | |
2206 | if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_min_address)) != (vm_page_t)zone_map_min_address) | |
2207 | panic("VM_PAGE_PACK_PTR failed on zone_map_min_address - %p", (void *)zone_map_min_address); | |
2208 | ||
2209 | if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address)) != (vm_page_t)zone_map_max_address) | |
2210 | panic("VM_PAGE_PACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address); | |
2211 | #endif | |
2212 | ||
7ddcb079 A |
2213 | zone_pages = (unsigned int)atop_kernel(zone_max - zone_min); |
2214 | zone_page_table_used_size = sizeof(zone_page_table); | |
2215 | ||
2216 | zone_page_table_second_level_size = 1; | |
2217 | zone_page_table_second_level_shift_amount = 0; | |
2218 | ||
2219 | /* | |
2220 | * Find the power of 2 for the second level that allows | |
2221 | * the first level to fit in ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE | |
2222 | * slots. | |
2223 | */ | |
2224 | while ((zone_page_table_first_level_slot(zone_pages-1)) >= ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE) { | |
2225 | zone_page_table_second_level_size <<= 1; | |
2226 | zone_page_table_second_level_shift_amount++; | |
2227 | } | |
b0d623f7 | 2228 | |
39236c6e A |
2229 | lck_grp_attr_setdefault(&zone_gc_lck_grp_attr); |
2230 | lck_grp_init(&zone_gc_lck_grp, "zone_gc", &zone_gc_lck_grp_attr); | |
2231 | lck_attr_setdefault(&zone_gc_lck_attr); | |
2232 | lck_mtx_init_ext(&zone_gc_lock, &zone_gc_lck_ext, &zone_gc_lck_grp, &zone_gc_lck_attr); | |
b0d623f7 | 2233 | |
6d2010ae A |
2234 | #if CONFIG_ZLEAKS |
2235 | /* | |
2236 | * Initialize the zone leak monitor | |
2237 | */ | |
2238 | zleak_init(max_zonemap_size); | |
2239 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2240 | } |
2241 | ||
7ddcb079 A |
2242 | void |
2243 | zone_page_table_expand(zone_page_index_t pindex) | |
2244 | { | |
2245 | unsigned int first_index; | |
2246 | struct zone_page_table_entry * volatile * first_level_ptr; | |
2247 | ||
2248 | assert(pindex < zone_pages); | |
2249 | ||
2250 | first_index = zone_page_table_first_level_slot(pindex); | |
2251 | first_level_ptr = &zone_page_table[first_index]; | |
2252 | ||
2253 | if (*first_level_ptr == NULL) { | |
2254 | /* | |
2255 | * We were able to verify the old first-level slot | |
2256 | * had NULL, so attempt to populate it. | |
2257 | */ | |
2258 | ||
2259 | vm_offset_t second_level_array = 0; | |
2260 | vm_size_t second_level_size = round_page(zone_page_table_second_level_size * sizeof(struct zone_page_table_entry)); | |
2261 | zone_page_index_t i; | |
2262 | struct zone_page_table_entry *entry_array; | |
2263 | ||
2264 | if (kmem_alloc_kobject(zone_map, &second_level_array, | |
3e170ce0 | 2265 | second_level_size, VM_KERN_MEMORY_OSFMK) != KERN_SUCCESS) { |
7ddcb079 A |
2266 | panic("zone_page_table_expand"); |
2267 | } | |
39236c6e | 2268 | zone_map_table_page_count += (second_level_size / PAGE_SIZE); |
7ddcb079 A |
2269 | |
2270 | /* | |
2271 | * zone_gc() may scan the "zone_page_table" directly, | |
2272 | * so make sure any slots have a valid unused state. | |
2273 | */ | |
2274 | entry_array = (struct zone_page_table_entry *)second_level_array; | |
2275 | for (i=0; i < zone_page_table_second_level_size; i++) { | |
2276 | entry_array[i].alloc_count = ZONE_PAGE_UNUSED; | |
2277 | entry_array[i].collect_count = 0; | |
2278 | } | |
2279 | ||
2280 | if (OSCompareAndSwapPtr(NULL, entry_array, first_level_ptr)) { | |
2281 | /* Old slot was NULL, replaced with expanded level */ | |
2282 | OSAddAtomicLong(second_level_size, &zone_page_table_used_size); | |
2283 | } else { | |
2284 | /* Old slot was not NULL, someone else expanded first */ | |
2285 | kmem_free(zone_map, second_level_array, second_level_size); | |
39236c6e | 2286 | zone_map_table_page_count -= (second_level_size / PAGE_SIZE); |
7ddcb079 A |
2287 | } |
2288 | } else { | |
2289 | /* Old slot was not NULL, already been expanded */ | |
2290 | } | |
2291 | } | |
2292 | ||
2293 | struct zone_page_table_entry * | |
2294 | zone_page_table_lookup(zone_page_index_t pindex) | |
2295 | { | |
2296 | unsigned int first_index = zone_page_table_first_level_slot(pindex); | |
2297 | struct zone_page_table_entry *second_level = zone_page_table[first_index]; | |
2298 | ||
2299 | if (second_level) { | |
2300 | return &second_level[zone_page_table_second_level_slot(pindex)]; | |
2301 | } | |
2302 | ||
2303 | return NULL; | |
2304 | } | |
2305 | ||
b0d623f7 | 2306 | extern volatile SInt32 kfree_nop_count; |
1c79356b | 2307 | |
6d2010ae A |
2308 | #pragma mark - |
2309 | #pragma mark zalloc_canblock | |
2310 | ||
1c79356b A |
2311 | /* |
2312 | * zalloc returns an element from the specified zone. | |
2313 | */ | |
fe8ab488 A |
2314 | static void * |
2315 | zalloc_internal( | |
39236c6e | 2316 | zone_t zone, |
fe8ab488 A |
2317 | boolean_t canblock, |
2318 | boolean_t nopagewait) | |
1c79356b | 2319 | { |
316670eb A |
2320 | vm_offset_t addr = 0; |
2321 | kern_return_t retval; | |
6d2010ae | 2322 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */ |
c910b4d9 | 2323 | int numsaved = 0; |
39236c6e A |
2324 | boolean_t zone_replenish_wakeup = FALSE, zone_alloc_throttle = FALSE; |
2325 | #if CONFIG_GZALLOC || ZONE_DEBUG | |
2326 | boolean_t did_gzalloc = FALSE; | |
2327 | #endif | |
2328 | thread_t thr = current_thread(); | |
fe8ab488 | 2329 | boolean_t check_poison = FALSE; |
3e170ce0 | 2330 | boolean_t set_doing_alloc_with_vm_priv = FALSE; |
6d2010ae A |
2331 | |
2332 | #if CONFIG_ZLEAKS | |
2333 | uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ | |
2334 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2335 | |
2336 | assert(zone != ZONE_NULL); | |
316670eb A |
2337 | |
2338 | #if CONFIG_GZALLOC | |
2339 | addr = gzalloc_alloc(zone, canblock); | |
2340 | did_gzalloc = (addr != 0); | |
2341 | #endif | |
2342 | ||
c910b4d9 A |
2343 | /* |
2344 | * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. | |
2345 | */ | |
39236c6e | 2346 | if (__improbable(DO_LOGGING(zone))) |
6d2010ae | 2347 | numsaved = OSBacktrace((void*) zbt, MAX_ZTRACE_DEPTH); |
39236c6e | 2348 | |
6d2010ae | 2349 | #if CONFIG_ZLEAKS |
fe8ab488 | 2350 | /* |
316670eb | 2351 | * Zone leak detection: capture a backtrace every zleak_sample_factor |
fe8ab488 | 2352 | * allocations in this zone. |
6d2010ae | 2353 | */ |
fe8ab488 | 2354 | if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) { |
6d2010ae | 2355 | /* Avoid backtracing twice if zone logging is on */ |
fe8ab488 | 2356 | if (numsaved == 0) |
6d2010ae A |
2357 | zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH); |
2358 | else | |
2359 | zleak_tracedepth = numsaved; | |
2360 | } | |
2361 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b | 2362 | |
fe8ab488 A |
2363 | lock_zone(zone); |
2364 | ||
39236c6e A |
2365 | if (zone->async_prio_refill && zone->zone_replenish_thread) { |
2366 | do { | |
2367 | vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size)); | |
2368 | vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size; | |
2369 | zone_replenish_wakeup = (zfreec < zrefillwm); | |
2370 | zone_alloc_throttle = (zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0); | |
2371 | ||
2372 | if (zone_replenish_wakeup) { | |
2373 | zone_replenish_wakeups_initiated++; | |
2374 | unlock_zone(zone); | |
2375 | /* Signal the potentially waiting | |
2376 | * refill thread. | |
2377 | */ | |
2378 | thread_wakeup(&zone->zone_replenish_thread); | |
2379 | ||
2380 | /* Scheduling latencies etc. may prevent | |
2381 | * the refill thread from keeping up | |
2382 | * with demand. Throttle consumers | |
2383 | * when we fall below half the | |
2384 | * watermark, unless VM privileged | |
2385 | */ | |
2386 | if (zone_alloc_throttle) { | |
2387 | zone_replenish_throttle_count++; | |
2388 | assert_wait_timeout(zone, THREAD_UNINT, 1, NSEC_PER_MSEC); | |
2389 | thread_block(THREAD_CONTINUE_NULL); | |
2390 | } | |
2391 | lock_zone(zone); | |
2392 | } | |
2393 | } while (zone_alloc_throttle == TRUE); | |
2394 | } | |
2395 | ||
316670eb | 2396 | if (__probable(addr == 0)) |
fe8ab488 | 2397 | addr = try_alloc_from_zone(zone, &check_poison); |
0b4e3aa0 | 2398 | |
a3d08fcd | 2399 | |
0b4e3aa0 | 2400 | while ((addr == 0) && canblock) { |
1c79356b | 2401 | /* |
3e170ce0 A |
2402 | * zone is empty, try to expand it |
2403 | * | |
2404 | * Note that we now allow up to 2 threads (1 vm_privliged and 1 non-vm_privliged) | |
2405 | * to expand the zone concurrently... this is necessary to avoid stalling | |
2406 | * vm_privileged threads running critical code necessary to continue compressing/swapping | |
2407 | * pages (i.e. making new free pages) from stalling behind non-vm_privileged threads | |
2408 | * waiting to acquire free pages when the vm_page_free_count is below the | |
2409 | * vm_page_free_reserved limit. | |
1c79356b | 2410 | */ |
3e170ce0 A |
2411 | if ((zone->doing_alloc_without_vm_priv || zone->doing_alloc_with_vm_priv) && |
2412 | (((thr->options & TH_OPT_VMPRIV) == 0) || zone->doing_alloc_with_vm_priv)) { | |
1c79356b | 2413 | /* |
3e170ce0 A |
2414 | * This is a non-vm_privileged thread and a non-vm_privileged or |
2415 | * a vm_privileged thread is already expanding the zone... | |
2416 | * OR | |
2417 | * this is a vm_privileged thread and a vm_privileged thread is | |
2418 | * already expanding the zone... | |
2419 | * | |
2420 | * In either case wait for a thread to finish, then try again. | |
1c79356b | 2421 | */ |
1c79356b | 2422 | zone->waiting = TRUE; |
9bccf70c | 2423 | zone_sleep(zone); |
7ddcb079 | 2424 | } else if (zone->doing_gc) { |
3e170ce0 A |
2425 | /* |
2426 | * zone_gc() is running. Since we need an element | |
7ddcb079 | 2427 | * from the free list that is currently being |
3e170ce0 A |
2428 | * collected, set the waiting bit and |
2429 | * wait for the GC process to finish | |
2430 | * before trying again | |
7ddcb079 A |
2431 | */ |
2432 | zone->waiting = TRUE; | |
2433 | zone_sleep(zone); | |
2434 | } else { | |
2435 | vm_offset_t space; | |
2436 | vm_size_t alloc_size; | |
2437 | int retry = 0; | |
2438 | ||
1c79356b A |
2439 | if ((zone->cur_size + zone->elem_size) > |
2440 | zone->max_size) { | |
2441 | if (zone->exhaustible) | |
2442 | break; | |
2443 | if (zone->expandable) { | |
2444 | /* | |
2445 | * We're willing to overflow certain | |
2446 | * zones, but not without complaining. | |
2447 | * | |
2448 | * This is best used in conjunction | |
2449 | * with the collectable flag. What we | |
2450 | * want is an assurance we can get the | |
2451 | * memory back, assuming there's no | |
2452 | * leak. | |
2453 | */ | |
2454 | zone->max_size += (zone->max_size >> 1); | |
2455 | } else { | |
2456 | unlock_zone(zone); | |
2457 | ||
316670eb A |
2458 | panic_include_zprint = TRUE; |
2459 | #if CONFIG_ZLEAKS | |
2460 | if (zleak_state & ZLEAK_STATE_ACTIVE) | |
2461 | panic_include_ztrace = TRUE; | |
2462 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2463 | panic("zalloc: zone \"%s\" empty.", zone->zone_name); |
2464 | } | |
2465 | } | |
3e170ce0 A |
2466 | if ((thr->options & TH_OPT_VMPRIV)) { |
2467 | zone->doing_alloc_with_vm_priv = TRUE; | |
2468 | set_doing_alloc_with_vm_priv = TRUE; | |
2469 | } else { | |
2470 | zone->doing_alloc_without_vm_priv = TRUE; | |
2471 | } | |
1c79356b A |
2472 | unlock_zone(zone); |
2473 | ||
7ddcb079 A |
2474 | for (;;) { |
2475 | int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT; | |
fe8ab488 | 2476 | |
7ddcb079 A |
2477 | if (vm_pool_low() || retry >= 1) |
2478 | alloc_size = | |
2479 | round_page(zone->elem_size); | |
2480 | else | |
2481 | alloc_size = zone->alloc_size; | |
2482 | ||
2483 | if (zone->noencrypt) | |
2484 | zflags |= KMA_NOENCRYPT; | |
2485 | ||
3e170ce0 | 2486 | retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE); |
7ddcb079 | 2487 | if (retval == KERN_SUCCESS) { |
2d21ac55 | 2488 | #if ZONE_ALIAS_ADDR |
7ddcb079 A |
2489 | if (alloc_size == PAGE_SIZE) |
2490 | space = zone_alias_addr(space); | |
2d21ac55 | 2491 | #endif |
7ddcb079 | 2492 | |
6d2010ae | 2493 | #if CONFIG_ZLEAKS |
7ddcb079 A |
2494 | if ((zleak_state & (ZLEAK_STATE_ENABLED | ZLEAK_STATE_ACTIVE)) == ZLEAK_STATE_ENABLED) { |
2495 | if (zone_map->size >= zleak_global_tracking_threshold) { | |
2496 | kern_return_t kr; | |
2497 | ||
2498 | kr = zleak_activate(); | |
2499 | if (kr != KERN_SUCCESS) { | |
2500 | printf("Failed to activate live zone leak debugging (%d).\n", kr); | |
6d2010ae A |
2501 | } |
2502 | } | |
55e303ae | 2503 | } |
1c79356b | 2504 | |
7ddcb079 A |
2505 | if ((zleak_state & ZLEAK_STATE_ACTIVE) && !(zone->zleak_on)) { |
2506 | if (zone->cur_size > zleak_per_zone_tracking_threshold) { | |
2507 | zone->zleak_on = TRUE; | |
2508 | } | |
1c79356b | 2509 | } |
7ddcb079 | 2510 | #endif /* CONFIG_ZLEAKS */ |
7ddcb079 A |
2511 | zcram(zone, space, alloc_size); |
2512 | ||
2513 | break; | |
2514 | } else if (retval != KERN_RESOURCE_SHORTAGE) { | |
2515 | retry++; | |
2516 | ||
2517 | if (retry == 2) { | |
316670eb | 2518 | zone_gc(TRUE); |
7ddcb079 A |
2519 | printf("zalloc did gc\n"); |
2520 | zone_display_zprint(); | |
2521 | } | |
2522 | if (retry == 3) { | |
6d2010ae A |
2523 | panic_include_zprint = TRUE; |
2524 | #if CONFIG_ZLEAKS | |
7ddcb079 | 2525 | if ((zleak_state & ZLEAK_STATE_ACTIVE)) { |
6d2010ae A |
2526 | panic_include_ztrace = TRUE; |
2527 | } | |
7ddcb079 | 2528 | #endif /* CONFIG_ZLEAKS */ |
39236c6e A |
2529 | if (retval == KERN_NO_SPACE) { |
2530 | zone_t zone_largest = zone_find_largest(); | |
2531 | panic("zalloc: zone map exhausted while allocating from zone %s, likely due to memory leak in zone %s (%lu total bytes, %d elements allocated)", | |
2532 | zone->zone_name, zone_largest->zone_name, | |
2533 | (unsigned long)zone_largest->cur_size, zone_largest->count); | |
2534 | ||
2535 | } | |
7ddcb079 | 2536 | panic("zalloc: \"%s\" (%d elements) retry fail %d, kfree_nop_count: %d", zone->zone_name, zone->count, retval, (int)kfree_nop_count); |
6d2010ae | 2537 | } |
7ddcb079 A |
2538 | } else { |
2539 | break; | |
1c79356b A |
2540 | } |
2541 | } | |
7ddcb079 | 2542 | lock_zone(zone); |
3e170ce0 A |
2543 | |
2544 | if (set_doing_alloc_with_vm_priv == TRUE) | |
2545 | zone->doing_alloc_with_vm_priv = FALSE; | |
2546 | else | |
2547 | zone->doing_alloc_without_vm_priv = FALSE; | |
2548 | ||
7ddcb079 | 2549 | if (zone->waiting) { |
3e170ce0 | 2550 | zone->waiting = FALSE; |
7ddcb079 A |
2551 | zone_wakeup(zone); |
2552 | } | |
fe8ab488 | 2553 | addr = try_alloc_from_zone(zone, &check_poison); |
7ddcb079 | 2554 | if (addr == 0 && |
fe8ab488 A |
2555 | retval == KERN_RESOURCE_SHORTAGE) { |
2556 | if (nopagewait == TRUE) | |
2557 | break; /* out of the main while loop */ | |
7ddcb079 | 2558 | unlock_zone(zone); |
fe8ab488 | 2559 | |
7ddcb079 A |
2560 | VM_PAGE_WAIT(); |
2561 | lock_zone(zone); | |
2562 | } | |
1c79356b A |
2563 | } |
2564 | if (addr == 0) | |
fe8ab488 | 2565 | addr = try_alloc_from_zone(zone, &check_poison); |
1c79356b A |
2566 | } |
2567 | ||
6d2010ae A |
2568 | #if CONFIG_ZLEAKS |
2569 | /* Zone leak detection: | |
2570 | * If we're sampling this allocation, add it to the zleaks hash table. | |
2571 | */ | |
2572 | if (addr && zleak_tracedepth > 0) { | |
2573 | /* Sampling can fail if another sample is happening at the same time in a different zone. */ | |
2574 | if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) { | |
2575 | /* If it failed, roll back the counter so we sample the next allocation instead. */ | |
316670eb | 2576 | zone->zleak_capture = zleak_sample_factor; |
6d2010ae A |
2577 | } |
2578 | } | |
2579 | #endif /* CONFIG_ZLEAKS */ | |
2580 | ||
2581 | ||
fe8ab488 | 2582 | if ((addr == 0) && (!canblock || nopagewait) && (zone->async_pending == FALSE) && (zone->no_callout == FALSE) && (zone->exhaustible == FALSE) && (!vm_pool_low())) { |
39236c6e A |
2583 | zone->async_pending = TRUE; |
2584 | unlock_zone(zone); | |
2585 | thread_call_enter(&call_async_alloc); | |
2586 | lock_zone(zone); | |
fe8ab488 | 2587 | addr = try_alloc_from_zone(zone, &check_poison); |
39236c6e A |
2588 | } |
2589 | ||
c910b4d9 A |
2590 | /* |
2591 | * See if we should be logging allocations in this zone. Logging is rarely done except when a leak is | |
2592 | * suspected, so this code rarely executes. We need to do this code while still holding the zone lock | |
2593 | * since it protects the various log related data structures. | |
2594 | */ | |
2595 | ||
39236c6e A |
2596 | if (__improbable(DO_LOGGING(zone) && addr)) { |
2597 | btlog_add_entry(zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved); | |
0b4e3aa0 A |
2598 | } |
2599 | ||
fe8ab488 A |
2600 | vm_offset_t inner_size = zone->elem_size; |
2601 | ||
1c79356b | 2602 | #if ZONE_DEBUG |
316670eb | 2603 | if (!did_gzalloc && addr && zone_debug_enabled(zone)) { |
1c79356b | 2604 | enqueue_tail(&zone->active_zones, (queue_entry_t)addr); |
55e303ae | 2605 | addr += ZONE_DEBUG_OFFSET; |
fe8ab488 | 2606 | inner_size -= ZONE_DEBUG_OFFSET; |
1c79356b A |
2607 | } |
2608 | #endif | |
2609 | ||
2610 | unlock_zone(zone); | |
0b4e3aa0 | 2611 | |
fe8ab488 A |
2612 | if (__improbable(check_poison && addr)) { |
2613 | vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1; | |
2614 | vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr); | |
2615 | ||
2616 | for ( ; element_cursor < backup ; element_cursor++) | |
2617 | if (__improbable(*element_cursor != ZP_POISON)) | |
2618 | zone_element_was_modified_panic(zone, | |
2619 | addr, | |
2620 | *element_cursor, | |
2621 | ZP_POISON, | |
2622 | ((vm_offset_t)element_cursor) - addr); | |
2623 | } | |
2624 | ||
2625 | if (addr) { | |
2626 | /* | |
2627 | * Clear out the old next pointer and backup to avoid leaking the cookie | |
2628 | * and so that only values on the freelist have a valid cookie | |
2629 | */ | |
2630 | ||
2631 | vm_offset_t *primary = (vm_offset_t *) addr; | |
2632 | vm_offset_t *backup = get_backup_ptr(inner_size, primary); | |
2633 | ||
2634 | *primary = ZP_POISON; | |
2635 | *backup = ZP_POISON; | |
2636 | } | |
2637 | ||
2d21ac55 A |
2638 | TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr); |
2639 | ||
6d2010ae | 2640 | if (addr) { |
6d2010ae A |
2641 | task_t task; |
2642 | zinfo_usage_t zinfo; | |
316670eb | 2643 | vm_size_t sz = zone->elem_size; |
6d2010ae A |
2644 | |
2645 | if (zone->caller_acct) | |
316670eb | 2646 | ledger_credit(thr->t_ledger, task_ledgers.tkm_private, sz); |
6d2010ae | 2647 | else |
316670eb | 2648 | ledger_credit(thr->t_ledger, task_ledgers.tkm_shared, sz); |
6d2010ae A |
2649 | |
2650 | if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) | |
316670eb | 2651 | OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].alloc); |
6d2010ae | 2652 | } |
91447636 | 2653 | return((void *)addr); |
1c79356b A |
2654 | } |
2655 | ||
2656 | ||
91447636 | 2657 | void * |
fe8ab488 A |
2658 | zalloc(zone_t zone) |
2659 | { | |
2660 | return (zalloc_internal(zone, TRUE, FALSE)); | |
2661 | } | |
2662 | ||
2663 | void * | |
2664 | zalloc_noblock(zone_t zone) | |
2665 | { | |
2666 | return (zalloc_internal(zone, FALSE, FALSE)); | |
2667 | } | |
2668 | ||
2669 | void * | |
2670 | zalloc_nopagewait(zone_t zone) | |
1c79356b | 2671 | { |
fe8ab488 | 2672 | return (zalloc_internal(zone, TRUE, TRUE)); |
1c79356b A |
2673 | } |
2674 | ||
91447636 | 2675 | void * |
fe8ab488 | 2676 | zalloc_canblock(zone_t zone, boolean_t canblock) |
1c79356b | 2677 | { |
fe8ab488 | 2678 | return (zalloc_internal(zone, canblock, FALSE)); |
1c79356b A |
2679 | } |
2680 | ||
fe8ab488 | 2681 | |
0b4e3aa0 A |
2682 | void |
2683 | zalloc_async( | |
39236c6e | 2684 | __unused thread_call_param_t p0, |
91447636 | 2685 | __unused thread_call_param_t p1) |
0b4e3aa0 | 2686 | { |
39236c6e A |
2687 | zone_t current_z = NULL, head_z; |
2688 | unsigned int max_zones, i; | |
2689 | void *elt = NULL; | |
2690 | boolean_t pending = FALSE; | |
2691 | ||
2692 | simple_lock(&all_zones_lock); | |
2693 | head_z = first_zone; | |
2694 | max_zones = num_zones; | |
2695 | simple_unlock(&all_zones_lock); | |
2696 | current_z = head_z; | |
2697 | for (i = 0; i < max_zones; i++) { | |
2698 | lock_zone(current_z); | |
2699 | if (current_z->async_pending == TRUE) { | |
2700 | current_z->async_pending = FALSE; | |
2701 | pending = TRUE; | |
2702 | } | |
2703 | unlock_zone(current_z); | |
0b4e3aa0 | 2704 | |
39236c6e A |
2705 | if (pending == TRUE) { |
2706 | elt = zalloc_canblock(current_z, TRUE); | |
2707 | zfree(current_z, elt); | |
2708 | pending = FALSE; | |
2709 | } | |
2710 | /* | |
2711 | * This is based on assumption that zones never get | |
2712 | * freed once allocated and linked. | |
2713 | * Hence a read outside of lock is OK. | |
2714 | */ | |
2715 | current_z = current_z->next_zone; | |
2716 | } | |
0b4e3aa0 A |
2717 | } |
2718 | ||
1c79356b A |
2719 | /* |
2720 | * zget returns an element from the specified zone | |
2721 | * and immediately returns nothing if there is nothing there. | |
2722 | * | |
2723 | * This form should be used when you can not block (like when | |
2724 | * processing an interrupt). | |
6d2010ae A |
2725 | * |
2726 | * XXX: It seems like only vm_page_grab_fictitious_common uses this, and its | |
2727 | * friend vm_page_more_fictitious can block, so it doesn't seem like | |
2728 | * this is used for interrupts any more.... | |
1c79356b | 2729 | */ |
91447636 | 2730 | void * |
1c79356b A |
2731 | zget( |
2732 | register zone_t zone) | |
2733 | { | |
316670eb | 2734 | vm_offset_t addr; |
fe8ab488 | 2735 | boolean_t check_poison = FALSE; |
6d2010ae A |
2736 | |
2737 | #if CONFIG_ZLEAKS | |
2738 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used for zone leak detection */ | |
2739 | uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ | |
2740 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2741 | |
2742 | assert( zone != ZONE_NULL ); | |
2743 | ||
6d2010ae A |
2744 | #if CONFIG_ZLEAKS |
2745 | /* | |
2746 | * Zone leak detection: capture a backtrace | |
2747 | */ | |
fe8ab488 | 2748 | if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) { |
6d2010ae A |
2749 | zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH); |
2750 | } | |
2751 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b | 2752 | |
fe8ab488 A |
2753 | if (!lock_try_zone(zone)) |
2754 | return NULL; | |
2755 | ||
2756 | addr = try_alloc_from_zone(zone, &check_poison); | |
2757 | ||
2758 | vm_offset_t inner_size = zone->elem_size; | |
2759 | ||
1c79356b A |
2760 | #if ZONE_DEBUG |
2761 | if (addr && zone_debug_enabled(zone)) { | |
2762 | enqueue_tail(&zone->active_zones, (queue_entry_t)addr); | |
55e303ae | 2763 | addr += ZONE_DEBUG_OFFSET; |
fe8ab488 | 2764 | inner_size -= ZONE_DEBUG_OFFSET; |
1c79356b A |
2765 | } |
2766 | #endif /* ZONE_DEBUG */ | |
6d2010ae A |
2767 | |
2768 | #if CONFIG_ZLEAKS | |
2769 | /* | |
2770 | * Zone leak detection: record the allocation | |
2771 | */ | |
2772 | if (zone->zleak_on && zleak_tracedepth > 0 && addr) { | |
2773 | /* Sampling can fail if another sample is happening at the same time in a different zone. */ | |
2774 | if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) { | |
2775 | /* If it failed, roll back the counter so we sample the next allocation instead. */ | |
316670eb | 2776 | zone->zleak_capture = zleak_sample_factor; |
6d2010ae A |
2777 | } |
2778 | } | |
6d2010ae A |
2779 | #endif /* CONFIG_ZLEAKS */ |
2780 | ||
1c79356b A |
2781 | unlock_zone(zone); |
2782 | ||
fe8ab488 A |
2783 | if (__improbable(check_poison && addr)) { |
2784 | vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1; | |
2785 | vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr); | |
2786 | ||
2787 | for ( ; element_cursor < backup ; element_cursor++) | |
2788 | if (__improbable(*element_cursor != ZP_POISON)) | |
2789 | zone_element_was_modified_panic(zone, | |
2790 | addr, | |
2791 | *element_cursor, | |
2792 | ZP_POISON, | |
2793 | ((vm_offset_t)element_cursor) - addr); | |
2794 | } | |
2795 | ||
2796 | if (addr) { | |
2797 | /* | |
2798 | * Clear out the old next pointer and backup to avoid leaking the cookie | |
2799 | * and so that only values on the freelist have a valid cookie | |
2800 | */ | |
2801 | vm_offset_t *primary = (vm_offset_t *) addr; | |
2802 | vm_offset_t *backup = get_backup_ptr(inner_size, primary); | |
2803 | ||
2804 | *primary = ZP_POISON; | |
2805 | *backup = ZP_POISON; | |
2806 | } | |
2807 | ||
91447636 | 2808 | return((void *) addr); |
1c79356b A |
2809 | } |
2810 | ||
2811 | /* Keep this FALSE by default. Large memory machine run orders of magnitude | |
2812 | slower in debug mode when true. Use debugger to enable if needed */ | |
55e303ae A |
2813 | /* static */ boolean_t zone_check = FALSE; |
2814 | ||
39236c6e A |
2815 | static void zone_check_freelist(zone_t zone, vm_offset_t elem) |
2816 | { | |
2817 | struct zone_free_element *this; | |
2818 | struct zone_page_metadata *thispage; | |
2819 | ||
2820 | if (zone->use_page_list) { | |
2821 | if (zone->allows_foreign) { | |
2822 | for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); | |
2823 | !queue_end(&zone->pages.any_free_foreign, (queue_entry_t)thispage); | |
2824 | thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { | |
2825 | for (this = thispage->elements; | |
2826 | this != NULL; | |
2827 | this = this->next) { | |
2828 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2829 | panic("zone_check_freelist"); | |
2830 | } | |
2831 | } | |
2832 | } | |
2833 | for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); | |
2834 | !queue_end(&zone->pages.all_free, (queue_entry_t)thispage); | |
2835 | thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { | |
2836 | for (this = thispage->elements; | |
2837 | this != NULL; | |
2838 | this = this->next) { | |
2839 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2840 | panic("zone_check_freelist"); | |
2841 | } | |
2842 | } | |
2843 | for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); | |
2844 | !queue_end(&zone->pages.intermediate, (queue_entry_t)thispage); | |
2845 | thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { | |
2846 | for (this = thispage->elements; | |
2847 | this != NULL; | |
2848 | this = this->next) { | |
2849 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2850 | panic("zone_check_freelist"); | |
2851 | } | |
2852 | } | |
2853 | } else { | |
2854 | for (this = zone->free_elements; | |
2855 | this != NULL; | |
2856 | this = this->next) { | |
2857 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2858 | panic("zone_check_freelist"); | |
2859 | } | |
2860 | } | |
2861 | } | |
2862 | ||
55e303ae A |
2863 | static zone_t zone_last_bogus_zone = ZONE_NULL; |
2864 | static vm_offset_t zone_last_bogus_elem = 0; | |
1c79356b A |
2865 | |
2866 | void | |
2867 | zfree( | |
2868 | register zone_t zone, | |
91447636 | 2869 | void *addr) |
1c79356b | 2870 | { |
91447636 | 2871 | vm_offset_t elem = (vm_offset_t) addr; |
39236c6e | 2872 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* only used if zone logging is enabled via boot-args */ |
c910b4d9 | 2873 | int numsaved = 0; |
316670eb | 2874 | boolean_t gzfreed = FALSE; |
fe8ab488 | 2875 | boolean_t poison = FALSE; |
c910b4d9 A |
2876 | |
2877 | assert(zone != ZONE_NULL); | |
2878 | ||
39236c6e A |
2879 | #if 1 |
2880 | if (zone->use_page_list) { | |
2881 | struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr); | |
2882 | if (zone != page_meta->zone) { | |
2883 | /* | |
2884 | * Something bad has happened. Someone tried to zfree a pointer but the metadata says it is from | |
2885 | * a different zone (or maybe it's from a zone that doesn't use page free lists at all). We can repair | |
2886 | * some cases of this, if: | |
2887 | * 1) The specified zone had use_page_list, and the true zone also has use_page_list set. In that case | |
2888 | * we can swap the zone_t | |
2889 | * 2) The specified zone had use_page_list, but the true zone does not. In this case page_meta is garbage, | |
2890 | * and dereferencing page_meta->zone might panic. | |
2891 | * To distinguish the two, we enumerate the zone list to match it up. | |
2892 | * We do not handle the case where an incorrect zone is passed that does not have use_page_list set, | |
2893 | * even if the true zone did have this set. | |
2894 | */ | |
2895 | zone_t fixed_zone = NULL; | |
2896 | int fixed_i, max_zones; | |
2897 | ||
2898 | simple_lock(&all_zones_lock); | |
2899 | max_zones = num_zones; | |
2900 | fixed_zone = first_zone; | |
2901 | simple_unlock(&all_zones_lock); | |
2902 | ||
2903 | for (fixed_i=0; fixed_i < max_zones; fixed_i++, fixed_zone = fixed_zone->next_zone) { | |
2904 | if (fixed_zone == page_meta->zone && fixed_zone->use_page_list) { | |
2905 | /* we can fix this */ | |
2906 | printf("Fixing incorrect zfree from zone %s to zone %s\n", zone->zone_name, fixed_zone->zone_name); | |
2907 | zone = fixed_zone; | |
2908 | break; | |
2909 | } | |
2910 | } | |
2911 | } | |
2912 | } | |
2913 | #endif | |
2914 | ||
c910b4d9 A |
2915 | /* |
2916 | * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. | |
2917 | */ | |
2918 | ||
39236c6e A |
2919 | if (__improbable(DO_LOGGING(zone) && corruption_debug_flag)) |
2920 | numsaved = OSBacktrace((void *)zbt, MAX_ZTRACE_DEPTH); | |
1c79356b A |
2921 | |
2922 | #if MACH_ASSERT | |
2923 | /* Basic sanity checks */ | |
2924 | if (zone == ZONE_NULL || elem == (vm_offset_t)0) | |
2925 | panic("zfree: NULL"); | |
2926 | /* zone_gc assumes zones are never freed */ | |
2927 | if (zone == zone_zone) | |
2928 | panic("zfree: freeing to zone_zone breaks zone_gc!"); | |
55e303ae A |
2929 | #endif |
2930 | ||
316670eb A |
2931 | #if CONFIG_GZALLOC |
2932 | gzfreed = gzalloc_free(zone, addr); | |
2933 | #endif | |
2934 | ||
b0d623f7 | 2935 | TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (uintptr_t)addr); |
2d21ac55 | 2936 | |
316670eb A |
2937 | if (__improbable(!gzfreed && zone->collectable && !zone->allows_foreign && |
2938 | !from_zone_map(elem, zone->elem_size))) { | |
55e303ae | 2939 | #if MACH_ASSERT |
1c79356b | 2940 | panic("zfree: non-allocated memory in collectable zone!"); |
91447636 | 2941 | #endif |
55e303ae A |
2942 | zone_last_bogus_zone = zone; |
2943 | zone_last_bogus_elem = elem; | |
2944 | return; | |
55e303ae | 2945 | } |
1c79356b | 2946 | |
fe8ab488 A |
2947 | if ((zp_factor != 0 || zp_tiny_zone_limit != 0) && !gzfreed) { |
2948 | /* | |
2949 | * Poison the memory before it ends up on the freelist to catch | |
2950 | * use-after-free and use of uninitialized memory | |
2951 | * | |
2952 | * Always poison tiny zones' elements (limit is 0 if -no-zp is set) | |
2953 | * Also poison larger elements periodically | |
2954 | */ | |
2955 | ||
2956 | vm_offset_t inner_size = zone->elem_size; | |
2957 | ||
2958 | #if ZONE_DEBUG | |
2959 | if (!gzfreed && zone_debug_enabled(zone)) { | |
2960 | inner_size -= ZONE_DEBUG_OFFSET; | |
2961 | } | |
2962 | #endif | |
2963 | uint32_t sample_factor = zp_factor + (((uint32_t)inner_size) >> zp_scale); | |
2964 | ||
2965 | if (inner_size <= zp_tiny_zone_limit) | |
2966 | poison = TRUE; | |
2967 | else if (zp_factor != 0 && sample_counter(&zone->zp_count, sample_factor) == TRUE) | |
2968 | poison = TRUE; | |
2969 | ||
2970 | if (__improbable(poison)) { | |
2971 | ||
2972 | /* memset_pattern{4|8} could help make this faster: <rdar://problem/4662004> */ | |
2973 | /* Poison everything but primary and backup */ | |
2974 | vm_offset_t *element_cursor = ((vm_offset_t *) elem) + 1; | |
2975 | vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *)elem); | |
2976 | ||
2977 | for ( ; element_cursor < backup; element_cursor++) | |
2978 | *element_cursor = ZP_POISON; | |
2979 | } | |
2980 | } | |
2981 | ||
1c79356b | 2982 | lock_zone(zone); |
c910b4d9 A |
2983 | |
2984 | /* | |
2985 | * See if we're doing logging on this zone. There are two styles of logging used depending on | |
2986 | * whether we're trying to catch a leak or corruption. See comments above in zalloc for details. | |
2987 | */ | |
2988 | ||
39236c6e | 2989 | if (__improbable(DO_LOGGING(zone))) { |
316670eb | 2990 | if (corruption_debug_flag) { |
c910b4d9 A |
2991 | /* |
2992 | * We're logging to catch a corruption. Add a record of this zfree operation | |
2993 | * to log. | |
2994 | */ | |
39236c6e | 2995 | btlog_add_entry(zlog_btlog, (void *)addr, ZOP_FREE, (void **)zbt, numsaved); |
c910b4d9 | 2996 | } else { |
c910b4d9 A |
2997 | /* |
2998 | * We're logging to catch a leak. Remove any record we might have for this | |
2999 | * element since it's being freed. Note that we may not find it if the buffer | |
3000 | * overflowed and that's OK. Since the log is of a limited size, old records | |
3001 | * get overwritten if there are more zallocs than zfrees. | |
3002 | */ | |
39236c6e | 3003 | btlog_remove_entries_for_element(zlog_btlog, (void *)addr); |
c910b4d9 A |
3004 | } |
3005 | } | |
3006 | ||
1c79356b | 3007 | #if ZONE_DEBUG |
316670eb | 3008 | if (!gzfreed && zone_debug_enabled(zone)) { |
1c79356b A |
3009 | queue_t tmp_elem; |
3010 | ||
55e303ae | 3011 | elem -= ZONE_DEBUG_OFFSET; |
1c79356b A |
3012 | if (zone_check) { |
3013 | /* check the zone's consistency */ | |
3014 | ||
3015 | for (tmp_elem = queue_first(&zone->active_zones); | |
3016 | !queue_end(tmp_elem, &zone->active_zones); | |
3017 | tmp_elem = queue_next(tmp_elem)) | |
3018 | if (elem == (vm_offset_t)tmp_elem) | |
3019 | break; | |
3020 | if (elem != (vm_offset_t)tmp_elem) | |
3021 | panic("zfree()ing element from wrong zone"); | |
3022 | } | |
6d2010ae | 3023 | remqueue((queue_t) elem); |
1c79356b A |
3024 | } |
3025 | #endif /* ZONE_DEBUG */ | |
3026 | if (zone_check) { | |
39236c6e | 3027 | zone_check_freelist(zone, elem); |
1c79356b | 3028 | } |
316670eb A |
3029 | |
3030 | if (__probable(!gzfreed)) | |
fe8ab488 | 3031 | free_to_zone(zone, elem, poison); |
316670eb | 3032 | |
b0d623f7 A |
3033 | #if MACH_ASSERT |
3034 | if (zone->count < 0) | |
39236c6e A |
3035 | panic("zfree: zone count underflow in zone %s while freeing element %p, possible cause: double frees or freeing memory that did not come from this zone", |
3036 | zone->zone_name, addr); | |
b0d623f7 | 3037 | #endif |
6d2010ae | 3038 | |
0b4e3aa0 | 3039 | |
6d2010ae | 3040 | #if CONFIG_ZLEAKS |
6d2010ae A |
3041 | /* |
3042 | * Zone leak detection: un-track the allocation | |
3043 | */ | |
3044 | if (zone->zleak_on) { | |
3045 | zleak_free(elem, zone->elem_size); | |
3046 | } | |
3047 | #endif /* CONFIG_ZLEAKS */ | |
3048 | ||
1c79356b A |
3049 | /* |
3050 | * If elements have one or more pages, and memory is low, | |
0b4e3aa0 A |
3051 | * request to run the garbage collection in the zone the next |
3052 | * time the pageout thread runs. | |
1c79356b A |
3053 | */ |
3054 | if (zone->elem_size >= PAGE_SIZE && | |
3055 | vm_pool_low()){ | |
0b4e3aa0 | 3056 | zone_gc_forced = TRUE; |
1c79356b | 3057 | } |
1c79356b | 3058 | unlock_zone(zone); |
6d2010ae A |
3059 | |
3060 | { | |
3061 | thread_t thr = current_thread(); | |
3062 | task_t task; | |
3063 | zinfo_usage_t zinfo; | |
316670eb | 3064 | vm_size_t sz = zone->elem_size; |
6d2010ae A |
3065 | |
3066 | if (zone->caller_acct) | |
316670eb | 3067 | ledger_debit(thr->t_ledger, task_ledgers.tkm_private, sz); |
6d2010ae | 3068 | else |
316670eb A |
3069 | ledger_debit(thr->t_ledger, task_ledgers.tkm_shared, sz); |
3070 | ||
6d2010ae | 3071 | if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) |
316670eb | 3072 | OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].free); |
6d2010ae | 3073 | } |
1c79356b A |
3074 | } |
3075 | ||
3076 | ||
3077 | /* Change a zone's flags. | |
3078 | * This routine must be called immediately after zinit. | |
3079 | */ | |
3080 | void | |
3081 | zone_change( | |
3082 | zone_t zone, | |
3083 | unsigned int item, | |
3084 | boolean_t value) | |
3085 | { | |
3086 | assert( zone != ZONE_NULL ); | |
3087 | assert( value == TRUE || value == FALSE ); | |
3088 | ||
3089 | switch(item){ | |
0b4c1975 A |
3090 | case Z_NOENCRYPT: |
3091 | zone->noencrypt = value; | |
3092 | break; | |
1c79356b A |
3093 | case Z_EXHAUST: |
3094 | zone->exhaustible = value; | |
3095 | break; | |
3096 | case Z_COLLECT: | |
3097 | zone->collectable = value; | |
3098 | break; | |
3099 | case Z_EXPAND: | |
3100 | zone->expandable = value; | |
3101 | break; | |
3102 | case Z_FOREIGN: | |
3103 | zone->allows_foreign = value; | |
3104 | break; | |
6d2010ae A |
3105 | case Z_CALLERACCT: |
3106 | zone->caller_acct = value; | |
3107 | break; | |
7ddcb079 A |
3108 | case Z_NOCALLOUT: |
3109 | zone->no_callout = value; | |
3110 | break; | |
316670eb A |
3111 | case Z_GZALLOC_EXEMPT: |
3112 | zone->gzalloc_exempt = value; | |
3113 | #if CONFIG_GZALLOC | |
3114 | gzalloc_reconfigure(zone); | |
3115 | #endif | |
3116 | break; | |
3117 | case Z_ALIGNMENT_REQUIRED: | |
3118 | zone->alignment_required = value; | |
3e170ce0 A |
3119 | /* |
3120 | * Disable the page list optimization here to provide | |
3121 | * more of an alignment guarantee. This prevents | |
3122 | * the alignment from being modified by the metadata stored | |
3123 | * at the beginning of the page. | |
3124 | */ | |
3125 | zone->use_page_list = FALSE; | |
316670eb A |
3126 | #if ZONE_DEBUG |
3127 | zone_debug_disable(zone); | |
3128 | #endif | |
3129 | #if CONFIG_GZALLOC | |
3130 | gzalloc_reconfigure(zone); | |
3131 | #endif | |
3132 | break; | |
1c79356b A |
3133 | default: |
3134 | panic("Zone_change: Wrong Item Type!"); | |
3135 | /* break; */ | |
1c79356b | 3136 | } |
1c79356b A |
3137 | } |
3138 | ||
3139 | /* | |
3140 | * Return the expected number of free elements in the zone. | |
3141 | * This calculation will be incorrect if items are zfree'd that | |
3142 | * were never zalloc'd/zget'd. The correct way to stuff memory | |
3143 | * into a zone is by zcram. | |
3144 | */ | |
3145 | ||
3146 | integer_t | |
3147 | zone_free_count(zone_t zone) | |
3148 | { | |
3149 | integer_t free_count; | |
3150 | ||
3151 | lock_zone(zone); | |
39236c6e | 3152 | free_count = zone->countfree; |
1c79356b A |
3153 | unlock_zone(zone); |
3154 | ||
3155 | assert(free_count >= 0); | |
3156 | ||
3157 | return(free_count); | |
3158 | } | |
3159 | ||
1c79356b A |
3160 | /* |
3161 | * Zone garbage collection subroutines | |
1c79356b | 3162 | */ |
55e303ae | 3163 | |
1c79356b A |
3164 | boolean_t |
3165 | zone_page_collectable( | |
3166 | vm_offset_t addr, | |
3167 | vm_size_t size) | |
3168 | { | |
55e303ae | 3169 | struct zone_page_table_entry *zp; |
7ddcb079 | 3170 | zone_page_index_t i, j; |
1c79356b | 3171 | |
2d21ac55 A |
3172 | #if ZONE_ALIAS_ADDR |
3173 | addr = zone_virtual_addr(addr); | |
3174 | #endif | |
1c79356b | 3175 | #if MACH_ASSERT |
55e303ae | 3176 | if (!from_zone_map(addr, size)) |
1c79356b A |
3177 | panic("zone_page_collectable"); |
3178 | #endif | |
3179 | ||
7ddcb079 A |
3180 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3181 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
55e303ae | 3182 | |
7ddcb079 A |
3183 | for (; i <= j; i++) { |
3184 | zp = zone_page_table_lookup(i); | |
55e303ae | 3185 | if (zp->collect_count == zp->alloc_count) |
1c79356b | 3186 | return (TRUE); |
7ddcb079 | 3187 | } |
55e303ae | 3188 | |
1c79356b A |
3189 | return (FALSE); |
3190 | } | |
3191 | ||
3192 | void | |
3193 | zone_page_keep( | |
3194 | vm_offset_t addr, | |
3195 | vm_size_t size) | |
3196 | { | |
55e303ae | 3197 | struct zone_page_table_entry *zp; |
7ddcb079 | 3198 | zone_page_index_t i, j; |
1c79356b | 3199 | |
2d21ac55 A |
3200 | #if ZONE_ALIAS_ADDR |
3201 | addr = zone_virtual_addr(addr); | |
3202 | #endif | |
1c79356b | 3203 | #if MACH_ASSERT |
55e303ae | 3204 | if (!from_zone_map(addr, size)) |
1c79356b A |
3205 | panic("zone_page_keep"); |
3206 | #endif | |
3207 | ||
7ddcb079 A |
3208 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3209 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
1c79356b | 3210 | |
7ddcb079 A |
3211 | for (; i <= j; i++) { |
3212 | zp = zone_page_table_lookup(i); | |
55e303ae | 3213 | zp->collect_count = 0; |
7ddcb079 | 3214 | } |
1c79356b A |
3215 | } |
3216 | ||
3217 | void | |
55e303ae | 3218 | zone_page_collect( |
1c79356b A |
3219 | vm_offset_t addr, |
3220 | vm_size_t size) | |
3221 | { | |
55e303ae | 3222 | struct zone_page_table_entry *zp; |
7ddcb079 | 3223 | zone_page_index_t i, j; |
1c79356b | 3224 | |
2d21ac55 A |
3225 | #if ZONE_ALIAS_ADDR |
3226 | addr = zone_virtual_addr(addr); | |
3227 | #endif | |
1c79356b | 3228 | #if MACH_ASSERT |
55e303ae A |
3229 | if (!from_zone_map(addr, size)) |
3230 | panic("zone_page_collect"); | |
1c79356b A |
3231 | #endif |
3232 | ||
7ddcb079 A |
3233 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3234 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
55e303ae | 3235 | |
7ddcb079 A |
3236 | for (; i <= j; i++) { |
3237 | zp = zone_page_table_lookup(i); | |
55e303ae | 3238 | ++zp->collect_count; |
7ddcb079 | 3239 | } |
1c79356b A |
3240 | } |
3241 | ||
3242 | void | |
3243 | zone_page_init( | |
3244 | vm_offset_t addr, | |
7ddcb079 | 3245 | vm_size_t size) |
1c79356b | 3246 | { |
55e303ae | 3247 | struct zone_page_table_entry *zp; |
7ddcb079 | 3248 | zone_page_index_t i, j; |
1c79356b | 3249 | |
2d21ac55 A |
3250 | #if ZONE_ALIAS_ADDR |
3251 | addr = zone_virtual_addr(addr); | |
3252 | #endif | |
1c79356b | 3253 | #if MACH_ASSERT |
55e303ae | 3254 | if (!from_zone_map(addr, size)) |
1c79356b A |
3255 | panic("zone_page_init"); |
3256 | #endif | |
3257 | ||
7ddcb079 A |
3258 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3259 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
3260 | ||
3261 | for (; i <= j; i++) { | |
3262 | /* make sure entry exists before marking unused */ | |
3263 | zone_page_table_expand(i); | |
55e303ae | 3264 | |
7ddcb079 A |
3265 | zp = zone_page_table_lookup(i); |
3266 | assert(zp); | |
3267 | zp->alloc_count = ZONE_PAGE_UNUSED; | |
55e303ae | 3268 | zp->collect_count = 0; |
1c79356b | 3269 | } |
1c79356b A |
3270 | } |
3271 | ||
3272 | void | |
3273 | zone_page_alloc( | |
3274 | vm_offset_t addr, | |
3275 | vm_size_t size) | |
3276 | { | |
55e303ae | 3277 | struct zone_page_table_entry *zp; |
7ddcb079 | 3278 | zone_page_index_t i, j; |
1c79356b | 3279 | |
2d21ac55 A |
3280 | #if ZONE_ALIAS_ADDR |
3281 | addr = zone_virtual_addr(addr); | |
3282 | #endif | |
1c79356b | 3283 | #if MACH_ASSERT |
55e303ae | 3284 | if (!from_zone_map(addr, size)) |
1c79356b A |
3285 | panic("zone_page_alloc"); |
3286 | #endif | |
3287 | ||
7ddcb079 A |
3288 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3289 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
3290 | ||
3291 | for (; i <= j; i++) { | |
3292 | zp = zone_page_table_lookup(i); | |
3293 | assert(zp); | |
55e303ae | 3294 | |
55e303ae | 3295 | /* |
7ddcb079 | 3296 | * Set alloc_count to ZONE_PAGE_USED if |
1c79356b A |
3297 | * it was previously set to ZONE_PAGE_UNUSED. |
3298 | */ | |
55e303ae | 3299 | if (zp->alloc_count == ZONE_PAGE_UNUSED) |
7ddcb079 A |
3300 | zp->alloc_count = ZONE_PAGE_USED; |
3301 | ||
3302 | ++zp->alloc_count; | |
1c79356b | 3303 | } |
1c79356b A |
3304 | } |
3305 | ||
3306 | void | |
55e303ae | 3307 | zone_page_free_element( |
316670eb A |
3308 | zone_page_index_t *free_page_head, |
3309 | zone_page_index_t *free_page_tail, | |
1c79356b A |
3310 | vm_offset_t addr, |
3311 | vm_size_t size) | |
3312 | { | |
55e303ae | 3313 | struct zone_page_table_entry *zp; |
7ddcb079 | 3314 | zone_page_index_t i, j; |
1c79356b | 3315 | |
2d21ac55 A |
3316 | #if ZONE_ALIAS_ADDR |
3317 | addr = zone_virtual_addr(addr); | |
3318 | #endif | |
1c79356b | 3319 | #if MACH_ASSERT |
55e303ae A |
3320 | if (!from_zone_map(addr, size)) |
3321 | panic("zone_page_free_element"); | |
1c79356b A |
3322 | #endif |
3323 | ||
39236c6e A |
3324 | /* Clear out the old next and backup pointers */ |
3325 | vm_offset_t *primary = (vm_offset_t *) addr; | |
3326 | vm_offset_t *backup = get_backup_ptr(size, primary); | |
3327 | ||
3328 | *primary = ZP_POISON; | |
3329 | *backup = ZP_POISON; | |
3330 | ||
7ddcb079 A |
3331 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3332 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
3333 | ||
3334 | for (; i <= j; i++) { | |
3335 | zp = zone_page_table_lookup(i); | |
1c79356b | 3336 | |
55e303ae A |
3337 | if (zp->collect_count > 0) |
3338 | --zp->collect_count; | |
3339 | if (--zp->alloc_count == 0) { | |
7ddcb079 | 3340 | vm_address_t free_page_address; |
316670eb | 3341 | vm_address_t prev_free_page_address; |
7ddcb079 | 3342 | |
55e303ae A |
3343 | zp->alloc_count = ZONE_PAGE_UNUSED; |
3344 | zp->collect_count = 0; | |
1c79356b | 3345 | |
7ddcb079 A |
3346 | |
3347 | /* | |
3348 | * This element was the last one on this page, re-use the page's | |
3349 | * storage for a page freelist | |
3350 | */ | |
3351 | free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)i); | |
316670eb A |
3352 | *(zone_page_index_t *)free_page_address = ZONE_PAGE_INDEX_INVALID; |
3353 | ||
3354 | if (*free_page_head == ZONE_PAGE_INDEX_INVALID) { | |
3355 | *free_page_head = i; | |
3356 | *free_page_tail = i; | |
3357 | } else { | |
3358 | prev_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)(*free_page_tail)); | |
3359 | *(zone_page_index_t *)prev_free_page_address = i; | |
3360 | *free_page_tail = i; | |
3361 | } | |
1c79356b A |
3362 | } |
3363 | } | |
1c79356b A |
3364 | } |
3365 | ||
3366 | ||
3e170ce0 | 3367 | #define ZONEGC_SMALL_ELEMENT_SIZE 4096 |
2d21ac55 | 3368 | |
55e303ae | 3369 | struct { |
39236c6e A |
3370 | uint64_t zgc_invoked; |
3371 | uint64_t zgc_bailed; | |
55e303ae A |
3372 | uint32_t pgs_freed; |
3373 | ||
3374 | uint32_t elems_collected, | |
3375 | elems_freed, | |
3376 | elems_kept; | |
3377 | } zgc_stats; | |
1c79356b A |
3378 | |
3379 | /* Zone garbage collection | |
3380 | * | |
3381 | * zone_gc will walk through all the free elements in all the | |
3382 | * zones that are marked collectable looking for reclaimable | |
3383 | * pages. zone_gc is called by consider_zone_gc when the system | |
3384 | * begins to run out of memory. | |
3385 | */ | |
3386 | void | |
316670eb | 3387 | zone_gc(boolean_t all_zones) |
1c79356b A |
3388 | { |
3389 | unsigned int max_zones; | |
55e303ae | 3390 | zone_t z; |
1c79356b | 3391 | unsigned int i; |
39236c6e | 3392 | uint32_t old_pgs_freed; |
7ddcb079 | 3393 | zone_page_index_t zone_free_page_head; |
316670eb A |
3394 | zone_page_index_t zone_free_page_tail; |
3395 | thread_t mythread = current_thread(); | |
1c79356b | 3396 | |
b0d623f7 | 3397 | lck_mtx_lock(&zone_gc_lock); |
1c79356b | 3398 | |
39236c6e A |
3399 | zgc_stats.zgc_invoked++; |
3400 | old_pgs_freed = zgc_stats.pgs_freed; | |
3401 | ||
1c79356b A |
3402 | simple_lock(&all_zones_lock); |
3403 | max_zones = num_zones; | |
3404 | z = first_zone; | |
3405 | simple_unlock(&all_zones_lock); | |
3406 | ||
39236c6e A |
3407 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) |
3408 | kprintf("zone_gc(all_zones=%s) starting...\n", all_zones ? "TRUE" : "FALSE"); | |
316670eb A |
3409 | |
3410 | /* | |
3411 | * it's ok to allow eager kernel preemption while | |
3412 | * while holding a zone lock since it's taken | |
3413 | * as a spin lock (which prevents preemption) | |
3414 | */ | |
3415 | thread_set_eager_preempt(mythread); | |
3416 | ||
1c79356b | 3417 | #if MACH_ASSERT |
7ddcb079 A |
3418 | for (i = 0; i < zone_pages; i++) { |
3419 | struct zone_page_table_entry *zp; | |
3420 | ||
3421 | zp = zone_page_table_lookup(i); | |
3422 | assert(!zp || (zp->collect_count == 0)); | |
3423 | } | |
1c79356b A |
3424 | #endif /* MACH_ASSERT */ |
3425 | ||
1c79356b | 3426 | for (i = 0; i < max_zones; i++, z = z->next_zone) { |
316670eb A |
3427 | unsigned int n, m; |
3428 | vm_size_t elt_size, size_freed; | |
a3d08fcd | 3429 | struct zone_free_element *elt, *base_elt, *base_prev, *prev, *scan, *keep, *tail; |
39236c6e A |
3430 | int kmem_frees = 0, total_freed_pages = 0; |
3431 | struct zone_page_metadata *page_meta; | |
3432 | queue_head_t page_meta_head; | |
1c79356b A |
3433 | |
3434 | assert(z != ZONE_NULL); | |
3435 | ||
3436 | if (!z->collectable) | |
3437 | continue; | |
3438 | ||
3e170ce0 | 3439 | if (all_zones == FALSE && z->elem_size < ZONEGC_SMALL_ELEMENT_SIZE && !z->use_page_list) |
316670eb A |
3440 | continue; |
3441 | ||
1c79356b A |
3442 | lock_zone(z); |
3443 | ||
55e303ae A |
3444 | elt_size = z->elem_size; |
3445 | ||
1c79356b | 3446 | /* |
316670eb | 3447 | * Do a quick feasibility check before we scan the zone: |
91447636 A |
3448 | * skip unless there is likelihood of getting pages back |
3449 | * (i.e we need a whole allocation block's worth of free | |
3450 | * elements before we can garbage collect) and | |
3451 | * the zone has more than 10 percent of it's elements free | |
2d21ac55 | 3452 | * or the element size is a multiple of the PAGE_SIZE |
1c79356b | 3453 | */ |
2d21ac55 | 3454 | if ((elt_size & PAGE_MASK) && |
39236c6e | 3455 | !z->use_page_list && |
2d21ac55 A |
3456 | (((z->cur_size - z->count * elt_size) <= (2 * z->alloc_size)) || |
3457 | ((z->cur_size - z->count * elt_size) <= (z->cur_size / 10)))) { | |
1c79356b A |
3458 | unlock_zone(z); |
3459 | continue; | |
3460 | } | |
3461 | ||
a3d08fcd A |
3462 | z->doing_gc = TRUE; |
3463 | ||
55e303ae A |
3464 | /* |
3465 | * Snatch all of the free elements away from the zone. | |
1c79356b | 3466 | */ |
1c79356b | 3467 | |
39236c6e A |
3468 | if (z->use_page_list) { |
3469 | queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages); | |
3470 | queue_init(&z->pages.all_free); | |
3471 | } else { | |
3472 | scan = (void *)z->free_elements; | |
3473 | z->free_elements = 0; | |
3474 | } | |
55e303ae A |
3475 | |
3476 | unlock_zone(z); | |
3477 | ||
39236c6e A |
3478 | if (z->use_page_list) { |
3479 | /* | |
3480 | * For zones that maintain page lists (which in turn | |
3481 | * track free elements on those pages), zone_gc() | |
3482 | * is incredibly easy, and we bypass all the logic | |
3483 | * for scanning elements and mapping them to | |
3484 | * collectable pages | |
3485 | */ | |
3486 | ||
3487 | size_freed = 0; | |
3488 | ||
3489 | queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) { | |
3490 | assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */ | |
3491 | ||
3492 | zgc_stats.elems_freed += page_meta->free_count; | |
3493 | size_freed += elt_size * page_meta->free_count; | |
3494 | zgc_stats.elems_collected += page_meta->free_count; | |
3495 | } | |
3496 | ||
3497 | lock_zone(z); | |
3498 | ||
3499 | if (size_freed > 0) { | |
3500 | z->cur_size -= size_freed; | |
3501 | z->countfree -= size_freed/elt_size; | |
3502 | } | |
3503 | ||
3504 | z->doing_gc = FALSE; | |
3505 | if (z->waiting) { | |
3506 | z->waiting = FALSE; | |
3507 | zone_wakeup(z); | |
3508 | } | |
3509 | ||
3510 | unlock_zone(z); | |
3511 | ||
3512 | if (queue_empty(&page_meta_head)) | |
3513 | continue; | |
3514 | ||
3515 | thread_clear_eager_preempt(mythread); | |
3516 | ||
3517 | while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) { | |
3518 | vm_address_t free_page_address; | |
3519 | ||
3520 | free_page_address = trunc_page((vm_address_t)page_meta); | |
3521 | #if ZONE_ALIAS_ADDR | |
3522 | free_page_address = zone_virtual_addr(free_page_address); | |
3523 | #endif | |
3524 | kmem_free(zone_map, free_page_address, PAGE_SIZE); | |
3525 | ZONE_PAGE_COUNT_DECR(z, 1); | |
3526 | total_freed_pages++; | |
3527 | zgc_stats.pgs_freed += 1; | |
3528 | ||
3529 | if (++kmem_frees == 32) { | |
3530 | thread_yield_internal(1); | |
3531 | kmem_frees = 0; | |
3532 | } | |
3533 | } | |
3534 | ||
3535 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) | |
3536 | kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages); | |
3537 | ||
3538 | thread_set_eager_preempt(mythread); | |
3539 | continue; /* go to next zone */ | |
3540 | } | |
3541 | ||
55e303ae A |
3542 | /* |
3543 | * Pass 1: | |
3544 | * | |
3545 | * Determine which elements we can attempt to collect | |
3546 | * and count them up in the page table. Foreign elements | |
3547 | * are returned to the zone. | |
1c79356b | 3548 | */ |
55e303ae A |
3549 | |
3550 | prev = (void *)&scan; | |
3551 | elt = scan; | |
3552 | n = 0; tail = keep = NULL; | |
316670eb A |
3553 | |
3554 | zone_free_page_head = ZONE_PAGE_INDEX_INVALID; | |
3555 | zone_free_page_tail = ZONE_PAGE_INDEX_INVALID; | |
3556 | ||
3557 | ||
55e303ae A |
3558 | while (elt != NULL) { |
3559 | if (from_zone_map(elt, elt_size)) { | |
3560 | zone_page_collect((vm_offset_t)elt, elt_size); | |
3561 | ||
1c79356b A |
3562 | prev = elt; |
3563 | elt = elt->next; | |
55e303ae A |
3564 | |
3565 | ++zgc_stats.elems_collected; | |
1c79356b | 3566 | } |
55e303ae A |
3567 | else { |
3568 | if (keep == NULL) | |
3569 | keep = tail = elt; | |
2d21ac55 | 3570 | else { |
39236c6e | 3571 | append_zone_element(z, tail, elt); |
2d21ac55 A |
3572 | tail = elt; |
3573 | } | |
55e303ae | 3574 | |
39236c6e | 3575 | append_zone_element(z, prev, elt->next); |
2d21ac55 | 3576 | elt = elt->next; |
39236c6e | 3577 | append_zone_element(z, tail, NULL); |
1c79356b | 3578 | } |
1c79356b | 3579 | |
55e303ae A |
3580 | /* |
3581 | * Dribble back the elements we are keeping. | |
39236c6e A |
3582 | * If there are none, give some elements that we haven't looked at yet |
3583 | * back to the freelist so that others waiting on the zone don't get stuck | |
3584 | * for too long. This might prevent us from recovering some memory, | |
3585 | * but allows us to avoid having to allocate new memory to serve requests | |
3586 | * while zone_gc has all the free memory tied up. | |
3587 | * <rdar://problem/3893406> | |
55e303ae A |
3588 | */ |
3589 | ||
a3d08fcd A |
3590 | if (++n >= 50) { |
3591 | if (z->waiting == TRUE) { | |
7ddcb079 | 3592 | /* z->waiting checked without lock held, rechecked below after locking */ |
a3d08fcd | 3593 | lock_zone(z); |
55e303ae | 3594 | |
a3d08fcd | 3595 | if (keep != NULL) { |
39236c6e | 3596 | add_list_to_zone(z, keep, tail); |
a3d08fcd A |
3597 | tail = keep = NULL; |
3598 | } else { | |
3599 | m =0; | |
3600 | base_elt = elt; | |
3601 | base_prev = prev; | |
3602 | while ((elt != NULL) && (++m < 50)) { | |
3603 | prev = elt; | |
3604 | elt = elt->next; | |
3605 | } | |
3606 | if (m !=0 ) { | |
39236c6e A |
3607 | /* Extract the elements from the list and |
3608 | * give them back */ | |
3609 | append_zone_element(z, prev, NULL); | |
3610 | add_list_to_zone(z, base_elt, prev); | |
3611 | append_zone_element(z, base_prev, elt); | |
a3d08fcd A |
3612 | prev = base_prev; |
3613 | } | |
3614 | } | |
55e303ae | 3615 | |
a3d08fcd A |
3616 | if (z->waiting) { |
3617 | z->waiting = FALSE; | |
3618 | zone_wakeup(z); | |
3619 | } | |
55e303ae | 3620 | |
a3d08fcd A |
3621 | unlock_zone(z); |
3622 | } | |
3623 | n =0; | |
55e303ae A |
3624 | } |
3625 | } | |
3626 | ||
3627 | /* | |
3628 | * Return any remaining elements. | |
3629 | */ | |
3630 | ||
3631 | if (keep != NULL) { | |
3632 | lock_zone(z); | |
3633 | ||
39236c6e | 3634 | add_list_to_zone(z, keep, tail); |
55e303ae | 3635 | |
7ddcb079 A |
3636 | if (z->waiting) { |
3637 | z->waiting = FALSE; | |
3638 | zone_wakeup(z); | |
3639 | } | |
3640 | ||
55e303ae A |
3641 | unlock_zone(z); |
3642 | } | |
3643 | ||
3644 | /* | |
3645 | * Pass 2: | |
3646 | * | |
3647 | * Determine which pages we can reclaim and | |
3648 | * free those elements. | |
3649 | */ | |
3650 | ||
3651 | size_freed = 0; | |
55e303ae A |
3652 | elt = scan; |
3653 | n = 0; tail = keep = NULL; | |
316670eb | 3654 | |
55e303ae A |
3655 | while (elt != NULL) { |
3656 | if (zone_page_collectable((vm_offset_t)elt, elt_size)) { | |
7ddcb079 A |
3657 | struct zone_free_element *next_elt = elt->next; |
3658 | ||
55e303ae | 3659 | size_freed += elt_size; |
7ddcb079 A |
3660 | |
3661 | /* | |
3662 | * If this is the last allocation on the page(s), | |
3663 | * we may use their storage to maintain the linked | |
3664 | * list of free-able pages. So store elt->next because | |
3665 | * "elt" may be scribbled over. | |
3666 | */ | |
316670eb | 3667 | zone_page_free_element(&zone_free_page_head, &zone_free_page_tail, (vm_offset_t)elt, elt_size); |
55e303ae | 3668 | |
7ddcb079 | 3669 | elt = next_elt; |
55e303ae A |
3670 | |
3671 | ++zgc_stats.elems_freed; | |
3672 | } | |
3673 | else { | |
3674 | zone_page_keep((vm_offset_t)elt, elt_size); | |
3675 | ||
3676 | if (keep == NULL) | |
3677 | keep = tail = elt; | |
2d21ac55 | 3678 | else { |
39236c6e | 3679 | append_zone_element(z, tail, elt); |
2d21ac55 A |
3680 | tail = elt; |
3681 | } | |
55e303ae | 3682 | |
2d21ac55 | 3683 | elt = elt->next; |
39236c6e | 3684 | append_zone_element(z, tail, NULL); |
55e303ae A |
3685 | |
3686 | ++zgc_stats.elems_kept; | |
3687 | } | |
3688 | ||
3689 | /* | |
3690 | * Dribble back the elements we are keeping, | |
3691 | * and update the zone size info. | |
3692 | */ | |
3693 | ||
a3d08fcd | 3694 | if (++n >= 50) { |
55e303ae A |
3695 | lock_zone(z); |
3696 | ||
3697 | z->cur_size -= size_freed; | |
39236c6e | 3698 | z->countfree -= size_freed/elt_size; |
55e303ae A |
3699 | size_freed = 0; |
3700 | ||
a3d08fcd | 3701 | if (keep != NULL) { |
39236c6e | 3702 | add_list_to_zone(z, keep, tail); |
a3d08fcd A |
3703 | } |
3704 | ||
3705 | if (z->waiting) { | |
3706 | z->waiting = FALSE; | |
3707 | zone_wakeup(z); | |
3708 | } | |
55e303ae A |
3709 | |
3710 | unlock_zone(z); | |
3711 | ||
3712 | n = 0; tail = keep = NULL; | |
3713 | } | |
3714 | } | |
3715 | ||
3716 | /* | |
3717 | * Return any remaining elements, and update | |
3718 | * the zone size info. | |
3719 | */ | |
3720 | ||
a3d08fcd A |
3721 | lock_zone(z); |
3722 | ||
55e303ae | 3723 | if (size_freed > 0 || keep != NULL) { |
55e303ae A |
3724 | |
3725 | z->cur_size -= size_freed; | |
39236c6e | 3726 | z->countfree -= size_freed/elt_size; |
55e303ae A |
3727 | |
3728 | if (keep != NULL) { | |
39236c6e | 3729 | add_list_to_zone(z, keep, tail); |
55e303ae A |
3730 | } |
3731 | ||
55e303ae | 3732 | } |
a3d08fcd A |
3733 | |
3734 | z->doing_gc = FALSE; | |
3735 | if (z->waiting) { | |
3736 | z->waiting = FALSE; | |
3737 | zone_wakeup(z); | |
3738 | } | |
3739 | unlock_zone(z); | |
1c79356b | 3740 | |
316670eb A |
3741 | if (zone_free_page_head == ZONE_PAGE_INDEX_INVALID) |
3742 | continue; | |
3743 | ||
3744 | /* | |
3745 | * we don't want to allow eager kernel preemption while holding the | |
3746 | * various locks taken in the kmem_free path of execution | |
3747 | */ | |
3748 | thread_clear_eager_preempt(mythread); | |
3749 | ||
39236c6e A |
3750 | |
3751 | /* | |
3752 | * This loop counts the number of pages that should be freed by the | |
3753 | * next loop that tries to coalesce the kmem_frees() | |
3754 | */ | |
3755 | uint32_t pages_to_free_count = 0; | |
3756 | vm_address_t fpa; | |
3757 | zone_page_index_t index; | |
3758 | for (index = zone_free_page_head; index != ZONE_PAGE_INDEX_INVALID;) { | |
3759 | pages_to_free_count++; | |
3760 | fpa = zone_map_min_address + PAGE_SIZE * ((vm_size_t)index); | |
3761 | index = *(zone_page_index_t *)fpa; | |
3762 | } | |
3763 | ||
316670eb A |
3764 | /* |
3765 | * Reclaim the pages we are freeing. | |
3766 | */ | |
3767 | while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) { | |
3768 | zone_page_index_t zind = zone_free_page_head; | |
3769 | vm_address_t free_page_address; | |
3770 | int page_count; | |
3771 | ||
3772 | /* | |
3773 | * Use the first word of the page about to be freed to find the next free page | |
3774 | */ | |
3775 | free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)zind); | |
3776 | zone_free_page_head = *(zone_page_index_t *)free_page_address; | |
3777 | ||
3778 | page_count = 1; | |
39236c6e | 3779 | total_freed_pages++; |
316670eb A |
3780 | |
3781 | while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) { | |
3782 | zone_page_index_t next_zind = zone_free_page_head; | |
3783 | vm_address_t next_free_page_address; | |
3784 | ||
3785 | next_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)next_zind); | |
3786 | ||
3787 | if (next_free_page_address == (free_page_address - PAGE_SIZE)) { | |
3788 | free_page_address = next_free_page_address; | |
3789 | } else if (next_free_page_address != (free_page_address + (PAGE_SIZE * page_count))) | |
3790 | break; | |
3791 | ||
3792 | zone_free_page_head = *(zone_page_index_t *)next_free_page_address; | |
3793 | page_count++; | |
39236c6e | 3794 | total_freed_pages++; |
316670eb A |
3795 | } |
3796 | kmem_free(zone_map, free_page_address, page_count * PAGE_SIZE); | |
39236c6e | 3797 | ZONE_PAGE_COUNT_DECR(z, page_count); |
316670eb | 3798 | zgc_stats.pgs_freed += page_count; |
39236c6e | 3799 | pages_to_free_count -= page_count; |
7ddcb079 | 3800 | |
316670eb A |
3801 | if (++kmem_frees == 32) { |
3802 | thread_yield_internal(1); | |
3803 | kmem_frees = 0; | |
3804 | } | |
3805 | } | |
39236c6e A |
3806 | |
3807 | /* Check that we actually free the exact number of pages we were supposed to */ | |
3808 | assert(pages_to_free_count == 0); | |
3809 | ||
3810 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) | |
3811 | kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages); | |
3812 | ||
316670eb | 3813 | thread_set_eager_preempt(mythread); |
1c79356b | 3814 | } |
39236c6e A |
3815 | |
3816 | if (old_pgs_freed == zgc_stats.pgs_freed) | |
3817 | zgc_stats.zgc_bailed++; | |
3818 | ||
316670eb | 3819 | thread_clear_eager_preempt(mythread); |
55e303ae | 3820 | |
b0d623f7 | 3821 | lck_mtx_unlock(&zone_gc_lock); |
316670eb | 3822 | |
1c79356b A |
3823 | } |
3824 | ||
316670eb A |
3825 | extern vm_offset_t kmapoff_kaddr; |
3826 | extern unsigned int kmapoff_pgcnt; | |
3827 | ||
1c79356b A |
3828 | /* |
3829 | * consider_zone_gc: | |
3830 | * | |
3831 | * Called by the pageout daemon when the system needs more free pages. | |
3832 | */ | |
3833 | ||
3834 | void | |
b0d623f7 | 3835 | consider_zone_gc(boolean_t force) |
1c79356b | 3836 | { |
316670eb A |
3837 | boolean_t all_zones = FALSE; |
3838 | ||
3839 | if (kmapoff_kaddr != 0) { | |
3840 | /* | |
3841 | * One-time reclaim of kernel_map resources we allocated in | |
3842 | * early boot. | |
3843 | */ | |
3844 | (void) vm_deallocate(kernel_map, | |
3845 | kmapoff_kaddr, kmapoff_pgcnt * PAGE_SIZE_64); | |
3846 | kmapoff_kaddr = 0; | |
3847 | } | |
1c79356b A |
3848 | |
3849 | if (zone_gc_allowed && | |
6d2010ae | 3850 | (zone_gc_allowed_by_time_throttle || |
b0d623f7 A |
3851 | zone_gc_forced || |
3852 | force)) { | |
316670eb A |
3853 | if (zone_gc_allowed_by_time_throttle == TRUE) { |
3854 | zone_gc_allowed_by_time_throttle = FALSE; | |
3855 | all_zones = TRUE; | |
3856 | } | |
0b4e3aa0 | 3857 | zone_gc_forced = FALSE; |
316670eb A |
3858 | |
3859 | zone_gc(all_zones); | |
1c79356b A |
3860 | } |
3861 | } | |
3862 | ||
6d2010ae A |
3863 | /* |
3864 | * By default, don't attempt zone GC more frequently | |
3865 | * than once / 1 minutes. | |
3866 | */ | |
3867 | void | |
3868 | compute_zone_gc_throttle(void *arg __unused) | |
3869 | { | |
3870 | zone_gc_allowed_by_time_throttle = TRUE; | |
3871 | } | |
2d21ac55 | 3872 | |
1c79356b | 3873 | |
316670eb A |
3874 | #if CONFIG_TASK_ZONE_INFO |
3875 | ||
6d2010ae A |
3876 | kern_return_t |
3877 | task_zone_info( | |
3878 | task_t task, | |
3879 | mach_zone_name_array_t *namesp, | |
3880 | mach_msg_type_number_t *namesCntp, | |
3881 | task_zone_info_array_t *infop, | |
3882 | mach_msg_type_number_t *infoCntp) | |
3883 | { | |
3884 | mach_zone_name_t *names; | |
3885 | vm_offset_t names_addr; | |
3886 | vm_size_t names_size; | |
3887 | task_zone_info_t *info; | |
3888 | vm_offset_t info_addr; | |
3889 | vm_size_t info_size; | |
3890 | unsigned int max_zones, i; | |
3891 | zone_t z; | |
3892 | mach_zone_name_t *zn; | |
3893 | task_zone_info_t *zi; | |
3894 | kern_return_t kr; | |
3895 | ||
3896 | vm_size_t used; | |
3897 | vm_map_copy_t copy; | |
3898 | ||
3899 | ||
3900 | if (task == TASK_NULL) | |
3901 | return KERN_INVALID_TASK; | |
3902 | ||
3903 | /* | |
3904 | * We assume that zones aren't freed once allocated. | |
3905 | * We won't pick up any zones that are allocated later. | |
3906 | */ | |
3907 | ||
3908 | simple_lock(&all_zones_lock); | |
3909 | max_zones = (unsigned int)(num_zones + num_fake_zones); | |
3910 | z = first_zone; | |
3911 | simple_unlock(&all_zones_lock); | |
3912 | ||
3913 | names_size = round_page(max_zones * sizeof *names); | |
3914 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 3915 | &names_addr, names_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
3916 | if (kr != KERN_SUCCESS) |
3917 | return kr; | |
3918 | names = (mach_zone_name_t *) names_addr; | |
3919 | ||
3920 | info_size = round_page(max_zones * sizeof *info); | |
3921 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 3922 | &info_addr, info_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
3923 | if (kr != KERN_SUCCESS) { |
3924 | kmem_free(ipc_kernel_map, | |
3925 | names_addr, names_size); | |
3926 | return kr; | |
3927 | } | |
3928 | ||
3929 | info = (task_zone_info_t *) info_addr; | |
3930 | ||
3931 | zn = &names[0]; | |
3932 | zi = &info[0]; | |
3933 | ||
3934 | for (i = 0; i < max_zones - num_fake_zones; i++) { | |
3935 | struct zone zcopy; | |
3936 | ||
3937 | assert(z != ZONE_NULL); | |
3938 | ||
3939 | lock_zone(z); | |
3940 | zcopy = *z; | |
3941 | unlock_zone(z); | |
3942 | ||
3943 | simple_lock(&all_zones_lock); | |
3944 | z = z->next_zone; | |
3945 | simple_unlock(&all_zones_lock); | |
3946 | ||
3947 | /* assuming here the name data is static */ | |
3948 | (void) strncpy(zn->mzn_name, zcopy.zone_name, | |
3949 | sizeof zn->mzn_name); | |
3950 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
3951 | ||
3952 | zi->tzi_count = (uint64_t)zcopy.count; | |
3e170ce0 | 3953 | zi->tzi_cur_size = ptoa_64(zcopy.page_count); |
6d2010ae A |
3954 | zi->tzi_max_size = (uint64_t)zcopy.max_size; |
3955 | zi->tzi_elem_size = (uint64_t)zcopy.elem_size; | |
3956 | zi->tzi_alloc_size = (uint64_t)zcopy.alloc_size; | |
3957 | zi->tzi_sum_size = zcopy.sum_count * zcopy.elem_size; | |
3958 | zi->tzi_exhaustible = (uint64_t)zcopy.exhaustible; | |
3959 | zi->tzi_collectable = (uint64_t)zcopy.collectable; | |
3960 | zi->tzi_caller_acct = (uint64_t)zcopy.caller_acct; | |
3961 | if (task->tkm_zinfo != NULL) { | |
3962 | zi->tzi_task_alloc = task->tkm_zinfo[zcopy.index].alloc; | |
3963 | zi->tzi_task_free = task->tkm_zinfo[zcopy.index].free; | |
3964 | } else { | |
3965 | zi->tzi_task_alloc = 0; | |
3966 | zi->tzi_task_free = 0; | |
3967 | } | |
3968 | zn++; | |
3969 | zi++; | |
3970 | } | |
3971 | ||
3972 | /* | |
3973 | * loop through the fake zones and fill them using the specialized | |
3974 | * functions | |
3975 | */ | |
3976 | for (i = 0; i < num_fake_zones; i++) { | |
3977 | int count, collectable, exhaustible, caller_acct, index; | |
3978 | vm_size_t cur_size, max_size, elem_size, alloc_size; | |
3979 | uint64_t sum_size; | |
3980 | ||
3981 | strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name); | |
3982 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
3983 | fake_zones[i].query(&count, &cur_size, | |
3984 | &max_size, &elem_size, | |
3985 | &alloc_size, &sum_size, | |
3986 | &collectable, &exhaustible, &caller_acct); | |
3987 | zi->tzi_count = (uint64_t)count; | |
3988 | zi->tzi_cur_size = (uint64_t)cur_size; | |
3989 | zi->tzi_max_size = (uint64_t)max_size; | |
3990 | zi->tzi_elem_size = (uint64_t)elem_size; | |
3991 | zi->tzi_alloc_size = (uint64_t)alloc_size; | |
3992 | zi->tzi_sum_size = sum_size; | |
3993 | zi->tzi_collectable = (uint64_t)collectable; | |
3994 | zi->tzi_exhaustible = (uint64_t)exhaustible; | |
3995 | zi->tzi_caller_acct = (uint64_t)caller_acct; | |
3996 | if (task->tkm_zinfo != NULL) { | |
3997 | index = ZINFO_SLOTS - num_fake_zones + i; | |
3998 | zi->tzi_task_alloc = task->tkm_zinfo[index].alloc; | |
3999 | zi->tzi_task_free = task->tkm_zinfo[index].free; | |
4000 | } else { | |
4001 | zi->tzi_task_alloc = 0; | |
4002 | zi->tzi_task_free = 0; | |
4003 | } | |
4004 | zn++; | |
4005 | zi++; | |
4006 | } | |
4007 | ||
4008 | used = max_zones * sizeof *names; | |
4009 | if (used != names_size) | |
4010 | bzero((char *) (names_addr + used), names_size - used); | |
4011 | ||
4012 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, | |
4013 | (vm_map_size_t)names_size, TRUE, ©); | |
4014 | assert(kr == KERN_SUCCESS); | |
4015 | ||
4016 | *namesp = (mach_zone_name_t *) copy; | |
4017 | *namesCntp = max_zones; | |
4018 | ||
4019 | used = max_zones * sizeof *info; | |
4020 | ||
4021 | if (used != info_size) | |
4022 | bzero((char *) (info_addr + used), info_size - used); | |
4023 | ||
4024 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, | |
4025 | (vm_map_size_t)info_size, TRUE, ©); | |
4026 | assert(kr == KERN_SUCCESS); | |
4027 | ||
4028 | *infop = (task_zone_info_t *) copy; | |
4029 | *infoCntp = max_zones; | |
4030 | ||
4031 | return KERN_SUCCESS; | |
4032 | } | |
4033 | ||
316670eb A |
4034 | #else /* CONFIG_TASK_ZONE_INFO */ |
4035 | ||
4036 | kern_return_t | |
4037 | task_zone_info( | |
4038 | __unused task_t task, | |
4039 | __unused mach_zone_name_array_t *namesp, | |
4040 | __unused mach_msg_type_number_t *namesCntp, | |
4041 | __unused task_zone_info_array_t *infop, | |
4042 | __unused mach_msg_type_number_t *infoCntp) | |
4043 | { | |
4044 | return KERN_FAILURE; | |
4045 | } | |
4046 | ||
4047 | #endif /* CONFIG_TASK_ZONE_INFO */ | |
4048 | ||
6d2010ae A |
4049 | kern_return_t |
4050 | mach_zone_info( | |
316670eb | 4051 | host_priv_t host, |
6d2010ae A |
4052 | mach_zone_name_array_t *namesp, |
4053 | mach_msg_type_number_t *namesCntp, | |
4054 | mach_zone_info_array_t *infop, | |
4055 | mach_msg_type_number_t *infoCntp) | |
3e170ce0 A |
4056 | { |
4057 | return (mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL)); | |
4058 | } | |
4059 | ||
4060 | kern_return_t | |
4061 | mach_memory_info( | |
4062 | host_priv_t host, | |
4063 | mach_zone_name_array_t *namesp, | |
4064 | mach_msg_type_number_t *namesCntp, | |
4065 | mach_zone_info_array_t *infop, | |
4066 | mach_msg_type_number_t *infoCntp, | |
4067 | mach_memory_info_array_t *memoryInfop, | |
4068 | mach_msg_type_number_t *memoryInfoCntp) | |
6d2010ae A |
4069 | { |
4070 | mach_zone_name_t *names; | |
4071 | vm_offset_t names_addr; | |
4072 | vm_size_t names_size; | |
3e170ce0 | 4073 | |
6d2010ae A |
4074 | mach_zone_info_t *info; |
4075 | vm_offset_t info_addr; | |
4076 | vm_size_t info_size; | |
3e170ce0 A |
4077 | |
4078 | mach_memory_info_t *memory_info; | |
4079 | vm_offset_t memory_info_addr; | |
4080 | vm_size_t memory_info_size; | |
4081 | unsigned int num_sites; | |
4082 | ||
6d2010ae A |
4083 | unsigned int max_zones, i; |
4084 | zone_t z; | |
4085 | mach_zone_name_t *zn; | |
4086 | mach_zone_info_t *zi; | |
4087 | kern_return_t kr; | |
4088 | ||
4089 | vm_size_t used; | |
4090 | vm_map_copy_t copy; | |
4091 | ||
4092 | ||
4093 | if (host == HOST_NULL) | |
4094 | return KERN_INVALID_HOST; | |
316670eb A |
4095 | #if CONFIG_DEBUGGER_FOR_ZONE_INFO |
4096 | if (!PE_i_can_has_debugger(NULL)) | |
4097 | return KERN_INVALID_HOST; | |
4098 | #endif | |
6d2010ae A |
4099 | |
4100 | /* | |
4101 | * We assume that zones aren't freed once allocated. | |
4102 | * We won't pick up any zones that are allocated later. | |
4103 | */ | |
4104 | ||
4105 | simple_lock(&all_zones_lock); | |
4106 | max_zones = (unsigned int)(num_zones + num_fake_zones); | |
4107 | z = first_zone; | |
4108 | simple_unlock(&all_zones_lock); | |
4109 | ||
4110 | names_size = round_page(max_zones * sizeof *names); | |
4111 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 4112 | &names_addr, names_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
4113 | if (kr != KERN_SUCCESS) |
4114 | return kr; | |
4115 | names = (mach_zone_name_t *) names_addr; | |
4116 | ||
4117 | info_size = round_page(max_zones * sizeof *info); | |
4118 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 4119 | &info_addr, info_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
4120 | if (kr != KERN_SUCCESS) { |
4121 | kmem_free(ipc_kernel_map, | |
4122 | names_addr, names_size); | |
4123 | return kr; | |
4124 | } | |
6d2010ae A |
4125 | info = (mach_zone_info_t *) info_addr; |
4126 | ||
3e170ce0 A |
4127 | num_sites = 0; |
4128 | memory_info_addr = 0; | |
4129 | if (memoryInfop && memoryInfoCntp) | |
4130 | { | |
4131 | num_sites = VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT; | |
4132 | memory_info_size = round_page(num_sites * sizeof *info); | |
4133 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
4134 | &memory_info_addr, memory_info_size, VM_KERN_MEMORY_IPC); | |
4135 | if (kr != KERN_SUCCESS) { | |
4136 | kmem_free(ipc_kernel_map, | |
4137 | names_addr, names_size); | |
4138 | kmem_free(ipc_kernel_map, | |
4139 | info_addr, info_size); | |
4140 | return kr; | |
4141 | } | |
4142 | ||
4143 | kr = vm_map_wire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_size, | |
4144 | VM_PROT_READ|VM_PROT_WRITE|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_IPC), FALSE); | |
4145 | assert(kr == KERN_SUCCESS); | |
4146 | ||
4147 | memory_info = (mach_memory_info_t *) memory_info_addr; | |
4148 | vm_page_diagnose(memory_info, num_sites); | |
4149 | ||
4150 | kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_size, FALSE); | |
4151 | assert(kr == KERN_SUCCESS); | |
4152 | } | |
4153 | ||
6d2010ae A |
4154 | zn = &names[0]; |
4155 | zi = &info[0]; | |
4156 | ||
4157 | for (i = 0; i < max_zones - num_fake_zones; i++) { | |
4158 | struct zone zcopy; | |
4159 | ||
4160 | assert(z != ZONE_NULL); | |
4161 | ||
4162 | lock_zone(z); | |
4163 | zcopy = *z; | |
4164 | unlock_zone(z); | |
4165 | ||
4166 | simple_lock(&all_zones_lock); | |
4167 | z = z->next_zone; | |
4168 | simple_unlock(&all_zones_lock); | |
4169 | ||
4170 | /* assuming here the name data is static */ | |
4171 | (void) strncpy(zn->mzn_name, zcopy.zone_name, | |
4172 | sizeof zn->mzn_name); | |
4173 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
4174 | ||
4175 | zi->mzi_count = (uint64_t)zcopy.count; | |
3e170ce0 | 4176 | zi->mzi_cur_size = ptoa_64(zcopy.page_count); |
6d2010ae A |
4177 | zi->mzi_max_size = (uint64_t)zcopy.max_size; |
4178 | zi->mzi_elem_size = (uint64_t)zcopy.elem_size; | |
4179 | zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size; | |
4180 | zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size; | |
4181 | zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible; | |
4182 | zi->mzi_collectable = (uint64_t)zcopy.collectable; | |
4183 | zn++; | |
4184 | zi++; | |
4185 | } | |
4186 | ||
4187 | /* | |
4188 | * loop through the fake zones and fill them using the specialized | |
4189 | * functions | |
4190 | */ | |
4191 | for (i = 0; i < num_fake_zones; i++) { | |
4192 | int count, collectable, exhaustible, caller_acct; | |
4193 | vm_size_t cur_size, max_size, elem_size, alloc_size; | |
4194 | uint64_t sum_size; | |
4195 | ||
4196 | strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name); | |
4197 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
4198 | fake_zones[i].query(&count, &cur_size, | |
4199 | &max_size, &elem_size, | |
4200 | &alloc_size, &sum_size, | |
4201 | &collectable, &exhaustible, &caller_acct); | |
4202 | zi->mzi_count = (uint64_t)count; | |
4203 | zi->mzi_cur_size = (uint64_t)cur_size; | |
4204 | zi->mzi_max_size = (uint64_t)max_size; | |
4205 | zi->mzi_elem_size = (uint64_t)elem_size; | |
4206 | zi->mzi_alloc_size = (uint64_t)alloc_size; | |
4207 | zi->mzi_sum_size = sum_size; | |
4208 | zi->mzi_collectable = (uint64_t)collectable; | |
4209 | zi->mzi_exhaustible = (uint64_t)exhaustible; | |
4210 | ||
4211 | zn++; | |
4212 | zi++; | |
4213 | } | |
4214 | ||
4215 | used = max_zones * sizeof *names; | |
4216 | if (used != names_size) | |
4217 | bzero((char *) (names_addr + used), names_size - used); | |
4218 | ||
4219 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, | |
4220 | (vm_map_size_t)names_size, TRUE, ©); | |
4221 | assert(kr == KERN_SUCCESS); | |
4222 | ||
4223 | *namesp = (mach_zone_name_t *) copy; | |
4224 | *namesCntp = max_zones; | |
4225 | ||
4226 | used = max_zones * sizeof *info; | |
4227 | ||
4228 | if (used != info_size) | |
4229 | bzero((char *) (info_addr + used), info_size - used); | |
4230 | ||
4231 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, | |
4232 | (vm_map_size_t)info_size, TRUE, ©); | |
4233 | assert(kr == KERN_SUCCESS); | |
4234 | ||
4235 | *infop = (mach_zone_info_t *) copy; | |
4236 | *infoCntp = max_zones; | |
4237 | ||
3e170ce0 A |
4238 | if (memoryInfop && memoryInfoCntp) |
4239 | { | |
4240 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr, | |
4241 | (vm_map_size_t)memory_info_size, TRUE, ©); | |
4242 | assert(kr == KERN_SUCCESS); | |
4243 | ||
4244 | *memoryInfop = (mach_memory_info_t *) copy; | |
4245 | *memoryInfoCntp = num_sites; | |
4246 | } | |
4247 | ||
6d2010ae A |
4248 | return KERN_SUCCESS; |
4249 | } | |
4250 | ||
4251 | /* | |
4252 | * host_zone_info - LEGACY user interface for Mach zone information | |
4253 | * Should use mach_zone_info() instead! | |
4254 | */ | |
1c79356b A |
4255 | kern_return_t |
4256 | host_zone_info( | |
316670eb | 4257 | host_priv_t host, |
1c79356b A |
4258 | zone_name_array_t *namesp, |
4259 | mach_msg_type_number_t *namesCntp, | |
4260 | zone_info_array_t *infop, | |
4261 | mach_msg_type_number_t *infoCntp) | |
4262 | { | |
4263 | zone_name_t *names; | |
4264 | vm_offset_t names_addr; | |
4265 | vm_size_t names_size; | |
4266 | zone_info_t *info; | |
4267 | vm_offset_t info_addr; | |
4268 | vm_size_t info_size; | |
4269 | unsigned int max_zones, i; | |
4270 | zone_t z; | |
4271 | zone_name_t *zn; | |
4272 | zone_info_t *zi; | |
4273 | kern_return_t kr; | |
6d2010ae A |
4274 | |
4275 | vm_size_t used; | |
4276 | vm_map_copy_t copy; | |
1c79356b | 4277 | |
b0d623f7 | 4278 | |
1c79356b A |
4279 | if (host == HOST_NULL) |
4280 | return KERN_INVALID_HOST; | |
316670eb A |
4281 | #if CONFIG_DEBUGGER_FOR_ZONE_INFO |
4282 | if (!PE_i_can_has_debugger(NULL)) | |
4283 | return KERN_INVALID_HOST; | |
4284 | #endif | |
1c79356b | 4285 | |
b0d623f7 A |
4286 | #if defined(__LP64__) |
4287 | if (!thread_is_64bit(current_thread())) | |
4288 | return KERN_NOT_SUPPORTED; | |
4289 | #else | |
4290 | if (thread_is_64bit(current_thread())) | |
4291 | return KERN_NOT_SUPPORTED; | |
4292 | #endif | |
4293 | ||
1c79356b A |
4294 | /* |
4295 | * We assume that zones aren't freed once allocated. | |
4296 | * We won't pick up any zones that are allocated later. | |
4297 | */ | |
4298 | ||
4299 | simple_lock(&all_zones_lock); | |
b0d623f7 | 4300 | max_zones = (unsigned int)(num_zones + num_fake_zones); |
1c79356b A |
4301 | z = first_zone; |
4302 | simple_unlock(&all_zones_lock); | |
4303 | ||
6d2010ae A |
4304 | names_size = round_page(max_zones * sizeof *names); |
4305 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 4306 | &names_addr, names_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
4307 | if (kr != KERN_SUCCESS) |
4308 | return kr; | |
4309 | names = (zone_name_t *) names_addr; | |
4310 | ||
4311 | info_size = round_page(max_zones * sizeof *info); | |
4312 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3e170ce0 | 4313 | &info_addr, info_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
4314 | if (kr != KERN_SUCCESS) { |
4315 | kmem_free(ipc_kernel_map, | |
4316 | names_addr, names_size); | |
4317 | return kr; | |
1c79356b | 4318 | } |
6d2010ae A |
4319 | |
4320 | info = (zone_info_t *) info_addr; | |
4321 | ||
1c79356b A |
4322 | zn = &names[0]; |
4323 | zi = &info[0]; | |
4324 | ||
6d2010ae | 4325 | for (i = 0; i < max_zones - num_fake_zones; i++) { |
1c79356b A |
4326 | struct zone zcopy; |
4327 | ||
4328 | assert(z != ZONE_NULL); | |
4329 | ||
4330 | lock_zone(z); | |
4331 | zcopy = *z; | |
4332 | unlock_zone(z); | |
4333 | ||
4334 | simple_lock(&all_zones_lock); | |
4335 | z = z->next_zone; | |
4336 | simple_unlock(&all_zones_lock); | |
4337 | ||
4338 | /* assuming here the name data is static */ | |
4339 | (void) strncpy(zn->zn_name, zcopy.zone_name, | |
4340 | sizeof zn->zn_name); | |
2d21ac55 | 4341 | zn->zn_name[sizeof zn->zn_name - 1] = '\0'; |
1c79356b A |
4342 | |
4343 | zi->zi_count = zcopy.count; | |
3e170ce0 | 4344 | zi->zi_cur_size = ptoa(zcopy.page_count); |
1c79356b A |
4345 | zi->zi_max_size = zcopy.max_size; |
4346 | zi->zi_elem_size = zcopy.elem_size; | |
4347 | zi->zi_alloc_size = zcopy.alloc_size; | |
4348 | zi->zi_exhaustible = zcopy.exhaustible; | |
4349 | zi->zi_collectable = zcopy.collectable; | |
4350 | ||
4351 | zn++; | |
4352 | zi++; | |
4353 | } | |
0c530ab8 | 4354 | |
2d21ac55 A |
4355 | /* |
4356 | * loop through the fake zones and fill them using the specialized | |
4357 | * functions | |
4358 | */ | |
4359 | for (i = 0; i < num_fake_zones; i++) { | |
6d2010ae A |
4360 | int caller_acct; |
4361 | uint64_t sum_space; | |
2d21ac55 A |
4362 | strncpy(zn->zn_name, fake_zones[i].name, sizeof zn->zn_name); |
4363 | zn->zn_name[sizeof zn->zn_name - 1] = '\0'; | |
6d2010ae A |
4364 | fake_zones[i].query(&zi->zi_count, &zi->zi_cur_size, |
4365 | &zi->zi_max_size, &zi->zi_elem_size, | |
4366 | &zi->zi_alloc_size, &sum_space, | |
4367 | &zi->zi_collectable, &zi->zi_exhaustible, &caller_acct); | |
2d21ac55 A |
4368 | zn++; |
4369 | zi++; | |
4370 | } | |
1c79356b | 4371 | |
6d2010ae A |
4372 | used = max_zones * sizeof *names; |
4373 | if (used != names_size) | |
4374 | bzero((char *) (names_addr + used), names_size - used); | |
1c79356b | 4375 | |
6d2010ae A |
4376 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, |
4377 | (vm_map_size_t)names_size, TRUE, ©); | |
4378 | assert(kr == KERN_SUCCESS); | |
1c79356b | 4379 | |
6d2010ae | 4380 | *namesp = (zone_name_t *) copy; |
1c79356b A |
4381 | *namesCntp = max_zones; |
4382 | ||
6d2010ae A |
4383 | used = max_zones * sizeof *info; |
4384 | if (used != info_size) | |
4385 | bzero((char *) (info_addr + used), info_size - used); | |
1c79356b | 4386 | |
6d2010ae A |
4387 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, |
4388 | (vm_map_size_t)info_size, TRUE, ©); | |
4389 | assert(kr == KERN_SUCCESS); | |
1c79356b | 4390 | |
6d2010ae | 4391 | *infop = (zone_info_t *) copy; |
1c79356b A |
4392 | *infoCntp = max_zones; |
4393 | ||
4394 | return KERN_SUCCESS; | |
4395 | } | |
4396 | ||
316670eb A |
4397 | kern_return_t |
4398 | mach_zone_force_gc( | |
4399 | host_t host) | |
4400 | { | |
4401 | ||
4402 | if (host == HOST_NULL) | |
4403 | return KERN_INVALID_HOST; | |
4404 | ||
4405 | consider_zone_gc(TRUE); | |
4406 | ||
4407 | return (KERN_SUCCESS); | |
4408 | } | |
4409 | ||
b0d623f7 | 4410 | extern unsigned int stack_total; |
6d2010ae | 4411 | extern unsigned long long stack_allocs; |
b0d623f7 A |
4412 | |
4413 | #if defined(__i386__) || defined (__x86_64__) | |
4414 | extern unsigned int inuse_ptepages_count; | |
6d2010ae | 4415 | extern long long alloc_ptepages_count; |
b0d623f7 A |
4416 | #endif |
4417 | ||
4418 | void zone_display_zprint() | |
4419 | { | |
4420 | unsigned int i; | |
4421 | zone_t the_zone; | |
4422 | ||
4423 | if(first_zone!=NULL) { | |
4424 | the_zone = first_zone; | |
4425 | for (i = 0; i < num_zones; i++) { | |
4426 | if(the_zone->cur_size > (1024*1024)) { | |
4427 | printf("%.20s:\t%lu\n",the_zone->zone_name,(uintptr_t)the_zone->cur_size); | |
4428 | } | |
4429 | ||
4430 | if(the_zone->next_zone == NULL) { | |
4431 | break; | |
4432 | } | |
4433 | ||
4434 | the_zone = the_zone->next_zone; | |
4435 | } | |
4436 | } | |
4437 | ||
4438 | printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size * stack_total)); | |
4439 | ||
4440 | #if defined(__i386__) || defined (__x86_64__) | |
4441 | printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE * inuse_ptepages_count)); | |
4442 | #endif | |
4443 | ||
4444 | printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total); | |
4445 | } | |
4446 | ||
39236c6e A |
4447 | zone_t |
4448 | zone_find_largest(void) | |
4449 | { | |
4450 | unsigned int i; | |
4451 | unsigned int max_zones; | |
4452 | zone_t the_zone; | |
4453 | zone_t zone_largest; | |
4454 | ||
4455 | simple_lock(&all_zones_lock); | |
4456 | the_zone = first_zone; | |
4457 | max_zones = num_zones; | |
4458 | simple_unlock(&all_zones_lock); | |
4459 | ||
4460 | zone_largest = the_zone; | |
4461 | for (i = 0; i < max_zones; i++) { | |
4462 | if (the_zone->cur_size > zone_largest->cur_size) { | |
4463 | zone_largest = the_zone; | |
4464 | } | |
4465 | ||
4466 | if (the_zone->next_zone == NULL) { | |
4467 | break; | |
4468 | } | |
4469 | ||
4470 | the_zone = the_zone->next_zone; | |
4471 | } | |
4472 | return zone_largest; | |
4473 | } | |
4474 | ||
1c79356b A |
4475 | #if ZONE_DEBUG |
4476 | ||
4477 | /* should we care about locks here ? */ | |
4478 | ||
39236c6e A |
4479 | #define zone_in_use(z) ( z->count || z->free_elements \ |
4480 | || !queue_empty(&z->pages.all_free) \ | |
4481 | || !queue_empty(&z->pages.intermediate) \ | |
4482 | || (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign))) | |
1c79356b A |
4483 | |
4484 | void | |
4485 | zone_debug_enable( | |
4486 | zone_t z) | |
4487 | { | |
4488 | if (zone_debug_enabled(z) || zone_in_use(z) || | |
55e303ae | 4489 | z->alloc_size < (z->elem_size + ZONE_DEBUG_OFFSET)) |
1c79356b A |
4490 | return; |
4491 | queue_init(&z->active_zones); | |
55e303ae | 4492 | z->elem_size += ZONE_DEBUG_OFFSET; |
1c79356b A |
4493 | } |
4494 | ||
4495 | void | |
4496 | zone_debug_disable( | |
4497 | zone_t z) | |
4498 | { | |
4499 | if (!zone_debug_enabled(z) || zone_in_use(z)) | |
4500 | return; | |
55e303ae | 4501 | z->elem_size -= ZONE_DEBUG_OFFSET; |
2d21ac55 | 4502 | z->active_zones.next = z->active_zones.prev = NULL; |
1c79356b | 4503 | } |
b0d623f7 A |
4504 | |
4505 | ||
1c79356b | 4506 | #endif /* ZONE_DEBUG */ |