]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
316670eb | 2 | * Copyright (c) 2000-2011 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: kern/zalloc.c | |
60 | * Author: Avadis Tevanian, Jr. | |
61 | * | |
62 | * Zone-based memory allocator. A zone is a collection of fixed size | |
63 | * data blocks for which quick allocation/deallocation is possible. | |
64 | */ | |
65 | #include <zone_debug.h> | |
2d21ac55 | 66 | #include <zone_alias_addr.h> |
91447636 A |
67 | |
68 | #include <mach/mach_types.h> | |
69 | #include <mach/vm_param.h> | |
70 | #include <mach/kern_return.h> | |
71 | #include <mach/mach_host_server.h> | |
6d2010ae | 72 | #include <mach/task_server.h> |
91447636 A |
73 | #include <mach/machine/vm_types.h> |
74 | #include <mach_debug/zone_info.h> | |
316670eb | 75 | #include <mach/vm_map.h> |
91447636 A |
76 | |
77 | #include <kern/kern_types.h> | |
1c79356b | 78 | #include <kern/assert.h> |
91447636 | 79 | #include <kern/host.h> |
1c79356b A |
80 | #include <kern/macro_help.h> |
81 | #include <kern/sched.h> | |
b0d623f7 | 82 | #include <kern/locks.h> |
1c79356b A |
83 | #include <kern/sched_prim.h> |
84 | #include <kern/misc_protos.h> | |
0b4e3aa0 | 85 | #include <kern/thread_call.h> |
1c79356b | 86 | #include <kern/zalloc.h> |
91447636 | 87 | #include <kern/kalloc.h> |
39236c6e | 88 | #include <kern/btlog.h> |
91447636 A |
89 | |
90 | #include <vm/pmap.h> | |
91 | #include <vm/vm_map.h> | |
1c79356b | 92 | #include <vm/vm_kern.h> |
91447636 A |
93 | #include <vm/vm_page.h> |
94 | ||
316670eb A |
95 | #include <pexpert/pexpert.h> |
96 | ||
1c79356b | 97 | #include <machine/machparam.h> |
39236c6e | 98 | #include <machine/machine_routines.h> /* ml_cpu_get_info */ |
1c79356b | 99 | |
2d21ac55 | 100 | #include <libkern/OSDebug.h> |
7ddcb079 | 101 | #include <libkern/OSAtomic.h> |
2d21ac55 A |
102 | #include <sys/kdebug.h> |
103 | ||
39236c6e A |
104 | /* |
105 | * ZONE_ALIAS_ADDR | |
106 | * | |
107 | * With this option enabled, zones with alloc_size <= PAGE_SIZE allocate | |
108 | * a virtual page from the zone_map, but before zcram-ing the allocated memory | |
109 | * into the zone, the page is translated to use the alias address of the page | |
110 | * in the static kernel region. zone_gc reverses that translation when | |
111 | * scanning the freelist to collect free pages so that it can look up the page | |
112 | * in the zone_page_table, and free it to kmem_free. | |
113 | * | |
114 | * The static kernel region is a flat 1:1 mapping of physical memory passed | |
115 | * to xnu by the booter. It is mapped to the range: | |
116 | * [gVirtBase, gVirtBase + gPhysSize] | |
117 | * | |
118 | * Accessing memory via the static kernel region is faster due to the | |
119 | * entire region being mapped via large pages, cutting down | |
120 | * on TLB misses. | |
121 | * | |
122 | * zinit favors using PAGE_SIZE backing allocations for a zone unless it would | |
123 | * waste more than 10% space to use a single page, in order to take advantage | |
124 | * of the speed benefit for as many zones as possible. | |
125 | * | |
126 | * Zones with > PAGE_SIZE allocations can't take advantage of this | |
127 | * because kernel_memory_allocate doesn't give out physically contiguous pages. | |
128 | * | |
129 | * zone_virtual_addr() | |
130 | * - translates an address from the static kernel region to the zone_map | |
131 | * - returns the same address if it's not from the static kernel region | |
132 | * It relies on the fact that a physical page mapped to the | |
133 | * zone_map is not mapped anywhere else (except the static kernel region). | |
134 | * | |
135 | * zone_alias_addr() | |
136 | * - translates a virtual memory address from the zone_map to the | |
137 | * corresponding address in the static kernel region | |
138 | * | |
139 | */ | |
140 | ||
141 | #if !ZONE_ALIAS_ADDR | |
142 | #define from_zone_map(addr, size) \ | |
143 | ((vm_offset_t)(addr) >= zone_map_min_address && \ | |
144 | ((vm_offset_t)(addr) + size - 1) < zone_map_max_address ) | |
145 | #else | |
146 | #define from_zone_map(addr, size) \ | |
147 | ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) >= zone_map_min_address && \ | |
148 | ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) + size -1) < zone_map_max_address ) | |
149 | #endif | |
150 | ||
151 | /* | |
c910b4d9 A |
152 | * Zone Corruption Debugging |
153 | * | |
39236c6e A |
154 | * We use three techniques to detect modification of a zone element |
155 | * after it's been freed. | |
316670eb | 156 | * |
39236c6e A |
157 | * (1) Check the freelist next pointer for sanity. |
158 | * (2) Store a backup of the next pointer at the end of the element, | |
159 | * and compare it to the primary next pointer when the element is allocated | |
160 | * to detect corruption of the freelist due to use-after-free bugs. | |
161 | * The backup pointer is also XORed with a per-boot random cookie. | |
162 | * (3) Poison the freed element by overwriting it with 0xdeadbeef, | |
163 | * and check for that value when the element is being reused to make sure | |
164 | * no part of the element has been modified while it was on the freelist. | |
165 | * This will also help catch read-after-frees, as code will now dereference | |
166 | * 0xdeadbeef instead of a valid but freed pointer. | |
316670eb | 167 | * |
39236c6e A |
168 | * (1) and (2) occur for every allocation and free to a zone. |
169 | * This is done to make it slightly more difficult for an attacker to | |
170 | * manipulate the freelist to behave in a specific way. | |
c910b4d9 | 171 | * |
39236c6e A |
172 | * Poisoning (3) occurs periodically for every N frees (counted per-zone) |
173 | * and on every free for zones smaller than a cacheline. If -zp | |
174 | * is passed as a boot arg, poisoning occurs for every free. | |
c910b4d9 | 175 | * |
39236c6e A |
176 | * Performance slowdown is inversely proportional to the frequency of poisoning, |
177 | * with a 4-5% hit around N=1, down to ~0.3% at N=16 and just "noise" at N=32 | |
178 | * and higher. You can expect to find a 100% reproducible bug in an average of | |
179 | * N tries, with a standard deviation of about N, but you will want to set | |
180 | * "-zp" to always poison every free if you are attempting to reproduce | |
181 | * a known bug. | |
316670eb | 182 | * |
39236c6e A |
183 | * For a more heavyweight, but finer-grained method of detecting misuse |
184 | * of zone memory, look up the "Guard mode" zone allocator in gzalloc.c. | |
185 | * | |
186 | * Zone Corruption Logging | |
187 | * | |
188 | * You can also track where corruptions come from by using the boot-arguments | |
189 | * "zlog=<zone name to log> -zc". Search for "Zone corruption logging" later | |
190 | * in this document for more implementation and usage information. | |
191 | * | |
192 | * Zone Leak Detection | |
193 | * | |
194 | * To debug leaks of zone memory, use the zone leak detection tool 'zleaks' | |
195 | * found later in this file via the showtopztrace and showz* macros in kgmacros, | |
196 | * or use zlog without the -zc argument. | |
316670eb | 197 | * |
316670eb A |
198 | */ |
199 | ||
316670eb | 200 | |
39236c6e A |
201 | #if defined(__LP64__) |
202 | #define ZP_POISON 0xdeadbeefdeadbeef | |
203 | #else | |
204 | #define ZP_POISON 0xdeadbeef | |
205 | #endif | |
316670eb | 206 | |
39236c6e | 207 | #define ZP_DEFAULT_SAMPLING_FACTOR 16 |
316670eb | 208 | |
39236c6e A |
209 | /* |
210 | * A zp_factor of 0 indicates zone poisoning is disabled, | |
211 | * however, we still poison zones smaller than zp_tiny_zone_limit (a cacheline). | |
212 | * Passing the -no-zp boot-arg disables even this behavior. | |
213 | * In all cases, we record and check the integrity of a backup pointer. | |
316670eb | 214 | */ |
39236c6e A |
215 | |
216 | /* set by zp-factor=N boot arg, zero indicates non-tiny poisoning disabled */ | |
217 | uint32_t zp_factor = 0; | |
218 | ||
219 | /* set in zp_init, zero indicates -no-zp boot-arg */ | |
220 | vm_size_t zp_tiny_zone_limit = 0; | |
221 | ||
222 | /* initialized to a per-boot random value in zp_init */ | |
223 | uintptr_t zp_poisoned_cookie = 0; | |
224 | uintptr_t zp_nopoison_cookie = 0; | |
225 | ||
316670eb A |
226 | |
227 | /* | |
39236c6e A |
228 | * initialize zone poisoning |
229 | * called from zone_bootstrap before any allocations are made from zalloc | |
316670eb A |
230 | */ |
231 | static inline void | |
39236c6e A |
232 | zp_init(void) |
233 | { | |
234 | char temp_buf[16]; | |
235 | ||
236 | /* | |
237 | * Initialize backup pointer random cookie for poisoned elements | |
238 | * Try not to call early_random() back to back, it may return | |
239 | * the same value if mach_absolute_time doesn't have sufficient time | |
240 | * to tick over between calls. <rdar://problem/11597395> | |
241 | * (This is only a problem on embedded devices) | |
242 | */ | |
243 | zp_poisoned_cookie = (uintptr_t) early_random(); | |
244 | ||
245 | /* | |
246 | * Always poison zones smaller than a cacheline, | |
247 | * because it's pretty close to free | |
248 | */ | |
249 | ml_cpu_info_t cpu_info; | |
250 | ml_cpu_get_info(&cpu_info); | |
251 | zp_tiny_zone_limit = (vm_size_t) cpu_info.cache_line_size; | |
252 | ||
253 | zp_factor = ZP_DEFAULT_SAMPLING_FACTOR; | |
254 | ||
255 | //TODO: Bigger permutation? | |
256 | /* | |
257 | * Permute the default factor +/- 1 to make it less predictable | |
258 | * This adds or subtracts ~4 poisoned objects per 1000 frees. | |
259 | */ | |
260 | if (zp_factor != 0) { | |
261 | uint32_t rand_bits = early_random() & 0x3; | |
262 | ||
263 | if (rand_bits == 0x1) | |
264 | zp_factor += 1; | |
265 | else if (rand_bits == 0x2) | |
266 | zp_factor -= 1; | |
267 | /* if 0x0 or 0x3, leave it alone */ | |
268 | } | |
269 | ||
270 | /* -zp: enable poisoning for every alloc and free */ | |
271 | if (PE_parse_boot_argn("-zp", temp_buf, sizeof(temp_buf))) { | |
272 | zp_factor = 1; | |
273 | } | |
274 | ||
275 | /* -no-zp: disable poisoning completely even for tiny zones */ | |
276 | if (PE_parse_boot_argn("-no-zp", temp_buf, sizeof(temp_buf))) { | |
277 | zp_factor = 0; | |
278 | zp_tiny_zone_limit = 0; | |
279 | printf("Zone poisoning disabled\n"); | |
280 | } | |
281 | ||
282 | /* zp-factor=XXXX: override how often to poison freed zone elements */ | |
283 | if (PE_parse_boot_argn("zp-factor", &zp_factor, sizeof(zp_factor))) { | |
284 | printf("Zone poisoning factor override: %u\n", zp_factor); | |
285 | } | |
286 | ||
287 | /* Initialize backup pointer random cookie for unpoisoned elements */ | |
288 | zp_nopoison_cookie = (uintptr_t) early_random(); | |
289 | ||
290 | #if MACH_ASSERT | |
291 | if (zp_poisoned_cookie == zp_nopoison_cookie) | |
292 | panic("early_random() is broken: %p and %p are not random\n", | |
293 | (void *) zp_poisoned_cookie, (void *) zp_nopoison_cookie); | |
294 | #endif | |
295 | ||
296 | /* | |
297 | * Use the last bit in the backup pointer to hint poisoning state | |
298 | * to backup_ptr_mismatch_panic. Valid zone pointers are aligned, so | |
299 | * the low bits are zero. | |
300 | */ | |
301 | zp_poisoned_cookie |= (uintptr_t)0x1ULL; | |
302 | zp_nopoison_cookie &= ~((uintptr_t)0x1ULL); | |
303 | ||
304 | #if defined(__LP64__) | |
305 | /* | |
306 | * Make backup pointers more obvious in GDB for 64 bit | |
307 | * by making OxFFFFFF... ^ cookie = 0xFACADE... | |
308 | * (0xFACADE = 0xFFFFFF ^ 0x053521) | |
309 | * (0xC0FFEE = 0xFFFFFF ^ 0x3f0011) | |
310 | * The high 3 bytes of a zone pointer are always 0xFFFFFF, and are checked | |
311 | * by the sanity check, so it's OK for that part of the cookie to be predictable. | |
312 | * | |
313 | * TODO: Use #defines, xors, and shifts | |
314 | */ | |
315 | ||
316 | zp_poisoned_cookie &= 0x000000FFFFFFFFFF; | |
317 | zp_poisoned_cookie |= 0x0535210000000000; /* 0xFACADE */ | |
318 | ||
319 | zp_nopoison_cookie &= 0x000000FFFFFFFFFF; | |
320 | zp_nopoison_cookie |= 0x3f00110000000000; /* 0xC0FFEE */ | |
321 | #endif | |
322 | } | |
323 | ||
324 | /* zone_map page count for page table structure */ | |
325 | uint64_t zone_map_table_page_count = 0; | |
326 | ||
327 | /* | |
328 | * These macros are used to keep track of the number | |
329 | * of pages being used by the zone currently. The | |
330 | * z->page_count is protected by the zone lock. | |
331 | */ | |
332 | #define ZONE_PAGE_COUNT_INCR(z, count) \ | |
333 | { \ | |
334 | OSAddAtomic64(count, &(z->page_count)); \ | |
335 | } | |
336 | ||
337 | #define ZONE_PAGE_COUNT_DECR(z, count) \ | |
338 | { \ | |
339 | OSAddAtomic64(-count, &(z->page_count)); \ | |
340 | } | |
341 | ||
342 | /* for is_sane_zone_element and garbage collection */ | |
343 | ||
344 | vm_offset_t zone_map_min_address = 0; /* initialized in zone_init */ | |
345 | vm_offset_t zone_map_max_address = 0; | |
346 | ||
347 | /* Helpful for walking through a zone's free element list. */ | |
348 | struct zone_free_element { | |
349 | struct zone_free_element *next; | |
350 | /* ... */ | |
351 | /* void *backup_ptr; */ | |
352 | }; | |
353 | ||
354 | struct zone_page_metadata { | |
355 | queue_chain_t pages; | |
356 | struct zone_free_element *elements; | |
357 | zone_t zone; | |
358 | uint16_t alloc_count; | |
359 | uint16_t free_count; | |
360 | }; | |
361 | ||
362 | /* The backup pointer is stored in the last pointer-sized location in an element. */ | |
363 | static inline vm_offset_t * | |
364 | get_backup_ptr(vm_size_t elem_size, | |
365 | vm_offset_t *element) | |
366 | { | |
367 | return (vm_offset_t *) ((vm_offset_t)element + elem_size - sizeof(vm_offset_t)); | |
368 | } | |
369 | ||
370 | static inline struct zone_page_metadata * | |
371 | get_zone_page_metadata(struct zone_free_element *element) | |
372 | { | |
373 | return (struct zone_page_metadata *)(trunc_page((vm_offset_t)element) + PAGE_SIZE - sizeof(struct zone_page_metadata)); | |
374 | } | |
375 | ||
376 | /* | |
377 | * Zone checking helper function. | |
378 | * A pointer that satisfies these conditions is OK to be a freelist next pointer | |
379 | * A pointer that doesn't satisfy these conditions indicates corruption | |
380 | */ | |
381 | static inline boolean_t | |
382 | is_sane_zone_ptr(zone_t zone, | |
383 | vm_offset_t addr, | |
384 | size_t obj_size) | |
385 | { | |
386 | /* Must be aligned to pointer boundary */ | |
387 | if (__improbable((addr & (sizeof(vm_offset_t) - 1)) != 0)) | |
388 | return FALSE; | |
389 | ||
390 | /* Must be a kernel address */ | |
391 | if (__improbable(!pmap_kernel_va(addr))) | |
392 | return FALSE; | |
393 | ||
394 | /* Must be from zone map if the zone only uses memory from the zone_map */ | |
395 | /* | |
396 | * TODO: Remove the zone->collectable check when every | |
397 | * zone using foreign memory is properly tagged with allows_foreign | |
398 | */ | |
399 | if (zone->collectable && !zone->allows_foreign) { | |
400 | #if ZONE_ALIAS_ADDR | |
401 | /* | |
402 | * If this address is in the static kernel region, it might be | |
403 | * the alias address of a valid zone element. | |
404 | * If we tried to find the zone_virtual_addr() of an invalid | |
405 | * address in the static kernel region, it will panic, so don't | |
406 | * check addresses in this region. | |
407 | * | |
408 | * TODO: Use a safe variant of zone_virtual_addr to | |
409 | * make this check more accurate | |
410 | * | |
411 | * The static kernel region is mapped at: | |
412 | * [gVirtBase, gVirtBase + gPhysSize] | |
413 | */ | |
414 | if ((addr - gVirtBase) < gPhysSize) | |
415 | return TRUE; | |
416 | #endif | |
417 | /* check if addr is from zone map */ | |
418 | if (addr >= zone_map_min_address && | |
419 | (addr + obj_size - 1) < zone_map_max_address ) | |
420 | return TRUE; | |
421 | ||
422 | return FALSE; | |
423 | } | |
424 | ||
425 | return TRUE; | |
426 | } | |
427 | ||
428 | static inline boolean_t | |
429 | is_sane_zone_page_metadata(zone_t zone, | |
430 | vm_offset_t page_meta) | |
431 | { | |
432 | /* NULL page metadata structures are invalid */ | |
433 | if (page_meta == 0) | |
434 | return FALSE; | |
435 | return is_sane_zone_ptr(zone, page_meta, sizeof(struct zone_page_metadata)); | |
436 | } | |
437 | ||
438 | static inline boolean_t | |
439 | is_sane_zone_element(zone_t zone, | |
440 | vm_offset_t addr) | |
441 | { | |
442 | /* NULL is OK because it indicates the tail of the list */ | |
443 | if (addr == 0) | |
444 | return TRUE; | |
445 | return is_sane_zone_ptr(zone, addr, zone->elem_size); | |
446 | } | |
316670eb | 447 | |
39236c6e A |
448 | /* Someone wrote to freed memory. */ |
449 | static inline void /* noreturn */ | |
450 | zone_element_was_modified_panic(zone_t zone, | |
451 | vm_offset_t found, | |
452 | vm_offset_t expected, | |
453 | vm_offset_t offset) | |
454 | { | |
455 | panic("a freed zone element has been modified: expected %p but found %p, bits changed %p, at offset %d of %d in zone: %s", | |
456 | (void *) expected, | |
457 | (void *) found, | |
458 | (void *) (expected ^ found), | |
459 | (uint32_t) offset, | |
460 | (uint32_t) zone->elem_size, | |
461 | zone->zone_name); | |
462 | } | |
463 | ||
464 | /* | |
465 | * The primary and backup pointers don't match. | |
466 | * Determine which one was likely the corrupted pointer, find out what it | |
467 | * probably should have been, and panic. | |
468 | * I would like to mark this as noreturn, but panic() isn't marked noreturn. | |
469 | */ | |
470 | static void /* noreturn */ | |
471 | backup_ptr_mismatch_panic(zone_t zone, | |
472 | vm_offset_t primary, | |
473 | vm_offset_t backup) | |
474 | { | |
475 | vm_offset_t likely_backup; | |
476 | ||
477 | boolean_t sane_backup; | |
478 | boolean_t sane_primary = is_sane_zone_element(zone, primary); | |
479 | boolean_t element_was_poisoned = (backup & 0x1) ? TRUE : FALSE; | |
480 | ||
481 | if (element_was_poisoned) { | |
482 | likely_backup = backup ^ zp_poisoned_cookie; | |
483 | sane_backup = is_sane_zone_element(zone, likely_backup); | |
316670eb | 484 | } else { |
39236c6e A |
485 | likely_backup = backup ^ zp_nopoison_cookie; |
486 | sane_backup = is_sane_zone_element(zone, likely_backup); | |
316670eb | 487 | } |
39236c6e A |
488 | |
489 | /* The primary is definitely the corrupted one */ | |
490 | if (!sane_primary && sane_backup) | |
491 | zone_element_was_modified_panic(zone, primary, likely_backup, 0); | |
492 | ||
493 | /* The backup is definitely the corrupted one */ | |
494 | if (sane_primary && !sane_backup) | |
495 | zone_element_was_modified_panic(zone, backup, primary, | |
496 | zone->elem_size - sizeof(vm_offset_t)); | |
497 | ||
498 | /* | |
499 | * Not sure which is the corrupted one. | |
500 | * It's less likely that the backup pointer was overwritten with | |
501 | * ( (sane address) ^ (valid cookie) ), so we'll guess that the | |
502 | * primary pointer has been overwritten with a sane but incorrect address. | |
503 | */ | |
504 | if (sane_primary && sane_backup) | |
505 | zone_element_was_modified_panic(zone, primary, likely_backup, 0); | |
506 | ||
507 | /* Neither are sane, so just guess. */ | |
508 | zone_element_was_modified_panic(zone, primary, likely_backup, 0); | |
316670eb A |
509 | } |
510 | ||
39236c6e | 511 | |
316670eb | 512 | /* |
39236c6e A |
513 | * Sets the next element of tail to elem. |
514 | * elem can be NULL. | |
515 | * Preserves the poisoning state of the element. | |
1c79356b | 516 | */ |
316670eb | 517 | static inline void |
39236c6e A |
518 | append_zone_element(zone_t zone, |
519 | struct zone_free_element *tail, | |
520 | struct zone_free_element *elem) | |
521 | { | |
522 | vm_offset_t *backup = get_backup_ptr(zone->elem_size, (vm_offset_t *) tail); | |
523 | ||
524 | vm_offset_t old_backup = *backup; | |
525 | ||
526 | vm_offset_t old_next = (vm_offset_t) tail->next; | |
527 | vm_offset_t new_next = (vm_offset_t) elem; | |
528 | ||
529 | if (old_next == (old_backup ^ zp_nopoison_cookie)) | |
530 | *backup = new_next ^ zp_nopoison_cookie; | |
531 | else if (old_next == (old_backup ^ zp_poisoned_cookie)) | |
532 | *backup = new_next ^ zp_poisoned_cookie; | |
533 | else | |
534 | backup_ptr_mismatch_panic(zone, | |
535 | old_next, | |
536 | old_backup); | |
537 | ||
538 | tail->next = elem; | |
539 | } | |
540 | ||
541 | ||
542 | /* | |
543 | * Insert a linked list of elements (delineated by head and tail) at the head of | |
544 | * the zone free list. Every element in the list being added has already gone | |
545 | * through append_zone_element, so their backup pointers are already | |
546 | * set properly. | |
547 | * Precondition: There should be no elements after tail | |
548 | */ | |
549 | static inline void | |
550 | add_list_to_zone(zone_t zone, | |
551 | struct zone_free_element *head, | |
552 | struct zone_free_element *tail) | |
553 | { | |
554 | assert(tail->next == NULL); | |
555 | assert(!zone->use_page_list); | |
556 | ||
557 | append_zone_element(zone, tail, zone->free_elements); | |
558 | ||
559 | zone->free_elements = head; | |
560 | } | |
561 | ||
562 | ||
563 | /* | |
564 | * Adds the element to the head of the zone's free list | |
565 | * Keeps a backup next-pointer at the end of the element | |
566 | * Poisons the element with ZP_POISON every zp_factor frees | |
567 | */ | |
568 | static inline void | |
569 | free_to_zone(zone_t zone, | |
570 | vm_offset_t element) | |
571 | { | |
572 | vm_offset_t old_head; | |
573 | struct zone_page_metadata *page_meta; | |
574 | ||
575 | vm_offset_t *primary = (vm_offset_t *) element; | |
576 | vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary); | |
577 | ||
578 | if (zone->use_page_list) { | |
579 | page_meta = get_zone_page_metadata((struct zone_free_element *)element); | |
580 | assert(page_meta->zone == zone); | |
581 | old_head = (vm_offset_t)page_meta->elements; | |
582 | } else { | |
583 | old_head = (vm_offset_t)zone->free_elements; | |
584 | } | |
585 | ||
586 | #if MACH_ASSERT | |
587 | if (__improbable(!is_sane_zone_element(zone, old_head))) | |
588 | panic("zfree: invalid head pointer %p for freelist of zone %s\n", | |
589 | (void *) old_head, zone->zone_name); | |
590 | #endif | |
591 | ||
592 | if (__improbable(!is_sane_zone_element(zone, element))) | |
593 | panic("zfree: freeing invalid pointer %p to zone %s\n", | |
594 | (void *) element, zone->zone_name); | |
595 | ||
596 | boolean_t poison = FALSE; | |
597 | ||
598 | /* Always poison tiny zones' elements (limit is 0 if -no-zp is set) */ | |
599 | if (zone->elem_size <= zp_tiny_zone_limit) | |
600 | poison = TRUE; | |
601 | else if (zp_factor != 0 && ++zone->zp_count >= zp_factor) { | |
602 | /* Poison zone elements periodically */ | |
603 | zone->zp_count = 0; | |
604 | poison = TRUE; | |
605 | } | |
606 | ||
607 | if (poison) { | |
608 | /* memset_pattern{4|8} could help make this faster: <rdar://problem/4662004> */ | |
609 | vm_offset_t *element_cursor = primary + 1; | |
610 | ||
611 | for ( ; element_cursor < backup; element_cursor++) | |
612 | *element_cursor = ZP_POISON; | |
613 | } | |
614 | ||
615 | /* | |
616 | * Always write a redundant next pointer | |
617 | * So that it is more difficult to forge, xor it with a random cookie | |
618 | * A poisoned element is indicated by using zp_poisoned_cookie | |
619 | * instead of zp_nopoison_cookie | |
620 | */ | |
621 | ||
622 | *backup = old_head ^ (poison ? zp_poisoned_cookie : zp_nopoison_cookie); | |
623 | ||
624 | /* Insert this element at the head of the free list */ | |
625 | *primary = old_head; | |
626 | if (zone->use_page_list) { | |
627 | page_meta->elements = (struct zone_free_element *)element; | |
628 | page_meta->free_count++; | |
629 | if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) { | |
630 | if (page_meta->free_count == 1) { | |
631 | /* first foreign element freed on page, move from all_used */ | |
632 | remqueue((queue_entry_t)page_meta); | |
633 | enqueue_tail(&zone->pages.any_free_foreign, (queue_entry_t)page_meta); | |
634 | } else { | |
635 | /* no other list transitions */ | |
316670eb | 636 | } |
39236c6e A |
637 | } else if (page_meta->free_count == page_meta->alloc_count) { |
638 | /* whether the page was on the intermediate or all_used, queue, move it to free */ | |
639 | remqueue((queue_entry_t)page_meta); | |
640 | enqueue_tail(&zone->pages.all_free, (queue_entry_t)page_meta); | |
641 | } else if (page_meta->free_count == 1) { | |
642 | /* first free element on page, move from all_used */ | |
643 | remqueue((queue_entry_t)page_meta); | |
644 | enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta); | |
645 | } | |
646 | } else { | |
647 | zone->free_elements = (struct zone_free_element *)element; | |
648 | } | |
649 | zone->count--; | |
650 | zone->countfree++; | |
651 | } | |
652 | ||
653 | ||
654 | /* | |
655 | * Removes an element from the zone's free list, returning 0 if the free list is empty. | |
656 | * Verifies that the next-pointer and backup next-pointer are intact, | |
657 | * and verifies that a poisoned element hasn't been modified. | |
658 | */ | |
659 | static inline vm_offset_t | |
660 | try_alloc_from_zone(zone_t zone) | |
661 | { | |
662 | vm_offset_t element; | |
663 | struct zone_page_metadata *page_meta; | |
664 | ||
665 | /* if zone is empty, bail */ | |
666 | if (zone->use_page_list) { | |
667 | if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign)) | |
668 | page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); | |
669 | else if (!queue_empty(&zone->pages.intermediate)) | |
670 | page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); | |
671 | else if (!queue_empty(&zone->pages.all_free)) | |
672 | page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); | |
673 | else { | |
674 | return 0; | |
675 | } | |
676 | ||
677 | /* Check if page_meta passes is_sane_zone_element */ | |
678 | if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta))) | |
679 | panic("zalloc: invalid metadata structure %p for freelist of zone %s\n", | |
680 | (void *) page_meta, zone->zone_name); | |
681 | assert(page_meta->zone == zone); | |
682 | element = (vm_offset_t)page_meta->elements; | |
683 | } else { | |
684 | if (zone->free_elements == NULL) | |
685 | return 0; | |
686 | ||
687 | element = (vm_offset_t)zone->free_elements; | |
688 | } | |
689 | ||
690 | #if MACH_ASSERT | |
691 | if (__improbable(!is_sane_zone_element(zone, element))) | |
692 | panic("zfree: invalid head pointer %p for freelist of zone %s\n", | |
693 | (void *) element, zone->zone_name); | |
694 | #endif | |
695 | ||
696 | vm_offset_t *primary = (vm_offset_t *) element; | |
697 | vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary); | |
698 | ||
699 | vm_offset_t next_element = *primary; | |
700 | vm_offset_t next_element_backup = *backup; | |
701 | ||
702 | /* | |
703 | * backup_ptr_mismatch_panic will determine what next_element | |
704 | * should have been, and print it appropriately | |
705 | */ | |
706 | if (__improbable(!is_sane_zone_element(zone, next_element))) | |
707 | backup_ptr_mismatch_panic(zone, next_element, next_element_backup); | |
708 | ||
709 | /* Check the backup pointer for the regular cookie */ | |
710 | if (__improbable(next_element != (next_element_backup ^ zp_nopoison_cookie))) { | |
711 | ||
712 | /* Check for the poisoned cookie instead */ | |
713 | if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie))) | |
714 | /* Neither cookie is valid, corruption has occurred */ | |
715 | backup_ptr_mismatch_panic(zone, next_element, next_element_backup); | |
716 | ||
717 | /* | |
718 | * Element was marked as poisoned, so check its integrity, | |
719 | * skipping the primary and backup pointers at the beginning and end. | |
720 | */ | |
721 | vm_offset_t *element_cursor = primary + 1; | |
722 | ||
723 | for ( ; element_cursor < backup ; element_cursor++) | |
724 | if (__improbable(*element_cursor != ZP_POISON)) | |
725 | zone_element_was_modified_panic(zone, | |
726 | *element_cursor, | |
727 | ZP_POISON, | |
728 | ((vm_offset_t)element_cursor) - element); | |
729 | } | |
730 | ||
731 | if (zone->use_page_list) { | |
316670eb | 732 | |
39236c6e A |
733 | /* Make sure the page_meta is at the correct offset from the start of page */ |
734 | if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element))) | |
735 | panic("zalloc: metadata located at incorrect location on page of zone %s\n", | |
736 | zone->zone_name); | |
737 | ||
738 | /* Make sure next_element belongs to the same page as page_meta */ | |
739 | if (next_element) { | |
740 | if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element))) | |
741 | panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n", | |
742 | (void *)next_element, (void *)element, zone->zone_name); | |
743 | } | |
744 | } | |
745 | ||
746 | /* | |
747 | * Clear out the old next pointer and backup to avoid leaking the cookie | |
748 | * and so that only values on the freelist have a valid cookie | |
749 | */ | |
750 | *primary = ZP_POISON; | |
751 | *backup = ZP_POISON; | |
752 | ||
753 | /* Remove this element from the free list */ | |
754 | if (zone->use_page_list) { | |
755 | ||
756 | page_meta->elements = (struct zone_free_element *)next_element; | |
757 | page_meta->free_count--; | |
758 | ||
759 | if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) { | |
760 | if (page_meta->free_count == 0) { | |
761 | /* move to all used */ | |
762 | remqueue((queue_entry_t)page_meta); | |
763 | enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta); | |
764 | } else { | |
765 | /* no other list transitions */ | |
316670eb | 766 | } |
39236c6e A |
767 | } else if (page_meta->free_count == 0) { |
768 | /* remove from intermediate or free, move to all_used */ | |
769 | remqueue((queue_entry_t)page_meta); | |
770 | enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta); | |
771 | } else if (page_meta->alloc_count == page_meta->free_count + 1) { | |
772 | /* remove from free, move to intermediate */ | |
773 | remqueue((queue_entry_t)page_meta); | |
774 | enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta); | |
316670eb | 775 | } |
39236c6e A |
776 | } else { |
777 | zone->free_elements = (struct zone_free_element *)next_element; | |
316670eb | 778 | } |
39236c6e A |
779 | zone->countfree--; |
780 | zone->count++; | |
781 | zone->sum_count++; | |
782 | ||
783 | return element; | |
316670eb | 784 | } |
1c79356b | 785 | |
1c79356b | 786 | |
39236c6e A |
787 | /* |
788 | * End of zone poisoning | |
789 | */ | |
790 | ||
6d2010ae A |
791 | /* |
792 | * Fake zones for things that want to report via zprint but are not actually zones. | |
793 | */ | |
794 | struct fake_zone_info { | |
795 | const char* name; | |
796 | void (*init)(int); | |
797 | void (*query)(int *, | |
798 | vm_size_t *, vm_size_t *, vm_size_t *, vm_size_t *, | |
799 | uint64_t *, int *, int *, int *); | |
800 | }; | |
801 | ||
316670eb | 802 | static const struct fake_zone_info fake_zones[] = { |
6d2010ae A |
803 | { |
804 | .name = "kernel_stacks", | |
805 | .init = stack_fake_zone_init, | |
806 | .query = stack_fake_zone_info, | |
807 | }, | |
6d2010ae A |
808 | { |
809 | .name = "page_tables", | |
810 | .init = pt_fake_zone_init, | |
811 | .query = pt_fake_zone_info, | |
812 | }, | |
6d2010ae A |
813 | { |
814 | .name = "kalloc.large", | |
815 | .init = kalloc_fake_zone_init, | |
816 | .query = kalloc_fake_zone_info, | |
817 | }, | |
818 | }; | |
316670eb A |
819 | static const unsigned int num_fake_zones = |
820 | sizeof (fake_zones) / sizeof (fake_zones[0]); | |
6d2010ae A |
821 | |
822 | /* | |
823 | * Zone info options | |
824 | */ | |
825 | boolean_t zinfo_per_task = FALSE; /* enabled by -zinfop in boot-args */ | |
826 | #define ZINFO_SLOTS 200 /* for now */ | |
827 | #define ZONES_MAX (ZINFO_SLOTS - num_fake_zones - 1) | |
828 | ||
1c79356b | 829 | /* |
7ddcb079 A |
830 | * Support for garbage collection of unused zone pages |
831 | * | |
832 | * The kernel virtually allocates the "zone map" submap of the kernel | |
833 | * map. When an individual zone needs more storage, memory is allocated | |
834 | * out of the zone map, and the two-level "zone_page_table" is | |
835 | * on-demand expanded so that it has entries for those pages. | |
836 | * zone_page_init()/zone_page_alloc() initialize "alloc_count" | |
837 | * to the number of zone elements that occupy the zone page (which may | |
838 | * be a minimum of 1, including if a zone element spans multiple | |
839 | * pages). | |
840 | * | |
841 | * Asynchronously, the zone_gc() logic attempts to walk zone free | |
842 | * lists to see if all the elements on a zone page are free. If | |
843 | * "collect_count" (which it increments during the scan) matches | |
844 | * "alloc_count", the zone page is a candidate for collection and the | |
845 | * physical page is returned to the VM system. During this process, the | |
846 | * first word of the zone page is re-used to maintain a linked list of | |
847 | * to-be-collected zone pages. | |
1c79356b | 848 | */ |
7ddcb079 A |
849 | typedef uint32_t zone_page_index_t; |
850 | #define ZONE_PAGE_INDEX_INVALID ((zone_page_index_t)0xFFFFFFFFU) | |
1c79356b A |
851 | |
852 | struct zone_page_table_entry { | |
7ddcb079 A |
853 | volatile uint16_t alloc_count; |
854 | volatile uint16_t collect_count; | |
1c79356b A |
855 | }; |
856 | ||
7ddcb079 A |
857 | #define ZONE_PAGE_USED 0 |
858 | #define ZONE_PAGE_UNUSED 0xffff | |
859 | ||
1c79356b A |
860 | /* Forwards */ |
861 | void zone_page_init( | |
862 | vm_offset_t addr, | |
7ddcb079 | 863 | vm_size_t size); |
1c79356b A |
864 | |
865 | void zone_page_alloc( | |
866 | vm_offset_t addr, | |
867 | vm_size_t size); | |
868 | ||
55e303ae | 869 | void zone_page_free_element( |
316670eb A |
870 | zone_page_index_t *free_page_head, |
871 | zone_page_index_t *free_page_tail, | |
1c79356b A |
872 | vm_offset_t addr, |
873 | vm_size_t size); | |
874 | ||
55e303ae | 875 | void zone_page_collect( |
1c79356b A |
876 | vm_offset_t addr, |
877 | vm_size_t size); | |
878 | ||
879 | boolean_t zone_page_collectable( | |
880 | vm_offset_t addr, | |
881 | vm_size_t size); | |
882 | ||
883 | void zone_page_keep( | |
884 | vm_offset_t addr, | |
885 | vm_size_t size); | |
886 | ||
39236c6e A |
887 | void zone_display_zprint(void); |
888 | ||
889 | zone_t zone_find_largest(void); | |
890 | ||
891 | /* | |
892 | * Async allocation of zones | |
893 | * This mechanism allows for bootstrapping an empty zone which is setup with | |
894 | * non-blocking flags. The first call to zalloc_noblock() will kick off a thread_call | |
895 | * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free. | |
896 | * This will prime the zone for the next use. | |
897 | * | |
898 | * Currently the thread_callout function (zalloc_async) will loop through all zones | |
899 | * looking for any zone with async_pending set and do the work for it. | |
900 | * | |
901 | * NOTE: If the calling thread for zalloc_noblock is lower priority than thread_call, | |
902 | * then zalloc_noblock to an empty zone may succeed. | |
903 | */ | |
0b4e3aa0 A |
904 | void zalloc_async( |
905 | thread_call_param_t p0, | |
906 | thread_call_param_t p1); | |
907 | ||
39236c6e | 908 | static thread_call_data_t call_async_alloc; |
0b4e3aa0 | 909 | |
1c79356b A |
910 | vm_map_t zone_map = VM_MAP_NULL; |
911 | ||
912 | zone_t zone_zone = ZONE_NULL; /* the zone containing other zones */ | |
913 | ||
6d2010ae A |
914 | zone_t zinfo_zone = ZONE_NULL; /* zone of per-task zone info */ |
915 | ||
1c79356b A |
916 | /* |
917 | * The VM system gives us an initial chunk of memory. | |
918 | * It has to be big enough to allocate the zone_zone | |
7ddcb079 | 919 | * all the way through the pmap zone. |
1c79356b A |
920 | */ |
921 | ||
922 | vm_offset_t zdata; | |
923 | vm_size_t zdata_size; | |
924 | ||
9bccf70c A |
925 | #define zone_wakeup(zone) thread_wakeup((event_t)(zone)) |
926 | #define zone_sleep(zone) \ | |
b0d623f7 | 927 | (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT); |
2d21ac55 | 928 | |
39236c6e A |
929 | /* |
930 | * The zone_locks_grp allows for collecting lock statistics. | |
931 | * All locks are associated to this group in zinit. | |
932 | * Look at tools/lockstat for debugging lock contention. | |
933 | */ | |
934 | ||
935 | lck_grp_t zone_locks_grp; | |
936 | lck_grp_attr_t zone_locks_grp_attr; | |
9bccf70c | 937 | |
1c79356b A |
938 | #define lock_zone_init(zone) \ |
939 | MACRO_BEGIN \ | |
2d21ac55 A |
940 | lck_attr_setdefault(&(zone)->lock_attr); \ |
941 | lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \ | |
39236c6e | 942 | &zone_locks_grp, &(zone)->lock_attr); \ |
1c79356b A |
943 | MACRO_END |
944 | ||
b0d623f7 | 945 | #define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock) |
1c79356b | 946 | |
1c79356b A |
947 | /* |
948 | * Garbage collection map information | |
949 | */ | |
7ddcb079 A |
950 | #define ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE (32) |
951 | struct zone_page_table_entry * volatile zone_page_table[ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE]; | |
952 | vm_size_t zone_page_table_used_size; | |
91447636 | 953 | unsigned int zone_pages; |
7ddcb079 A |
954 | unsigned int zone_page_table_second_level_size; /* power of 2 */ |
955 | unsigned int zone_page_table_second_level_shift_amount; | |
956 | ||
957 | #define zone_page_table_first_level_slot(x) ((x) >> zone_page_table_second_level_shift_amount) | |
958 | #define zone_page_table_second_level_slot(x) ((x) & (zone_page_table_second_level_size - 1)) | |
959 | ||
960 | void zone_page_table_expand(zone_page_index_t pindex); | |
961 | struct zone_page_table_entry *zone_page_table_lookup(zone_page_index_t pindex); | |
1c79356b A |
962 | |
963 | /* | |
964 | * Exclude more than one concurrent garbage collection | |
965 | */ | |
39236c6e | 966 | decl_lck_mtx_data(, zone_gc_lock) |
b0d623f7 | 967 | |
39236c6e A |
968 | lck_attr_t zone_gc_lck_attr; |
969 | lck_grp_t zone_gc_lck_grp; | |
970 | lck_grp_attr_t zone_gc_lck_grp_attr; | |
971 | lck_mtx_ext_t zone_gc_lck_ext; | |
1c79356b | 972 | |
1c79356b A |
973 | /* |
974 | * Protects first_zone, last_zone, num_zones, | |
975 | * and the next_zone field of zones. | |
976 | */ | |
977 | decl_simple_lock_data(, all_zones_lock) | |
978 | zone_t first_zone; | |
979 | zone_t *last_zone; | |
91447636 | 980 | unsigned int num_zones; |
1c79356b | 981 | |
0b4e3aa0 A |
982 | boolean_t zone_gc_allowed = TRUE; |
983 | boolean_t zone_gc_forced = FALSE; | |
c910b4d9 | 984 | boolean_t panic_include_zprint = FALSE; |
6d2010ae | 985 | boolean_t zone_gc_allowed_by_time_throttle = TRUE; |
0b4e3aa0 | 986 | |
39236c6e A |
987 | #define ZALLOC_DEBUG_ZONEGC 0x00000001 |
988 | #define ZALLOC_DEBUG_ZCRAM 0x00000002 | |
989 | uint32_t zalloc_debug = 0; | |
990 | ||
c910b4d9 A |
991 | /* |
992 | * Zone leak debugging code | |
993 | * | |
994 | * When enabled, this code keeps a log to track allocations to a particular zone that have not | |
995 | * yet been freed. Examining this log will reveal the source of a zone leak. The log is allocated | |
996 | * only when logging is enabled, so there is no effect on the system when it's turned off. Logging is | |
997 | * off by default. | |
998 | * | |
999 | * Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone> | |
1000 | * is the name of the zone you wish to log. | |
1001 | * | |
1002 | * This code only tracks one zone, so you need to identify which one is leaking first. | |
1003 | * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone | |
1004 | * garbage collector. Note that the zone name printed in the panic message is not necessarily the one | |
1005 | * containing the leak. So do a zprint from gdb and locate the zone with the bloated size. This | |
1006 | * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test. The | |
1007 | * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs. | |
1008 | * See the help in the kgmacros for usage info. | |
1009 | * | |
1010 | * | |
1011 | * Zone corruption logging | |
1012 | * | |
1013 | * Logging can also be used to help identify the source of a zone corruption. First, identify the zone | |
1014 | * that is being corrupted, then add "-zc zlog=<zone name>" to the boot-args. When -zc is used in conjunction | |
1015 | * with zlog, it changes the logging style to track both allocations and frees to the zone. So when the | |
1016 | * corruption is detected, examining the log will show you the stack traces of the callers who last allocated | |
1017 | * and freed any particular element in the zone. Use the findelem kgmacro with the address of the element that's been | |
1018 | * corrupted to examine its history. This should lead to the source of the corruption. | |
1019 | */ | |
1020 | ||
1021 | static int log_records; /* size of the log, expressed in number of records */ | |
1022 | ||
1023 | #define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */ | |
1024 | ||
1025 | static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */ | |
1026 | ||
39236c6e A |
1027 | /* Log allocations and frees to help debug a zone element corruption */ |
1028 | boolean_t corruption_debug_flag = FALSE; /* enabled by "-zc" boot-arg */ | |
1029 | ||
c910b4d9 A |
1030 | /* |
1031 | * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to | |
1032 | * the number of records you want in the log. For example, "zrecs=1000" sets it to 1000 records. Note | |
1033 | * that the larger the size of the log, the slower the system will run due to linear searching in the log, | |
1034 | * but one doesn't generally care about performance when tracking down a leak. The log is capped at 8000 | |
1035 | * records since going much larger than this tends to make the system unresponsive and unbootable on small | |
1036 | * memory configurations. The default value is 4000 records. | |
c910b4d9 | 1037 | */ |
316670eb | 1038 | |
6d2010ae | 1039 | #if defined(__LP64__) |
316670eb | 1040 | #define ZRECORDS_MAX 128000 /* Max records allowed in the log */ |
6d2010ae | 1041 | #else |
c910b4d9 | 1042 | #define ZRECORDS_MAX 8000 /* Max records allowed in the log */ |
6d2010ae | 1043 | #endif |
c910b4d9 | 1044 | #define ZRECORDS_DEFAULT 4000 /* default records in log if zrecs is not specificed in boot-args */ |
0b4e3aa0 | 1045 | |
c910b4d9 | 1046 | /* |
39236c6e A |
1047 | * Each record in the log contains a pointer to the zone element it refers to, |
1048 | * and a small array to hold the pc's from the stack trace. A | |
c910b4d9 A |
1049 | * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging, |
1050 | * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees. | |
1051 | * If the log fills, old records are replaced as if it were a circular buffer. | |
1052 | */ | |
1053 | ||
c910b4d9 A |
1054 | |
1055 | /* | |
39236c6e | 1056 | * Opcodes for the btlog operation field: |
c910b4d9 A |
1057 | */ |
1058 | ||
1059 | #define ZOP_ALLOC 1 | |
1060 | #define ZOP_FREE 0 | |
1061 | ||
1062 | /* | |
1063 | * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest | |
1064 | */ | |
39236c6e | 1065 | static btlog_t *zlog_btlog; /* the log itself, dynamically allocated when logging is enabled */ |
c910b4d9 A |
1066 | static zone_t zone_of_interest = NULL; /* the zone being watched; corresponds to zone_name_to_log */ |
1067 | ||
1068 | /* | |
1069 | * Decide if we want to log this zone by doing a string compare between a zone name and the name | |
1070 | * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not | |
1071 | * possible to include spaces in strings passed in via the boot-args, a period in the logname will | |
1072 | * match a space in the zone name. | |
1073 | */ | |
1074 | ||
1075 | static int | |
1076 | log_this_zone(const char *zonename, const char *logname) | |
1077 | { | |
1078 | int len; | |
1079 | const char *zc = zonename; | |
1080 | const char *lc = logname; | |
1081 | ||
1082 | /* | |
1083 | * Compare the strings. We bound the compare by MAX_ZONE_NAME. | |
1084 | */ | |
1085 | ||
1086 | for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) { | |
1087 | ||
1088 | /* | |
1089 | * If the current characters don't match, check for a space in | |
1090 | * in the zone name and a corresponding period in the log name. | |
1091 | * If that's not there, then the strings don't match. | |
1092 | */ | |
1093 | ||
1094 | if (*zc != *lc && !(*zc == ' ' && *lc == '.')) | |
1095 | break; | |
1096 | ||
1097 | /* | |
1098 | * The strings are equal so far. If we're at the end, then it's a match. | |
1099 | */ | |
1100 | ||
1101 | if (*zc == '\0') | |
1102 | return TRUE; | |
1103 | } | |
1104 | ||
1105 | return FALSE; | |
1106 | } | |
1107 | ||
1108 | ||
1109 | /* | |
1110 | * Test if we want to log this zalloc/zfree event. We log if this is the zone we're interested in and | |
1111 | * the buffer for the records has been allocated. | |
1112 | */ | |
1113 | ||
39236c6e | 1114 | #define DO_LOGGING(z) (zlog_btlog && (z) == zone_of_interest) |
c910b4d9 | 1115 | |
39236c6e | 1116 | extern boolean_t kmem_alloc_ready; |
c910b4d9 | 1117 | |
6d2010ae A |
1118 | #if CONFIG_ZLEAKS |
1119 | #pragma mark - | |
1120 | #pragma mark Zone Leak Detection | |
1121 | ||
1122 | /* | |
1123 | * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding | |
316670eb | 1124 | * allocations made by the zone allocator. Every zleak_sample_factor allocations in each zone, we capture a |
6d2010ae A |
1125 | * backtrace. Every free, we examine the table and determine if the allocation was being tracked, |
1126 | * and stop tracking it if it was being tracked. | |
1127 | * | |
1128 | * We track the allocations in the zallocations hash table, which stores the address that was returned from | |
1129 | * the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which | |
1130 | * stores the backtrace associated with that allocation. This provides uniquing for the relatively large | |
1131 | * backtraces - we don't store them more than once. | |
1132 | * | |
1133 | * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up | |
1134 | * a large amount of virtual space. | |
1135 | */ | |
1136 | #define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */ | |
1137 | #define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */ | |
1138 | #define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */ | |
1139 | #define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */ | |
1140 | uint32_t zleak_state = 0; /* State of collection, as above */ | |
1141 | ||
1142 | boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */ | |
1143 | vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */ | |
1144 | vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */ | |
316670eb | 1145 | unsigned int zleak_sample_factor = 1000; /* Allocations per sample attempt */ |
6d2010ae A |
1146 | |
1147 | /* | |
1148 | * Counters for allocation statistics. | |
1149 | */ | |
1150 | ||
1151 | /* Times two active records want to occupy the same spot */ | |
1152 | unsigned int z_alloc_collisions = 0; | |
1153 | unsigned int z_trace_collisions = 0; | |
1154 | ||
1155 | /* Times a new record lands on a spot previously occupied by a freed allocation */ | |
1156 | unsigned int z_alloc_overwrites = 0; | |
1157 | unsigned int z_trace_overwrites = 0; | |
1158 | ||
1159 | /* Times a new alloc or trace is put into the hash table */ | |
1160 | unsigned int z_alloc_recorded = 0; | |
1161 | unsigned int z_trace_recorded = 0; | |
1162 | ||
1163 | /* Times zleak_log returned false due to not being able to acquire the lock */ | |
1164 | unsigned int z_total_conflicts = 0; | |
1165 | ||
1166 | ||
1167 | #pragma mark struct zallocation | |
1168 | /* | |
1169 | * Structure for keeping track of an allocation | |
1170 | * An allocation bucket is in use if its element is not NULL | |
1171 | */ | |
1172 | struct zallocation { | |
1173 | uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */ | |
1174 | vm_size_t za_size; /* how much memory did this allocation take up? */ | |
1175 | uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */ | |
1176 | /* TODO: #if this out */ | |
1177 | uint32_t za_hit_count; /* for determining effectiveness of hash function */ | |
1178 | }; | |
1179 | ||
1180 | /* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */ | |
316670eb A |
1181 | uint32_t zleak_alloc_buckets = CONFIG_ZLEAK_ALLOCATION_MAP_NUM; |
1182 | uint32_t zleak_trace_buckets = CONFIG_ZLEAK_TRACE_MAP_NUM; | |
6d2010ae A |
1183 | |
1184 | vm_size_t zleak_max_zonemap_size; | |
1185 | ||
1186 | /* Hashmaps of allocations and their corresponding traces */ | |
1187 | static struct zallocation* zallocations; | |
1188 | static struct ztrace* ztraces; | |
1189 | ||
1190 | /* not static so that panic can see this, see kern/debug.c */ | |
1191 | struct ztrace* top_ztrace; | |
1192 | ||
1193 | /* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */ | |
316670eb | 1194 | static lck_spin_t zleak_lock; |
6d2010ae A |
1195 | static lck_attr_t zleak_lock_attr; |
1196 | static lck_grp_t zleak_lock_grp; | |
1197 | static lck_grp_attr_t zleak_lock_grp_attr; | |
1198 | ||
1199 | /* | |
1200 | * Initializes the zone leak monitor. Called from zone_init() | |
1201 | */ | |
1202 | static void | |
1203 | zleak_init(vm_size_t max_zonemap_size) | |
1204 | { | |
1205 | char scratch_buf[16]; | |
1206 | boolean_t zleak_enable_flag = FALSE; | |
1207 | ||
1208 | zleak_max_zonemap_size = max_zonemap_size; | |
1209 | zleak_global_tracking_threshold = max_zonemap_size / 2; | |
1210 | zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8; | |
1211 | ||
1212 | /* -zleakoff (flag to disable zone leak monitor) */ | |
1213 | if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) { | |
1214 | zleak_enable_flag = FALSE; | |
1215 | printf("zone leak detection disabled\n"); | |
1216 | } else { | |
1217 | zleak_enable_flag = TRUE; | |
1218 | printf("zone leak detection enabled\n"); | |
1219 | } | |
1220 | ||
1221 | /* zfactor=XXXX (override how often to sample the zone allocator) */ | |
316670eb | 1222 | if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) { |
39236c6e | 1223 | printf("Zone leak factor override: %u\n", zleak_sample_factor); |
6d2010ae | 1224 | } |
316670eb | 1225 | |
6d2010ae A |
1226 | /* zleak-allocs=XXXX (override number of buckets in zallocations) */ |
1227 | if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets, sizeof(zleak_alloc_buckets))) { | |
39236c6e | 1228 | printf("Zone leak alloc buckets override: %u\n", zleak_alloc_buckets); |
6d2010ae A |
1229 | /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ |
1230 | if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets-1))) { | |
39236c6e | 1231 | printf("Override isn't a power of two, bad things might happen!\n"); |
6d2010ae A |
1232 | } |
1233 | } | |
1234 | ||
1235 | /* zleak-traces=XXXX (override number of buckets in ztraces) */ | |
1236 | if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets, sizeof(zleak_trace_buckets))) { | |
39236c6e | 1237 | printf("Zone leak trace buckets override: %u\n", zleak_trace_buckets); |
6d2010ae A |
1238 | /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ |
1239 | if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets-1))) { | |
39236c6e | 1240 | printf("Override isn't a power of two, bad things might happen!\n"); |
6d2010ae A |
1241 | } |
1242 | } | |
1243 | ||
1244 | /* allocate the zleak_lock */ | |
1245 | lck_grp_attr_setdefault(&zleak_lock_grp_attr); | |
1246 | lck_grp_init(&zleak_lock_grp, "zleak_lock", &zleak_lock_grp_attr); | |
1247 | lck_attr_setdefault(&zleak_lock_attr); | |
316670eb | 1248 | lck_spin_init(&zleak_lock, &zleak_lock_grp, &zleak_lock_attr); |
6d2010ae A |
1249 | |
1250 | if (zleak_enable_flag) { | |
1251 | zleak_state = ZLEAK_STATE_ENABLED; | |
1252 | } | |
1253 | } | |
1254 | ||
1255 | #if CONFIG_ZLEAKS | |
1256 | ||
1257 | /* | |
1258 | * Support for kern.zleak.active sysctl - a simplified | |
316670eb | 1259 | * version of the zleak_state variable. |
6d2010ae A |
1260 | */ |
1261 | int | |
1262 | get_zleak_state(void) | |
1263 | { | |
1264 | if (zleak_state & ZLEAK_STATE_FAILED) | |
1265 | return (-1); | |
1266 | if (zleak_state & ZLEAK_STATE_ACTIVE) | |
1267 | return (1); | |
1268 | return (0); | |
1269 | } | |
1270 | ||
1271 | #endif | |
1272 | ||
1273 | ||
1274 | kern_return_t | |
1275 | zleak_activate(void) | |
1276 | { | |
1277 | kern_return_t retval; | |
1278 | vm_size_t z_alloc_size = zleak_alloc_buckets * sizeof(struct zallocation); | |
1279 | vm_size_t z_trace_size = zleak_trace_buckets * sizeof(struct ztrace); | |
1280 | void *allocations_ptr = NULL; | |
1281 | void *traces_ptr = NULL; | |
1282 | ||
1283 | /* Only one thread attempts to activate at a time */ | |
1284 | if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) { | |
1285 | return KERN_SUCCESS; | |
1286 | } | |
1287 | ||
1288 | /* Indicate that we're doing the setup */ | |
316670eb | 1289 | lck_spin_lock(&zleak_lock); |
6d2010ae | 1290 | if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) { |
316670eb | 1291 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1292 | return KERN_SUCCESS; |
1293 | } | |
1294 | ||
1295 | zleak_state |= ZLEAK_STATE_ACTIVATING; | |
316670eb | 1296 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1297 | |
1298 | /* Allocate and zero tables */ | |
1299 | retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&allocations_ptr, z_alloc_size); | |
1300 | if (retval != KERN_SUCCESS) { | |
1301 | goto fail; | |
1302 | } | |
1303 | ||
1304 | retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&traces_ptr, z_trace_size); | |
1305 | if (retval != KERN_SUCCESS) { | |
1306 | goto fail; | |
1307 | } | |
1308 | ||
1309 | bzero(allocations_ptr, z_alloc_size); | |
1310 | bzero(traces_ptr, z_trace_size); | |
1311 | ||
1312 | /* Everything's set. Install tables, mark active. */ | |
1313 | zallocations = allocations_ptr; | |
1314 | ztraces = traces_ptr; | |
1315 | ||
1316 | /* | |
1317 | * Initialize the top_ztrace to the first entry in ztraces, | |
1318 | * so we don't have to check for null in zleak_log | |
1319 | */ | |
1320 | top_ztrace = &ztraces[0]; | |
1321 | ||
1322 | /* | |
1323 | * Note that we do need a barrier between installing | |
1324 | * the tables and setting the active flag, because the zfree() | |
1325 | * path accesses the table without a lock if we're active. | |
1326 | */ | |
316670eb | 1327 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
1328 | zleak_state |= ZLEAK_STATE_ACTIVE; |
1329 | zleak_state &= ~ZLEAK_STATE_ACTIVATING; | |
316670eb | 1330 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1331 | |
1332 | return 0; | |
1333 | ||
1334 | fail: | |
1335 | /* | |
1336 | * If we fail to allocate memory, don't further tax | |
1337 | * the system by trying again. | |
1338 | */ | |
316670eb | 1339 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
1340 | zleak_state |= ZLEAK_STATE_FAILED; |
1341 | zleak_state &= ~ZLEAK_STATE_ACTIVATING; | |
316670eb | 1342 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1343 | |
1344 | if (allocations_ptr != NULL) { | |
1345 | kmem_free(kernel_map, (vm_offset_t)allocations_ptr, z_alloc_size); | |
1346 | } | |
1347 | ||
1348 | if (traces_ptr != NULL) { | |
1349 | kmem_free(kernel_map, (vm_offset_t)traces_ptr, z_trace_size); | |
1350 | } | |
1351 | ||
1352 | return retval; | |
1353 | } | |
1354 | ||
1355 | /* | |
1356 | * TODO: What about allocations that never get deallocated, | |
1357 | * especially ones with unique backtraces? Should we wait to record | |
1358 | * until after boot has completed? | |
1359 | * (How many persistent zallocs are there?) | |
1360 | */ | |
1361 | ||
1362 | /* | |
1363 | * This function records the allocation in the allocations table, | |
1364 | * and stores the associated backtrace in the traces table | |
1365 | * (or just increments the refcount if the trace is already recorded) | |
1366 | * If the allocation slot is in use, the old allocation is replaced with the new allocation, and | |
1367 | * the associated trace's refcount is decremented. | |
1368 | * If the trace slot is in use, it returns. | |
1369 | * The refcount is incremented by the amount of memory the allocation consumes. | |
1370 | * The return value indicates whether to try again next time. | |
1371 | */ | |
1372 | static boolean_t | |
1373 | zleak_log(uintptr_t* bt, | |
1374 | uintptr_t addr, | |
1375 | uint32_t depth, | |
1376 | vm_size_t allocation_size) | |
1377 | { | |
1378 | /* Quit if there's someone else modifying the hash tables */ | |
316670eb | 1379 | if (!lck_spin_try_lock(&zleak_lock)) { |
6d2010ae A |
1380 | z_total_conflicts++; |
1381 | return FALSE; | |
1382 | } | |
1383 | ||
1384 | struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; | |
1385 | ||
1386 | uint32_t trace_index = hashbacktrace(bt, depth, zleak_trace_buckets); | |
1387 | struct ztrace* trace = &ztraces[trace_index]; | |
1388 | ||
1389 | allocation->za_hit_count++; | |
1390 | trace->zt_hit_count++; | |
1391 | ||
1392 | /* | |
1393 | * If the allocation bucket we want to be in is occupied, and if the occupier | |
1394 | * has the same trace as us, just bail. | |
1395 | */ | |
1396 | if (allocation->za_element != (uintptr_t) 0 && trace_index == allocation->za_trace_index) { | |
1397 | z_alloc_collisions++; | |
1398 | ||
316670eb | 1399 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1400 | return TRUE; |
1401 | } | |
1402 | ||
1403 | /* STEP 1: Store the backtrace in the traces array. */ | |
1404 | /* A size of zero indicates that the trace bucket is free. */ | |
1405 | ||
1406 | if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0 ) { | |
1407 | /* | |
1408 | * Different unique trace with same hash! | |
1409 | * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated | |
1410 | * and get out of the way for later chances | |
1411 | */ | |
1412 | trace->zt_collisions++; | |
1413 | z_trace_collisions++; | |
1414 | ||
316670eb | 1415 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1416 | return TRUE; |
1417 | } else if (trace->zt_size > 0) { | |
1418 | /* Same trace, already added, so increment refcount */ | |
1419 | trace->zt_size += allocation_size; | |
1420 | } else { | |
1421 | /* Found an unused trace bucket, record the trace here! */ | |
1422 | if (trace->zt_depth != 0) /* if this slot was previously used but not currently in use */ | |
1423 | z_trace_overwrites++; | |
1424 | ||
1425 | z_trace_recorded++; | |
1426 | trace->zt_size = allocation_size; | |
1427 | memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t)) ); | |
1428 | ||
1429 | trace->zt_depth = depth; | |
1430 | trace->zt_collisions = 0; | |
1431 | } | |
1432 | ||
1433 | /* STEP 2: Store the allocation record in the allocations array. */ | |
1434 | ||
1435 | if (allocation->za_element != (uintptr_t) 0) { | |
1436 | /* | |
1437 | * Straight up replace any allocation record that was there. We don't want to do the work | |
1438 | * to preserve the allocation entries that were there, because we only record a subset of the | |
1439 | * allocations anyways. | |
1440 | */ | |
1441 | ||
1442 | z_alloc_collisions++; | |
1443 | ||
1444 | struct ztrace* associated_trace = &ztraces[allocation->za_trace_index]; | |
1445 | /* Knock off old allocation's size, not the new allocation */ | |
1446 | associated_trace->zt_size -= allocation->za_size; | |
1447 | } else if (allocation->za_trace_index != 0) { | |
1448 | /* Slot previously used but not currently in use */ | |
1449 | z_alloc_overwrites++; | |
1450 | } | |
1451 | ||
1452 | allocation->za_element = addr; | |
1453 | allocation->za_trace_index = trace_index; | |
1454 | allocation->za_size = allocation_size; | |
1455 | ||
1456 | z_alloc_recorded++; | |
1457 | ||
1458 | if (top_ztrace->zt_size < trace->zt_size) | |
1459 | top_ztrace = trace; | |
1460 | ||
316670eb | 1461 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1462 | return TRUE; |
1463 | } | |
1464 | ||
1465 | /* | |
1466 | * Free the allocation record and release the stacktrace. | |
1467 | * This should be as fast as possible because it will be called for every free. | |
1468 | */ | |
1469 | static void | |
1470 | zleak_free(uintptr_t addr, | |
1471 | vm_size_t allocation_size) | |
1472 | { | |
1473 | if (addr == (uintptr_t) 0) | |
1474 | return; | |
1475 | ||
1476 | struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; | |
1477 | ||
1478 | /* Double-checked locking: check to find out if we're interested, lock, check to make | |
1479 | * sure it hasn't changed, then modify it, and release the lock. | |
1480 | */ | |
c910b4d9 | 1481 | |
6d2010ae A |
1482 | if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { |
1483 | /* if the allocation was the one, grab the lock, check again, then delete it */ | |
316670eb | 1484 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
1485 | |
1486 | if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { | |
1487 | struct ztrace *trace; | |
1488 | ||
1489 | /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */ | |
1490 | if (allocation->za_size != allocation_size) { | |
1491 | panic("Freeing as size %lu memory that was allocated with size %lu\n", | |
1492 | (uintptr_t)allocation_size, (uintptr_t)allocation->za_size); | |
1493 | } | |
1494 | ||
1495 | trace = &ztraces[allocation->za_trace_index]; | |
1496 | ||
1497 | /* size of 0 indicates trace bucket is unused */ | |
1498 | if (trace->zt_size > 0) { | |
1499 | trace->zt_size -= allocation_size; | |
1500 | } | |
1501 | ||
1502 | /* A NULL element means the allocation bucket is unused */ | |
1503 | allocation->za_element = 0; | |
1504 | } | |
316670eb | 1505 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
1506 | } |
1507 | } | |
1508 | ||
1509 | #endif /* CONFIG_ZLEAKS */ | |
1510 | ||
1511 | /* These functions outside of CONFIG_ZLEAKS because they are also used in | |
1512 | * mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix. | |
1513 | */ | |
1514 | ||
1515 | /* | |
1516 | * This function captures a backtrace from the current stack and | |
1517 | * returns the number of frames captured, limited by max_frames. | |
1518 | * It's fast because it does no checking to make sure there isn't bad data. | |
1519 | * Since it's only called from threads that we're going to keep executing, | |
1520 | * if there's bad data we were going to die eventually. | |
6d2010ae A |
1521 | * If this function is inlined, it doesn't record the frame of the function it's inside. |
1522 | * (because there's no stack frame!) | |
1523 | */ | |
316670eb | 1524 | |
6d2010ae A |
1525 | uint32_t |
1526 | fastbacktrace(uintptr_t* bt, uint32_t max_frames) | |
1527 | { | |
6d2010ae A |
1528 | uintptr_t* frameptr = NULL, *frameptr_next = NULL; |
1529 | uintptr_t retaddr = 0; | |
1530 | uint32_t frame_index = 0, frames = 0; | |
1531 | uintptr_t kstackb, kstackt; | |
316670eb | 1532 | thread_t cthread = current_thread(); |
6d2010ae | 1533 | |
316670eb A |
1534 | if (__improbable(cthread == NULL)) |
1535 | return 0; | |
1536 | ||
1537 | kstackb = cthread->kernel_stack; | |
6d2010ae A |
1538 | kstackt = kstackb + kernel_stack_size; |
1539 | /* Load stack frame pointer (EBP on x86) into frameptr */ | |
1540 | frameptr = __builtin_frame_address(0); | |
39236c6e A |
1541 | if (((uintptr_t)frameptr > kstackt) || ((uintptr_t)frameptr < kstackb)) |
1542 | frameptr = NULL; | |
6d2010ae A |
1543 | |
1544 | while (frameptr != NULL && frame_index < max_frames ) { | |
1545 | /* Next frame pointer is pointed to by the previous one */ | |
1546 | frameptr_next = (uintptr_t*) *frameptr; | |
1547 | ||
1548 | /* Bail if we see a zero in the stack frame, that means we've reached the top of the stack */ | |
1549 | /* That also means the return address is worthless, so don't record it */ | |
1550 | if (frameptr_next == NULL) | |
1551 | break; | |
1552 | /* Verify thread stack bounds */ | |
1553 | if (((uintptr_t)frameptr_next > kstackt) || ((uintptr_t)frameptr_next < kstackb)) | |
1554 | break; | |
1555 | /* Pull return address from one spot above the frame pointer */ | |
1556 | retaddr = *(frameptr + 1); | |
1557 | ||
1558 | /* Store it in the backtrace array */ | |
1559 | bt[frame_index++] = retaddr; | |
1560 | ||
1561 | frameptr = frameptr_next; | |
1562 | } | |
1563 | ||
1564 | /* Save the number of frames captured for return value */ | |
1565 | frames = frame_index; | |
1566 | ||
1567 | /* Fill in the rest of the backtrace with zeros */ | |
1568 | while (frame_index < max_frames) | |
1569 | bt[frame_index++] = 0; | |
1570 | ||
1571 | return frames; | |
6d2010ae A |
1572 | } |
1573 | ||
1574 | /* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */ | |
1575 | uintptr_t | |
1576 | hash_mix(uintptr_t x) | |
1577 | { | |
1578 | #ifndef __LP64__ | |
1579 | x += ~(x << 15); | |
1580 | x ^= (x >> 10); | |
1581 | x += (x << 3 ); | |
1582 | x ^= (x >> 6 ); | |
1583 | x += ~(x << 11); | |
1584 | x ^= (x >> 16); | |
1585 | #else | |
1586 | x += ~(x << 32); | |
1587 | x ^= (x >> 22); | |
1588 | x += ~(x << 13); | |
1589 | x ^= (x >> 8 ); | |
1590 | x += (x << 3 ); | |
1591 | x ^= (x >> 15); | |
1592 | x += ~(x << 27); | |
1593 | x ^= (x >> 31); | |
1594 | #endif | |
1595 | return x; | |
1596 | } | |
1597 | ||
1598 | uint32_t | |
1599 | hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size) | |
1600 | { | |
1601 | ||
1602 | uintptr_t hash = 0; | |
1603 | uintptr_t mask = max_size - 1; | |
1604 | ||
316670eb A |
1605 | while (depth) { |
1606 | hash += bt[--depth]; | |
6d2010ae A |
1607 | } |
1608 | ||
1609 | hash = hash_mix(hash) & mask; | |
1610 | ||
1611 | assert(hash < max_size); | |
1612 | ||
1613 | return (uint32_t) hash; | |
1614 | } | |
1615 | ||
1616 | /* | |
1617 | * TODO: Determine how well distributed this is | |
1618 | * max_size must be a power of 2. i.e 0x10000 because 0x10000-1 is 0x0FFFF which is a great bitmask | |
1619 | */ | |
1620 | uint32_t | |
1621 | hashaddr(uintptr_t pt, uint32_t max_size) | |
1622 | { | |
1623 | uintptr_t hash = 0; | |
1624 | uintptr_t mask = max_size - 1; | |
1625 | ||
1626 | hash = hash_mix(pt) & mask; | |
1627 | ||
1628 | assert(hash < max_size); | |
1629 | ||
1630 | return (uint32_t) hash; | |
1631 | } | |
1632 | ||
1633 | /* End of all leak-detection code */ | |
1634 | #pragma mark - | |
1635 | ||
1c79356b A |
1636 | /* |
1637 | * zinit initializes a new zone. The zone data structures themselves | |
1638 | * are stored in a zone, which is initially a static structure that | |
1639 | * is initialized by zone_init. | |
1640 | */ | |
1641 | zone_t | |
1642 | zinit( | |
1643 | vm_size_t size, /* the size of an element */ | |
1644 | vm_size_t max, /* maximum memory to use */ | |
1645 | vm_size_t alloc, /* allocation size */ | |
91447636 | 1646 | const char *name) /* a name for the zone */ |
1c79356b A |
1647 | { |
1648 | zone_t z; | |
39236c6e | 1649 | boolean_t use_page_list = FALSE; |
1c79356b A |
1650 | |
1651 | if (zone_zone == ZONE_NULL) { | |
7ddcb079 A |
1652 | |
1653 | z = (struct zone *)zdata; | |
39236c6e | 1654 | /* special handling in zcram() because the first element is being used */ |
1c79356b A |
1655 | } else |
1656 | z = (zone_t) zalloc(zone_zone); | |
316670eb | 1657 | |
1c79356b A |
1658 | if (z == ZONE_NULL) |
1659 | return(ZONE_NULL); | |
1660 | ||
39236c6e A |
1661 | /* Zone elements must fit both a next pointer and a backup pointer */ |
1662 | vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2; | |
1663 | if (size < minimum_element_size) | |
1664 | size = minimum_element_size; | |
1665 | ||
1c79356b | 1666 | /* |
39236c6e A |
1667 | * Round element size to a multiple of sizeof(pointer) |
1668 | * This also enforces that allocations will be aligned on pointer boundaries | |
1c79356b | 1669 | */ |
39236c6e A |
1670 | size = ((size-1) + sizeof(vm_offset_t)) - |
1671 | ((size-1) % sizeof(vm_offset_t)); | |
1672 | ||
1673 | if (alloc == 0) | |
1c79356b | 1674 | alloc = PAGE_SIZE; |
39236c6e | 1675 | |
91447636 A |
1676 | alloc = round_page(alloc); |
1677 | max = round_page(max); | |
39236c6e | 1678 | |
1c79356b | 1679 | /* |
91447636 A |
1680 | * we look for an allocation size with less than 1% waste |
1681 | * up to 5 pages in size... | |
1682 | * otherwise, we look for an allocation size with least fragmentation | |
1683 | * in the range of 1 - 5 pages | |
1684 | * This size will be used unless | |
1c79356b A |
1685 | * the user suggestion is larger AND has less fragmentation |
1686 | */ | |
2d21ac55 | 1687 | #if ZONE_ALIAS_ADDR |
39236c6e | 1688 | /* Favor PAGE_SIZE allocations unless we waste >10% space */ |
2d21ac55 A |
1689 | if ((size < PAGE_SIZE) && (PAGE_SIZE % size <= PAGE_SIZE / 10)) |
1690 | alloc = PAGE_SIZE; | |
1691 | else | |
1692 | #endif | |
7ddcb079 A |
1693 | #if defined(__LP64__) |
1694 | if (((alloc % size) != 0) || (alloc > PAGE_SIZE * 8)) | |
1695 | #endif | |
1696 | { | |
1697 | vm_size_t best, waste; unsigned int i; | |
1c79356b A |
1698 | best = PAGE_SIZE; |
1699 | waste = best % size; | |
91447636 A |
1700 | |
1701 | for (i = 1; i <= 5; i++) { | |
39236c6e | 1702 | vm_size_t tsize, twaste; |
91447636 A |
1703 | |
1704 | tsize = i * PAGE_SIZE; | |
1705 | ||
1706 | if ((tsize % size) < (tsize / 100)) { | |
1707 | alloc = tsize; | |
1708 | goto use_this_allocation; | |
1709 | } | |
1c79356b A |
1710 | twaste = tsize % size; |
1711 | if (twaste < waste) | |
1712 | best = tsize, waste = twaste; | |
1713 | } | |
1714 | if (alloc <= best || (alloc % size >= waste)) | |
1715 | alloc = best; | |
1716 | } | |
91447636 | 1717 | use_this_allocation: |
1c79356b A |
1718 | if (max && (max < alloc)) |
1719 | max = alloc; | |
1720 | ||
39236c6e A |
1721 | /* |
1722 | * Opt into page list tracking if we can reliably map an allocation | |
1723 | * to its page_metadata, and if the wastage in the tail of | |
1724 | * the allocation is not too large | |
1725 | */ | |
1726 | if (alloc == PAGE_SIZE) { | |
1727 | if ((PAGE_SIZE % size) >= sizeof(struct zone_page_metadata)) { | |
1728 | use_page_list = TRUE; | |
1729 | } else if ((PAGE_SIZE - sizeof(struct zone_page_metadata)) % size <= PAGE_SIZE / 100) { | |
1730 | use_page_list = TRUE; | |
1731 | } | |
1732 | } | |
1733 | ||
1734 | z->free_elements = NULL; | |
1735 | queue_init(&z->pages.any_free_foreign); | |
1736 | queue_init(&z->pages.all_free); | |
1737 | queue_init(&z->pages.intermediate); | |
1738 | queue_init(&z->pages.all_used); | |
1c79356b | 1739 | z->cur_size = 0; |
39236c6e | 1740 | z->page_count = 0; |
1c79356b A |
1741 | z->max_size = max; |
1742 | z->elem_size = size; | |
1743 | z->alloc_size = alloc; | |
1744 | z->zone_name = name; | |
1745 | z->count = 0; | |
39236c6e | 1746 | z->countfree = 0; |
6d2010ae | 1747 | z->sum_count = 0LL; |
1c79356b | 1748 | z->doing_alloc = FALSE; |
a3d08fcd | 1749 | z->doing_gc = FALSE; |
1c79356b A |
1750 | z->exhaustible = FALSE; |
1751 | z->collectable = TRUE; | |
1752 | z->allows_foreign = FALSE; | |
1753 | z->expandable = TRUE; | |
1754 | z->waiting = FALSE; | |
0b4e3aa0 | 1755 | z->async_pending = FALSE; |
6d2010ae | 1756 | z->caller_acct = TRUE; |
0b4c1975 | 1757 | z->noencrypt = FALSE; |
7ddcb079 A |
1758 | z->no_callout = FALSE; |
1759 | z->async_prio_refill = FALSE; | |
316670eb A |
1760 | z->gzalloc_exempt = FALSE; |
1761 | z->alignment_required = FALSE; | |
39236c6e | 1762 | z->use_page_list = use_page_list; |
7ddcb079 A |
1763 | z->prio_refill_watermark = 0; |
1764 | z->zone_replenish_thread = NULL; | |
39236c6e | 1765 | z->zp_count = 0; |
6d2010ae | 1766 | #if CONFIG_ZLEAKS |
6d2010ae A |
1767 | z->zleak_capture = 0; |
1768 | z->zleak_on = FALSE; | |
1769 | #endif /* CONFIG_ZLEAKS */ | |
1770 | ||
1c79356b | 1771 | #if ZONE_DEBUG |
2d21ac55 | 1772 | z->active_zones.next = z->active_zones.prev = NULL; |
1c79356b A |
1773 | zone_debug_enable(z); |
1774 | #endif /* ZONE_DEBUG */ | |
1775 | lock_zone_init(z); | |
1776 | ||
1777 | /* | |
1778 | * Add the zone to the all-zones list. | |
6d2010ae A |
1779 | * If we are tracking zone info per task, and we have |
1780 | * already used all the available stat slots, then keep | |
1781 | * using the overflow zone slot. | |
1c79356b | 1782 | */ |
1c79356b A |
1783 | z->next_zone = ZONE_NULL; |
1784 | simple_lock(&all_zones_lock); | |
1785 | *last_zone = z; | |
1786 | last_zone = &z->next_zone; | |
6d2010ae A |
1787 | z->index = num_zones; |
1788 | if (zinfo_per_task) { | |
1789 | if (num_zones > ZONES_MAX) | |
1790 | z->index = ZONES_MAX; | |
1791 | } | |
1c79356b A |
1792 | num_zones++; |
1793 | simple_unlock(&all_zones_lock); | |
1794 | ||
c910b4d9 A |
1795 | /* |
1796 | * Check if we should be logging this zone. If so, remember the zone pointer. | |
1797 | */ | |
316670eb | 1798 | if (log_this_zone(z->zone_name, zone_name_to_log)) { |
c910b4d9 A |
1799 | zone_of_interest = z; |
1800 | } | |
1801 | ||
1802 | /* | |
1803 | * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are | |
39236c6e | 1804 | * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to |
c910b4d9 A |
1805 | * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one |
1806 | * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again | |
1807 | * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized | |
1808 | * right now. | |
1809 | */ | |
39236c6e A |
1810 | if (zone_of_interest != NULL && zlog_btlog == NULL && kmem_alloc_ready) { |
1811 | zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, NULL, NULL, NULL); | |
1812 | if (zlog_btlog) { | |
1813 | printf("zone: logging started for zone %s\n", zone_of_interest->zone_name); | |
c910b4d9 A |
1814 | } else { |
1815 | printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n"); | |
1816 | zone_of_interest = NULL; | |
1817 | } | |
1818 | } | |
316670eb A |
1819 | #if CONFIG_GZALLOC |
1820 | gzalloc_zone_init(z); | |
1821 | #endif | |
1c79356b A |
1822 | return(z); |
1823 | } | |
39236c6e | 1824 | unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated, zone_replenish_throttle_count; |
7ddcb079 A |
1825 | |
1826 | static void zone_replenish_thread(zone_t); | |
1827 | ||
1828 | /* High priority VM privileged thread used to asynchronously refill a designated | |
1829 | * zone, such as the reserved VM map entry zone. | |
1830 | */ | |
1831 | static void zone_replenish_thread(zone_t z) { | |
1832 | vm_size_t free_size; | |
1833 | current_thread()->options |= TH_OPT_VMPRIV; | |
1834 | ||
1835 | for (;;) { | |
1836 | lock_zone(z); | |
1837 | assert(z->prio_refill_watermark != 0); | |
1838 | while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) { | |
1839 | assert(z->doing_alloc == FALSE); | |
1840 | assert(z->async_prio_refill == TRUE); | |
1841 | ||
1842 | unlock_zone(z); | |
1843 | int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT; | |
1844 | vm_offset_t space, alloc_size; | |
1845 | kern_return_t kr; | |
1846 | ||
1847 | if (vm_pool_low()) | |
1848 | alloc_size = round_page(z->elem_size); | |
1849 | else | |
1850 | alloc_size = z->alloc_size; | |
1851 | ||
1852 | if (z->noencrypt) | |
1853 | zflags |= KMA_NOENCRYPT; | |
1854 | ||
1855 | kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags); | |
1856 | ||
1857 | if (kr == KERN_SUCCESS) { | |
1858 | #if ZONE_ALIAS_ADDR | |
1859 | if (alloc_size == PAGE_SIZE) | |
1860 | space = zone_alias_addr(space); | |
1861 | #endif | |
39236c6e | 1862 | ZONE_PAGE_COUNT_INCR(z, (alloc_size / PAGE_SIZE)); |
7ddcb079 A |
1863 | zcram(z, space, alloc_size); |
1864 | } else if (kr == KERN_RESOURCE_SHORTAGE) { | |
1865 | VM_PAGE_WAIT(); | |
1866 | } else if (kr == KERN_NO_SPACE) { | |
1867 | kr = kernel_memory_allocate(kernel_map, &space, alloc_size, 0, zflags); | |
1868 | if (kr == KERN_SUCCESS) { | |
1869 | #if ZONE_ALIAS_ADDR | |
1870 | if (alloc_size == PAGE_SIZE) | |
1871 | space = zone_alias_addr(space); | |
1872 | #endif | |
1873 | zcram(z, space, alloc_size); | |
1874 | } else { | |
1875 | assert_wait_timeout(&z->zone_replenish_thread, THREAD_UNINT, 1, 100 * NSEC_PER_USEC); | |
1876 | thread_block(THREAD_CONTINUE_NULL); | |
1877 | } | |
1878 | } | |
1879 | ||
1880 | lock_zone(z); | |
1881 | zone_replenish_loops++; | |
1882 | } | |
1883 | ||
1884 | unlock_zone(z); | |
39236c6e A |
1885 | /* Signal any potential throttled consumers, terminating |
1886 | * their timer-bounded waits. | |
1887 | */ | |
1888 | thread_wakeup(z); | |
1889 | ||
7ddcb079 A |
1890 | assert_wait(&z->zone_replenish_thread, THREAD_UNINT); |
1891 | thread_block(THREAD_CONTINUE_NULL); | |
1892 | zone_replenish_wakeups++; | |
1893 | } | |
1894 | } | |
1895 | ||
1896 | void | |
1897 | zone_prio_refill_configure(zone_t z, vm_size_t low_water_mark) { | |
1898 | z->prio_refill_watermark = low_water_mark; | |
1899 | ||
1900 | z->async_prio_refill = TRUE; | |
1901 | OSMemoryBarrier(); | |
1902 | kern_return_t tres = kernel_thread_start_priority((thread_continue_t)zone_replenish_thread, z, MAXPRI_KERNEL, &z->zone_replenish_thread); | |
1903 | ||
1904 | if (tres != KERN_SUCCESS) { | |
1905 | panic("zone_prio_refill_configure, thread create: 0x%x", tres); | |
1906 | } | |
1907 | ||
1908 | thread_deallocate(z->zone_replenish_thread); | |
1909 | } | |
1c79356b A |
1910 | |
1911 | /* | |
1912 | * Cram the given memory into the specified zone. | |
1913 | */ | |
1914 | void | |
1915 | zcram( | |
7ddcb079 A |
1916 | zone_t zone, |
1917 | vm_offset_t newmem, | |
1c79356b A |
1918 | vm_size_t size) |
1919 | { | |
7ddcb079 A |
1920 | vm_size_t elem_size; |
1921 | boolean_t from_zm = FALSE; | |
1c79356b A |
1922 | |
1923 | /* Basic sanity checks */ | |
1924 | assert(zone != ZONE_NULL && newmem != (vm_offset_t)0); | |
1925 | assert(!zone->collectable || zone->allows_foreign | |
55e303ae | 1926 | || (from_zone_map(newmem, size))); |
1c79356b A |
1927 | |
1928 | elem_size = zone->elem_size; | |
1929 | ||
7ddcb079 A |
1930 | if (from_zone_map(newmem, size)) |
1931 | from_zm = TRUE; | |
1932 | ||
39236c6e A |
1933 | if (zalloc_debug & ZALLOC_DEBUG_ZCRAM) |
1934 | kprintf("zcram(%p[%s], 0x%lx%s, 0x%lx)\n", zone, zone->zone_name, | |
1935 | (unsigned long)newmem, from_zm ? "" : "[F]", (unsigned long)size); | |
1936 | ||
1937 | if (from_zm && !zone->use_page_list) | |
7ddcb079 A |
1938 | zone_page_init(newmem, size); |
1939 | ||
1c79356b | 1940 | lock_zone(zone); |
39236c6e A |
1941 | |
1942 | if (zone->use_page_list) { | |
1943 | struct zone_page_metadata *page_metadata; | |
1944 | ||
1945 | assert((newmem & PAGE_MASK) == 0); | |
1946 | assert((size & PAGE_MASK) == 0); | |
1947 | for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) { | |
1948 | ||
1949 | vm_size_t pos_in_page; | |
1950 | page_metadata = (struct zone_page_metadata *)(newmem + PAGE_SIZE - sizeof(struct zone_page_metadata)); | |
1951 | ||
1952 | page_metadata->pages.next = NULL; | |
1953 | page_metadata->pages.prev = NULL; | |
1954 | page_metadata->elements = NULL; | |
1955 | page_metadata->zone = zone; | |
1956 | page_metadata->alloc_count = 0; | |
1957 | page_metadata->free_count = 0; | |
1958 | ||
1959 | enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_metadata); | |
1960 | ||
1961 | for (pos_in_page = 0; (newmem + pos_in_page + elem_size) < (vm_offset_t)page_metadata; pos_in_page += elem_size) { | |
1962 | page_metadata->alloc_count++; | |
1963 | zone->count++; /* compensate for free_to_zone */ | |
1964 | if ((newmem + pos_in_page) == (vm_offset_t)zone) { | |
1965 | /* | |
1966 | * special case for the "zone_zone" zone, which is using the first | |
1967 | * allocation of its pmap_steal_memory()-ed allocation for | |
1968 | * the "zone_zone" variable already. | |
1969 | */ | |
1970 | } else { | |
1971 | free_to_zone(zone, newmem + pos_in_page); | |
1972 | } | |
1973 | zone->cur_size += elem_size; | |
1974 | } | |
1975 | } | |
1976 | } else { | |
1977 | while (size >= elem_size) { | |
1978 | zone->count++; /* compensate for free_to_zone */ | |
1979 | if (newmem == (vm_offset_t)zone) { | |
1980 | /* Don't free zone_zone zone */ | |
1981 | } else { | |
1982 | free_to_zone(zone, newmem); | |
1983 | } | |
1984 | if (from_zm) | |
1985 | zone_page_alloc(newmem, elem_size); | |
1986 | size -= elem_size; | |
1987 | newmem += elem_size; | |
1988 | zone->cur_size += elem_size; | |
1989 | } | |
1c79356b A |
1990 | } |
1991 | unlock_zone(zone); | |
1992 | } | |
1993 | ||
1c79356b A |
1994 | |
1995 | /* | |
1996 | * Steal memory for the zone package. Called from | |
1997 | * vm_page_bootstrap(). | |
1998 | */ | |
1999 | void | |
2000 | zone_steal_memory(void) | |
2001 | { | |
316670eb A |
2002 | #if CONFIG_GZALLOC |
2003 | gzalloc_configure(); | |
2004 | #endif | |
7ddcb079 A |
2005 | /* Request enough early memory to get to the pmap zone */ |
2006 | zdata_size = 12 * sizeof(struct zone); | |
39236c6e A |
2007 | zdata_size = round_page(zdata_size); |
2008 | zdata = (vm_offset_t)pmap_steal_memory(zdata_size); | |
1c79356b A |
2009 | } |
2010 | ||
2011 | ||
2012 | /* | |
2013 | * Fill a zone with enough memory to contain at least nelem elements. | |
b0d623f7 | 2014 | * Memory is obtained with kmem_alloc_kobject from the kernel_map. |
1c79356b A |
2015 | * Return the number of elements actually put into the zone, which may |
2016 | * be more than the caller asked for since the memory allocation is | |
2017 | * rounded up to a full page. | |
2018 | */ | |
2019 | int | |
2020 | zfill( | |
2021 | zone_t zone, | |
2022 | int nelem) | |
2023 | { | |
2024 | kern_return_t kr; | |
2025 | vm_size_t size; | |
2026 | vm_offset_t memory; | |
2027 | int nalloc; | |
2028 | ||
2029 | assert(nelem > 0); | |
2030 | if (nelem <= 0) | |
2031 | return 0; | |
2032 | size = nelem * zone->elem_size; | |
91447636 | 2033 | size = round_page(size); |
b0d623f7 | 2034 | kr = kmem_alloc_kobject(kernel_map, &memory, size); |
1c79356b A |
2035 | if (kr != KERN_SUCCESS) |
2036 | return 0; | |
2037 | ||
2038 | zone_change(zone, Z_FOREIGN, TRUE); | |
39236c6e | 2039 | ZONE_PAGE_COUNT_INCR(zone, (size / PAGE_SIZE)); |
7ddcb079 | 2040 | zcram(zone, memory, size); |
b0d623f7 | 2041 | nalloc = (int)(size / zone->elem_size); |
1c79356b A |
2042 | assert(nalloc >= nelem); |
2043 | ||
2044 | return nalloc; | |
2045 | } | |
2046 | ||
2047 | /* | |
2048 | * Initialize the "zone of zones" which uses fixed memory allocated | |
2049 | * earlier in memory initialization. zone_bootstrap is called | |
2050 | * before zone_init. | |
2051 | */ | |
2052 | void | |
2053 | zone_bootstrap(void) | |
2054 | { | |
2d21ac55 A |
2055 | char temp_buf[16]; |
2056 | ||
316670eb A |
2057 | if (PE_parse_boot_argn("-zinfop", temp_buf, sizeof(temp_buf))) { |
2058 | zinfo_per_task = TRUE; | |
6d2010ae | 2059 | } |
6d2010ae | 2060 | |
39236c6e A |
2061 | if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug, sizeof(zalloc_debug))) |
2062 | zalloc_debug = 0; | |
316670eb | 2063 | |
39236c6e A |
2064 | /* Set up zone element poisoning */ |
2065 | zp_init(); | |
c910b4d9 | 2066 | |
39236c6e A |
2067 | /* should zlog log to debug zone corruption instead of leaks? */ |
2068 | if (PE_parse_boot_argn("-zc", temp_buf, sizeof(temp_buf))) { | |
2069 | corruption_debug_flag = TRUE; | |
2070 | } | |
6d2010ae | 2071 | |
c910b4d9 A |
2072 | /* |
2073 | * Check for and set up zone leak detection if requested via boot-args. We recognized two | |
2074 | * boot-args: | |
2075 | * | |
2076 | * zlog=<zone_to_log> | |
2077 | * zrecs=<num_records_in_log> | |
2078 | * | |
2079 | * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to | |
2080 | * control the size of the log. If zrecs is not specified, a default value is used. | |
2081 | */ | |
2082 | ||
2083 | if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) { | |
2084 | if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) { | |
2085 | ||
2086 | /* | |
2087 | * Don't allow more than ZRECORDS_MAX records even if the user asked for more. | |
2088 | * This prevents accidentally hogging too much kernel memory and making the system | |
2089 | * unusable. | |
2090 | */ | |
2091 | ||
2092 | log_records = MIN(ZRECORDS_MAX, log_records); | |
2093 | ||
2094 | } else { | |
2095 | log_records = ZRECORDS_DEFAULT; | |
2096 | } | |
2d21ac55 | 2097 | } |
1c79356b | 2098 | |
91447636 | 2099 | simple_lock_init(&all_zones_lock, 0); |
1c79356b A |
2100 | |
2101 | first_zone = ZONE_NULL; | |
2102 | last_zone = &first_zone; | |
2103 | num_zones = 0; | |
39236c6e | 2104 | thread_call_setup(&call_async_alloc, zalloc_async, NULL); |
1c79356b | 2105 | |
1c79356b A |
2106 | /* assertion: nobody else called zinit before us */ |
2107 | assert(zone_zone == ZONE_NULL); | |
39236c6e A |
2108 | |
2109 | /* initializing global lock group for zones */ | |
2110 | lck_grp_attr_setdefault(&zone_locks_grp_attr); | |
2111 | lck_grp_init(&zone_locks_grp, "zone_locks", &zone_locks_grp_attr); | |
2112 | ||
1c79356b A |
2113 | zone_zone = zinit(sizeof(struct zone), 128 * sizeof(struct zone), |
2114 | sizeof(struct zone), "zones"); | |
2115 | zone_change(zone_zone, Z_COLLECT, FALSE); | |
6d2010ae | 2116 | zone_change(zone_zone, Z_CALLERACCT, FALSE); |
0b4c1975 A |
2117 | zone_change(zone_zone, Z_NOENCRYPT, TRUE); |
2118 | ||
7ddcb079 | 2119 | zcram(zone_zone, zdata, zdata_size); |
6d2010ae A |
2120 | |
2121 | /* initialize fake zones and zone info if tracking by task */ | |
2122 | if (zinfo_per_task) { | |
2123 | vm_size_t zisize = sizeof(zinfo_usage_store_t) * ZINFO_SLOTS; | |
2124 | unsigned int i; | |
2125 | ||
2126 | for (i = 0; i < num_fake_zones; i++) | |
2127 | fake_zones[i].init(ZINFO_SLOTS - num_fake_zones + i); | |
2128 | zinfo_zone = zinit(zisize, zisize * CONFIG_TASK_MAX, | |
2129 | zisize, "per task zinfo"); | |
2130 | zone_change(zinfo_zone, Z_CALLERACCT, FALSE); | |
2131 | } | |
2132 | } | |
2133 | ||
2134 | void | |
2135 | zinfo_task_init(task_t task) | |
2136 | { | |
2137 | if (zinfo_per_task) { | |
2138 | task->tkm_zinfo = zalloc(zinfo_zone); | |
2139 | memset(task->tkm_zinfo, 0, sizeof(zinfo_usage_store_t) * ZINFO_SLOTS); | |
2140 | } else { | |
2141 | task->tkm_zinfo = NULL; | |
2142 | } | |
1c79356b A |
2143 | } |
2144 | ||
6d2010ae A |
2145 | void |
2146 | zinfo_task_free(task_t task) | |
2147 | { | |
2148 | assert(task != kernel_task); | |
2149 | if (task->tkm_zinfo != NULL) { | |
2150 | zfree(zinfo_zone, task->tkm_zinfo); | |
2151 | task->tkm_zinfo = NULL; | |
2152 | } | |
2153 | } | |
2154 | ||
39236c6e A |
2155 | /* Global initialization of Zone Allocator. |
2156 | * Runs after zone_bootstrap. | |
2157 | */ | |
1c79356b A |
2158 | void |
2159 | zone_init( | |
2160 | vm_size_t max_zonemap_size) | |
2161 | { | |
2162 | kern_return_t retval; | |
2163 | vm_offset_t zone_min; | |
2164 | vm_offset_t zone_max; | |
1c79356b A |
2165 | |
2166 | retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size, | |
b0d623f7 A |
2167 | FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT, |
2168 | &zone_map); | |
91447636 | 2169 | |
1c79356b A |
2170 | if (retval != KERN_SUCCESS) |
2171 | panic("zone_init: kmem_suballoc failed"); | |
91447636 | 2172 | zone_max = zone_min + round_page(max_zonemap_size); |
316670eb A |
2173 | #if CONFIG_GZALLOC |
2174 | gzalloc_init(max_zonemap_size); | |
2175 | #endif | |
1c79356b A |
2176 | /* |
2177 | * Setup garbage collection information: | |
2178 | */ | |
1c79356b A |
2179 | zone_map_min_address = zone_min; |
2180 | zone_map_max_address = zone_max; | |
7ddcb079 A |
2181 | |
2182 | zone_pages = (unsigned int)atop_kernel(zone_max - zone_min); | |
2183 | zone_page_table_used_size = sizeof(zone_page_table); | |
2184 | ||
2185 | zone_page_table_second_level_size = 1; | |
2186 | zone_page_table_second_level_shift_amount = 0; | |
2187 | ||
2188 | /* | |
2189 | * Find the power of 2 for the second level that allows | |
2190 | * the first level to fit in ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE | |
2191 | * slots. | |
2192 | */ | |
2193 | while ((zone_page_table_first_level_slot(zone_pages-1)) >= ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE) { | |
2194 | zone_page_table_second_level_size <<= 1; | |
2195 | zone_page_table_second_level_shift_amount++; | |
2196 | } | |
b0d623f7 | 2197 | |
39236c6e A |
2198 | lck_grp_attr_setdefault(&zone_gc_lck_grp_attr); |
2199 | lck_grp_init(&zone_gc_lck_grp, "zone_gc", &zone_gc_lck_grp_attr); | |
2200 | lck_attr_setdefault(&zone_gc_lck_attr); | |
2201 | lck_mtx_init_ext(&zone_gc_lock, &zone_gc_lck_ext, &zone_gc_lck_grp, &zone_gc_lck_attr); | |
b0d623f7 | 2202 | |
6d2010ae A |
2203 | #if CONFIG_ZLEAKS |
2204 | /* | |
2205 | * Initialize the zone leak monitor | |
2206 | */ | |
2207 | zleak_init(max_zonemap_size); | |
2208 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2209 | } |
2210 | ||
7ddcb079 A |
2211 | void |
2212 | zone_page_table_expand(zone_page_index_t pindex) | |
2213 | { | |
2214 | unsigned int first_index; | |
2215 | struct zone_page_table_entry * volatile * first_level_ptr; | |
2216 | ||
2217 | assert(pindex < zone_pages); | |
2218 | ||
2219 | first_index = zone_page_table_first_level_slot(pindex); | |
2220 | first_level_ptr = &zone_page_table[first_index]; | |
2221 | ||
2222 | if (*first_level_ptr == NULL) { | |
2223 | /* | |
2224 | * We were able to verify the old first-level slot | |
2225 | * had NULL, so attempt to populate it. | |
2226 | */ | |
2227 | ||
2228 | vm_offset_t second_level_array = 0; | |
2229 | vm_size_t second_level_size = round_page(zone_page_table_second_level_size * sizeof(struct zone_page_table_entry)); | |
2230 | zone_page_index_t i; | |
2231 | struct zone_page_table_entry *entry_array; | |
2232 | ||
2233 | if (kmem_alloc_kobject(zone_map, &second_level_array, | |
2234 | second_level_size) != KERN_SUCCESS) { | |
2235 | panic("zone_page_table_expand"); | |
2236 | } | |
39236c6e | 2237 | zone_map_table_page_count += (second_level_size / PAGE_SIZE); |
7ddcb079 A |
2238 | |
2239 | /* | |
2240 | * zone_gc() may scan the "zone_page_table" directly, | |
2241 | * so make sure any slots have a valid unused state. | |
2242 | */ | |
2243 | entry_array = (struct zone_page_table_entry *)second_level_array; | |
2244 | for (i=0; i < zone_page_table_second_level_size; i++) { | |
2245 | entry_array[i].alloc_count = ZONE_PAGE_UNUSED; | |
2246 | entry_array[i].collect_count = 0; | |
2247 | } | |
2248 | ||
2249 | if (OSCompareAndSwapPtr(NULL, entry_array, first_level_ptr)) { | |
2250 | /* Old slot was NULL, replaced with expanded level */ | |
2251 | OSAddAtomicLong(second_level_size, &zone_page_table_used_size); | |
2252 | } else { | |
2253 | /* Old slot was not NULL, someone else expanded first */ | |
2254 | kmem_free(zone_map, second_level_array, second_level_size); | |
39236c6e | 2255 | zone_map_table_page_count -= (second_level_size / PAGE_SIZE); |
7ddcb079 A |
2256 | } |
2257 | } else { | |
2258 | /* Old slot was not NULL, already been expanded */ | |
2259 | } | |
2260 | } | |
2261 | ||
2262 | struct zone_page_table_entry * | |
2263 | zone_page_table_lookup(zone_page_index_t pindex) | |
2264 | { | |
2265 | unsigned int first_index = zone_page_table_first_level_slot(pindex); | |
2266 | struct zone_page_table_entry *second_level = zone_page_table[first_index]; | |
2267 | ||
2268 | if (second_level) { | |
2269 | return &second_level[zone_page_table_second_level_slot(pindex)]; | |
2270 | } | |
2271 | ||
2272 | return NULL; | |
2273 | } | |
2274 | ||
b0d623f7 | 2275 | extern volatile SInt32 kfree_nop_count; |
1c79356b | 2276 | |
6d2010ae A |
2277 | #pragma mark - |
2278 | #pragma mark zalloc_canblock | |
2279 | ||
1c79356b A |
2280 | /* |
2281 | * zalloc returns an element from the specified zone. | |
2282 | */ | |
91447636 | 2283 | void * |
1c79356b | 2284 | zalloc_canblock( |
39236c6e | 2285 | zone_t zone, |
1c79356b A |
2286 | boolean_t canblock) |
2287 | { | |
316670eb A |
2288 | vm_offset_t addr = 0; |
2289 | kern_return_t retval; | |
6d2010ae | 2290 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */ |
c910b4d9 | 2291 | int numsaved = 0; |
39236c6e A |
2292 | boolean_t zone_replenish_wakeup = FALSE, zone_alloc_throttle = FALSE; |
2293 | #if CONFIG_GZALLOC || ZONE_DEBUG | |
2294 | boolean_t did_gzalloc = FALSE; | |
2295 | #endif | |
2296 | thread_t thr = current_thread(); | |
6d2010ae A |
2297 | |
2298 | #if CONFIG_ZLEAKS | |
2299 | uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ | |
2300 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2301 | |
2302 | assert(zone != ZONE_NULL); | |
316670eb A |
2303 | |
2304 | #if CONFIG_GZALLOC | |
2305 | addr = gzalloc_alloc(zone, canblock); | |
2306 | did_gzalloc = (addr != 0); | |
2307 | #endif | |
2308 | ||
c910b4d9 A |
2309 | /* |
2310 | * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. | |
2311 | */ | |
39236c6e | 2312 | if (__improbable(DO_LOGGING(zone))) |
6d2010ae | 2313 | numsaved = OSBacktrace((void*) zbt, MAX_ZTRACE_DEPTH); |
39236c6e A |
2314 | |
2315 | lock_zone(zone); | |
2316 | ||
6d2010ae A |
2317 | |
2318 | #if CONFIG_ZLEAKS | |
2319 | /* | |
316670eb | 2320 | * Zone leak detection: capture a backtrace every zleak_sample_factor |
6d2010ae A |
2321 | * allocations in this zone. |
2322 | */ | |
39236c6e A |
2323 | if (zone->zleak_on && (++zone->zleak_capture >= zleak_sample_factor)) { |
2324 | zone->zleak_capture = 0; | |
6d2010ae A |
2325 | |
2326 | /* Avoid backtracing twice if zone logging is on */ | |
2327 | if (numsaved == 0 ) | |
2328 | zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH); | |
2329 | else | |
2330 | zleak_tracedepth = numsaved; | |
2331 | } | |
2332 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b | 2333 | |
39236c6e A |
2334 | if (zone->async_prio_refill && zone->zone_replenish_thread) { |
2335 | do { | |
2336 | vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size)); | |
2337 | vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size; | |
2338 | zone_replenish_wakeup = (zfreec < zrefillwm); | |
2339 | zone_alloc_throttle = (zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0); | |
2340 | ||
2341 | if (zone_replenish_wakeup) { | |
2342 | zone_replenish_wakeups_initiated++; | |
2343 | unlock_zone(zone); | |
2344 | /* Signal the potentially waiting | |
2345 | * refill thread. | |
2346 | */ | |
2347 | thread_wakeup(&zone->zone_replenish_thread); | |
2348 | ||
2349 | /* Scheduling latencies etc. may prevent | |
2350 | * the refill thread from keeping up | |
2351 | * with demand. Throttle consumers | |
2352 | * when we fall below half the | |
2353 | * watermark, unless VM privileged | |
2354 | */ | |
2355 | if (zone_alloc_throttle) { | |
2356 | zone_replenish_throttle_count++; | |
2357 | assert_wait_timeout(zone, THREAD_UNINT, 1, NSEC_PER_MSEC); | |
2358 | thread_block(THREAD_CONTINUE_NULL); | |
2359 | } | |
2360 | lock_zone(zone); | |
2361 | } | |
2362 | } while (zone_alloc_throttle == TRUE); | |
2363 | } | |
2364 | ||
316670eb | 2365 | if (__probable(addr == 0)) |
39236c6e | 2366 | addr = try_alloc_from_zone(zone); |
0b4e3aa0 | 2367 | |
a3d08fcd | 2368 | |
0b4e3aa0 | 2369 | while ((addr == 0) && canblock) { |
1c79356b A |
2370 | /* |
2371 | * If nothing was there, try to get more | |
2372 | */ | |
2373 | if (zone->doing_alloc) { | |
1c79356b A |
2374 | /* |
2375 | * Someone is allocating memory for this zone. | |
2376 | * Wait for it to show up, then try again. | |
2377 | */ | |
1c79356b | 2378 | zone->waiting = TRUE; |
9bccf70c | 2379 | zone_sleep(zone); |
7ddcb079 A |
2380 | } else if (zone->doing_gc) { |
2381 | /* zone_gc() is running. Since we need an element | |
2382 | * from the free list that is currently being | |
2383 | * collected, set the waiting bit and try to | |
2384 | * interrupt the GC process, and try again | |
2385 | * when we obtain the lock. | |
2386 | */ | |
2387 | zone->waiting = TRUE; | |
2388 | zone_sleep(zone); | |
2389 | } else { | |
2390 | vm_offset_t space; | |
2391 | vm_size_t alloc_size; | |
2392 | int retry = 0; | |
2393 | ||
1c79356b A |
2394 | if ((zone->cur_size + zone->elem_size) > |
2395 | zone->max_size) { | |
2396 | if (zone->exhaustible) | |
2397 | break; | |
2398 | if (zone->expandable) { | |
2399 | /* | |
2400 | * We're willing to overflow certain | |
2401 | * zones, but not without complaining. | |
2402 | * | |
2403 | * This is best used in conjunction | |
2404 | * with the collectable flag. What we | |
2405 | * want is an assurance we can get the | |
2406 | * memory back, assuming there's no | |
2407 | * leak. | |
2408 | */ | |
2409 | zone->max_size += (zone->max_size >> 1); | |
2410 | } else { | |
2411 | unlock_zone(zone); | |
2412 | ||
316670eb A |
2413 | panic_include_zprint = TRUE; |
2414 | #if CONFIG_ZLEAKS | |
2415 | if (zleak_state & ZLEAK_STATE_ACTIVE) | |
2416 | panic_include_ztrace = TRUE; | |
2417 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2418 | panic("zalloc: zone \"%s\" empty.", zone->zone_name); |
2419 | } | |
2420 | } | |
2421 | zone->doing_alloc = TRUE; | |
2422 | unlock_zone(zone); | |
2423 | ||
7ddcb079 A |
2424 | for (;;) { |
2425 | int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT; | |
2426 | ||
2427 | if (vm_pool_low() || retry >= 1) | |
2428 | alloc_size = | |
2429 | round_page(zone->elem_size); | |
2430 | else | |
2431 | alloc_size = zone->alloc_size; | |
2432 | ||
2433 | if (zone->noencrypt) | |
2434 | zflags |= KMA_NOENCRYPT; | |
2435 | ||
2436 | retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags); | |
2437 | if (retval == KERN_SUCCESS) { | |
2d21ac55 | 2438 | #if ZONE_ALIAS_ADDR |
7ddcb079 A |
2439 | if (alloc_size == PAGE_SIZE) |
2440 | space = zone_alias_addr(space); | |
2d21ac55 | 2441 | #endif |
7ddcb079 | 2442 | |
6d2010ae | 2443 | #if CONFIG_ZLEAKS |
7ddcb079 A |
2444 | if ((zleak_state & (ZLEAK_STATE_ENABLED | ZLEAK_STATE_ACTIVE)) == ZLEAK_STATE_ENABLED) { |
2445 | if (zone_map->size >= zleak_global_tracking_threshold) { | |
2446 | kern_return_t kr; | |
2447 | ||
2448 | kr = zleak_activate(); | |
2449 | if (kr != KERN_SUCCESS) { | |
2450 | printf("Failed to activate live zone leak debugging (%d).\n", kr); | |
6d2010ae A |
2451 | } |
2452 | } | |
55e303ae | 2453 | } |
1c79356b | 2454 | |
7ddcb079 A |
2455 | if ((zleak_state & ZLEAK_STATE_ACTIVE) && !(zone->zleak_on)) { |
2456 | if (zone->cur_size > zleak_per_zone_tracking_threshold) { | |
2457 | zone->zleak_on = TRUE; | |
2458 | } | |
1c79356b | 2459 | } |
7ddcb079 | 2460 | #endif /* CONFIG_ZLEAKS */ |
39236c6e | 2461 | ZONE_PAGE_COUNT_INCR(zone, (alloc_size / PAGE_SIZE)); |
7ddcb079 A |
2462 | zcram(zone, space, alloc_size); |
2463 | ||
2464 | break; | |
2465 | } else if (retval != KERN_RESOURCE_SHORTAGE) { | |
2466 | retry++; | |
2467 | ||
2468 | if (retry == 2) { | |
316670eb | 2469 | zone_gc(TRUE); |
7ddcb079 A |
2470 | printf("zalloc did gc\n"); |
2471 | zone_display_zprint(); | |
2472 | } | |
2473 | if (retry == 3) { | |
6d2010ae A |
2474 | panic_include_zprint = TRUE; |
2475 | #if CONFIG_ZLEAKS | |
7ddcb079 | 2476 | if ((zleak_state & ZLEAK_STATE_ACTIVE)) { |
6d2010ae A |
2477 | panic_include_ztrace = TRUE; |
2478 | } | |
7ddcb079 | 2479 | #endif /* CONFIG_ZLEAKS */ |
39236c6e A |
2480 | if (retval == KERN_NO_SPACE) { |
2481 | zone_t zone_largest = zone_find_largest(); | |
2482 | panic("zalloc: zone map exhausted while allocating from zone %s, likely due to memory leak in zone %s (%lu total bytes, %d elements allocated)", | |
2483 | zone->zone_name, zone_largest->zone_name, | |
2484 | (unsigned long)zone_largest->cur_size, zone_largest->count); | |
2485 | ||
2486 | } | |
7ddcb079 | 2487 | panic("zalloc: \"%s\" (%d elements) retry fail %d, kfree_nop_count: %d", zone->zone_name, zone->count, retval, (int)kfree_nop_count); |
6d2010ae | 2488 | } |
7ddcb079 A |
2489 | } else { |
2490 | break; | |
1c79356b A |
2491 | } |
2492 | } | |
7ddcb079 A |
2493 | lock_zone(zone); |
2494 | zone->doing_alloc = FALSE; | |
2495 | if (zone->waiting) { | |
2496 | zone->waiting = FALSE; | |
2497 | zone_wakeup(zone); | |
2498 | } | |
39236c6e | 2499 | addr = try_alloc_from_zone(zone); |
7ddcb079 A |
2500 | if (addr == 0 && |
2501 | retval == KERN_RESOURCE_SHORTAGE) { | |
2502 | unlock_zone(zone); | |
2503 | ||
2504 | VM_PAGE_WAIT(); | |
2505 | lock_zone(zone); | |
2506 | } | |
1c79356b A |
2507 | } |
2508 | if (addr == 0) | |
39236c6e | 2509 | addr = try_alloc_from_zone(zone); |
1c79356b A |
2510 | } |
2511 | ||
6d2010ae A |
2512 | #if CONFIG_ZLEAKS |
2513 | /* Zone leak detection: | |
2514 | * If we're sampling this allocation, add it to the zleaks hash table. | |
2515 | */ | |
2516 | if (addr && zleak_tracedepth > 0) { | |
2517 | /* Sampling can fail if another sample is happening at the same time in a different zone. */ | |
2518 | if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) { | |
2519 | /* If it failed, roll back the counter so we sample the next allocation instead. */ | |
316670eb | 2520 | zone->zleak_capture = zleak_sample_factor; |
6d2010ae A |
2521 | } |
2522 | } | |
2523 | #endif /* CONFIG_ZLEAKS */ | |
2524 | ||
2525 | ||
39236c6e A |
2526 | if ((addr == 0) && !canblock && (zone->async_pending == FALSE) && (zone->no_callout == FALSE) && (zone->exhaustible == FALSE) && (!vm_pool_low())) { |
2527 | zone->async_pending = TRUE; | |
2528 | unlock_zone(zone); | |
2529 | thread_call_enter(&call_async_alloc); | |
2530 | lock_zone(zone); | |
2531 | addr = try_alloc_from_zone(zone); | |
2532 | } | |
2533 | ||
c910b4d9 A |
2534 | /* |
2535 | * See if we should be logging allocations in this zone. Logging is rarely done except when a leak is | |
2536 | * suspected, so this code rarely executes. We need to do this code while still holding the zone lock | |
2537 | * since it protects the various log related data structures. | |
2538 | */ | |
2539 | ||
39236c6e A |
2540 | if (__improbable(DO_LOGGING(zone) && addr)) { |
2541 | btlog_add_entry(zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved); | |
0b4e3aa0 A |
2542 | } |
2543 | ||
1c79356b | 2544 | #if ZONE_DEBUG |
316670eb | 2545 | if (!did_gzalloc && addr && zone_debug_enabled(zone)) { |
1c79356b | 2546 | enqueue_tail(&zone->active_zones, (queue_entry_t)addr); |
55e303ae | 2547 | addr += ZONE_DEBUG_OFFSET; |
1c79356b A |
2548 | } |
2549 | #endif | |
2550 | ||
2551 | unlock_zone(zone); | |
0b4e3aa0 | 2552 | |
2d21ac55 A |
2553 | TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr); |
2554 | ||
6d2010ae | 2555 | if (addr) { |
6d2010ae A |
2556 | task_t task; |
2557 | zinfo_usage_t zinfo; | |
316670eb | 2558 | vm_size_t sz = zone->elem_size; |
6d2010ae A |
2559 | |
2560 | if (zone->caller_acct) | |
316670eb | 2561 | ledger_credit(thr->t_ledger, task_ledgers.tkm_private, sz); |
6d2010ae | 2562 | else |
316670eb | 2563 | ledger_credit(thr->t_ledger, task_ledgers.tkm_shared, sz); |
6d2010ae A |
2564 | |
2565 | if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) | |
316670eb | 2566 | OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].alloc); |
6d2010ae | 2567 | } |
91447636 | 2568 | return((void *)addr); |
1c79356b A |
2569 | } |
2570 | ||
2571 | ||
91447636 | 2572 | void * |
1c79356b A |
2573 | zalloc( |
2574 | register zone_t zone) | |
2575 | { | |
2576 | return( zalloc_canblock(zone, TRUE) ); | |
2577 | } | |
2578 | ||
91447636 | 2579 | void * |
1c79356b A |
2580 | zalloc_noblock( |
2581 | register zone_t zone) | |
2582 | { | |
2583 | return( zalloc_canblock(zone, FALSE) ); | |
2584 | } | |
2585 | ||
0b4e3aa0 A |
2586 | void |
2587 | zalloc_async( | |
39236c6e | 2588 | __unused thread_call_param_t p0, |
91447636 | 2589 | __unused thread_call_param_t p1) |
0b4e3aa0 | 2590 | { |
39236c6e A |
2591 | zone_t current_z = NULL, head_z; |
2592 | unsigned int max_zones, i; | |
2593 | void *elt = NULL; | |
2594 | boolean_t pending = FALSE; | |
2595 | ||
2596 | simple_lock(&all_zones_lock); | |
2597 | head_z = first_zone; | |
2598 | max_zones = num_zones; | |
2599 | simple_unlock(&all_zones_lock); | |
2600 | current_z = head_z; | |
2601 | for (i = 0; i < max_zones; i++) { | |
2602 | lock_zone(current_z); | |
2603 | if (current_z->async_pending == TRUE) { | |
2604 | current_z->async_pending = FALSE; | |
2605 | pending = TRUE; | |
2606 | } | |
2607 | unlock_zone(current_z); | |
0b4e3aa0 | 2608 | |
39236c6e A |
2609 | if (pending == TRUE) { |
2610 | elt = zalloc_canblock(current_z, TRUE); | |
2611 | zfree(current_z, elt); | |
2612 | pending = FALSE; | |
2613 | } | |
2614 | /* | |
2615 | * This is based on assumption that zones never get | |
2616 | * freed once allocated and linked. | |
2617 | * Hence a read outside of lock is OK. | |
2618 | */ | |
2619 | current_z = current_z->next_zone; | |
2620 | } | |
0b4e3aa0 A |
2621 | } |
2622 | ||
1c79356b A |
2623 | /* |
2624 | * zget returns an element from the specified zone | |
2625 | * and immediately returns nothing if there is nothing there. | |
2626 | * | |
2627 | * This form should be used when you can not block (like when | |
2628 | * processing an interrupt). | |
6d2010ae A |
2629 | * |
2630 | * XXX: It seems like only vm_page_grab_fictitious_common uses this, and its | |
2631 | * friend vm_page_more_fictitious can block, so it doesn't seem like | |
2632 | * this is used for interrupts any more.... | |
1c79356b | 2633 | */ |
91447636 | 2634 | void * |
1c79356b A |
2635 | zget( |
2636 | register zone_t zone) | |
2637 | { | |
316670eb | 2638 | vm_offset_t addr; |
6d2010ae A |
2639 | |
2640 | #if CONFIG_ZLEAKS | |
2641 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used for zone leak detection */ | |
2642 | uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */ | |
2643 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b A |
2644 | |
2645 | assert( zone != ZONE_NULL ); | |
2646 | ||
2647 | if (!lock_try_zone(zone)) | |
91447636 | 2648 | return NULL; |
6d2010ae A |
2649 | |
2650 | #if CONFIG_ZLEAKS | |
2651 | /* | |
2652 | * Zone leak detection: capture a backtrace | |
2653 | */ | |
39236c6e A |
2654 | if (zone->zleak_on && (++zone->zleak_capture >= zleak_sample_factor)) { |
2655 | zone->zleak_capture = 0; | |
6d2010ae A |
2656 | zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH); |
2657 | } | |
2658 | #endif /* CONFIG_ZLEAKS */ | |
1c79356b | 2659 | |
39236c6e | 2660 | addr = try_alloc_from_zone(zone); |
1c79356b A |
2661 | #if ZONE_DEBUG |
2662 | if (addr && zone_debug_enabled(zone)) { | |
2663 | enqueue_tail(&zone->active_zones, (queue_entry_t)addr); | |
55e303ae | 2664 | addr += ZONE_DEBUG_OFFSET; |
1c79356b A |
2665 | } |
2666 | #endif /* ZONE_DEBUG */ | |
6d2010ae A |
2667 | |
2668 | #if CONFIG_ZLEAKS | |
2669 | /* | |
2670 | * Zone leak detection: record the allocation | |
2671 | */ | |
2672 | if (zone->zleak_on && zleak_tracedepth > 0 && addr) { | |
2673 | /* Sampling can fail if another sample is happening at the same time in a different zone. */ | |
2674 | if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) { | |
2675 | /* If it failed, roll back the counter so we sample the next allocation instead. */ | |
316670eb | 2676 | zone->zleak_capture = zleak_sample_factor; |
6d2010ae A |
2677 | } |
2678 | } | |
6d2010ae A |
2679 | #endif /* CONFIG_ZLEAKS */ |
2680 | ||
1c79356b A |
2681 | unlock_zone(zone); |
2682 | ||
91447636 | 2683 | return((void *) addr); |
1c79356b A |
2684 | } |
2685 | ||
2686 | /* Keep this FALSE by default. Large memory machine run orders of magnitude | |
2687 | slower in debug mode when true. Use debugger to enable if needed */ | |
55e303ae A |
2688 | /* static */ boolean_t zone_check = FALSE; |
2689 | ||
39236c6e A |
2690 | static void zone_check_freelist(zone_t zone, vm_offset_t elem) |
2691 | { | |
2692 | struct zone_free_element *this; | |
2693 | struct zone_page_metadata *thispage; | |
2694 | ||
2695 | if (zone->use_page_list) { | |
2696 | if (zone->allows_foreign) { | |
2697 | for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign); | |
2698 | !queue_end(&zone->pages.any_free_foreign, (queue_entry_t)thispage); | |
2699 | thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { | |
2700 | for (this = thispage->elements; | |
2701 | this != NULL; | |
2702 | this = this->next) { | |
2703 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2704 | panic("zone_check_freelist"); | |
2705 | } | |
2706 | } | |
2707 | } | |
2708 | for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.all_free); | |
2709 | !queue_end(&zone->pages.all_free, (queue_entry_t)thispage); | |
2710 | thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { | |
2711 | for (this = thispage->elements; | |
2712 | this != NULL; | |
2713 | this = this->next) { | |
2714 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2715 | panic("zone_check_freelist"); | |
2716 | } | |
2717 | } | |
2718 | for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate); | |
2719 | !queue_end(&zone->pages.intermediate, (queue_entry_t)thispage); | |
2720 | thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) { | |
2721 | for (this = thispage->elements; | |
2722 | this != NULL; | |
2723 | this = this->next) { | |
2724 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2725 | panic("zone_check_freelist"); | |
2726 | } | |
2727 | } | |
2728 | } else { | |
2729 | for (this = zone->free_elements; | |
2730 | this != NULL; | |
2731 | this = this->next) { | |
2732 | if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) | |
2733 | panic("zone_check_freelist"); | |
2734 | } | |
2735 | } | |
2736 | } | |
2737 | ||
55e303ae A |
2738 | static zone_t zone_last_bogus_zone = ZONE_NULL; |
2739 | static vm_offset_t zone_last_bogus_elem = 0; | |
1c79356b A |
2740 | |
2741 | void | |
2742 | zfree( | |
2743 | register zone_t zone, | |
91447636 | 2744 | void *addr) |
1c79356b | 2745 | { |
91447636 | 2746 | vm_offset_t elem = (vm_offset_t) addr; |
39236c6e | 2747 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* only used if zone logging is enabled via boot-args */ |
c910b4d9 | 2748 | int numsaved = 0; |
316670eb | 2749 | boolean_t gzfreed = FALSE; |
c910b4d9 A |
2750 | |
2751 | assert(zone != ZONE_NULL); | |
2752 | ||
39236c6e A |
2753 | #if 1 |
2754 | if (zone->use_page_list) { | |
2755 | struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr); | |
2756 | if (zone != page_meta->zone) { | |
2757 | /* | |
2758 | * Something bad has happened. Someone tried to zfree a pointer but the metadata says it is from | |
2759 | * a different zone (or maybe it's from a zone that doesn't use page free lists at all). We can repair | |
2760 | * some cases of this, if: | |
2761 | * 1) The specified zone had use_page_list, and the true zone also has use_page_list set. In that case | |
2762 | * we can swap the zone_t | |
2763 | * 2) The specified zone had use_page_list, but the true zone does not. In this case page_meta is garbage, | |
2764 | * and dereferencing page_meta->zone might panic. | |
2765 | * To distinguish the two, we enumerate the zone list to match it up. | |
2766 | * We do not handle the case where an incorrect zone is passed that does not have use_page_list set, | |
2767 | * even if the true zone did have this set. | |
2768 | */ | |
2769 | zone_t fixed_zone = NULL; | |
2770 | int fixed_i, max_zones; | |
2771 | ||
2772 | simple_lock(&all_zones_lock); | |
2773 | max_zones = num_zones; | |
2774 | fixed_zone = first_zone; | |
2775 | simple_unlock(&all_zones_lock); | |
2776 | ||
2777 | for (fixed_i=0; fixed_i < max_zones; fixed_i++, fixed_zone = fixed_zone->next_zone) { | |
2778 | if (fixed_zone == page_meta->zone && fixed_zone->use_page_list) { | |
2779 | /* we can fix this */ | |
2780 | printf("Fixing incorrect zfree from zone %s to zone %s\n", zone->zone_name, fixed_zone->zone_name); | |
2781 | zone = fixed_zone; | |
2782 | break; | |
2783 | } | |
2784 | } | |
2785 | } | |
2786 | } | |
2787 | #endif | |
2788 | ||
c910b4d9 A |
2789 | /* |
2790 | * If zone logging is turned on and this is the zone we're tracking, grab a backtrace. | |
2791 | */ | |
2792 | ||
39236c6e A |
2793 | if (__improbable(DO_LOGGING(zone) && corruption_debug_flag)) |
2794 | numsaved = OSBacktrace((void *)zbt, MAX_ZTRACE_DEPTH); | |
1c79356b A |
2795 | |
2796 | #if MACH_ASSERT | |
2797 | /* Basic sanity checks */ | |
2798 | if (zone == ZONE_NULL || elem == (vm_offset_t)0) | |
2799 | panic("zfree: NULL"); | |
2800 | /* zone_gc assumes zones are never freed */ | |
2801 | if (zone == zone_zone) | |
2802 | panic("zfree: freeing to zone_zone breaks zone_gc!"); | |
55e303ae A |
2803 | #endif |
2804 | ||
316670eb A |
2805 | #if CONFIG_GZALLOC |
2806 | gzfreed = gzalloc_free(zone, addr); | |
2807 | #endif | |
2808 | ||
b0d623f7 | 2809 | TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (uintptr_t)addr); |
2d21ac55 | 2810 | |
316670eb A |
2811 | if (__improbable(!gzfreed && zone->collectable && !zone->allows_foreign && |
2812 | !from_zone_map(elem, zone->elem_size))) { | |
55e303ae | 2813 | #if MACH_ASSERT |
1c79356b | 2814 | panic("zfree: non-allocated memory in collectable zone!"); |
91447636 | 2815 | #endif |
55e303ae A |
2816 | zone_last_bogus_zone = zone; |
2817 | zone_last_bogus_elem = elem; | |
2818 | return; | |
55e303ae | 2819 | } |
1c79356b A |
2820 | |
2821 | lock_zone(zone); | |
c910b4d9 A |
2822 | |
2823 | /* | |
2824 | * See if we're doing logging on this zone. There are two styles of logging used depending on | |
2825 | * whether we're trying to catch a leak or corruption. See comments above in zalloc for details. | |
2826 | */ | |
2827 | ||
39236c6e | 2828 | if (__improbable(DO_LOGGING(zone))) { |
316670eb | 2829 | if (corruption_debug_flag) { |
c910b4d9 A |
2830 | /* |
2831 | * We're logging to catch a corruption. Add a record of this zfree operation | |
2832 | * to log. | |
2833 | */ | |
39236c6e | 2834 | btlog_add_entry(zlog_btlog, (void *)addr, ZOP_FREE, (void **)zbt, numsaved); |
c910b4d9 | 2835 | } else { |
c910b4d9 A |
2836 | /* |
2837 | * We're logging to catch a leak. Remove any record we might have for this | |
2838 | * element since it's being freed. Note that we may not find it if the buffer | |
2839 | * overflowed and that's OK. Since the log is of a limited size, old records | |
2840 | * get overwritten if there are more zallocs than zfrees. | |
2841 | */ | |
39236c6e | 2842 | btlog_remove_entries_for_element(zlog_btlog, (void *)addr); |
c910b4d9 A |
2843 | } |
2844 | } | |
2845 | ||
1c79356b | 2846 | #if ZONE_DEBUG |
316670eb | 2847 | if (!gzfreed && zone_debug_enabled(zone)) { |
1c79356b A |
2848 | queue_t tmp_elem; |
2849 | ||
55e303ae | 2850 | elem -= ZONE_DEBUG_OFFSET; |
1c79356b A |
2851 | if (zone_check) { |
2852 | /* check the zone's consistency */ | |
2853 | ||
2854 | for (tmp_elem = queue_first(&zone->active_zones); | |
2855 | !queue_end(tmp_elem, &zone->active_zones); | |
2856 | tmp_elem = queue_next(tmp_elem)) | |
2857 | if (elem == (vm_offset_t)tmp_elem) | |
2858 | break; | |
2859 | if (elem != (vm_offset_t)tmp_elem) | |
2860 | panic("zfree()ing element from wrong zone"); | |
2861 | } | |
6d2010ae | 2862 | remqueue((queue_t) elem); |
1c79356b A |
2863 | } |
2864 | #endif /* ZONE_DEBUG */ | |
2865 | if (zone_check) { | |
39236c6e | 2866 | zone_check_freelist(zone, elem); |
1c79356b | 2867 | } |
316670eb A |
2868 | |
2869 | if (__probable(!gzfreed)) | |
39236c6e | 2870 | free_to_zone(zone, elem); |
316670eb | 2871 | |
b0d623f7 A |
2872 | #if MACH_ASSERT |
2873 | if (zone->count < 0) | |
39236c6e A |
2874 | panic("zfree: zone count underflow in zone %s while freeing element %p, possible cause: double frees or freeing memory that did not come from this zone", |
2875 | zone->zone_name, addr); | |
b0d623f7 | 2876 | #endif |
6d2010ae | 2877 | |
0b4e3aa0 | 2878 | |
6d2010ae | 2879 | #if CONFIG_ZLEAKS |
6d2010ae A |
2880 | /* |
2881 | * Zone leak detection: un-track the allocation | |
2882 | */ | |
2883 | if (zone->zleak_on) { | |
2884 | zleak_free(elem, zone->elem_size); | |
2885 | } | |
2886 | #endif /* CONFIG_ZLEAKS */ | |
2887 | ||
1c79356b A |
2888 | /* |
2889 | * If elements have one or more pages, and memory is low, | |
0b4e3aa0 A |
2890 | * request to run the garbage collection in the zone the next |
2891 | * time the pageout thread runs. | |
1c79356b A |
2892 | */ |
2893 | if (zone->elem_size >= PAGE_SIZE && | |
2894 | vm_pool_low()){ | |
0b4e3aa0 | 2895 | zone_gc_forced = TRUE; |
1c79356b | 2896 | } |
1c79356b | 2897 | unlock_zone(zone); |
6d2010ae A |
2898 | |
2899 | { | |
2900 | thread_t thr = current_thread(); | |
2901 | task_t task; | |
2902 | zinfo_usage_t zinfo; | |
316670eb | 2903 | vm_size_t sz = zone->elem_size; |
6d2010ae A |
2904 | |
2905 | if (zone->caller_acct) | |
316670eb | 2906 | ledger_debit(thr->t_ledger, task_ledgers.tkm_private, sz); |
6d2010ae | 2907 | else |
316670eb A |
2908 | ledger_debit(thr->t_ledger, task_ledgers.tkm_shared, sz); |
2909 | ||
6d2010ae | 2910 | if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) |
316670eb | 2911 | OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].free); |
6d2010ae | 2912 | } |
1c79356b A |
2913 | } |
2914 | ||
2915 | ||
2916 | /* Change a zone's flags. | |
2917 | * This routine must be called immediately after zinit. | |
2918 | */ | |
2919 | void | |
2920 | zone_change( | |
2921 | zone_t zone, | |
2922 | unsigned int item, | |
2923 | boolean_t value) | |
2924 | { | |
2925 | assert( zone != ZONE_NULL ); | |
2926 | assert( value == TRUE || value == FALSE ); | |
2927 | ||
2928 | switch(item){ | |
0b4c1975 A |
2929 | case Z_NOENCRYPT: |
2930 | zone->noencrypt = value; | |
2931 | break; | |
1c79356b A |
2932 | case Z_EXHAUST: |
2933 | zone->exhaustible = value; | |
2934 | break; | |
2935 | case Z_COLLECT: | |
2936 | zone->collectable = value; | |
2937 | break; | |
2938 | case Z_EXPAND: | |
2939 | zone->expandable = value; | |
2940 | break; | |
2941 | case Z_FOREIGN: | |
2942 | zone->allows_foreign = value; | |
2943 | break; | |
6d2010ae A |
2944 | case Z_CALLERACCT: |
2945 | zone->caller_acct = value; | |
2946 | break; | |
7ddcb079 A |
2947 | case Z_NOCALLOUT: |
2948 | zone->no_callout = value; | |
2949 | break; | |
316670eb A |
2950 | case Z_GZALLOC_EXEMPT: |
2951 | zone->gzalloc_exempt = value; | |
2952 | #if CONFIG_GZALLOC | |
2953 | gzalloc_reconfigure(zone); | |
2954 | #endif | |
2955 | break; | |
2956 | case Z_ALIGNMENT_REQUIRED: | |
2957 | zone->alignment_required = value; | |
2958 | #if ZONE_DEBUG | |
2959 | zone_debug_disable(zone); | |
2960 | #endif | |
2961 | #if CONFIG_GZALLOC | |
2962 | gzalloc_reconfigure(zone); | |
2963 | #endif | |
2964 | break; | |
1c79356b A |
2965 | default: |
2966 | panic("Zone_change: Wrong Item Type!"); | |
2967 | /* break; */ | |
1c79356b | 2968 | } |
1c79356b A |
2969 | } |
2970 | ||
2971 | /* | |
2972 | * Return the expected number of free elements in the zone. | |
2973 | * This calculation will be incorrect if items are zfree'd that | |
2974 | * were never zalloc'd/zget'd. The correct way to stuff memory | |
2975 | * into a zone is by zcram. | |
2976 | */ | |
2977 | ||
2978 | integer_t | |
2979 | zone_free_count(zone_t zone) | |
2980 | { | |
2981 | integer_t free_count; | |
2982 | ||
2983 | lock_zone(zone); | |
39236c6e | 2984 | free_count = zone->countfree; |
1c79356b A |
2985 | unlock_zone(zone); |
2986 | ||
2987 | assert(free_count >= 0); | |
2988 | ||
2989 | return(free_count); | |
2990 | } | |
2991 | ||
1c79356b A |
2992 | /* |
2993 | * Zone garbage collection subroutines | |
1c79356b | 2994 | */ |
55e303ae | 2995 | |
1c79356b A |
2996 | boolean_t |
2997 | zone_page_collectable( | |
2998 | vm_offset_t addr, | |
2999 | vm_size_t size) | |
3000 | { | |
55e303ae | 3001 | struct zone_page_table_entry *zp; |
7ddcb079 | 3002 | zone_page_index_t i, j; |
1c79356b | 3003 | |
2d21ac55 A |
3004 | #if ZONE_ALIAS_ADDR |
3005 | addr = zone_virtual_addr(addr); | |
3006 | #endif | |
1c79356b | 3007 | #if MACH_ASSERT |
55e303ae | 3008 | if (!from_zone_map(addr, size)) |
1c79356b A |
3009 | panic("zone_page_collectable"); |
3010 | #endif | |
3011 | ||
7ddcb079 A |
3012 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3013 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
55e303ae | 3014 | |
7ddcb079 A |
3015 | for (; i <= j; i++) { |
3016 | zp = zone_page_table_lookup(i); | |
55e303ae | 3017 | if (zp->collect_count == zp->alloc_count) |
1c79356b | 3018 | return (TRUE); |
7ddcb079 | 3019 | } |
55e303ae | 3020 | |
1c79356b A |
3021 | return (FALSE); |
3022 | } | |
3023 | ||
3024 | void | |
3025 | zone_page_keep( | |
3026 | vm_offset_t addr, | |
3027 | vm_size_t size) | |
3028 | { | |
55e303ae | 3029 | struct zone_page_table_entry *zp; |
7ddcb079 | 3030 | zone_page_index_t i, j; |
1c79356b | 3031 | |
2d21ac55 A |
3032 | #if ZONE_ALIAS_ADDR |
3033 | addr = zone_virtual_addr(addr); | |
3034 | #endif | |
1c79356b | 3035 | #if MACH_ASSERT |
55e303ae | 3036 | if (!from_zone_map(addr, size)) |
1c79356b A |
3037 | panic("zone_page_keep"); |
3038 | #endif | |
3039 | ||
7ddcb079 A |
3040 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3041 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
1c79356b | 3042 | |
7ddcb079 A |
3043 | for (; i <= j; i++) { |
3044 | zp = zone_page_table_lookup(i); | |
55e303ae | 3045 | zp->collect_count = 0; |
7ddcb079 | 3046 | } |
1c79356b A |
3047 | } |
3048 | ||
3049 | void | |
55e303ae | 3050 | zone_page_collect( |
1c79356b A |
3051 | vm_offset_t addr, |
3052 | vm_size_t size) | |
3053 | { | |
55e303ae | 3054 | struct zone_page_table_entry *zp; |
7ddcb079 | 3055 | zone_page_index_t i, j; |
1c79356b | 3056 | |
2d21ac55 A |
3057 | #if ZONE_ALIAS_ADDR |
3058 | addr = zone_virtual_addr(addr); | |
3059 | #endif | |
1c79356b | 3060 | #if MACH_ASSERT |
55e303ae A |
3061 | if (!from_zone_map(addr, size)) |
3062 | panic("zone_page_collect"); | |
1c79356b A |
3063 | #endif |
3064 | ||
7ddcb079 A |
3065 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3066 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
55e303ae | 3067 | |
7ddcb079 A |
3068 | for (; i <= j; i++) { |
3069 | zp = zone_page_table_lookup(i); | |
55e303ae | 3070 | ++zp->collect_count; |
7ddcb079 | 3071 | } |
1c79356b A |
3072 | } |
3073 | ||
3074 | void | |
3075 | zone_page_init( | |
3076 | vm_offset_t addr, | |
7ddcb079 | 3077 | vm_size_t size) |
1c79356b | 3078 | { |
55e303ae | 3079 | struct zone_page_table_entry *zp; |
7ddcb079 | 3080 | zone_page_index_t i, j; |
1c79356b | 3081 | |
2d21ac55 A |
3082 | #if ZONE_ALIAS_ADDR |
3083 | addr = zone_virtual_addr(addr); | |
3084 | #endif | |
1c79356b | 3085 | #if MACH_ASSERT |
55e303ae | 3086 | if (!from_zone_map(addr, size)) |
1c79356b A |
3087 | panic("zone_page_init"); |
3088 | #endif | |
3089 | ||
7ddcb079 A |
3090 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3091 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
3092 | ||
3093 | for (; i <= j; i++) { | |
3094 | /* make sure entry exists before marking unused */ | |
3095 | zone_page_table_expand(i); | |
55e303ae | 3096 | |
7ddcb079 A |
3097 | zp = zone_page_table_lookup(i); |
3098 | assert(zp); | |
3099 | zp->alloc_count = ZONE_PAGE_UNUSED; | |
55e303ae | 3100 | zp->collect_count = 0; |
1c79356b | 3101 | } |
1c79356b A |
3102 | } |
3103 | ||
3104 | void | |
3105 | zone_page_alloc( | |
3106 | vm_offset_t addr, | |
3107 | vm_size_t size) | |
3108 | { | |
55e303ae | 3109 | struct zone_page_table_entry *zp; |
7ddcb079 | 3110 | zone_page_index_t i, j; |
1c79356b | 3111 | |
2d21ac55 A |
3112 | #if ZONE_ALIAS_ADDR |
3113 | addr = zone_virtual_addr(addr); | |
3114 | #endif | |
1c79356b | 3115 | #if MACH_ASSERT |
55e303ae | 3116 | if (!from_zone_map(addr, size)) |
1c79356b A |
3117 | panic("zone_page_alloc"); |
3118 | #endif | |
3119 | ||
7ddcb079 A |
3120 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3121 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
3122 | ||
3123 | for (; i <= j; i++) { | |
3124 | zp = zone_page_table_lookup(i); | |
3125 | assert(zp); | |
55e303ae | 3126 | |
55e303ae | 3127 | /* |
7ddcb079 | 3128 | * Set alloc_count to ZONE_PAGE_USED if |
1c79356b A |
3129 | * it was previously set to ZONE_PAGE_UNUSED. |
3130 | */ | |
55e303ae | 3131 | if (zp->alloc_count == ZONE_PAGE_UNUSED) |
7ddcb079 A |
3132 | zp->alloc_count = ZONE_PAGE_USED; |
3133 | ||
3134 | ++zp->alloc_count; | |
1c79356b | 3135 | } |
1c79356b A |
3136 | } |
3137 | ||
3138 | void | |
55e303ae | 3139 | zone_page_free_element( |
316670eb A |
3140 | zone_page_index_t *free_page_head, |
3141 | zone_page_index_t *free_page_tail, | |
1c79356b A |
3142 | vm_offset_t addr, |
3143 | vm_size_t size) | |
3144 | { | |
55e303ae | 3145 | struct zone_page_table_entry *zp; |
7ddcb079 | 3146 | zone_page_index_t i, j; |
1c79356b | 3147 | |
2d21ac55 A |
3148 | #if ZONE_ALIAS_ADDR |
3149 | addr = zone_virtual_addr(addr); | |
3150 | #endif | |
1c79356b | 3151 | #if MACH_ASSERT |
55e303ae A |
3152 | if (!from_zone_map(addr, size)) |
3153 | panic("zone_page_free_element"); | |
1c79356b A |
3154 | #endif |
3155 | ||
39236c6e A |
3156 | /* Clear out the old next and backup pointers */ |
3157 | vm_offset_t *primary = (vm_offset_t *) addr; | |
3158 | vm_offset_t *backup = get_backup_ptr(size, primary); | |
3159 | ||
3160 | *primary = ZP_POISON; | |
3161 | *backup = ZP_POISON; | |
3162 | ||
7ddcb079 A |
3163 | i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address); |
3164 | j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address); | |
3165 | ||
3166 | for (; i <= j; i++) { | |
3167 | zp = zone_page_table_lookup(i); | |
1c79356b | 3168 | |
55e303ae A |
3169 | if (zp->collect_count > 0) |
3170 | --zp->collect_count; | |
3171 | if (--zp->alloc_count == 0) { | |
7ddcb079 | 3172 | vm_address_t free_page_address; |
316670eb | 3173 | vm_address_t prev_free_page_address; |
7ddcb079 | 3174 | |
55e303ae A |
3175 | zp->alloc_count = ZONE_PAGE_UNUSED; |
3176 | zp->collect_count = 0; | |
1c79356b | 3177 | |
7ddcb079 A |
3178 | |
3179 | /* | |
3180 | * This element was the last one on this page, re-use the page's | |
3181 | * storage for a page freelist | |
3182 | */ | |
3183 | free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)i); | |
316670eb A |
3184 | *(zone_page_index_t *)free_page_address = ZONE_PAGE_INDEX_INVALID; |
3185 | ||
3186 | if (*free_page_head == ZONE_PAGE_INDEX_INVALID) { | |
3187 | *free_page_head = i; | |
3188 | *free_page_tail = i; | |
3189 | } else { | |
3190 | prev_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)(*free_page_tail)); | |
3191 | *(zone_page_index_t *)prev_free_page_address = i; | |
3192 | *free_page_tail = i; | |
3193 | } | |
1c79356b A |
3194 | } |
3195 | } | |
1c79356b A |
3196 | } |
3197 | ||
3198 | ||
1c79356b | 3199 | |
2d21ac55 | 3200 | |
55e303ae | 3201 | struct { |
39236c6e A |
3202 | uint64_t zgc_invoked; |
3203 | uint64_t zgc_bailed; | |
55e303ae A |
3204 | uint32_t pgs_freed; |
3205 | ||
3206 | uint32_t elems_collected, | |
3207 | elems_freed, | |
3208 | elems_kept; | |
3209 | } zgc_stats; | |
1c79356b A |
3210 | |
3211 | /* Zone garbage collection | |
3212 | * | |
3213 | * zone_gc will walk through all the free elements in all the | |
3214 | * zones that are marked collectable looking for reclaimable | |
3215 | * pages. zone_gc is called by consider_zone_gc when the system | |
3216 | * begins to run out of memory. | |
3217 | */ | |
3218 | void | |
316670eb | 3219 | zone_gc(boolean_t all_zones) |
1c79356b A |
3220 | { |
3221 | unsigned int max_zones; | |
55e303ae | 3222 | zone_t z; |
1c79356b | 3223 | unsigned int i; |
39236c6e | 3224 | uint32_t old_pgs_freed; |
7ddcb079 | 3225 | zone_page_index_t zone_free_page_head; |
316670eb A |
3226 | zone_page_index_t zone_free_page_tail; |
3227 | thread_t mythread = current_thread(); | |
1c79356b | 3228 | |
b0d623f7 | 3229 | lck_mtx_lock(&zone_gc_lock); |
1c79356b | 3230 | |
39236c6e A |
3231 | zgc_stats.zgc_invoked++; |
3232 | old_pgs_freed = zgc_stats.pgs_freed; | |
3233 | ||
1c79356b A |
3234 | simple_lock(&all_zones_lock); |
3235 | max_zones = num_zones; | |
3236 | z = first_zone; | |
3237 | simple_unlock(&all_zones_lock); | |
3238 | ||
39236c6e A |
3239 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) |
3240 | kprintf("zone_gc(all_zones=%s) starting...\n", all_zones ? "TRUE" : "FALSE"); | |
316670eb A |
3241 | |
3242 | /* | |
3243 | * it's ok to allow eager kernel preemption while | |
3244 | * while holding a zone lock since it's taken | |
3245 | * as a spin lock (which prevents preemption) | |
3246 | */ | |
3247 | thread_set_eager_preempt(mythread); | |
3248 | ||
1c79356b | 3249 | #if MACH_ASSERT |
7ddcb079 A |
3250 | for (i = 0; i < zone_pages; i++) { |
3251 | struct zone_page_table_entry *zp; | |
3252 | ||
3253 | zp = zone_page_table_lookup(i); | |
3254 | assert(!zp || (zp->collect_count == 0)); | |
3255 | } | |
1c79356b A |
3256 | #endif /* MACH_ASSERT */ |
3257 | ||
1c79356b | 3258 | for (i = 0; i < max_zones; i++, z = z->next_zone) { |
316670eb A |
3259 | unsigned int n, m; |
3260 | vm_size_t elt_size, size_freed; | |
a3d08fcd | 3261 | struct zone_free_element *elt, *base_elt, *base_prev, *prev, *scan, *keep, *tail; |
39236c6e A |
3262 | int kmem_frees = 0, total_freed_pages = 0; |
3263 | struct zone_page_metadata *page_meta; | |
3264 | queue_head_t page_meta_head; | |
1c79356b A |
3265 | |
3266 | assert(z != ZONE_NULL); | |
3267 | ||
3268 | if (!z->collectable) | |
3269 | continue; | |
3270 | ||
39236c6e | 3271 | if (all_zones == FALSE && z->elem_size < PAGE_SIZE && !z->use_page_list) |
316670eb A |
3272 | continue; |
3273 | ||
1c79356b A |
3274 | lock_zone(z); |
3275 | ||
55e303ae A |
3276 | elt_size = z->elem_size; |
3277 | ||
1c79356b | 3278 | /* |
316670eb | 3279 | * Do a quick feasibility check before we scan the zone: |
91447636 A |
3280 | * skip unless there is likelihood of getting pages back |
3281 | * (i.e we need a whole allocation block's worth of free | |
3282 | * elements before we can garbage collect) and | |
3283 | * the zone has more than 10 percent of it's elements free | |
2d21ac55 | 3284 | * or the element size is a multiple of the PAGE_SIZE |
1c79356b | 3285 | */ |
2d21ac55 | 3286 | if ((elt_size & PAGE_MASK) && |
39236c6e | 3287 | !z->use_page_list && |
2d21ac55 A |
3288 | (((z->cur_size - z->count * elt_size) <= (2 * z->alloc_size)) || |
3289 | ((z->cur_size - z->count * elt_size) <= (z->cur_size / 10)))) { | |
1c79356b A |
3290 | unlock_zone(z); |
3291 | continue; | |
3292 | } | |
3293 | ||
a3d08fcd A |
3294 | z->doing_gc = TRUE; |
3295 | ||
55e303ae A |
3296 | /* |
3297 | * Snatch all of the free elements away from the zone. | |
1c79356b | 3298 | */ |
1c79356b | 3299 | |
39236c6e A |
3300 | if (z->use_page_list) { |
3301 | queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages); | |
3302 | queue_init(&z->pages.all_free); | |
3303 | } else { | |
3304 | scan = (void *)z->free_elements; | |
3305 | z->free_elements = 0; | |
3306 | } | |
55e303ae A |
3307 | |
3308 | unlock_zone(z); | |
3309 | ||
39236c6e A |
3310 | if (z->use_page_list) { |
3311 | /* | |
3312 | * For zones that maintain page lists (which in turn | |
3313 | * track free elements on those pages), zone_gc() | |
3314 | * is incredibly easy, and we bypass all the logic | |
3315 | * for scanning elements and mapping them to | |
3316 | * collectable pages | |
3317 | */ | |
3318 | ||
3319 | size_freed = 0; | |
3320 | ||
3321 | queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) { | |
3322 | assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */ | |
3323 | ||
3324 | zgc_stats.elems_freed += page_meta->free_count; | |
3325 | size_freed += elt_size * page_meta->free_count; | |
3326 | zgc_stats.elems_collected += page_meta->free_count; | |
3327 | } | |
3328 | ||
3329 | lock_zone(z); | |
3330 | ||
3331 | if (size_freed > 0) { | |
3332 | z->cur_size -= size_freed; | |
3333 | z->countfree -= size_freed/elt_size; | |
3334 | } | |
3335 | ||
3336 | z->doing_gc = FALSE; | |
3337 | if (z->waiting) { | |
3338 | z->waiting = FALSE; | |
3339 | zone_wakeup(z); | |
3340 | } | |
3341 | ||
3342 | unlock_zone(z); | |
3343 | ||
3344 | if (queue_empty(&page_meta_head)) | |
3345 | continue; | |
3346 | ||
3347 | thread_clear_eager_preempt(mythread); | |
3348 | ||
3349 | while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) { | |
3350 | vm_address_t free_page_address; | |
3351 | ||
3352 | free_page_address = trunc_page((vm_address_t)page_meta); | |
3353 | #if ZONE_ALIAS_ADDR | |
3354 | free_page_address = zone_virtual_addr(free_page_address); | |
3355 | #endif | |
3356 | kmem_free(zone_map, free_page_address, PAGE_SIZE); | |
3357 | ZONE_PAGE_COUNT_DECR(z, 1); | |
3358 | total_freed_pages++; | |
3359 | zgc_stats.pgs_freed += 1; | |
3360 | ||
3361 | if (++kmem_frees == 32) { | |
3362 | thread_yield_internal(1); | |
3363 | kmem_frees = 0; | |
3364 | } | |
3365 | } | |
3366 | ||
3367 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) | |
3368 | kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages); | |
3369 | ||
3370 | thread_set_eager_preempt(mythread); | |
3371 | continue; /* go to next zone */ | |
3372 | } | |
3373 | ||
55e303ae A |
3374 | /* |
3375 | * Pass 1: | |
3376 | * | |
3377 | * Determine which elements we can attempt to collect | |
3378 | * and count them up in the page table. Foreign elements | |
3379 | * are returned to the zone. | |
1c79356b | 3380 | */ |
55e303ae A |
3381 | |
3382 | prev = (void *)&scan; | |
3383 | elt = scan; | |
3384 | n = 0; tail = keep = NULL; | |
316670eb A |
3385 | |
3386 | zone_free_page_head = ZONE_PAGE_INDEX_INVALID; | |
3387 | zone_free_page_tail = ZONE_PAGE_INDEX_INVALID; | |
3388 | ||
3389 | ||
55e303ae A |
3390 | while (elt != NULL) { |
3391 | if (from_zone_map(elt, elt_size)) { | |
3392 | zone_page_collect((vm_offset_t)elt, elt_size); | |
3393 | ||
1c79356b A |
3394 | prev = elt; |
3395 | elt = elt->next; | |
55e303ae A |
3396 | |
3397 | ++zgc_stats.elems_collected; | |
1c79356b | 3398 | } |
55e303ae A |
3399 | else { |
3400 | if (keep == NULL) | |
3401 | keep = tail = elt; | |
2d21ac55 | 3402 | else { |
39236c6e | 3403 | append_zone_element(z, tail, elt); |
2d21ac55 A |
3404 | tail = elt; |
3405 | } | |
55e303ae | 3406 | |
39236c6e | 3407 | append_zone_element(z, prev, elt->next); |
2d21ac55 | 3408 | elt = elt->next; |
39236c6e | 3409 | append_zone_element(z, tail, NULL); |
1c79356b | 3410 | } |
1c79356b | 3411 | |
55e303ae A |
3412 | /* |
3413 | * Dribble back the elements we are keeping. | |
39236c6e A |
3414 | * If there are none, give some elements that we haven't looked at yet |
3415 | * back to the freelist so that others waiting on the zone don't get stuck | |
3416 | * for too long. This might prevent us from recovering some memory, | |
3417 | * but allows us to avoid having to allocate new memory to serve requests | |
3418 | * while zone_gc has all the free memory tied up. | |
3419 | * <rdar://problem/3893406> | |
55e303ae A |
3420 | */ |
3421 | ||
a3d08fcd A |
3422 | if (++n >= 50) { |
3423 | if (z->waiting == TRUE) { | |
7ddcb079 | 3424 | /* z->waiting checked without lock held, rechecked below after locking */ |
a3d08fcd | 3425 | lock_zone(z); |
55e303ae | 3426 | |
a3d08fcd | 3427 | if (keep != NULL) { |
39236c6e | 3428 | add_list_to_zone(z, keep, tail); |
a3d08fcd A |
3429 | tail = keep = NULL; |
3430 | } else { | |
3431 | m =0; | |
3432 | base_elt = elt; | |
3433 | base_prev = prev; | |
3434 | while ((elt != NULL) && (++m < 50)) { | |
3435 | prev = elt; | |
3436 | elt = elt->next; | |
3437 | } | |
3438 | if (m !=0 ) { | |
39236c6e A |
3439 | /* Extract the elements from the list and |
3440 | * give them back */ | |
3441 | append_zone_element(z, prev, NULL); | |
3442 | add_list_to_zone(z, base_elt, prev); | |
3443 | append_zone_element(z, base_prev, elt); | |
a3d08fcd A |
3444 | prev = base_prev; |
3445 | } | |
3446 | } | |
55e303ae | 3447 | |
a3d08fcd A |
3448 | if (z->waiting) { |
3449 | z->waiting = FALSE; | |
3450 | zone_wakeup(z); | |
3451 | } | |
55e303ae | 3452 | |
a3d08fcd A |
3453 | unlock_zone(z); |
3454 | } | |
3455 | n =0; | |
55e303ae A |
3456 | } |
3457 | } | |
3458 | ||
3459 | /* | |
3460 | * Return any remaining elements. | |
3461 | */ | |
3462 | ||
3463 | if (keep != NULL) { | |
3464 | lock_zone(z); | |
3465 | ||
39236c6e | 3466 | add_list_to_zone(z, keep, tail); |
55e303ae | 3467 | |
7ddcb079 A |
3468 | if (z->waiting) { |
3469 | z->waiting = FALSE; | |
3470 | zone_wakeup(z); | |
3471 | } | |
3472 | ||
55e303ae A |
3473 | unlock_zone(z); |
3474 | } | |
3475 | ||
3476 | /* | |
3477 | * Pass 2: | |
3478 | * | |
3479 | * Determine which pages we can reclaim and | |
3480 | * free those elements. | |
3481 | */ | |
3482 | ||
3483 | size_freed = 0; | |
55e303ae A |
3484 | elt = scan; |
3485 | n = 0; tail = keep = NULL; | |
316670eb | 3486 | |
55e303ae A |
3487 | while (elt != NULL) { |
3488 | if (zone_page_collectable((vm_offset_t)elt, elt_size)) { | |
7ddcb079 A |
3489 | struct zone_free_element *next_elt = elt->next; |
3490 | ||
55e303ae | 3491 | size_freed += elt_size; |
7ddcb079 A |
3492 | |
3493 | /* | |
3494 | * If this is the last allocation on the page(s), | |
3495 | * we may use their storage to maintain the linked | |
3496 | * list of free-able pages. So store elt->next because | |
3497 | * "elt" may be scribbled over. | |
3498 | */ | |
316670eb | 3499 | zone_page_free_element(&zone_free_page_head, &zone_free_page_tail, (vm_offset_t)elt, elt_size); |
55e303ae | 3500 | |
7ddcb079 | 3501 | elt = next_elt; |
55e303ae A |
3502 | |
3503 | ++zgc_stats.elems_freed; | |
3504 | } | |
3505 | else { | |
3506 | zone_page_keep((vm_offset_t)elt, elt_size); | |
3507 | ||
3508 | if (keep == NULL) | |
3509 | keep = tail = elt; | |
2d21ac55 | 3510 | else { |
39236c6e | 3511 | append_zone_element(z, tail, elt); |
2d21ac55 A |
3512 | tail = elt; |
3513 | } | |
55e303ae | 3514 | |
2d21ac55 | 3515 | elt = elt->next; |
39236c6e | 3516 | append_zone_element(z, tail, NULL); |
55e303ae A |
3517 | |
3518 | ++zgc_stats.elems_kept; | |
3519 | } | |
3520 | ||
3521 | /* | |
3522 | * Dribble back the elements we are keeping, | |
3523 | * and update the zone size info. | |
3524 | */ | |
3525 | ||
a3d08fcd | 3526 | if (++n >= 50) { |
55e303ae A |
3527 | lock_zone(z); |
3528 | ||
3529 | z->cur_size -= size_freed; | |
39236c6e | 3530 | z->countfree -= size_freed/elt_size; |
55e303ae A |
3531 | size_freed = 0; |
3532 | ||
a3d08fcd | 3533 | if (keep != NULL) { |
39236c6e | 3534 | add_list_to_zone(z, keep, tail); |
a3d08fcd A |
3535 | } |
3536 | ||
3537 | if (z->waiting) { | |
3538 | z->waiting = FALSE; | |
3539 | zone_wakeup(z); | |
3540 | } | |
55e303ae A |
3541 | |
3542 | unlock_zone(z); | |
3543 | ||
3544 | n = 0; tail = keep = NULL; | |
3545 | } | |
3546 | } | |
3547 | ||
3548 | /* | |
3549 | * Return any remaining elements, and update | |
3550 | * the zone size info. | |
3551 | */ | |
3552 | ||
a3d08fcd A |
3553 | lock_zone(z); |
3554 | ||
55e303ae | 3555 | if (size_freed > 0 || keep != NULL) { |
55e303ae A |
3556 | |
3557 | z->cur_size -= size_freed; | |
39236c6e | 3558 | z->countfree -= size_freed/elt_size; |
55e303ae A |
3559 | |
3560 | if (keep != NULL) { | |
39236c6e | 3561 | add_list_to_zone(z, keep, tail); |
55e303ae A |
3562 | } |
3563 | ||
55e303ae | 3564 | } |
a3d08fcd A |
3565 | |
3566 | z->doing_gc = FALSE; | |
3567 | if (z->waiting) { | |
3568 | z->waiting = FALSE; | |
3569 | zone_wakeup(z); | |
3570 | } | |
3571 | unlock_zone(z); | |
1c79356b | 3572 | |
316670eb A |
3573 | if (zone_free_page_head == ZONE_PAGE_INDEX_INVALID) |
3574 | continue; | |
3575 | ||
3576 | /* | |
3577 | * we don't want to allow eager kernel preemption while holding the | |
3578 | * various locks taken in the kmem_free path of execution | |
3579 | */ | |
3580 | thread_clear_eager_preempt(mythread); | |
3581 | ||
39236c6e A |
3582 | |
3583 | /* | |
3584 | * This loop counts the number of pages that should be freed by the | |
3585 | * next loop that tries to coalesce the kmem_frees() | |
3586 | */ | |
3587 | uint32_t pages_to_free_count = 0; | |
3588 | vm_address_t fpa; | |
3589 | zone_page_index_t index; | |
3590 | for (index = zone_free_page_head; index != ZONE_PAGE_INDEX_INVALID;) { | |
3591 | pages_to_free_count++; | |
3592 | fpa = zone_map_min_address + PAGE_SIZE * ((vm_size_t)index); | |
3593 | index = *(zone_page_index_t *)fpa; | |
3594 | } | |
3595 | ||
316670eb A |
3596 | /* |
3597 | * Reclaim the pages we are freeing. | |
3598 | */ | |
3599 | while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) { | |
3600 | zone_page_index_t zind = zone_free_page_head; | |
3601 | vm_address_t free_page_address; | |
3602 | int page_count; | |
3603 | ||
3604 | /* | |
3605 | * Use the first word of the page about to be freed to find the next free page | |
3606 | */ | |
3607 | free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)zind); | |
3608 | zone_free_page_head = *(zone_page_index_t *)free_page_address; | |
3609 | ||
3610 | page_count = 1; | |
39236c6e | 3611 | total_freed_pages++; |
316670eb A |
3612 | |
3613 | while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) { | |
3614 | zone_page_index_t next_zind = zone_free_page_head; | |
3615 | vm_address_t next_free_page_address; | |
3616 | ||
3617 | next_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)next_zind); | |
3618 | ||
3619 | if (next_free_page_address == (free_page_address - PAGE_SIZE)) { | |
3620 | free_page_address = next_free_page_address; | |
3621 | } else if (next_free_page_address != (free_page_address + (PAGE_SIZE * page_count))) | |
3622 | break; | |
3623 | ||
3624 | zone_free_page_head = *(zone_page_index_t *)next_free_page_address; | |
3625 | page_count++; | |
39236c6e | 3626 | total_freed_pages++; |
316670eb A |
3627 | } |
3628 | kmem_free(zone_map, free_page_address, page_count * PAGE_SIZE); | |
39236c6e | 3629 | ZONE_PAGE_COUNT_DECR(z, page_count); |
316670eb | 3630 | zgc_stats.pgs_freed += page_count; |
39236c6e | 3631 | pages_to_free_count -= page_count; |
7ddcb079 | 3632 | |
316670eb A |
3633 | if (++kmem_frees == 32) { |
3634 | thread_yield_internal(1); | |
3635 | kmem_frees = 0; | |
3636 | } | |
3637 | } | |
39236c6e A |
3638 | |
3639 | /* Check that we actually free the exact number of pages we were supposed to */ | |
3640 | assert(pages_to_free_count == 0); | |
3641 | ||
3642 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) | |
3643 | kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages); | |
3644 | ||
316670eb | 3645 | thread_set_eager_preempt(mythread); |
1c79356b | 3646 | } |
39236c6e A |
3647 | |
3648 | if (old_pgs_freed == zgc_stats.pgs_freed) | |
3649 | zgc_stats.zgc_bailed++; | |
3650 | ||
316670eb | 3651 | thread_clear_eager_preempt(mythread); |
55e303ae | 3652 | |
b0d623f7 | 3653 | lck_mtx_unlock(&zone_gc_lock); |
316670eb | 3654 | |
1c79356b A |
3655 | } |
3656 | ||
316670eb A |
3657 | extern vm_offset_t kmapoff_kaddr; |
3658 | extern unsigned int kmapoff_pgcnt; | |
3659 | ||
1c79356b A |
3660 | /* |
3661 | * consider_zone_gc: | |
3662 | * | |
3663 | * Called by the pageout daemon when the system needs more free pages. | |
3664 | */ | |
3665 | ||
3666 | void | |
b0d623f7 | 3667 | consider_zone_gc(boolean_t force) |
1c79356b | 3668 | { |
316670eb A |
3669 | boolean_t all_zones = FALSE; |
3670 | ||
3671 | if (kmapoff_kaddr != 0) { | |
3672 | /* | |
3673 | * One-time reclaim of kernel_map resources we allocated in | |
3674 | * early boot. | |
3675 | */ | |
3676 | (void) vm_deallocate(kernel_map, | |
3677 | kmapoff_kaddr, kmapoff_pgcnt * PAGE_SIZE_64); | |
3678 | kmapoff_kaddr = 0; | |
3679 | } | |
1c79356b A |
3680 | |
3681 | if (zone_gc_allowed && | |
6d2010ae | 3682 | (zone_gc_allowed_by_time_throttle || |
b0d623f7 A |
3683 | zone_gc_forced || |
3684 | force)) { | |
316670eb A |
3685 | if (zone_gc_allowed_by_time_throttle == TRUE) { |
3686 | zone_gc_allowed_by_time_throttle = FALSE; | |
3687 | all_zones = TRUE; | |
3688 | } | |
0b4e3aa0 | 3689 | zone_gc_forced = FALSE; |
316670eb A |
3690 | |
3691 | zone_gc(all_zones); | |
1c79356b A |
3692 | } |
3693 | } | |
3694 | ||
6d2010ae A |
3695 | /* |
3696 | * By default, don't attempt zone GC more frequently | |
3697 | * than once / 1 minutes. | |
3698 | */ | |
3699 | void | |
3700 | compute_zone_gc_throttle(void *arg __unused) | |
3701 | { | |
3702 | zone_gc_allowed_by_time_throttle = TRUE; | |
3703 | } | |
2d21ac55 | 3704 | |
1c79356b | 3705 | |
316670eb A |
3706 | #if CONFIG_TASK_ZONE_INFO |
3707 | ||
6d2010ae A |
3708 | kern_return_t |
3709 | task_zone_info( | |
3710 | task_t task, | |
3711 | mach_zone_name_array_t *namesp, | |
3712 | mach_msg_type_number_t *namesCntp, | |
3713 | task_zone_info_array_t *infop, | |
3714 | mach_msg_type_number_t *infoCntp) | |
3715 | { | |
3716 | mach_zone_name_t *names; | |
3717 | vm_offset_t names_addr; | |
3718 | vm_size_t names_size; | |
3719 | task_zone_info_t *info; | |
3720 | vm_offset_t info_addr; | |
3721 | vm_size_t info_size; | |
3722 | unsigned int max_zones, i; | |
3723 | zone_t z; | |
3724 | mach_zone_name_t *zn; | |
3725 | task_zone_info_t *zi; | |
3726 | kern_return_t kr; | |
3727 | ||
3728 | vm_size_t used; | |
3729 | vm_map_copy_t copy; | |
3730 | ||
3731 | ||
3732 | if (task == TASK_NULL) | |
3733 | return KERN_INVALID_TASK; | |
3734 | ||
3735 | /* | |
3736 | * We assume that zones aren't freed once allocated. | |
3737 | * We won't pick up any zones that are allocated later. | |
3738 | */ | |
3739 | ||
3740 | simple_lock(&all_zones_lock); | |
3741 | max_zones = (unsigned int)(num_zones + num_fake_zones); | |
3742 | z = first_zone; | |
3743 | simple_unlock(&all_zones_lock); | |
3744 | ||
3745 | names_size = round_page(max_zones * sizeof *names); | |
3746 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3747 | &names_addr, names_size); | |
3748 | if (kr != KERN_SUCCESS) | |
3749 | return kr; | |
3750 | names = (mach_zone_name_t *) names_addr; | |
3751 | ||
3752 | info_size = round_page(max_zones * sizeof *info); | |
3753 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3754 | &info_addr, info_size); | |
3755 | if (kr != KERN_SUCCESS) { | |
3756 | kmem_free(ipc_kernel_map, | |
3757 | names_addr, names_size); | |
3758 | return kr; | |
3759 | } | |
3760 | ||
3761 | info = (task_zone_info_t *) info_addr; | |
3762 | ||
3763 | zn = &names[0]; | |
3764 | zi = &info[0]; | |
3765 | ||
3766 | for (i = 0; i < max_zones - num_fake_zones; i++) { | |
3767 | struct zone zcopy; | |
3768 | ||
3769 | assert(z != ZONE_NULL); | |
3770 | ||
3771 | lock_zone(z); | |
3772 | zcopy = *z; | |
3773 | unlock_zone(z); | |
3774 | ||
3775 | simple_lock(&all_zones_lock); | |
3776 | z = z->next_zone; | |
3777 | simple_unlock(&all_zones_lock); | |
3778 | ||
3779 | /* assuming here the name data is static */ | |
3780 | (void) strncpy(zn->mzn_name, zcopy.zone_name, | |
3781 | sizeof zn->mzn_name); | |
3782 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
3783 | ||
3784 | zi->tzi_count = (uint64_t)zcopy.count; | |
3785 | zi->tzi_cur_size = (uint64_t)zcopy.cur_size; | |
3786 | zi->tzi_max_size = (uint64_t)zcopy.max_size; | |
3787 | zi->tzi_elem_size = (uint64_t)zcopy.elem_size; | |
3788 | zi->tzi_alloc_size = (uint64_t)zcopy.alloc_size; | |
3789 | zi->tzi_sum_size = zcopy.sum_count * zcopy.elem_size; | |
3790 | zi->tzi_exhaustible = (uint64_t)zcopy.exhaustible; | |
3791 | zi->tzi_collectable = (uint64_t)zcopy.collectable; | |
3792 | zi->tzi_caller_acct = (uint64_t)zcopy.caller_acct; | |
3793 | if (task->tkm_zinfo != NULL) { | |
3794 | zi->tzi_task_alloc = task->tkm_zinfo[zcopy.index].alloc; | |
3795 | zi->tzi_task_free = task->tkm_zinfo[zcopy.index].free; | |
3796 | } else { | |
3797 | zi->tzi_task_alloc = 0; | |
3798 | zi->tzi_task_free = 0; | |
3799 | } | |
3800 | zn++; | |
3801 | zi++; | |
3802 | } | |
3803 | ||
3804 | /* | |
3805 | * loop through the fake zones and fill them using the specialized | |
3806 | * functions | |
3807 | */ | |
3808 | for (i = 0; i < num_fake_zones; i++) { | |
3809 | int count, collectable, exhaustible, caller_acct, index; | |
3810 | vm_size_t cur_size, max_size, elem_size, alloc_size; | |
3811 | uint64_t sum_size; | |
3812 | ||
3813 | strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name); | |
3814 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
3815 | fake_zones[i].query(&count, &cur_size, | |
3816 | &max_size, &elem_size, | |
3817 | &alloc_size, &sum_size, | |
3818 | &collectable, &exhaustible, &caller_acct); | |
3819 | zi->tzi_count = (uint64_t)count; | |
3820 | zi->tzi_cur_size = (uint64_t)cur_size; | |
3821 | zi->tzi_max_size = (uint64_t)max_size; | |
3822 | zi->tzi_elem_size = (uint64_t)elem_size; | |
3823 | zi->tzi_alloc_size = (uint64_t)alloc_size; | |
3824 | zi->tzi_sum_size = sum_size; | |
3825 | zi->tzi_collectable = (uint64_t)collectable; | |
3826 | zi->tzi_exhaustible = (uint64_t)exhaustible; | |
3827 | zi->tzi_caller_acct = (uint64_t)caller_acct; | |
3828 | if (task->tkm_zinfo != NULL) { | |
3829 | index = ZINFO_SLOTS - num_fake_zones + i; | |
3830 | zi->tzi_task_alloc = task->tkm_zinfo[index].alloc; | |
3831 | zi->tzi_task_free = task->tkm_zinfo[index].free; | |
3832 | } else { | |
3833 | zi->tzi_task_alloc = 0; | |
3834 | zi->tzi_task_free = 0; | |
3835 | } | |
3836 | zn++; | |
3837 | zi++; | |
3838 | } | |
3839 | ||
3840 | used = max_zones * sizeof *names; | |
3841 | if (used != names_size) | |
3842 | bzero((char *) (names_addr + used), names_size - used); | |
3843 | ||
3844 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, | |
3845 | (vm_map_size_t)names_size, TRUE, ©); | |
3846 | assert(kr == KERN_SUCCESS); | |
3847 | ||
3848 | *namesp = (mach_zone_name_t *) copy; | |
3849 | *namesCntp = max_zones; | |
3850 | ||
3851 | used = max_zones * sizeof *info; | |
3852 | ||
3853 | if (used != info_size) | |
3854 | bzero((char *) (info_addr + used), info_size - used); | |
3855 | ||
3856 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, | |
3857 | (vm_map_size_t)info_size, TRUE, ©); | |
3858 | assert(kr == KERN_SUCCESS); | |
3859 | ||
3860 | *infop = (task_zone_info_t *) copy; | |
3861 | *infoCntp = max_zones; | |
3862 | ||
3863 | return KERN_SUCCESS; | |
3864 | } | |
3865 | ||
316670eb A |
3866 | #else /* CONFIG_TASK_ZONE_INFO */ |
3867 | ||
3868 | kern_return_t | |
3869 | task_zone_info( | |
3870 | __unused task_t task, | |
3871 | __unused mach_zone_name_array_t *namesp, | |
3872 | __unused mach_msg_type_number_t *namesCntp, | |
3873 | __unused task_zone_info_array_t *infop, | |
3874 | __unused mach_msg_type_number_t *infoCntp) | |
3875 | { | |
3876 | return KERN_FAILURE; | |
3877 | } | |
3878 | ||
3879 | #endif /* CONFIG_TASK_ZONE_INFO */ | |
3880 | ||
6d2010ae A |
3881 | kern_return_t |
3882 | mach_zone_info( | |
316670eb | 3883 | host_priv_t host, |
6d2010ae A |
3884 | mach_zone_name_array_t *namesp, |
3885 | mach_msg_type_number_t *namesCntp, | |
3886 | mach_zone_info_array_t *infop, | |
3887 | mach_msg_type_number_t *infoCntp) | |
3888 | { | |
3889 | mach_zone_name_t *names; | |
3890 | vm_offset_t names_addr; | |
3891 | vm_size_t names_size; | |
3892 | mach_zone_info_t *info; | |
3893 | vm_offset_t info_addr; | |
3894 | vm_size_t info_size; | |
3895 | unsigned int max_zones, i; | |
3896 | zone_t z; | |
3897 | mach_zone_name_t *zn; | |
3898 | mach_zone_info_t *zi; | |
3899 | kern_return_t kr; | |
3900 | ||
3901 | vm_size_t used; | |
3902 | vm_map_copy_t copy; | |
3903 | ||
3904 | ||
3905 | if (host == HOST_NULL) | |
3906 | return KERN_INVALID_HOST; | |
316670eb A |
3907 | #if CONFIG_DEBUGGER_FOR_ZONE_INFO |
3908 | if (!PE_i_can_has_debugger(NULL)) | |
3909 | return KERN_INVALID_HOST; | |
3910 | #endif | |
6d2010ae A |
3911 | |
3912 | /* | |
3913 | * We assume that zones aren't freed once allocated. | |
3914 | * We won't pick up any zones that are allocated later. | |
3915 | */ | |
3916 | ||
3917 | simple_lock(&all_zones_lock); | |
3918 | max_zones = (unsigned int)(num_zones + num_fake_zones); | |
3919 | z = first_zone; | |
3920 | simple_unlock(&all_zones_lock); | |
3921 | ||
3922 | names_size = round_page(max_zones * sizeof *names); | |
3923 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3924 | &names_addr, names_size); | |
3925 | if (kr != KERN_SUCCESS) | |
3926 | return kr; | |
3927 | names = (mach_zone_name_t *) names_addr; | |
3928 | ||
3929 | info_size = round_page(max_zones * sizeof *info); | |
3930 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
3931 | &info_addr, info_size); | |
3932 | if (kr != KERN_SUCCESS) { | |
3933 | kmem_free(ipc_kernel_map, | |
3934 | names_addr, names_size); | |
3935 | return kr; | |
3936 | } | |
3937 | ||
3938 | info = (mach_zone_info_t *) info_addr; | |
3939 | ||
3940 | zn = &names[0]; | |
3941 | zi = &info[0]; | |
3942 | ||
3943 | for (i = 0; i < max_zones - num_fake_zones; i++) { | |
3944 | struct zone zcopy; | |
3945 | ||
3946 | assert(z != ZONE_NULL); | |
3947 | ||
3948 | lock_zone(z); | |
3949 | zcopy = *z; | |
3950 | unlock_zone(z); | |
3951 | ||
3952 | simple_lock(&all_zones_lock); | |
3953 | z = z->next_zone; | |
3954 | simple_unlock(&all_zones_lock); | |
3955 | ||
3956 | /* assuming here the name data is static */ | |
3957 | (void) strncpy(zn->mzn_name, zcopy.zone_name, | |
3958 | sizeof zn->mzn_name); | |
3959 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
3960 | ||
3961 | zi->mzi_count = (uint64_t)zcopy.count; | |
3962 | zi->mzi_cur_size = (uint64_t)zcopy.cur_size; | |
3963 | zi->mzi_max_size = (uint64_t)zcopy.max_size; | |
3964 | zi->mzi_elem_size = (uint64_t)zcopy.elem_size; | |
3965 | zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size; | |
3966 | zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size; | |
3967 | zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible; | |
3968 | zi->mzi_collectable = (uint64_t)zcopy.collectable; | |
3969 | zn++; | |
3970 | zi++; | |
3971 | } | |
3972 | ||
3973 | /* | |
3974 | * loop through the fake zones and fill them using the specialized | |
3975 | * functions | |
3976 | */ | |
3977 | for (i = 0; i < num_fake_zones; i++) { | |
3978 | int count, collectable, exhaustible, caller_acct; | |
3979 | vm_size_t cur_size, max_size, elem_size, alloc_size; | |
3980 | uint64_t sum_size; | |
3981 | ||
3982 | strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name); | |
3983 | zn->mzn_name[sizeof zn->mzn_name - 1] = '\0'; | |
3984 | fake_zones[i].query(&count, &cur_size, | |
3985 | &max_size, &elem_size, | |
3986 | &alloc_size, &sum_size, | |
3987 | &collectable, &exhaustible, &caller_acct); | |
3988 | zi->mzi_count = (uint64_t)count; | |
3989 | zi->mzi_cur_size = (uint64_t)cur_size; | |
3990 | zi->mzi_max_size = (uint64_t)max_size; | |
3991 | zi->mzi_elem_size = (uint64_t)elem_size; | |
3992 | zi->mzi_alloc_size = (uint64_t)alloc_size; | |
3993 | zi->mzi_sum_size = sum_size; | |
3994 | zi->mzi_collectable = (uint64_t)collectable; | |
3995 | zi->mzi_exhaustible = (uint64_t)exhaustible; | |
3996 | ||
3997 | zn++; | |
3998 | zi++; | |
3999 | } | |
4000 | ||
4001 | used = max_zones * sizeof *names; | |
4002 | if (used != names_size) | |
4003 | bzero((char *) (names_addr + used), names_size - used); | |
4004 | ||
4005 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, | |
4006 | (vm_map_size_t)names_size, TRUE, ©); | |
4007 | assert(kr == KERN_SUCCESS); | |
4008 | ||
4009 | *namesp = (mach_zone_name_t *) copy; | |
4010 | *namesCntp = max_zones; | |
4011 | ||
4012 | used = max_zones * sizeof *info; | |
4013 | ||
4014 | if (used != info_size) | |
4015 | bzero((char *) (info_addr + used), info_size - used); | |
4016 | ||
4017 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, | |
4018 | (vm_map_size_t)info_size, TRUE, ©); | |
4019 | assert(kr == KERN_SUCCESS); | |
4020 | ||
4021 | *infop = (mach_zone_info_t *) copy; | |
4022 | *infoCntp = max_zones; | |
4023 | ||
4024 | return KERN_SUCCESS; | |
4025 | } | |
4026 | ||
4027 | /* | |
4028 | * host_zone_info - LEGACY user interface for Mach zone information | |
4029 | * Should use mach_zone_info() instead! | |
4030 | */ | |
1c79356b A |
4031 | kern_return_t |
4032 | host_zone_info( | |
316670eb | 4033 | host_priv_t host, |
1c79356b A |
4034 | zone_name_array_t *namesp, |
4035 | mach_msg_type_number_t *namesCntp, | |
4036 | zone_info_array_t *infop, | |
4037 | mach_msg_type_number_t *infoCntp) | |
4038 | { | |
4039 | zone_name_t *names; | |
4040 | vm_offset_t names_addr; | |
4041 | vm_size_t names_size; | |
4042 | zone_info_t *info; | |
4043 | vm_offset_t info_addr; | |
4044 | vm_size_t info_size; | |
4045 | unsigned int max_zones, i; | |
4046 | zone_t z; | |
4047 | zone_name_t *zn; | |
4048 | zone_info_t *zi; | |
4049 | kern_return_t kr; | |
6d2010ae A |
4050 | |
4051 | vm_size_t used; | |
4052 | vm_map_copy_t copy; | |
1c79356b | 4053 | |
b0d623f7 | 4054 | |
1c79356b A |
4055 | if (host == HOST_NULL) |
4056 | return KERN_INVALID_HOST; | |
316670eb A |
4057 | #if CONFIG_DEBUGGER_FOR_ZONE_INFO |
4058 | if (!PE_i_can_has_debugger(NULL)) | |
4059 | return KERN_INVALID_HOST; | |
4060 | #endif | |
1c79356b | 4061 | |
b0d623f7 A |
4062 | #if defined(__LP64__) |
4063 | if (!thread_is_64bit(current_thread())) | |
4064 | return KERN_NOT_SUPPORTED; | |
4065 | #else | |
4066 | if (thread_is_64bit(current_thread())) | |
4067 | return KERN_NOT_SUPPORTED; | |
4068 | #endif | |
4069 | ||
1c79356b A |
4070 | /* |
4071 | * We assume that zones aren't freed once allocated. | |
4072 | * We won't pick up any zones that are allocated later. | |
4073 | */ | |
4074 | ||
4075 | simple_lock(&all_zones_lock); | |
b0d623f7 | 4076 | max_zones = (unsigned int)(num_zones + num_fake_zones); |
1c79356b A |
4077 | z = first_zone; |
4078 | simple_unlock(&all_zones_lock); | |
4079 | ||
6d2010ae A |
4080 | names_size = round_page(max_zones * sizeof *names); |
4081 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
4082 | &names_addr, names_size); | |
4083 | if (kr != KERN_SUCCESS) | |
4084 | return kr; | |
4085 | names = (zone_name_t *) names_addr; | |
4086 | ||
4087 | info_size = round_page(max_zones * sizeof *info); | |
4088 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
4089 | &info_addr, info_size); | |
4090 | if (kr != KERN_SUCCESS) { | |
4091 | kmem_free(ipc_kernel_map, | |
4092 | names_addr, names_size); | |
4093 | return kr; | |
1c79356b | 4094 | } |
6d2010ae A |
4095 | |
4096 | info = (zone_info_t *) info_addr; | |
4097 | ||
1c79356b A |
4098 | zn = &names[0]; |
4099 | zi = &info[0]; | |
4100 | ||
6d2010ae | 4101 | for (i = 0; i < max_zones - num_fake_zones; i++) { |
1c79356b A |
4102 | struct zone zcopy; |
4103 | ||
4104 | assert(z != ZONE_NULL); | |
4105 | ||
4106 | lock_zone(z); | |
4107 | zcopy = *z; | |
4108 | unlock_zone(z); | |
4109 | ||
4110 | simple_lock(&all_zones_lock); | |
4111 | z = z->next_zone; | |
4112 | simple_unlock(&all_zones_lock); | |
4113 | ||
4114 | /* assuming here the name data is static */ | |
4115 | (void) strncpy(zn->zn_name, zcopy.zone_name, | |
4116 | sizeof zn->zn_name); | |
2d21ac55 | 4117 | zn->zn_name[sizeof zn->zn_name - 1] = '\0'; |
1c79356b A |
4118 | |
4119 | zi->zi_count = zcopy.count; | |
4120 | zi->zi_cur_size = zcopy.cur_size; | |
4121 | zi->zi_max_size = zcopy.max_size; | |
4122 | zi->zi_elem_size = zcopy.elem_size; | |
4123 | zi->zi_alloc_size = zcopy.alloc_size; | |
4124 | zi->zi_exhaustible = zcopy.exhaustible; | |
4125 | zi->zi_collectable = zcopy.collectable; | |
4126 | ||
4127 | zn++; | |
4128 | zi++; | |
4129 | } | |
0c530ab8 | 4130 | |
2d21ac55 A |
4131 | /* |
4132 | * loop through the fake zones and fill them using the specialized | |
4133 | * functions | |
4134 | */ | |
4135 | for (i = 0; i < num_fake_zones; i++) { | |
6d2010ae A |
4136 | int caller_acct; |
4137 | uint64_t sum_space; | |
2d21ac55 A |
4138 | strncpy(zn->zn_name, fake_zones[i].name, sizeof zn->zn_name); |
4139 | zn->zn_name[sizeof zn->zn_name - 1] = '\0'; | |
6d2010ae A |
4140 | fake_zones[i].query(&zi->zi_count, &zi->zi_cur_size, |
4141 | &zi->zi_max_size, &zi->zi_elem_size, | |
4142 | &zi->zi_alloc_size, &sum_space, | |
4143 | &zi->zi_collectable, &zi->zi_exhaustible, &caller_acct); | |
2d21ac55 A |
4144 | zn++; |
4145 | zi++; | |
4146 | } | |
1c79356b | 4147 | |
6d2010ae A |
4148 | used = max_zones * sizeof *names; |
4149 | if (used != names_size) | |
4150 | bzero((char *) (names_addr + used), names_size - used); | |
1c79356b | 4151 | |
6d2010ae A |
4152 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr, |
4153 | (vm_map_size_t)names_size, TRUE, ©); | |
4154 | assert(kr == KERN_SUCCESS); | |
1c79356b | 4155 | |
6d2010ae | 4156 | *namesp = (zone_name_t *) copy; |
1c79356b A |
4157 | *namesCntp = max_zones; |
4158 | ||
6d2010ae A |
4159 | used = max_zones * sizeof *info; |
4160 | if (used != info_size) | |
4161 | bzero((char *) (info_addr + used), info_size - used); | |
1c79356b | 4162 | |
6d2010ae A |
4163 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr, |
4164 | (vm_map_size_t)info_size, TRUE, ©); | |
4165 | assert(kr == KERN_SUCCESS); | |
1c79356b | 4166 | |
6d2010ae | 4167 | *infop = (zone_info_t *) copy; |
1c79356b A |
4168 | *infoCntp = max_zones; |
4169 | ||
4170 | return KERN_SUCCESS; | |
4171 | } | |
4172 | ||
316670eb A |
4173 | kern_return_t |
4174 | mach_zone_force_gc( | |
4175 | host_t host) | |
4176 | { | |
4177 | ||
4178 | if (host == HOST_NULL) | |
4179 | return KERN_INVALID_HOST; | |
4180 | ||
4181 | consider_zone_gc(TRUE); | |
4182 | ||
4183 | return (KERN_SUCCESS); | |
4184 | } | |
4185 | ||
b0d623f7 | 4186 | extern unsigned int stack_total; |
6d2010ae | 4187 | extern unsigned long long stack_allocs; |
b0d623f7 A |
4188 | |
4189 | #if defined(__i386__) || defined (__x86_64__) | |
4190 | extern unsigned int inuse_ptepages_count; | |
6d2010ae | 4191 | extern long long alloc_ptepages_count; |
b0d623f7 A |
4192 | #endif |
4193 | ||
4194 | void zone_display_zprint() | |
4195 | { | |
4196 | unsigned int i; | |
4197 | zone_t the_zone; | |
4198 | ||
4199 | if(first_zone!=NULL) { | |
4200 | the_zone = first_zone; | |
4201 | for (i = 0; i < num_zones; i++) { | |
4202 | if(the_zone->cur_size > (1024*1024)) { | |
4203 | printf("%.20s:\t%lu\n",the_zone->zone_name,(uintptr_t)the_zone->cur_size); | |
4204 | } | |
4205 | ||
4206 | if(the_zone->next_zone == NULL) { | |
4207 | break; | |
4208 | } | |
4209 | ||
4210 | the_zone = the_zone->next_zone; | |
4211 | } | |
4212 | } | |
4213 | ||
4214 | printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size * stack_total)); | |
4215 | ||
4216 | #if defined(__i386__) || defined (__x86_64__) | |
4217 | printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE * inuse_ptepages_count)); | |
4218 | #endif | |
4219 | ||
4220 | printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total); | |
4221 | } | |
4222 | ||
39236c6e A |
4223 | zone_t |
4224 | zone_find_largest(void) | |
4225 | { | |
4226 | unsigned int i; | |
4227 | unsigned int max_zones; | |
4228 | zone_t the_zone; | |
4229 | zone_t zone_largest; | |
4230 | ||
4231 | simple_lock(&all_zones_lock); | |
4232 | the_zone = first_zone; | |
4233 | max_zones = num_zones; | |
4234 | simple_unlock(&all_zones_lock); | |
4235 | ||
4236 | zone_largest = the_zone; | |
4237 | for (i = 0; i < max_zones; i++) { | |
4238 | if (the_zone->cur_size > zone_largest->cur_size) { | |
4239 | zone_largest = the_zone; | |
4240 | } | |
4241 | ||
4242 | if (the_zone->next_zone == NULL) { | |
4243 | break; | |
4244 | } | |
4245 | ||
4246 | the_zone = the_zone->next_zone; | |
4247 | } | |
4248 | return zone_largest; | |
4249 | } | |
4250 | ||
1c79356b A |
4251 | #if ZONE_DEBUG |
4252 | ||
4253 | /* should we care about locks here ? */ | |
4254 | ||
39236c6e A |
4255 | #define zone_in_use(z) ( z->count || z->free_elements \ |
4256 | || !queue_empty(&z->pages.all_free) \ | |
4257 | || !queue_empty(&z->pages.intermediate) \ | |
4258 | || (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign))) | |
1c79356b A |
4259 | |
4260 | void | |
4261 | zone_debug_enable( | |
4262 | zone_t z) | |
4263 | { | |
4264 | if (zone_debug_enabled(z) || zone_in_use(z) || | |
55e303ae | 4265 | z->alloc_size < (z->elem_size + ZONE_DEBUG_OFFSET)) |
1c79356b A |
4266 | return; |
4267 | queue_init(&z->active_zones); | |
55e303ae | 4268 | z->elem_size += ZONE_DEBUG_OFFSET; |
1c79356b A |
4269 | } |
4270 | ||
4271 | void | |
4272 | zone_debug_disable( | |
4273 | zone_t z) | |
4274 | { | |
4275 | if (!zone_debug_enabled(z) || zone_in_use(z)) | |
4276 | return; | |
55e303ae | 4277 | z->elem_size -= ZONE_DEBUG_OFFSET; |
2d21ac55 | 4278 | z->active_zones.next = z->active_zones.prev = NULL; |
1c79356b | 4279 | } |
b0d623f7 A |
4280 | |
4281 | ||
1c79356b | 4282 | #endif /* ZONE_DEBUG */ |