]> git.saurik.com Git - apple/xnu.git/blame - bsd/vfs/vfs_cluster.c
xnu-2050.48.11.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cluster.c
CommitLineData
1c79356b 1/*
b0d623f7 2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
5d5c5d0d 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
1c79356b 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
8f6c56a5 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
8f6c56a5 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29/*
30 * Copyright (c) 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95
62 */
63
64#include <sys/param.h>
91447636
A
65#include <sys/proc_internal.h>
66#include <sys/buf_internal.h>
67#include <sys/mount_internal.h>
68#include <sys/vnode_internal.h>
1c79356b
A
69#include <sys/trace.h>
70#include <sys/malloc.h>
55e303ae
A
71#include <sys/time.h>
72#include <sys/kernel.h>
1c79356b 73#include <sys/resourcevar.h>
316670eb 74#include <miscfs/specfs/specdev.h>
91447636 75#include <sys/uio_internal.h>
1c79356b 76#include <libkern/libkern.h>
55e303ae 77#include <machine/machine_routines.h>
1c79356b 78
91447636 79#include <sys/ubc_internal.h>
2d21ac55 80#include <vm/vnode_pager.h>
1c79356b 81
55e303ae
A
82#include <mach/mach_types.h>
83#include <mach/memory_object_types.h>
91447636
A
84#include <mach/vm_map.h>
85#include <mach/upl.h>
6d2010ae 86#include <kern/task.h>
91447636
A
87
88#include <vm/vm_kern.h>
89#include <vm/vm_map.h>
90#include <vm/vm_pageout.h>
55e303ae 91
1c79356b 92#include <sys/kdebug.h>
b0d623f7
A
93#include <libkern/OSAtomic.h>
94
6d2010ae
A
95#include <sys/sdt.h>
96
b0d623f7
A
97#if 0
98#undef KERNEL_DEBUG
99#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
100#endif
101
1c79356b 102
2d21ac55 103#define CL_READ 0x01
b0d623f7 104#define CL_WRITE 0x02
cf7d32b8
A
105#define CL_ASYNC 0x04
106#define CL_COMMIT 0x08
2d21ac55
A
107#define CL_PAGEOUT 0x10
108#define CL_AGE 0x20
109#define CL_NOZERO 0x40
110#define CL_PAGEIN 0x80
111#define CL_DEV_MEMORY 0x100
112#define CL_PRESERVE 0x200
113#define CL_THROTTLE 0x400
114#define CL_KEEPCACHED 0x800
115#define CL_DIRECT_IO 0x1000
116#define CL_PASSIVE 0x2000
b0d623f7 117#define CL_IOSTREAMING 0x4000
6d2010ae
A
118#define CL_CLOSE 0x8000
119#define CL_ENCRYPTED 0x10000
316670eb
A
120#define CL_RAW_ENCRYPTED 0x20000
121#define CL_NOCACHE 0x40000
b0d623f7
A
122
123#define MAX_VECTOR_UPL_ELEMENTS 8
124#define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE) * PAGE_SIZE
b4c24cb9 125
b0d623f7
A
126extern upl_t vector_upl_create(vm_offset_t);
127extern boolean_t vector_upl_is_valid(upl_t);
128extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t);
129extern void vector_upl_set_pagelist(upl_t);
130extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t);
d7e50217 131
b4c24cb9 132struct clios {
6d2010ae 133 lck_mtx_t io_mtxp;
d7e50217
A
134 u_int io_completed; /* amount of io that has currently completed */
135 u_int io_issued; /* amount of io that was successfully issued */
136 int io_error; /* error code of first error encountered */
137 int io_wanted; /* someone is sleeping waiting for a change in state */
b4c24cb9
A
138};
139
91447636
A
140static lck_grp_t *cl_mtx_grp;
141static lck_attr_t *cl_mtx_attr;
142static lck_grp_attr_t *cl_mtx_grp_attr;
060df5ea 143static lck_mtx_t *cl_transaction_mtxp;
91447636
A
144
145
2d21ac55
A
146#define IO_UNKNOWN 0
147#define IO_DIRECT 1
148#define IO_CONTIG 2
149#define IO_COPY 3
150
151#define PUSH_DELAY 0x01
152#define PUSH_ALL 0x02
153#define PUSH_SYNC 0x04
154
155
156static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset);
157static void cluster_wait_IO(buf_t cbp_head, int async);
158static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait);
159
160static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length);
161
91447636 162static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
2d21ac55
A
163 int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg);
164static int cluster_iodone(buf_t bp, void *callback_arg);
165static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags);
b0d623f7 166static int cluster_hard_throttle_on(vnode_t vp, uint32_t);
91447636 167
6d2010ae
A
168static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name);
169
2d21ac55
A
170static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg);
171
b0d623f7 172static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference);
2d21ac55
A
173static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference);
174
175static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags,
176 int (*)(buf_t, void *), void *callback_arg);
177static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
178 int flags, int (*)(buf_t, void *), void *callback_arg);
179static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
180 int (*)(buf_t, void *), void *callback_arg, int flags);
1c79356b 181
2d21ac55
A
182static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF,
183 off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg);
184static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF,
185 int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg);
186static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF,
187 int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag);
91447636 188
2d21ac55 189static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg);
91447636 190
2d21ac55
A
191static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
192static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
91447636 193
2d21ac55 194static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
55e303ae 195
6d2010ae 196static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg);
2d21ac55
A
197
198static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
6d2010ae 199static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg);
b0d623f7 200static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
2d21ac55
A
201
202static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
55e303ae
A
203static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
204static kern_return_t vfs_drt_control(void **cmapp, int op_type);
205
9bccf70c 206
316670eb
A
207/*
208 * For throttled IO to check whether
209 * a block is cached by the boot cache
210 * and thus it can avoid delaying the IO.
211 *
212 * bootcache_contains_block is initially
213 * NULL. The BootCache will set it while
214 * the cache is active and clear it when
215 * the cache is jettisoned.
216 *
217 * Returns 0 if the block is not
218 * contained in the cache, 1 if it is
219 * contained.
220 *
221 * The function pointer remains valid
222 * after the cache has been evicted even
223 * if bootcache_contains_block has been
224 * cleared.
225 *
226 * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
227 */
228int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL;
229
230
2d21ac55
A
231/*
232 * limit the internal I/O size so that we
233 * can represent it in a 32 bit int
234 */
b0d623f7
A
235#define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512)
236#define MAX_IO_CONTIG_SIZE (MAX_UPL_SIZE * PAGE_SIZE)
237#define MAX_VECTS 16
2d21ac55
A
238#define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE)
239
6d2010ae
A
240#define WRITE_THROTTLE 6
241#define WRITE_THROTTLE_SSD 2
242#define WRITE_BEHIND 1
243#define WRITE_BEHIND_SSD 1
316670eb
A
244
245#if CONFIG_EMBEDDED
246#define PREFETCH 1
247#define PREFETCH_SSD 1
248uint32_t speculative_prefetch_max = 512; /* maximum number of pages to use for a specluative read-ahead */
249uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use for a specluative read-ahead */
250#else
6d2010ae 251#define PREFETCH 3
316670eb
A
252#define PREFETCH_SSD 1
253uint32_t speculative_prefetch_max = (MAX_UPL_SIZE * 3);
254uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use for a specluative read-ahead on SSDs*/
255#endif
256
6d2010ae 257
316670eb 258#define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
b0d623f7 259#define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
316670eb 260#define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
cf7d32b8 261
6d2010ae
A
262int ignore_is_ssd = 0;
263int speculative_reads_disabled = 0;
2d21ac55 264
1c79356b
A
265/*
266 * throttle the number of async writes that
267 * can be outstanding on a single vnode
268 * before we issue a synchronous write
269 */
91447636 270#define HARD_THROTTLE_MAXCNT 0
316670eb
A
271#define HARD_THROTTLE_MAX_IOSIZE (128 * 1024)
272#define LEGACY_HARD_THROTTLE_MAX_IOSIZE (512 * 1024)
55e303ae 273
316670eb 274extern int32_t throttle_legacy_process_count;
55e303ae 275int hard_throttle_on_root = 0;
316670eb
A
276uint32_t hard_throttle_max_iosize = HARD_THROTTLE_MAX_IOSIZE;
277uint32_t legacy_hard_throttle_max_iosize = LEGACY_HARD_THROTTLE_MAX_IOSIZE;
55e303ae
A
278struct timeval priority_IO_timestamp_for_root;
279
316670eb
A
280#if CONFIG_EMBEDDED
281#define THROTTLE_MAX_IOSIZE (hard_throttle_max_iosize)
282#else
283#define THROTTLE_MAX_IOSIZE (throttle_legacy_process_count == 0 ? hard_throttle_max_iosize : legacy_hard_throttle_max_iosize)
284#endif
285
286
287SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &hard_throttle_max_iosize, 0, "");
288SYSCTL_INT(_debug, OID_AUTO, lowpri_legacy_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &legacy_hard_throttle_max_iosize, 0, "");
289
55e303ae 290
91447636
A
291void
292cluster_init(void) {
2d21ac55 293 /*
91447636
A
294 * allocate lock group attribute and group
295 */
2d21ac55 296 cl_mtx_grp_attr = lck_grp_attr_alloc_init();
91447636
A
297 cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr);
298
299 /*
300 * allocate the lock attribute
301 */
302 cl_mtx_attr = lck_attr_alloc_init();
91447636 303
060df5ea
A
304 cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
305
306 if (cl_transaction_mtxp == NULL)
307 panic("cluster_init: failed to allocate cl_transaction_mtxp");
91447636
A
308}
309
310
cf7d32b8
A
311uint32_t
312cluster_max_io_size(mount_t mp, int type)
313{
b0d623f7
A
314 uint32_t max_io_size;
315 uint32_t segcnt;
316 uint32_t maxcnt;
317
318 switch(type) {
319
320 case CL_READ:
321 segcnt = mp->mnt_segreadcnt;
322 maxcnt = mp->mnt_maxreadcnt;
323 break;
324 case CL_WRITE:
325 segcnt = mp->mnt_segwritecnt;
326 maxcnt = mp->mnt_maxwritecnt;
327 break;
328 default:
329 segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt);
330 maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt);
331 break;
332 }
cf7d32b8
A
333 if (segcnt > MAX_UPL_SIZE) {
334 /*
335 * don't allow a size beyond the max UPL size we can create
336 */
337 segcnt = MAX_UPL_SIZE;
338 }
339 max_io_size = min((segcnt * PAGE_SIZE), maxcnt);
340
341 if (max_io_size < (MAX_UPL_TRANSFER * PAGE_SIZE)) {
342 /*
343 * don't allow a size smaller than the old fixed limit
344 */
345 max_io_size = (MAX_UPL_TRANSFER * PAGE_SIZE);
346 } else {
347 /*
348 * make sure the size specified is a multiple of PAGE_SIZE
349 */
350 max_io_size &= ~PAGE_MASK;
351 }
352 return (max_io_size);
353}
354
355
356
91447636
A
357
358#define CLW_ALLOCATE 0x01
359#define CLW_RETURNLOCKED 0x02
2d21ac55
A
360#define CLW_IONOCACHE 0x04
361#define CLW_IOPASSIVE 0x08
362
91447636
A
363/*
364 * if the read ahead context doesn't yet exist,
365 * allocate and initialize it...
366 * the vnode lock serializes multiple callers
367 * during the actual assignment... first one
368 * to grab the lock wins... the other callers
369 * will release the now unnecessary storage
370 *
371 * once the context is present, try to grab (but don't block on)
372 * the lock associated with it... if someone
373 * else currently owns it, than the read
374 * will run without read-ahead. this allows
375 * multiple readers to run in parallel and
376 * since there's only 1 read ahead context,
377 * there's no real loss in only allowing 1
378 * reader to have read-ahead enabled.
379 */
380static struct cl_readahead *
381cluster_get_rap(vnode_t vp)
382{
383 struct ubc_info *ubc;
384 struct cl_readahead *rap;
385
386 ubc = vp->v_ubcinfo;
387
388 if ((rap = ubc->cl_rahead) == NULL) {
389 MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK);
390
391 bzero(rap, sizeof *rap);
392 rap->cl_lastr = -1;
393 lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr);
394
395 vnode_lock(vp);
396
397 if (ubc->cl_rahead == NULL)
398 ubc->cl_rahead = rap;
399 else {
400 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
401 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
2d21ac55 402 rap = ubc->cl_rahead;
91447636
A
403 }
404 vnode_unlock(vp);
405 }
406 if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE)
407 return(rap);
408
409 return ((struct cl_readahead *)NULL);
410}
411
412
413/*
414 * if the write behind context doesn't yet exist,
415 * and CLW_ALLOCATE is specified, allocate and initialize it...
416 * the vnode lock serializes multiple callers
417 * during the actual assignment... first one
418 * to grab the lock wins... the other callers
419 * will release the now unnecessary storage
420 *
421 * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
422 * the lock associated with the write behind context before
423 * returning
424 */
425
426static struct cl_writebehind *
427cluster_get_wbp(vnode_t vp, int flags)
428{
429 struct ubc_info *ubc;
430 struct cl_writebehind *wbp;
431
432 ubc = vp->v_ubcinfo;
433
434 if ((wbp = ubc->cl_wbehind) == NULL) {
435
436 if ( !(flags & CLW_ALLOCATE))
437 return ((struct cl_writebehind *)NULL);
438
439 MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK);
440
441 bzero(wbp, sizeof *wbp);
442 lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr);
443
444 vnode_lock(vp);
445
446 if (ubc->cl_wbehind == NULL)
447 ubc->cl_wbehind = wbp;
448 else {
449 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
450 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
2d21ac55 451 wbp = ubc->cl_wbehind;
91447636
A
452 }
453 vnode_unlock(vp);
454 }
455 if (flags & CLW_RETURNLOCKED)
456 lck_mtx_lock(&wbp->cl_lockw);
457
458 return (wbp);
459}
460
461
2d21ac55
A
462static void
463cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg)
464{
465 struct cl_writebehind *wbp;
466
467 if ((wbp = cluster_get_wbp(vp, 0)) != NULL) {
468
469 if (wbp->cl_number) {
470 lck_mtx_lock(&wbp->cl_lockw);
471
6d2010ae 472 cluster_try_push(wbp, vp, newEOF, PUSH_ALL | PUSH_SYNC, 0, callback, callback_arg);
2d21ac55
A
473
474 lck_mtx_unlock(&wbp->cl_lockw);
475 }
476 }
477}
478
479
316670eb
A
480static int
481cluster_io_present_in_BC(vnode_t vp, off_t f_offset)
482{
483 daddr64_t blkno;
484 size_t io_size;
485 int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block;
486
487 if (bootcache_check_fn) {
488 if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL))
489 return(0);
490
491 if (io_size == 0)
492 return (0);
493
494 if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno))
495 return(1);
496 }
497 return(0);
498}
499
500
55e303ae 501static int
b0d623f7 502cluster_hard_throttle_on(vnode_t vp, uint32_t hard_throttle)
55e303ae 503{
316670eb 504 int throttle_type = 0;
b0d623f7 505
316670eb
A
506 if ( (throttle_type = throttle_io_will_be_throttled(-1, vp->v_mount)) )
507 return(throttle_type);
55e303ae 508
316670eb
A
509 if (hard_throttle && (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV)) {
510 static struct timeval hard_throttle_maxelapsed = { 0, 100000 };
511 struct timeval elapsed;
55e303ae 512
316670eb
A
513 if (hard_throttle_on_root)
514 return(1);
55e303ae 515
316670eb
A
516 microuptime(&elapsed);
517 timevalsub(&elapsed, &priority_IO_timestamp_for_root);
55e303ae 518
316670eb 519 if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <))
593a1d5f 520 return(1);
593a1d5f 521 }
55e303ae
A
522 return(0);
523}
524
1c79356b 525
6d2010ae
A
526static void
527cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name)
528{
529
530 lck_mtx_lock(&iostate->io_mtxp);
531
532 while ((iostate->io_issued - iostate->io_completed) > target) {
533
534 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
535 iostate->io_issued, iostate->io_completed, target, 0, 0);
536
537 iostate->io_wanted = 1;
538 msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL);
539
540 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
541 iostate->io_issued, iostate->io_completed, target, 0, 0);
542 }
543 lck_mtx_unlock(&iostate->io_mtxp);
544}
545
546
1c79356b 547static int
2d21ac55
A
548cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags)
549{
550 int upl_abort_code = 0;
551 int page_in = 0;
552 int page_out = 0;
553
6d2010ae 554 if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE))
2d21ac55
A
555 /*
556 * direct write of any flavor, or a direct read that wasn't aligned
557 */
558 ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY);
559 else {
560 if (io_flags & B_PAGEIO) {
561 if (io_flags & B_READ)
562 page_in = 1;
563 else
564 page_out = 1;
565 }
566 if (io_flags & B_CACHE)
567 /*
568 * leave pages in the cache unchanged on error
569 */
570 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
571 else if (page_out && (error != ENXIO))
572 /*
573 * transient error... leave pages unchanged
574 */
575 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
576 else if (page_in)
577 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
578 else
579 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
580
581 ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code);
582 }
583 return (upl_abort_code);
584}
585
586
587static int
588cluster_iodone(buf_t bp, void *callback_arg)
1c79356b 589{
91447636
A
590 int b_flags;
591 int error;
592 int total_size;
593 int total_resid;
594 int upl_offset;
595 int zero_offset;
2d21ac55
A
596 int pg_offset = 0;
597 int commit_size = 0;
598 int upl_flags = 0;
599 int transaction_size = 0;
91447636
A
600 upl_t upl;
601 buf_t cbp;
602 buf_t cbp_head;
603 buf_t cbp_next;
604 buf_t real_bp;
605 struct clios *iostate;
2d21ac55 606 boolean_t transaction_complete = FALSE;
91447636
A
607
608 cbp_head = (buf_t)(bp->b_trans_head);
1c79356b
A
609
610 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
b0d623f7 611 cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
1c79356b 612
060df5ea 613 if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) {
6d2010ae 614 boolean_t need_wakeup = FALSE;
060df5ea
A
615
616 lck_mtx_lock_spin(cl_transaction_mtxp);
617
618 bp->b_flags |= B_TDONE;
619
6d2010ae
A
620 if (bp->b_flags & B_TWANTED) {
621 CLR(bp->b_flags, B_TWANTED);
622 need_wakeup = TRUE;
623 }
060df5ea 624 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
6d2010ae 625 /*
060df5ea
A
626 * all I/O requests that are part of this transaction
627 * have to complete before we can process it
628 */
6d2010ae 629 if ( !(cbp->b_flags & B_TDONE)) {
1c79356b 630
6d2010ae 631 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
060df5ea
A
632 cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
633
634 lck_mtx_unlock(cl_transaction_mtxp);
6d2010ae
A
635
636 if (need_wakeup == TRUE)
637 wakeup(bp);
638
060df5ea
A
639 return 0;
640 }
641 if (cbp->b_flags & B_EOT)
6d2010ae 642 transaction_complete = TRUE;
060df5ea
A
643 }
644 lck_mtx_unlock(cl_transaction_mtxp);
645
6d2010ae
A
646 if (need_wakeup == TRUE)
647 wakeup(bp);
648
060df5ea 649 if (transaction_complete == FALSE) {
6d2010ae 650 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
060df5ea 651 cbp_head, 0, 0, 0, 0);
2d21ac55 652 return 0;
1c79356b
A
653 }
654 }
655 error = 0;
656 total_size = 0;
657 total_resid = 0;
658
659 cbp = cbp_head;
660 upl_offset = cbp->b_uploffset;
91447636 661 upl = cbp->b_upl;
1c79356b
A
662 b_flags = cbp->b_flags;
663 real_bp = cbp->b_real_bp;
9bccf70c 664 zero_offset= cbp->b_validend;
b4c24cb9 665 iostate = (struct clios *)cbp->b_iostate;
1c79356b 666
91447636
A
667 if (real_bp)
668 real_bp->b_dev = cbp->b_dev;
669
1c79356b 670 while (cbp) {
1c79356b
A
671 if ((cbp->b_flags & B_ERROR) && error == 0)
672 error = cbp->b_error;
673
674 total_resid += cbp->b_resid;
675 total_size += cbp->b_bcount;
676
677 cbp_next = cbp->b_trans_next;
678
2d21ac55
A
679 if (cbp_next == NULL)
680 /*
681 * compute the overall size of the transaction
682 * in case we created one that has 'holes' in it
683 * 'total_size' represents the amount of I/O we
684 * did, not the span of the transaction w/r to the UPL
685 */
686 transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset;
687
688 if (cbp != cbp_head)
689 free_io_buf(cbp);
1c79356b
A
690
691 cbp = cbp_next;
692 }
2d21ac55
A
693 if (error == 0 && total_resid)
694 error = EIO;
695
696 if (error == 0) {
697 int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone);
698
699 if (cliodone_func != NULL) {
700 cbp_head->b_bcount = transaction_size;
701
702 error = (*cliodone_func)(cbp_head, callback_arg);
703 }
704 }
b4c24cb9
A
705 if (zero_offset)
706 cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp);
707
2d21ac55
A
708 free_io_buf(cbp_head);
709
b4c24cb9 710 if (iostate) {
91447636
A
711 int need_wakeup = 0;
712
d7e50217
A
713 /*
714 * someone has issued multiple I/Os asynchrounsly
715 * and is waiting for them to complete (streaming)
716 */
6d2010ae 717 lck_mtx_lock_spin(&iostate->io_mtxp);
91447636 718
d7e50217
A
719 if (error && iostate->io_error == 0)
720 iostate->io_error = error;
9bccf70c 721
b4c24cb9
A
722 iostate->io_completed += total_size;
723
724 if (iostate->io_wanted) {
d7e50217
A
725 /*
726 * someone is waiting for the state of
727 * this io stream to change
728 */
b4c24cb9 729 iostate->io_wanted = 0;
91447636 730 need_wakeup = 1;
b4c24cb9 731 }
6d2010ae 732 lck_mtx_unlock(&iostate->io_mtxp);
91447636
A
733
734 if (need_wakeup)
735 wakeup((caddr_t)&iostate->io_wanted);
b4c24cb9 736 }
1c79356b
A
737
738 if (b_flags & B_COMMIT_UPL) {
91447636 739
2d21ac55
A
740 pg_offset = upl_offset & PAGE_MASK;
741 commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1c79356b 742
2d21ac55
A
743 if (error)
744 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags);
745 else {
746 upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
1c79356b 747
91447636 748 if ((b_flags & B_PHYS) && (b_flags & B_READ))
2d21ac55 749 upl_flags |= UPL_COMMIT_SET_DIRTY;
55e303ae 750
1c79356b 751 if (b_flags & B_AGE)
2d21ac55 752 upl_flags |= UPL_COMMIT_INACTIVATE;
1c79356b 753
2d21ac55 754 ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags);
1c79356b 755 }
91447636 756 }
6d2010ae 757 if (real_bp) {
2d21ac55
A
758 if (error) {
759 real_bp->b_flags |= B_ERROR;
760 real_bp->b_error = error;
761 }
762 real_bp->b_resid = total_resid;
763
764 buf_biodone(real_bp);
765 }
766 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
b0d623f7 767 upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0);
1c79356b
A
768
769 return (error);
770}
771
772
b0d623f7
A
773uint32_t
774cluster_hard_throttle_limit(vnode_t vp, uint32_t *limit, uint32_t hard_throttle)
775{
776 if (cluster_hard_throttle_on(vp, hard_throttle)) {
316670eb 777 *limit = THROTTLE_MAX_IOSIZE;
b0d623f7
A
778 return 1;
779 }
780 return 0;
781}
782
783
91447636 784void
b0d623f7 785cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp)
1c79356b 786{
1c79356b 787
55e303ae 788 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START,
b0d623f7 789 upl_offset, size, bp, 0, 0);
9bccf70c 790
91447636 791 if (bp == NULL || bp->b_datap == 0) {
2d21ac55
A
792 upl_page_info_t *pl;
793 addr64_t zero_addr;
9bccf70c 794
55e303ae
A
795 pl = ubc_upl_pageinfo(upl);
796
2d21ac55
A
797 if (upl_device_page(pl) == TRUE) {
798 zero_addr = ((addr64_t)upl_phys_page(pl, 0) << 12) + upl_offset;
799
800 bzero_phys_nc(zero_addr, size);
801 } else {
802 while (size) {
803 int page_offset;
804 int page_index;
805 int zero_cnt;
55e303ae 806
2d21ac55
A
807 page_index = upl_offset / PAGE_SIZE;
808 page_offset = upl_offset & PAGE_MASK;
55e303ae 809
2d21ac55
A
810 zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset;
811 zero_cnt = min(PAGE_SIZE - page_offset, size);
55e303ae 812
2d21ac55 813 bzero_phys(zero_addr, zero_cnt);
55e303ae 814
2d21ac55
A
815 size -= zero_cnt;
816 upl_offset += zero_cnt;
817 }
55e303ae 818 }
1c79356b 819 } else
91447636 820 bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size);
1c79356b 821
55e303ae
A
822 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END,
823 upl_offset, size, 0, 0, 0);
1c79356b
A
824}
825
91447636 826
2d21ac55
A
827static void
828cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset)
829{
830 cbp_head->b_validend = zero_offset;
831 cbp_tail->b_flags |= B_EOT;
832}
833
834static void
835cluster_wait_IO(buf_t cbp_head, int async)
836{
837 buf_t cbp;
838
839 if (async) {
840 /*
841 * async callback completion will not normally
842 * generate a wakeup upon I/O completion...
6d2010ae 843 * by setting B_TWANTED, we will force a wakeup
2d21ac55 844 * to occur as any outstanding I/Os complete...
6d2010ae
A
845 * I/Os already completed will have B_TDONE already
846 * set and we won't cause us to block
2d21ac55
A
847 * note that we're actually waiting for the bp to have
848 * completed the callback function... only then
849 * can we safely take back ownership of the bp
2d21ac55 850 */
6d2010ae 851 lck_mtx_lock_spin(cl_transaction_mtxp);
2d21ac55
A
852
853 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
6d2010ae 854 cbp->b_flags |= B_TWANTED;
2d21ac55 855
6d2010ae 856 lck_mtx_unlock(cl_transaction_mtxp);
2d21ac55
A
857 }
858 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
6d2010ae
A
859
860 if (async) {
861 while (!ISSET(cbp->b_flags, B_TDONE)) {
862
863 lck_mtx_lock_spin(cl_transaction_mtxp);
864
865 if (!ISSET(cbp->b_flags, B_TDONE)) {
866 DTRACE_IO1(wait__start, buf_t, cbp);
867 (void) msleep(cbp, cl_transaction_mtxp, PDROP | (PRIBIO+1), "cluster_wait_IO", NULL);
868 DTRACE_IO1(wait__done, buf_t, cbp);
869 } else
870 lck_mtx_unlock(cl_transaction_mtxp);
871 }
872 } else
2d21ac55
A
873 buf_biowait(cbp);
874 }
875}
876
877static void
878cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait)
879{
880 buf_t cbp;
881 int error;
882
883 /*
884 * cluster_complete_transaction will
885 * only be called if we've issued a complete chain in synchronous mode
886 * or, we've already done a cluster_wait_IO on an incomplete chain
887 */
888 if (needwait) {
889 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
890 buf_biowait(cbp);
891 }
060df5ea
A
892 /*
893 * we've already waited on all of the I/Os in this transaction,
894 * so mark all of the buf_t's in this transaction as B_TDONE
895 * so that cluster_iodone sees the transaction as completed
896 */
897 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
6d2010ae 898 cbp->b_flags |= B_TDONE;
060df5ea 899
2d21ac55
A
900 error = cluster_iodone(*cbp_head, callback_arg);
901
902 if ( !(flags & CL_ASYNC) && error && *retval == 0) {
903 if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO))
904 *retval = error;
905 }
906 *cbp_head = (buf_t)NULL;
907}
908
909
1c79356b 910static int
91447636 911cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
2d21ac55 912 int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
1c79356b 913{
91447636
A
914 buf_t cbp;
915 u_int size;
916 u_int io_size;
917 int io_flags;
918 int bmap_flags;
919 int error = 0;
920 int retval = 0;
921 buf_t cbp_head = NULL;
922 buf_t cbp_tail = NULL;
923 int trans_count = 0;
2d21ac55 924 int max_trans_count;
91447636
A
925 u_int pg_count;
926 int pg_offset;
927 u_int max_iosize;
928 u_int max_vectors;
929 int priv;
930 int zero_offset = 0;
931 int async_throttle = 0;
932 mount_t mp;
2d21ac55
A
933 vm_offset_t upl_end_offset;
934 boolean_t need_EOT = FALSE;
935
936 /*
937 * we currently don't support buffers larger than a page
938 */
939 if (real_bp && non_rounded_size > PAGE_SIZE)
940 panic("%s(): Called with real buffer of size %d bytes which "
941 "is greater than the maximum allowed size of "
942 "%d bytes (the system PAGE_SIZE).\n",
943 __FUNCTION__, non_rounded_size, PAGE_SIZE);
91447636
A
944
945 mp = vp->v_mount;
946
2d21ac55
A
947 /*
948 * we don't want to do any funny rounding of the size for IO requests
949 * coming through the DIRECT or CONTIGUOUS paths... those pages don't
950 * belong to us... we can't extend (nor do we need to) the I/O to fill
951 * out a page
952 */
953 if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) {
91447636
A
954 /*
955 * round the requested size up so that this I/O ends on a
956 * page boundary in case this is a 'write'... if the filesystem
957 * has blocks allocated to back the page beyond the EOF, we want to
958 * make sure to write out the zero's that are sitting beyond the EOF
959 * so that in case the filesystem doesn't explicitly zero this area
960 * if a hole is created via a lseek/write beyond the current EOF,
961 * it will return zeros when it's read back from the disk. If the
962 * physical allocation doesn't extend for the whole page, we'll
963 * only write/read from the disk up to the end of this allocation
964 * via the extent info returned from the VNOP_BLOCKMAP call.
965 */
966 pg_offset = upl_offset & PAGE_MASK;
55e303ae 967
91447636
A
968 size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset;
969 } else {
970 /*
971 * anyone advertising a blocksize of 1 byte probably
972 * can't deal with us rounding up the request size
973 * AFP is one such filesystem/device
974 */
975 size = non_rounded_size;
976 }
2d21ac55
A
977 upl_end_offset = upl_offset + size;
978
979 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0);
980
981 /*
982 * Set the maximum transaction size to the maximum desired number of
983 * buffers.
984 */
985 max_trans_count = 8;
986 if (flags & CL_DEV_MEMORY)
987 max_trans_count = 16;
55e303ae 988
0b4e3aa0 989 if (flags & CL_READ) {
2d21ac55 990 io_flags = B_READ;
91447636 991 bmap_flags = VNODE_READ;
0b4e3aa0 992
91447636
A
993 max_iosize = mp->mnt_maxreadcnt;
994 max_vectors = mp->mnt_segreadcnt;
0b4e3aa0 995 } else {
2d21ac55 996 io_flags = B_WRITE;
91447636 997 bmap_flags = VNODE_WRITE;
1c79356b 998
91447636
A
999 max_iosize = mp->mnt_maxwritecnt;
1000 max_vectors = mp->mnt_segwritecnt;
0b4e3aa0 1001 }
91447636
A
1002 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0);
1003
55e303ae 1004 /*
91447636
A
1005 * make sure the maximum iosize is a
1006 * multiple of the page size
55e303ae
A
1007 */
1008 max_iosize &= ~PAGE_MASK;
1009
2d21ac55
A
1010 /*
1011 * Ensure the maximum iosize is sensible.
1012 */
1013 if (!max_iosize)
1014 max_iosize = PAGE_SIZE;
1015
55e303ae 1016 if (flags & CL_THROTTLE) {
b0d623f7 1017 if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp, 1)) {
316670eb
A
1018 if (max_iosize > THROTTLE_MAX_IOSIZE)
1019 max_iosize = THROTTLE_MAX_IOSIZE;
55e303ae 1020 async_throttle = HARD_THROTTLE_MAXCNT;
2d21ac55
A
1021 } else {
1022 if ( (flags & CL_DEV_MEMORY) )
b0d623f7 1023 async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE);
2d21ac55
A
1024 else {
1025 u_int max_cluster;
cf7d32b8 1026 u_int max_cluster_size;
6d2010ae
A
1027 u_int scale;
1028
b0d623f7 1029 max_cluster_size = MAX_CLUSTER_SIZE(vp);
b0d623f7 1030
cf7d32b8 1031 if (max_iosize > max_cluster_size)
b0d623f7 1032 max_cluster = max_cluster_size;
2d21ac55
A
1033 else
1034 max_cluster = max_iosize;
1035
1036 if (size < max_cluster)
1037 max_cluster = size;
6d2010ae
A
1038
1039 if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
1040 scale = WRITE_THROTTLE_SSD;
1041 else
1042 scale = WRITE_THROTTLE;
2d21ac55 1043
6d2010ae
A
1044 if (flags & CL_CLOSE)
1045 scale += MAX_CLUSTERS;
1046
1047 async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1);
2d21ac55
A
1048 }
1049 }
55e303ae 1050 }
1c79356b
A
1051 if (flags & CL_AGE)
1052 io_flags |= B_AGE;
91447636
A
1053 if (flags & (CL_PAGEIN | CL_PAGEOUT))
1054 io_flags |= B_PAGEIO;
b0d623f7
A
1055 if (flags & (CL_IOSTREAMING))
1056 io_flags |= B_IOSTREAMING;
b4c24cb9
A
1057 if (flags & CL_COMMIT)
1058 io_flags |= B_COMMIT_UPL;
6d2010ae 1059 if (flags & CL_DIRECT_IO)
b4c24cb9 1060 io_flags |= B_PHYS;
6d2010ae
A
1061 if (flags & (CL_PRESERVE | CL_KEEPCACHED))
1062 io_flags |= B_CACHE;
2d21ac55
A
1063 if (flags & CL_PASSIVE)
1064 io_flags |= B_PASSIVE;
6d2010ae
A
1065 if (flags & CL_ENCRYPTED)
1066 io_flags |= B_ENCRYPTED_IO;
2d21ac55
A
1067 if (vp->v_flag & VSYSTEM)
1068 io_flags |= B_META;
1c79356b 1069
9bccf70c 1070 if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
1c79356b
A
1071 /*
1072 * then we are going to end up
1073 * with a page that we can't complete (the file size wasn't a multiple
1074 * of PAGE_SIZE and we're trying to read to the end of the file
1075 * so we'll go ahead and zero out the portion of the page we can't
1076 * read in from the file
1077 */
9bccf70c 1078 zero_offset = upl_offset + non_rounded_size;
1c79356b
A
1079 }
1080 while (size) {
91447636
A
1081 daddr64_t blkno;
1082 daddr64_t lblkno;
2d21ac55 1083 u_int io_size_wanted;
b0d623f7 1084 size_t io_size_tmp;
1c79356b 1085
0b4e3aa0
A
1086 if (size > max_iosize)
1087 io_size = max_iosize;
1c79356b
A
1088 else
1089 io_size = size;
2d21ac55
A
1090
1091 io_size_wanted = io_size;
b0d623f7 1092 io_size_tmp = (size_t)io_size;
91447636 1093
b0d623f7 1094 if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL)))
1c79356b 1095 break;
2d21ac55 1096
b0d623f7 1097 if (io_size_tmp > io_size_wanted)
2d21ac55 1098 io_size = io_size_wanted;
b0d623f7
A
1099 else
1100 io_size = (u_int)io_size_tmp;
2d21ac55 1101
91447636
A
1102 if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno))
1103 real_bp->b_blkno = blkno;
1c79356b
A
1104
1105 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
2d21ac55 1106 (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0);
1c79356b 1107
91447636
A
1108 if (io_size == 0) {
1109 /*
1110 * vnop_blockmap didn't return an error... however, it did
1111 * return an extent size of 0 which means we can't
1112 * make forward progress on this I/O... a hole in the
1113 * file would be returned as a blkno of -1 with a non-zero io_size
1114 * a real extent is returned with a blkno != -1 and a non-zero io_size
1115 */
1116 error = EINVAL;
1117 break;
1118 }
1119 if ( !(flags & CL_READ) && blkno == -1) {
2d21ac55
A
1120 off_t e_offset;
1121 int pageout_flags;
91447636 1122
6d2010ae 1123 if (upl_get_internal_vectorupl(upl))
b0d623f7 1124 panic("Vector UPLs should not take this code-path\n");
91447636
A
1125 /*
1126 * we're writing into a 'hole'
1127 */
0b4e3aa0 1128 if (flags & CL_PAGEOUT) {
91447636
A
1129 /*
1130 * if we got here via cluster_pageout
1131 * then just error the request and return
1132 * the 'hole' should already have been covered
1133 */
0b4e3aa0
A
1134 error = EINVAL;
1135 break;
91447636 1136 }
91447636
A
1137 /*
1138 * we can get here if the cluster code happens to
1139 * pick up a page that was dirtied via mmap vs
1140 * a 'write' and the page targets a 'hole'...
1141 * i.e. the writes to the cluster were sparse
1142 * and the file was being written for the first time
1143 *
1144 * we can also get here if the filesystem supports
1145 * 'holes' that are less than PAGE_SIZE.... because
1146 * we can't know if the range in the page that covers
1147 * the 'hole' has been dirtied via an mmap or not,
1148 * we have to assume the worst and try to push the
1149 * entire page to storage.
1150 *
1151 * Try paging out the page individually before
1152 * giving up entirely and dumping it (the pageout
1153 * path will insure that the zero extent accounting
1154 * has been taken care of before we get back into cluster_io)
2d21ac55
A
1155 *
1156 * go direct to vnode_pageout so that we don't have to
1157 * unbusy the page from the UPL... we used to do this
1158 * so that we could call ubc_sync_range, but that results
1159 * in a potential deadlock if someone else races us to acquire
1160 * that page and wins and in addition needs one of the pages
1161 * we're continuing to hold in the UPL
0b4e3aa0 1162 */
2d21ac55 1163 pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT;
91447636 1164
2d21ac55
A
1165 if ( !(flags & CL_ASYNC))
1166 pageout_flags |= UPL_IOSYNC;
1167 if ( !(flags & CL_COMMIT))
1168 pageout_flags |= UPL_NOCOMMIT;
1169
1170 if (cbp_head) {
1171 buf_t last_cbp;
1172
1173 /*
1174 * first we have to wait for the the current outstanding I/Os
1175 * to complete... EOT hasn't been set yet on this transaction
1176 * so the pages won't be released just because all of the current
1177 * I/O linked to this transaction has completed...
1178 */
1179 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1180
1181 /*
1182 * we've got a transcation that
1183 * includes the page we're about to push out through vnode_pageout...
1184 * find the last bp in the list which will be the one that
1185 * includes the head of this page and round it's iosize down
1186 * to a page boundary...
1187 */
1188 for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
1189 last_cbp = cbp;
1190
1191 cbp->b_bcount &= ~PAGE_MASK;
1192
1193 if (cbp->b_bcount == 0) {
1194 /*
1195 * this buf no longer has any I/O associated with it
1196 */
1197 free_io_buf(cbp);
1198
1199 if (cbp == cbp_head) {
1200 /*
1201 * the buf we just freed was the only buf in
1202 * this transaction... so there's no I/O to do
1203 */
1204 cbp_head = NULL;
1205 } else {
1206 /*
1207 * remove the buf we just freed from
1208 * the transaction list
1209 */
1210 last_cbp->b_trans_next = NULL;
1211 cbp_tail = last_cbp;
1212 }
1213 }
1214 if (cbp_head) {
1215 /*
1216 * there was more to the current transaction
1217 * than just the page we are pushing out via vnode_pageout...
1218 * mark it as finished and complete it... we've already
1219 * waited for the I/Os to complete above in the call to cluster_wait_IO
1220 */
1221 cluster_EOT(cbp_head, cbp_tail, 0);
91447636 1222
2d21ac55
A
1223 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1224
1225 trans_count = 0;
1226 }
1227 }
1228 if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) {
91447636 1229 error = EINVAL;
91447636 1230 }
2d21ac55 1231 e_offset = round_page_64(f_offset + 1);
91447636
A
1232 io_size = e_offset - f_offset;
1233
1234 f_offset += io_size;
1235 upl_offset += io_size;
1236
1237 if (size >= io_size)
1238 size -= io_size;
1239 else
1240 size = 0;
1241 /*
1242 * keep track of how much of the original request
1243 * that we've actually completed... non_rounded_size
1244 * may go negative due to us rounding the request
1245 * to a page size multiple (i.e. size > non_rounded_size)
1246 */
1247 non_rounded_size -= io_size;
1248
1249 if (non_rounded_size <= 0) {
1250 /*
1251 * we've transferred all of the data in the original
1252 * request, but we were unable to complete the tail
1253 * of the last page because the file didn't have
1254 * an allocation to back that portion... this is ok.
1255 */
1256 size = 0;
1257 }
6d2010ae
A
1258 if (error) {
1259 if (size == 0)
1260 flags &= ~CL_COMMIT;
1261 break;
1262 }
0b4e3aa0 1263 continue;
1c79356b 1264 }
91447636 1265 lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64);
1c79356b
A
1266 /*
1267 * we have now figured out how much I/O we can do - this is in 'io_size'
1c79356b
A
1268 * pg_offset is the starting point in the first page for the I/O
1269 * pg_count is the number of full and partial pages that 'io_size' encompasses
1270 */
1c79356b 1271 pg_offset = upl_offset & PAGE_MASK;
1c79356b 1272
0b4e3aa0 1273 if (flags & CL_DEV_MEMORY) {
0b4e3aa0
A
1274 /*
1275 * treat physical requests as one 'giant' page
1276 */
1277 pg_count = 1;
55e303ae
A
1278 } else
1279 pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
1280
91447636 1281 if ((flags & CL_READ) && blkno == -1) {
2d21ac55 1282 vm_offset_t commit_offset;
9bccf70c 1283 int bytes_to_zero;
2d21ac55 1284 int complete_transaction_now = 0;
9bccf70c 1285
1c79356b
A
1286 /*
1287 * if we're reading and blkno == -1, then we've got a
1288 * 'hole' in the file that we need to deal with by zeroing
1289 * out the affected area in the upl
1290 */
2d21ac55 1291 if (io_size >= (u_int)non_rounded_size) {
9bccf70c
A
1292 /*
1293 * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
1294 * than 'zero_offset' will be non-zero
91447636 1295 * if the 'hole' returned by vnop_blockmap extends all the way to the eof
9bccf70c
A
1296 * (indicated by the io_size finishing off the I/O request for this UPL)
1297 * than we're not going to issue an I/O for the
1298 * last page in this upl... we need to zero both the hole and the tail
1299 * of the page beyond the EOF, since the delayed zero-fill won't kick in
1300 */
2d21ac55
A
1301 bytes_to_zero = non_rounded_size;
1302 if (!(flags & CL_NOZERO))
1303 bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset;
1c79356b 1304
9bccf70c
A
1305 zero_offset = 0;
1306 } else
1307 bytes_to_zero = io_size;
1c79356b 1308
2d21ac55
A
1309 pg_count = 0;
1310
1311 cluster_zero(upl, upl_offset, bytes_to_zero, real_bp);
9bccf70c 1312
2d21ac55
A
1313 if (cbp_head) {
1314 int pg_resid;
1315
9bccf70c
A
1316 /*
1317 * if there is a current I/O chain pending
1318 * then the first page of the group we just zero'd
1319 * will be handled by the I/O completion if the zero
1320 * fill started in the middle of the page
1321 */
2d21ac55
A
1322 commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1323
1324 pg_resid = commit_offset - upl_offset;
1325
1326 if (bytes_to_zero >= pg_resid) {
1327 /*
1328 * the last page of the current I/O
1329 * has been completed...
1330 * compute the number of fully zero'd
1331 * pages that are beyond it
1332 * plus the last page if its partial
1333 * and we have no more I/O to issue...
1334 * otherwise a partial page is left
1335 * to begin the next I/O
1336 */
1337 if ((int)io_size >= non_rounded_size)
1338 pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE;
1339 else
1340 pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE;
1341
1342 complete_transaction_now = 1;
1343 }
1344 } else {
9bccf70c 1345 /*
2d21ac55
A
1346 * no pending I/O to deal with
1347 * so, commit all of the fully zero'd pages
1348 * plus the last page if its partial
1349 * and we have no more I/O to issue...
1350 * otherwise a partial page is left
1351 * to begin the next I/O
9bccf70c 1352 */
2d21ac55
A
1353 if ((int)io_size >= non_rounded_size)
1354 pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE;
1c79356b 1355 else
2d21ac55 1356 pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE;
9bccf70c 1357
2d21ac55
A
1358 commit_offset = upl_offset & ~PAGE_MASK;
1359 }
1360 if ( (flags & CL_COMMIT) && pg_count) {
1361 ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE,
1362 UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
1c79356b
A
1363 }
1364 upl_offset += io_size;
1365 f_offset += io_size;
1366 size -= io_size;
2d21ac55 1367
91447636
A
1368 /*
1369 * keep track of how much of the original request
1370 * that we've actually completed... non_rounded_size
1371 * may go negative due to us rounding the request
1372 * to a page size multiple (i.e. size > non_rounded_size)
1373 */
1374 non_rounded_size -= io_size;
1c79356b 1375
91447636
A
1376 if (non_rounded_size <= 0) {
1377 /*
1378 * we've transferred all of the data in the original
1379 * request, but we were unable to complete the tail
1380 * of the last page because the file didn't have
1381 * an allocation to back that portion... this is ok.
1382 */
1383 size = 0;
1384 }
2d21ac55
A
1385 if (cbp_head && (complete_transaction_now || size == 0)) {
1386 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
9bccf70c 1387
2d21ac55
A
1388 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1389
1390 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1391
1392 trans_count = 0;
1393 }
1394 continue;
1c79356b 1395 }
55e303ae 1396 if (pg_count > max_vectors) {
91447636 1397 if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) {
55e303ae
A
1398 io_size = PAGE_SIZE - pg_offset;
1399 pg_count = 1;
91447636
A
1400 } else {
1401 io_size -= (pg_count - max_vectors) * PAGE_SIZE;
55e303ae 1402 pg_count = max_vectors;
91447636 1403 }
1c79356b 1404 }
2d21ac55
A
1405 /*
1406 * If the transaction is going to reach the maximum number of
1407 * desired elements, truncate the i/o to the nearest page so
1408 * that the actual i/o is initiated after this buffer is
1409 * created and added to the i/o chain.
1410 *
1411 * I/O directed to physically contiguous memory
1412 * doesn't have a requirement to make sure we 'fill' a page
1413 */
1414 if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count &&
1415 ((upl_offset + io_size) & PAGE_MASK)) {
1416 vm_offset_t aligned_ofs;
1417
1418 aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK;
1419 /*
1420 * If the io_size does not actually finish off even a
1421 * single page we have to keep adding buffers to the
1422 * transaction despite having reached the desired limit.
1423 *
1424 * Eventually we get here with the page being finished
1425 * off (and exceeded) and then we truncate the size of
1426 * this i/o request so that it is page aligned so that
1427 * we can finally issue the i/o on the transaction.
1428 */
1429 if (aligned_ofs > upl_offset) {
1430 io_size = aligned_ofs - upl_offset;
1431 pg_count--;
1432 }
1433 }
1c79356b 1434
91447636 1435 if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV))
55e303ae
A
1436 /*
1437 * if we're not targeting a virtual device i.e. a disk image
1438 * it's safe to dip into the reserve pool since real devices
1439 * can complete this I/O request without requiring additional
1440 * bufs from the alloc_io_buf pool
1441 */
1442 priv = 1;
1443 else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
1444 /*
1445 * Throttle the speculative IO
1446 */
0b4e3aa0
A
1447 priv = 0;
1448 else
1449 priv = 1;
1450
1451 cbp = alloc_io_buf(vp, priv);
1c79356b 1452
55e303ae 1453 if (flags & CL_PAGEOUT) {
91447636
A
1454 u_int i;
1455
55e303ae 1456 for (i = 0; i < pg_count; i++) {
91447636
A
1457 if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
1458 panic("BUSY bp found in cluster_io");
1c79356b 1459 }
1c79356b 1460 }
b4c24cb9 1461 if (flags & CL_ASYNC) {
2d21ac55 1462 if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg))
91447636 1463 panic("buf_setcallback failed\n");
b4c24cb9 1464 }
2d21ac55 1465 cbp->b_cliodone = (void *)callback;
1c79356b 1466 cbp->b_flags |= io_flags;
316670eb
A
1467 if (flags & CL_NOCACHE)
1468 cbp->b_attr.ba_flags |= BA_NOCACHE;
1c79356b
A
1469
1470 cbp->b_lblkno = lblkno;
1471 cbp->b_blkno = blkno;
1472 cbp->b_bcount = io_size;
1c79356b 1473
91447636
A
1474 if (buf_setupl(cbp, upl, upl_offset))
1475 panic("buf_setupl failed\n");
1476
1477 cbp->b_trans_next = (buf_t)NULL;
1478
1479 if ((cbp->b_iostate = (void *)iostate))
d7e50217
A
1480 /*
1481 * caller wants to track the state of this
1482 * io... bump the amount issued against this stream
1483 */
b4c24cb9
A
1484 iostate->io_issued += io_size;
1485
91447636 1486 if (flags & CL_READ) {
1c79356b 1487 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE,
91447636
A
1488 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1489 }
1490 else {
1c79356b 1491 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE,
91447636
A
1492 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1493 }
1c79356b
A
1494
1495 if (cbp_head) {
1496 cbp_tail->b_trans_next = cbp;
1497 cbp_tail = cbp;
1498 } else {
1499 cbp_head = cbp;
1500 cbp_tail = cbp;
2d21ac55 1501
6d2010ae 1502 if ( (cbp_head->b_real_bp = real_bp) )
2d21ac55 1503 real_bp = (buf_t)NULL;
1c79356b 1504 }
2d21ac55
A
1505 *(buf_t *)(&cbp->b_trans_head) = cbp_head;
1506
91447636 1507 trans_count++;
1c79356b
A
1508
1509 upl_offset += io_size;
1510 f_offset += io_size;
1511 size -= io_size;
91447636
A
1512 /*
1513 * keep track of how much of the original request
1514 * that we've actually completed... non_rounded_size
1515 * may go negative due to us rounding the request
1516 * to a page size multiple (i.e. size > non_rounded_size)
1517 */
1518 non_rounded_size -= io_size;
1c79356b 1519
91447636
A
1520 if (non_rounded_size <= 0) {
1521 /*
1522 * we've transferred all of the data in the original
1523 * request, but we were unable to complete the tail
1524 * of the last page because the file didn't have
1525 * an allocation to back that portion... this is ok.
1526 */
1527 size = 0;
1528 }
2d21ac55
A
1529 if (size == 0) {
1530 /*
1531 * we have no more I/O to issue, so go
1532 * finish the final transaction
1533 */
1534 need_EOT = TRUE;
1535 } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) &&
1536 ((flags & CL_ASYNC) || trans_count > max_trans_count) ) {
1c79356b 1537 /*
2d21ac55
A
1538 * I/O directed to physically contiguous memory...
1539 * which doesn't have a requirement to make sure we 'fill' a page
1540 * or...
1c79356b
A
1541 * the current I/O we've prepared fully
1542 * completes the last page in this request
2d21ac55
A
1543 * and ...
1544 * it's either an ASYNC request or
9bccf70c 1545 * we've already accumulated more than 8 I/O's into
2d21ac55
A
1546 * this transaction so mark it as complete so that
1547 * it can finish asynchronously or via the cluster_complete_transaction
1548 * below if the request is synchronous
1c79356b 1549 */
2d21ac55
A
1550 need_EOT = TRUE;
1551 }
1552 if (need_EOT == TRUE)
1553 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1c79356b 1554
2d21ac55
A
1555 if (flags & CL_THROTTLE)
1556 (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io");
1c79356b 1557
2d21ac55
A
1558 if ( !(io_flags & B_READ))
1559 vnode_startwrite(vp);
9bccf70c 1560
316670eb
A
1561 if (flags & CL_RAW_ENCRYPTED) {
1562 /*
1563 * User requested raw encrypted bytes.
1564 * Twiddle the bit in the ba_flags for the buffer
1565 */
1566 cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO;
1567 }
1568
2d21ac55
A
1569 (void) VNOP_STRATEGY(cbp);
1570
1571 if (need_EOT == TRUE) {
1572 if ( !(flags & CL_ASYNC))
1573 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1);
9bccf70c 1574
2d21ac55 1575 need_EOT = FALSE;
91447636 1576 trans_count = 0;
2d21ac55 1577 cbp_head = NULL;
1c79356b 1578 }
2d21ac55 1579 }
1c79356b 1580 if (error) {
0b4e3aa0
A
1581 int abort_size;
1582
b4c24cb9
A
1583 io_size = 0;
1584
2d21ac55
A
1585 if (cbp_head) {
1586 /*
1587 * first wait until all of the outstanding I/O
1588 * for this partial transaction has completed
1589 */
1590 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
0b4e3aa0 1591
2d21ac55
A
1592 /*
1593 * Rewind the upl offset to the beginning of the
1594 * transaction.
1595 */
1596 upl_offset = cbp_head->b_uploffset;
1597
1598 for (cbp = cbp_head; cbp;) {
1599 buf_t cbp_next;
1600
1601 size += cbp->b_bcount;
1602 io_size += cbp->b_bcount;
1603
1604 cbp_next = cbp->b_trans_next;
1605 free_io_buf(cbp);
1606 cbp = cbp_next;
1607 }
1c79356b 1608 }
b4c24cb9 1609 if (iostate) {
91447636
A
1610 int need_wakeup = 0;
1611
d7e50217
A
1612 /*
1613 * update the error condition for this stream
1614 * since we never really issued the io
1615 * just go ahead and adjust it back
1616 */
6d2010ae 1617 lck_mtx_lock_spin(&iostate->io_mtxp);
91447636 1618
d7e50217 1619 if (iostate->io_error == 0)
b4c24cb9 1620 iostate->io_error = error;
b4c24cb9
A
1621 iostate->io_issued -= io_size;
1622
1623 if (iostate->io_wanted) {
d7e50217
A
1624 /*
1625 * someone is waiting for the state of
1626 * this io stream to change
1627 */
b4c24cb9 1628 iostate->io_wanted = 0;
2d21ac55 1629 need_wakeup = 1;
b4c24cb9 1630 }
6d2010ae 1631 lck_mtx_unlock(&iostate->io_mtxp);
91447636
A
1632
1633 if (need_wakeup)
1634 wakeup((caddr_t)&iostate->io_wanted);
b4c24cb9 1635 }
1c79356b 1636 if (flags & CL_COMMIT) {
2d21ac55 1637 int upl_flags;
1c79356b 1638
2d21ac55
A
1639 pg_offset = upl_offset & PAGE_MASK;
1640 abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK;
1641
1642 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags);
1643
1c79356b 1644 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
b0d623f7 1645 upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0);
1c79356b
A
1646 }
1647 if (retval == 0)
1648 retval = error;
2d21ac55
A
1649 } else if (cbp_head)
1650 panic("%s(): cbp_head is not NULL.\n", __FUNCTION__);
1651
1652 if (real_bp) {
1653 /*
1654 * can get here if we either encountered an error
1655 * or we completely zero-filled the request and
1656 * no I/O was issued
1657 */
1658 if (error) {
1659 real_bp->b_flags |= B_ERROR;
1660 real_bp->b_error = error;
1661 }
1662 buf_biodone(real_bp);
1c79356b 1663 }
2d21ac55 1664 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0);
1c79356b
A
1665
1666 return (retval);
1667}
1668
b0d623f7
A
1669#define reset_vector_run_state() \
1670 issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0;
1671
1672static int
1673vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize,
1674 int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
1675{
1676 vector_upl_set_pagelist(vector_upl);
1677
1678 if(io_flag & CL_READ) {
1679 if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0))
1680 io_flag &= ~CL_PRESERVE; /*don't zero fill*/
1681 else
1682 io_flag |= CL_PRESERVE; /*zero fill*/
1683 }
1684 return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg));
1685
1686}
1c79356b
A
1687
1688static int
2d21ac55 1689cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
1c79356b 1690{
55e303ae 1691 int pages_in_prefetch;
1c79356b
A
1692
1693 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
1694 (int)f_offset, size, (int)filesize, 0, 0);
1695
1696 if (f_offset >= filesize) {
1697 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1698 (int)f_offset, 0, 0, 0, 0);
1699 return(0);
1700 }
9bccf70c
A
1701 if ((off_t)size > (filesize - f_offset))
1702 size = filesize - f_offset;
55e303ae 1703 pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
1c79356b 1704
2d21ac55 1705 advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag);
1c79356b
A
1706
1707 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
55e303ae 1708 (int)f_offset + size, pages_in_prefetch, 0, 1, 0);
1c79356b 1709
55e303ae 1710 return (pages_in_prefetch);
1c79356b
A
1711}
1712
1713
1714
1715static void
2d21ac55
A
1716cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg,
1717 int bflag)
1c79356b 1718{
91447636
A
1719 daddr64_t r_addr;
1720 off_t f_offset;
1721 int size_of_prefetch;
b0d623f7 1722 u_int max_prefetch;
91447636 1723
1c79356b
A
1724
1725 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
91447636 1726 (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0);
1c79356b 1727
91447636 1728 if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) {
1c79356b 1729 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
91447636 1730 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0);
1c79356b
A
1731 return;
1732 }
2d21ac55 1733 if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) {
91447636
A
1734 rap->cl_ralen = 0;
1735 rap->cl_maxra = 0;
1c79356b
A
1736
1737 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
91447636 1738 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0);
1c79356b
A
1739
1740 return;
1741 }
6d2010ae 1742 max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD));
cf7d32b8 1743
6d2010ae
A
1744 if ((max_prefetch / PAGE_SIZE) > speculative_prefetch_max)
1745 max_prefetch = (speculative_prefetch_max * PAGE_SIZE);
1746
1747 if (max_prefetch <= PAGE_SIZE) {
1748 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1749 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0);
1750 return;
1751 }
91447636 1752 if (extent->e_addr < rap->cl_maxra) {
cf7d32b8 1753 if ((rap->cl_maxra - extent->e_addr) > ((max_prefetch / PAGE_SIZE) / 4)) {
1c79356b
A
1754
1755 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
91447636 1756 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0);
1c79356b
A
1757 return;
1758 }
1759 }
91447636
A
1760 r_addr = max(extent->e_addr, rap->cl_maxra) + 1;
1761 f_offset = (off_t)(r_addr * PAGE_SIZE_64);
1c79356b 1762
55e303ae
A
1763 size_of_prefetch = 0;
1764
1765 ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch);
1766
1767 if (size_of_prefetch) {
1768 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
91447636 1769 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0);
55e303ae
A
1770 return;
1771 }
9bccf70c 1772 if (f_offset < filesize) {
91447636 1773 daddr64_t read_size;
55e303ae 1774
cf7d32b8 1775 rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1;
55e303ae 1776
91447636
A
1777 read_size = (extent->e_addr + 1) - extent->b_addr;
1778
1779 if (read_size > rap->cl_ralen) {
cf7d32b8
A
1780 if (read_size > max_prefetch / PAGE_SIZE)
1781 rap->cl_ralen = max_prefetch / PAGE_SIZE;
91447636
A
1782 else
1783 rap->cl_ralen = read_size;
1784 }
2d21ac55 1785 size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag);
1c79356b 1786
9bccf70c 1787 if (size_of_prefetch)
91447636 1788 rap->cl_maxra = (r_addr + size_of_prefetch) - 1;
9bccf70c 1789 }
1c79356b 1790 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
91447636 1791 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0);
1c79356b
A
1792}
1793
2d21ac55 1794
9bccf70c 1795int
b0d623f7 1796cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
91447636 1797 int size, off_t filesize, int flags)
2d21ac55
A
1798{
1799 return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
1800
1801}
1802
1803
1804int
b0d623f7 1805cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2d21ac55 1806 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1c79356b
A
1807{
1808 int io_size;
55e303ae 1809 int rounded_size;
1c79356b 1810 off_t max_size;
55e303ae
A
1811 int local_flags;
1812
6d2010ae 1813 local_flags = CL_PAGEOUT | CL_THROTTLE;
1c79356b
A
1814
1815 if ((flags & UPL_IOSYNC) == 0)
1816 local_flags |= CL_ASYNC;
1817 if ((flags & UPL_NOCOMMIT) == 0)
1818 local_flags |= CL_COMMIT;
91447636
A
1819 if ((flags & UPL_KEEPCACHED))
1820 local_flags |= CL_KEEPCACHED;
6d2010ae
A
1821 if (flags & UPL_PAGING_ENCRYPTED)
1822 local_flags |= CL_ENCRYPTED;
1c79356b 1823
1c79356b
A
1824
1825 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
1826 (int)f_offset, size, (int)filesize, local_flags, 0);
1827
1828 /*
1829 * If they didn't specify any I/O, then we are done...
1830 * we can't issue an abort because we don't know how
1831 * big the upl really is
1832 */
1833 if (size <= 0)
1834 return (EINVAL);
1835
1836 if (vp->v_mount->mnt_flag & MNT_RDONLY) {
1837 if (local_flags & CL_COMMIT)
9bccf70c 1838 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
1c79356b
A
1839 return (EROFS);
1840 }
1841 /*
1842 * can't page-in from a negative offset
1843 * or if we're starting beyond the EOF
1844 * or if the file offset isn't page aligned
1845 * or the size requested isn't a multiple of PAGE_SIZE
1846 */
1847 if (f_offset < 0 || f_offset >= filesize ||
1848 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
0b4e3aa0
A
1849 if (local_flags & CL_COMMIT)
1850 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
1c79356b
A
1851 return (EINVAL);
1852 }
1853 max_size = filesize - f_offset;
1854
1855 if (size < max_size)
1856 io_size = size;
1857 else
9bccf70c 1858 io_size = max_size;
1c79356b 1859
55e303ae 1860 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1c79356b 1861
55e303ae 1862 if (size > rounded_size) {
0b4e3aa0 1863 if (local_flags & CL_COMMIT)
55e303ae 1864 ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size,
1c79356b
A
1865 UPL_ABORT_FREE_ON_EMPTY);
1866 }
91447636 1867 return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
2d21ac55 1868 local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg));
1c79356b
A
1869}
1870
2d21ac55 1871
9bccf70c 1872int
b0d623f7 1873cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
91447636 1874 int size, off_t filesize, int flags)
2d21ac55
A
1875{
1876 return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
1877}
1878
1879
1880int
b0d623f7 1881cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2d21ac55 1882 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1c79356b
A
1883{
1884 u_int io_size;
9bccf70c 1885 int rounded_size;
1c79356b
A
1886 off_t max_size;
1887 int retval;
1888 int local_flags = 0;
1c79356b 1889
9bccf70c
A
1890 if (upl == NULL || size < 0)
1891 panic("cluster_pagein: NULL upl passed in");
1c79356b 1892
9bccf70c
A
1893 if ((flags & UPL_IOSYNC) == 0)
1894 local_flags |= CL_ASYNC;
1c79356b 1895 if ((flags & UPL_NOCOMMIT) == 0)
9bccf70c 1896 local_flags |= CL_COMMIT;
b0d623f7
A
1897 if (flags & UPL_IOSTREAMING)
1898 local_flags |= CL_IOSTREAMING;
6d2010ae
A
1899 if (flags & UPL_PAGING_ENCRYPTED)
1900 local_flags |= CL_ENCRYPTED;
9bccf70c 1901
1c79356b
A
1902
1903 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
1904 (int)f_offset, size, (int)filesize, local_flags, 0);
1905
1906 /*
1907 * can't page-in from a negative offset
1908 * or if we're starting beyond the EOF
1909 * or if the file offset isn't page aligned
1910 * or the size requested isn't a multiple of PAGE_SIZE
1911 */
1912 if (f_offset < 0 || f_offset >= filesize ||
9bccf70c
A
1913 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) {
1914 if (local_flags & CL_COMMIT)
1915 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
1c79356b
A
1916 return (EINVAL);
1917 }
1918 max_size = filesize - f_offset;
1919
1920 if (size < max_size)
1921 io_size = size;
1922 else
9bccf70c 1923 io_size = max_size;
1c79356b 1924
9bccf70c 1925 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1c79356b 1926
9bccf70c
A
1927 if (size > rounded_size && (local_flags & CL_COMMIT))
1928 ubc_upl_abort_range(upl, upl_offset + rounded_size,
55e303ae 1929 size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
9bccf70c 1930
91447636 1931 retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
2d21ac55 1932 local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
1c79356b 1933
1c79356b
A
1934 return (retval);
1935}
1936
2d21ac55 1937
9bccf70c 1938int
91447636 1939cluster_bp(buf_t bp)
2d21ac55
A
1940{
1941 return cluster_bp_ext(bp, NULL, NULL);
1942}
1943
1944
1945int
1946cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg)
1c79356b
A
1947{
1948 off_t f_offset;
1949 int flags;
1950
9bccf70c 1951 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START,
b0d623f7 1952 bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
9bccf70c 1953
1c79356b 1954 if (bp->b_flags & B_READ)
9bccf70c 1955 flags = CL_ASYNC | CL_READ;
1c79356b 1956 else
9bccf70c 1957 flags = CL_ASYNC;
2d21ac55
A
1958 if (bp->b_flags & B_PASSIVE)
1959 flags |= CL_PASSIVE;
1c79356b
A
1960
1961 f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
1962
2d21ac55 1963 return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg));
1c79356b
A
1964}
1965
2d21ac55
A
1966
1967
9bccf70c 1968int
91447636 1969cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags)
1c79356b 1970{
2d21ac55
A
1971 return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL);
1972}
1973
1974
1975int
1976cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff,
1977 int xflags, int (*callback)(buf_t, void *), void *callback_arg)
1978{
1979 user_ssize_t cur_resid;
1980 int retval = 0;
1981 int flags;
1982 int zflags;
1983 int bflag;
1984 int write_type = IO_COPY;
1985 u_int32_t write_length;
1c79356b 1986
91447636
A
1987 flags = xflags;
1988
2d21ac55 1989 if (flags & IO_PASSIVE)
b0d623f7 1990 bflag = CL_PASSIVE;
2d21ac55 1991 else
b0d623f7 1992 bflag = 0;
2d21ac55 1993
316670eb 1994 if (vp->v_flag & VNOCACHE_DATA){
91447636 1995 flags |= IO_NOCACHE;
316670eb
A
1996 bflag |= CL_NOCACHE;
1997 }
2d21ac55 1998 if (uio == NULL) {
91447636 1999 /*
2d21ac55
A
2000 * no user data...
2001 * this call is being made to zero-fill some range in the file
91447636 2002 */
2d21ac55 2003 retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg);
91447636 2004
2d21ac55 2005 return(retval);
91447636 2006 }
2d21ac55
A
2007 /*
2008 * do a write through the cache if one of the following is true....
6d2010ae 2009 * NOCACHE is not true or NODIRECT is true
2d21ac55
A
2010 * the uio request doesn't target USERSPACE
2011 * otherwise, find out if we want the direct or contig variant for
2012 * the first vector in the uio request
2013 */
6d2010ae 2014 if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
2d21ac55
A
2015 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
2016
2017 if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT)
2018 /*
2019 * must go through the cached variant in this case
0b4e3aa0 2020 */
2d21ac55 2021 write_type = IO_COPY;
0b4e3aa0 2022
2d21ac55
A
2023 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) {
2024
2025 switch (write_type) {
91447636 2026
2d21ac55 2027 case IO_COPY:
91447636 2028 /*
2d21ac55
A
2029 * make sure the uio_resid isn't too big...
2030 * internally, we want to handle all of the I/O in
2031 * chunk sizes that fit in a 32 bit int
91447636 2032 */
2d21ac55 2033 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) {
91447636 2034 /*
2d21ac55
A
2035 * we're going to have to call cluster_write_copy
2036 * more than once...
2037 *
2038 * only want the last call to cluster_write_copy to
2039 * have the IO_TAILZEROFILL flag set and only the
2040 * first call should have IO_HEADZEROFILL
91447636 2041 */
2d21ac55
A
2042 zflags = flags & ~IO_TAILZEROFILL;
2043 flags &= ~IO_HEADZEROFILL;
91447636 2044
2d21ac55
A
2045 write_length = MAX_IO_REQUEST_SIZE;
2046 } else {
2047 /*
2048 * last call to cluster_write_copy
91447636 2049 */
2d21ac55
A
2050 zflags = flags;
2051
2052 write_length = (u_int32_t)cur_resid;
2053 }
2054 retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg);
2055 break;
91447636 2056
2d21ac55
A
2057 case IO_CONTIG:
2058 zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL);
91447636 2059
2d21ac55
A
2060 if (flags & IO_HEADZEROFILL) {
2061 /*
2062 * only do this once per request
91447636 2063 */
2d21ac55 2064 flags &= ~IO_HEADZEROFILL;
91447636 2065
2d21ac55
A
2066 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset,
2067 headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2068 if (retval)
2069 break;
91447636 2070 }
2d21ac55
A
2071 retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag);
2072
2073 if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) {
2074 /*
2075 * we're done with the data from the user specified buffer(s)
2076 * and we've been requested to zero fill at the tail
2077 * treat this as an IO_HEADZEROFILL which doesn't require a uio
2078 * by rearranging the args and passing in IO_HEADZEROFILL
91447636 2079 */
2d21ac55
A
2080 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset,
2081 (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2082 }
2083 break;
91447636 2084
2d21ac55
A
2085 case IO_DIRECT:
2086 /*
2087 * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL
2088 */
2089 retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg);
2090 break;
91447636 2091
2d21ac55
A
2092 case IO_UNKNOWN:
2093 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
2094 break;
2095 }
b0d623f7
A
2096 /*
2097 * in case we end up calling cluster_write_copy (from cluster_write_direct)
2098 * multiple times to service a multi-vector request that is not aligned properly
2099 * we need to update the oldEOF so that we
2100 * don't zero-fill the head of a page if we've successfully written
2101 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2102 * page that is beyond the oldEOF if the write is unaligned... we only
2103 * want that to happen for the very first page of the cluster_write,
2104 * NOT the first page of each vector making up a multi-vector write.
2105 */
2106 if (uio->uio_offset > oldEOF)
2107 oldEOF = uio->uio_offset;
2d21ac55
A
2108 }
2109 return (retval);
1c79356b
A
2110}
2111
b4c24cb9 2112
9bccf70c 2113static int
2d21ac55
A
2114cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length,
2115 int flags, int (*callback)(buf_t, void *), void *callback_arg)
1c79356b
A
2116{
2117 upl_t upl;
2118 upl_page_info_t *pl;
1c79356b 2119 vm_offset_t upl_offset;
b0d623f7 2120 vm_offset_t vector_upl_offset = 0;
2d21ac55
A
2121 u_int32_t io_req_size;
2122 u_int32_t offset_in_file;
2123 u_int32_t offset_in_iovbase;
b0d623f7
A
2124 u_int32_t io_size;
2125 int io_flag = 0;
2126 upl_size_t upl_size, vector_upl_size = 0;
2d21ac55
A
2127 vm_size_t upl_needed_size;
2128 mach_msg_type_number_t pages_in_pl;
1c79356b
A
2129 int upl_flags;
2130 kern_return_t kret;
2d21ac55 2131 mach_msg_type_number_t i;
1c79356b 2132 int force_data_sync;
2d21ac55
A
2133 int retval = 0;
2134 int first_IO = 1;
d7e50217 2135 struct clios iostate;
2d21ac55
A
2136 user_addr_t iov_base;
2137 u_int32_t mem_alignment_mask;
2138 u_int32_t devblocksize;
316670eb 2139 u_int32_t max_io_size;
b0d623f7 2140 u_int32_t max_upl_size;
316670eb
A
2141 u_int32_t max_vector_size;
2142 boolean_t io_throttled = FALSE;
cf7d32b8 2143
b0d623f7
A
2144 u_int32_t vector_upl_iosize = 0;
2145 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
2146 off_t v_upl_uio_offset = 0;
2147 int vector_upl_index=0;
2148 upl_t vector_upl = NULL;
cf7d32b8 2149
1c79356b
A
2150
2151 /*
2152 * When we enter this routine, we know
1c79356b
A
2153 * -- the resid will not exceed iov_len
2154 */
2d21ac55
A
2155 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START,
2156 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
91447636 2157
b0d623f7
A
2158 max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2159
2160 io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO;
2161
2162 if (flags & IO_PASSIVE)
2163 io_flag |= CL_PASSIVE;
316670eb
A
2164
2165 if (flags & IO_NOCACHE)
2166 io_flag |= CL_NOCACHE;
2167
d7e50217
A
2168 iostate.io_completed = 0;
2169 iostate.io_issued = 0;
2170 iostate.io_error = 0;
2171 iostate.io_wanted = 0;
2172
6d2010ae
A
2173 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2174
2d21ac55
A
2175 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2176 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2177
2178 if (devblocksize == 1) {
2179 /*
2180 * the AFP client advertises a devblocksize of 1
2181 * however, its BLOCKMAP routine maps to physical
2182 * blocks that are PAGE_SIZE in size...
2183 * therefore we can't ask for I/Os that aren't page aligned
2184 * or aren't multiples of PAGE_SIZE in size
2185 * by setting devblocksize to PAGE_SIZE, we re-instate
2186 * the old behavior we had before the mem_alignment_mask
2187 * changes went in...
2188 */
2189 devblocksize = PAGE_SIZE;
2190 }
2191
2192next_dwrite:
2193 io_req_size = *write_length;
2194 iov_base = uio_curriovbase(uio);
cc9f6e38 2195
2d21ac55
A
2196 offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK;
2197 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
1c79356b 2198
2d21ac55
A
2199 if (offset_in_file || offset_in_iovbase) {
2200 /*
2201 * one of the 2 important offsets is misaligned
2202 * so fire an I/O through the cache for this entire vector
2203 */
2204 goto wait_for_dwrites;
2205 }
2206 if (iov_base & (devblocksize - 1)) {
2207 /*
2208 * the offset in memory must be on a device block boundary
2209 * so that we can guarantee that we can generate an
2210 * I/O that ends on a page boundary in cluster_io
2211 */
2212 goto wait_for_dwrites;
2213 }
1c79356b 2214
2d21ac55 2215 while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
316670eb
A
2216 int throttle_type;
2217
2218 if ( (throttle_type = cluster_hard_throttle_on(vp, 1)) ) {
2219 /*
2220 * we're in the throttle window, at the very least
2221 * we want to limit the size of the I/O we're about
2222 * to issue
2223 */
2224 if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == 2) {
2225 /*
2226 * we're in the throttle window and at least 1 I/O
2227 * has already been issued by a throttleable thread
2228 * in this window, so return with EAGAIN to indicate
2229 * to the FS issuing the cluster_write call that it
2230 * should now throttle after dropping any locks
2231 */
2232 throttle_info_update_by_mount(vp->v_mount);
2233
2234 io_throttled = TRUE;
2235 goto wait_for_dwrites;
2236 }
2237 max_vector_size = THROTTLE_MAX_IOSIZE;
2238 max_io_size = THROTTLE_MAX_IOSIZE;
2239 } else {
2240 max_vector_size = MAX_VECTOR_UPL_SIZE;
2241 max_io_size = max_upl_size;
2242 }
2d21ac55
A
2243
2244 if (first_IO) {
2245 cluster_syncup(vp, newEOF, callback, callback_arg);
2246 first_IO = 0;
2247 }
2248 io_size = io_req_size & ~PAGE_MASK;
cc9f6e38
A
2249 iov_base = uio_curriovbase(uio);
2250
316670eb
A
2251 if (io_size > max_io_size)
2252 io_size = max_io_size;
2d21ac55 2253
b0d623f7
A
2254 if(useVectorUPL && (iov_base & PAGE_MASK)) {
2255 /*
2256 * We have an iov_base that's not page-aligned.
2257 * Issue all I/O's that have been collected within
2258 * this Vectored UPL.
2259 */
2260 if(vector_upl_index) {
2261 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2262 reset_vector_run_state();
2263 }
2264
2265 /*
2266 * After this point, if we are using the Vector UPL path and the base is
2267 * not page-aligned then the UPL with that base will be the first in the vector UPL.
2268 */
2269 }
2270
2d21ac55 2271 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
d7e50217
A
2272 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
2273
2274 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
cc9f6e38 2275 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
d7e50217
A
2276
2277 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
2278 pages_in_pl = 0;
2279 upl_size = upl_needed_size;
2280 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
55e303ae 2281 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
d7e50217
A
2282
2283 kret = vm_map_get_upl(current_map(),
cc9f6e38 2284 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
d7e50217
A
2285 &upl_size,
2286 &upl,
2287 NULL,
2288 &pages_in_pl,
2289 &upl_flags,
2290 force_data_sync);
2291
2292 if (kret != KERN_SUCCESS) {
2293 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2294 0, 0, 0, kret, 0);
d7e50217 2295 /*
2d21ac55 2296 * failed to get pagelist
d7e50217
A
2297 *
2298 * we may have already spun some portion of this request
2299 * off as async requests... we need to wait for the I/O
2300 * to complete before returning
2301 */
2d21ac55 2302 goto wait_for_dwrites;
d7e50217
A
2303 }
2304 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2305 pages_in_pl = upl_size / PAGE_SIZE;
1c79356b 2306
d7e50217
A
2307 for (i = 0; i < pages_in_pl; i++) {
2308 if (!upl_valid_page(pl, i))
2309 break;
2310 }
2311 if (i == pages_in_pl)
2312 break;
1c79356b 2313
d7e50217
A
2314 /*
2315 * didn't get all the pages back that we
2316 * needed... release this upl and try again
2317 */
2d21ac55 2318 ubc_upl_abort(upl, 0);
1c79356b 2319 }
d7e50217
A
2320 if (force_data_sync >= 3) {
2321 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2322 i, pages_in_pl, upl_size, kret, 0);
d7e50217
A
2323 /*
2324 * for some reason, we couldn't acquire a hold on all
2325 * the pages needed in the user's address space
2326 *
2327 * we may have already spun some portion of this request
2328 * off as async requests... we need to wait for the I/O
2329 * to complete before returning
2330 */
2d21ac55 2331 goto wait_for_dwrites;
1c79356b 2332 }
0b4e3aa0 2333
d7e50217
A
2334 /*
2335 * Consider the possibility that upl_size wasn't satisfied.
2336 */
2d21ac55
A
2337 if (upl_size < upl_needed_size) {
2338 if (upl_size && upl_offset == 0)
2339 io_size = upl_size;
2340 else
2341 io_size = 0;
2342 }
d7e50217 2343 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
cc9f6e38 2344 (int)upl_offset, upl_size, (int)iov_base, io_size, 0);
1c79356b 2345
d7e50217 2346 if (io_size == 0) {
2d21ac55 2347 ubc_upl_abort(upl, 0);
d7e50217
A
2348 /*
2349 * we may have already spun some portion of this request
2350 * off as async requests... we need to wait for the I/O
2351 * to complete before returning
2352 */
2d21ac55 2353 goto wait_for_dwrites;
d7e50217 2354 }
b0d623f7
A
2355
2356 if(useVectorUPL) {
2357 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
2358 if(end_off)
2359 issueVectorUPL = 1;
2360 /*
2361 * After this point, if we are using a vector UPL, then
2362 * either all the UPL elements end on a page boundary OR
2363 * this UPL is the last element because it does not end
2364 * on a page boundary.
2365 */
2366 }
2d21ac55 2367
d7e50217
A
2368 /*
2369 * Now look for pages already in the cache
2370 * and throw them away.
55e303ae
A
2371 * uio->uio_offset is page aligned within the file
2372 * io_size is a multiple of PAGE_SIZE
d7e50217 2373 */
55e303ae 2374 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL);
1c79356b 2375
d7e50217
A
2376 /*
2377 * we want push out these writes asynchronously so that we can overlap
2378 * the preparation of the next I/O
2379 * if there are already too many outstanding writes
2380 * wait until some complete before issuing the next
2381 */
6d2010ae
A
2382 if (iostate.io_issued > iostate.io_completed)
2383 cluster_iostate_wait(&iostate, max_upl_size * IO_SCALE(vp, 2), "cluster_write_direct");
cf7d32b8 2384
d7e50217
A
2385 if (iostate.io_error) {
2386 /*
2387 * one of the earlier writes we issued ran into a hard error
2388 * don't issue any more writes, cleanup the UPL
2389 * that was just created but not used, then
2390 * go wait for all writes that are part of this stream
2391 * to complete before returning the error to the caller
2392 */
2d21ac55 2393 ubc_upl_abort(upl, 0);
1c79356b 2394
2d21ac55 2395 goto wait_for_dwrites;
d7e50217 2396 }
1c79356b 2397
d7e50217
A
2398 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
2399 (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0);
1c79356b 2400
b0d623f7
A
2401 if(!useVectorUPL)
2402 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset,
2d21ac55 2403 io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
7b1edb79 2404
b0d623f7
A
2405 else {
2406 if(!vector_upl_index) {
2407 vector_upl = vector_upl_create(upl_offset);
2408 v_upl_uio_offset = uio->uio_offset;
2409 vector_upl_offset = upl_offset;
2410 }
2411
2412 vector_upl_set_subupl(vector_upl,upl,upl_size);
2413 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
2414 vector_upl_index++;
2415 vector_upl_iosize += io_size;
2416 vector_upl_size += upl_size;
2417
316670eb 2418 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
b0d623f7
A
2419 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2420 reset_vector_run_state();
2421 }
2422 }
2423
2d21ac55
A
2424 /*
2425 * update the uio structure to
2426 * reflect the I/O that we just issued
2427 */
cc9f6e38 2428 uio_update(uio, (user_size_t)io_size);
1c79356b 2429
b0d623f7
A
2430 /*
2431 * in case we end up calling through to cluster_write_copy to finish
2432 * the tail of this request, we need to update the oldEOF so that we
2433 * don't zero-fill the head of a page if we've successfully written
2434 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2435 * page that is beyond the oldEOF if the write is unaligned... we only
2436 * want that to happen for the very first page of the cluster_write,
2437 * NOT the first page of each vector making up a multi-vector write.
2438 */
2439 if (uio->uio_offset > oldEOF)
2440 oldEOF = uio->uio_offset;
2441
2d21ac55
A
2442 io_req_size -= io_size;
2443
d7e50217 2444 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END,
2d21ac55 2445 (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0);
1c79356b
A
2446
2447 } /* end while */
2448
2d21ac55 2449 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) {
91447636 2450
2d21ac55
A
2451 retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE);
2452
2453 if (retval == 0 && *write_type == IO_DIRECT) {
2454
2455 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE,
2456 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2457
2458 goto next_dwrite;
2459 }
2460 }
2461
2462wait_for_dwrites:
b0d623f7 2463
6d2010ae 2464 if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
b0d623f7
A
2465 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2466 reset_vector_run_state();
2467 }
2468
2469 if (iostate.io_issued > iostate.io_completed) {
2d21ac55
A
2470 /*
2471 * make sure all async writes issued as part of this stream
2472 * have completed before we return
2473 */
6d2010ae 2474 cluster_iostate_wait(&iostate, 0, "cluster_write_direct");
2d21ac55 2475 }
d7e50217 2476 if (iostate.io_error)
2d21ac55
A
2477 retval = iostate.io_error;
2478
6d2010ae
A
2479 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2480
316670eb
A
2481 if (io_throttled == TRUE && retval == 0)
2482 retval = EAGAIN;
2483
2d21ac55
A
2484 if (io_req_size && retval == 0) {
2485 /*
2486 * we couldn't handle the tail of this request in DIRECT mode
2487 * so fire it through the copy path
2488 *
2489 * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set
2490 * so we can just pass 0 in for the headOff and tailOff
2491 */
b0d623f7
A
2492 if (uio->uio_offset > oldEOF)
2493 oldEOF = uio->uio_offset;
2494
2d21ac55 2495 retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg);
1c79356b 2496
2d21ac55
A
2497 *write_type = IO_UNKNOWN;
2498 }
1c79356b 2499 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
2d21ac55 2500 (int)uio->uio_offset, io_req_size, retval, 4, 0);
1c79356b 2501
2d21ac55 2502 return (retval);
1c79356b
A
2503}
2504
b4c24cb9 2505
9bccf70c 2506static int
2d21ac55
A
2507cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length,
2508 int (*callback)(buf_t, void *), void *callback_arg, int bflag)
0b4e3aa0 2509{
b4c24cb9 2510 upl_page_info_t *pl;
2d21ac55
A
2511 addr64_t src_paddr = 0;
2512 upl_t upl[MAX_VECTS];
0b4e3aa0 2513 vm_offset_t upl_offset;
2d21ac55
A
2514 u_int32_t tail_size = 0;
2515 u_int32_t io_size;
2516 u_int32_t xsize;
b0d623f7 2517 upl_size_t upl_size;
2d21ac55
A
2518 vm_size_t upl_needed_size;
2519 mach_msg_type_number_t pages_in_pl;
0b4e3aa0
A
2520 int upl_flags;
2521 kern_return_t kret;
2d21ac55 2522 struct clios iostate;
0b4e3aa0 2523 int error = 0;
2d21ac55
A
2524 int cur_upl = 0;
2525 int num_upl = 0;
2526 int n;
cc9f6e38 2527 user_addr_t iov_base;
2d21ac55
A
2528 u_int32_t devblocksize;
2529 u_int32_t mem_alignment_mask;
0b4e3aa0
A
2530
2531 /*
2532 * When we enter this routine, we know
2d21ac55
A
2533 * -- the io_req_size will not exceed iov_len
2534 * -- the target address is physically contiguous
0b4e3aa0 2535 */
2d21ac55 2536 cluster_syncup(vp, newEOF, callback, callback_arg);
0b4e3aa0 2537
2d21ac55
A
2538 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2539 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
91447636 2540
2d21ac55
A
2541 iostate.io_completed = 0;
2542 iostate.io_issued = 0;
2543 iostate.io_error = 0;
2544 iostate.io_wanted = 0;
2545
6d2010ae
A
2546 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2547
2d21ac55
A
2548next_cwrite:
2549 io_size = *write_length;
91447636 2550
cc9f6e38
A
2551 iov_base = uio_curriovbase(uio);
2552
2d21ac55 2553 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
0b4e3aa0
A
2554 upl_needed_size = upl_offset + io_size;
2555
2556 pages_in_pl = 0;
2557 upl_size = upl_needed_size;
9bccf70c 2558 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
55e303ae 2559 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
0b4e3aa0
A
2560
2561 kret = vm_map_get_upl(current_map(),
cc9f6e38 2562 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2d21ac55 2563 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
0b4e3aa0 2564
b4c24cb9
A
2565 if (kret != KERN_SUCCESS) {
2566 /*
2d21ac55 2567 * failed to get pagelist
b4c24cb9 2568 */
2d21ac55
A
2569 error = EINVAL;
2570 goto wait_for_cwrites;
b4c24cb9 2571 }
2d21ac55
A
2572 num_upl++;
2573
0b4e3aa0
A
2574 /*
2575 * Consider the possibility that upl_size wasn't satisfied.
0b4e3aa0 2576 */
b4c24cb9 2577 if (upl_size < upl_needed_size) {
2d21ac55
A
2578 /*
2579 * This is a failure in the physical memory case.
2580 */
2581 error = EINVAL;
2582 goto wait_for_cwrites;
b4c24cb9 2583 }
2d21ac55 2584 pl = ubc_upl_pageinfo(upl[cur_upl]);
0b4e3aa0 2585
cc9f6e38 2586 src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset;
0b4e3aa0 2587
b4c24cb9 2588 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
2d21ac55 2589 u_int32_t head_size;
0b4e3aa0 2590
2d21ac55 2591 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
0b4e3aa0 2592
b4c24cb9
A
2593 if (head_size > io_size)
2594 head_size = io_size;
2595
2d21ac55 2596 error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg);
b4c24cb9 2597
2d21ac55
A
2598 if (error)
2599 goto wait_for_cwrites;
b4c24cb9 2600
b4c24cb9
A
2601 upl_offset += head_size;
2602 src_paddr += head_size;
2603 io_size -= head_size;
2d21ac55
A
2604
2605 iov_base += head_size;
2606 }
2607 if ((u_int32_t)iov_base & mem_alignment_mask) {
2608 /*
2609 * request doesn't set up on a memory boundary
2610 * the underlying DMA engine can handle...
2611 * return an error instead of going through
2612 * the slow copy path since the intent of this
2613 * path is direct I/O from device memory
2614 */
2615 error = EINVAL;
2616 goto wait_for_cwrites;
0b4e3aa0 2617 }
2d21ac55 2618
b4c24cb9
A
2619 tail_size = io_size & (devblocksize - 1);
2620 io_size -= tail_size;
2621
2d21ac55
A
2622 while (io_size && error == 0) {
2623
2624 if (io_size > MAX_IO_CONTIG_SIZE)
2625 xsize = MAX_IO_CONTIG_SIZE;
2626 else
2627 xsize = io_size;
2628 /*
2629 * request asynchronously so that we can overlap
2630 * the preparation of the next I/O... we'll do
2631 * the commit after all the I/O has completed
2632 * since its all issued against the same UPL
2633 * if there are already too many outstanding writes
2634 * wait until some have completed before issuing the next
b4c24cb9 2635 */
6d2010ae
A
2636 if (iostate.io_issued > iostate.io_completed)
2637 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig");
2d21ac55 2638
2d21ac55
A
2639 if (iostate.io_error) {
2640 /*
2641 * one of the earlier writes we issued ran into a hard error
2642 * don't issue any more writes...
2643 * go wait for all writes that are part of this stream
2644 * to complete before returning the error to the caller
2645 */
2646 goto wait_for_cwrites;
2647 }
b4c24cb9 2648 /*
2d21ac55 2649 * issue an asynchronous write to cluster_io
b4c24cb9 2650 */
2d21ac55
A
2651 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset,
2652 xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg);
cc9f6e38 2653
2d21ac55
A
2654 if (error == 0) {
2655 /*
2656 * The cluster_io write completed successfully,
2657 * update the uio structure
2658 */
2659 uio_update(uio, (user_size_t)xsize);
b4c24cb9 2660
2d21ac55
A
2661 upl_offset += xsize;
2662 src_paddr += xsize;
2663 io_size -= xsize;
2664 }
b4c24cb9 2665 }
cf7d32b8 2666 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) {
2d21ac55
A
2667
2668 error = cluster_io_type(uio, write_type, write_length, 0);
2669
2670 if (error == 0 && *write_type == IO_CONTIG) {
2671 cur_upl++;
2672 goto next_cwrite;
2673 }
2674 } else
2675 *write_type = IO_UNKNOWN;
2676
2677wait_for_cwrites:
b4c24cb9 2678 /*
2d21ac55
A
2679 * make sure all async writes that are part of this stream
2680 * have completed before we proceed
2681 */
6d2010ae
A
2682 if (iostate.io_issued > iostate.io_completed)
2683 cluster_iostate_wait(&iostate, 0, "cluster_write_contig");
cf7d32b8 2684
2d21ac55
A
2685 if (iostate.io_error)
2686 error = iostate.io_error;
2687
6d2010ae
A
2688 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2689
2d21ac55
A
2690 if (error == 0 && tail_size)
2691 error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg);
2692
2693 for (n = 0; n < num_upl; n++)
2694 /*
2695 * just release our hold on each physically contiguous
2696 * region without changing any state
2697 */
2698 ubc_upl_abort(upl[n], 0);
0b4e3aa0
A
2699
2700 return (error);
2701}
2702
b4c24cb9 2703
b0d623f7
A
2704/*
2705 * need to avoid a race between an msync of a range of pages dirtied via mmap
2706 * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's
2707 * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd
2708 *
2709 * we should never force-zero-fill pages that are already valid in the cache...
2710 * the entire page contains valid data (either from disk, zero-filled or dirtied
2711 * via an mmap) so we can only do damage by trying to zero-fill
2712 *
2713 */
2714static int
2715cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero)
2716{
2717 int zero_pg_index;
2718 boolean_t need_cluster_zero = TRUE;
2719
2720 if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
2721
2722 bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64));
2723 zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
2724
2725 if (upl_valid_page(pl, zero_pg_index)) {
2726 /*
2727 * never force zero valid pages - dirty or clean
2728 * we'll leave these in the UPL for cluster_write_copy to deal with
2729 */
2730 need_cluster_zero = FALSE;
2731 }
2732 }
2733 if (need_cluster_zero == TRUE)
2734 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2735
2736 return (bytes_to_zero);
2737}
2738
2739
9bccf70c 2740static int
2d21ac55
A
2741cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff,
2742 off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1c79356b
A
2743{
2744 upl_page_info_t *pl;
2745 upl_t upl;
91447636 2746 vm_offset_t upl_offset = 0;
2d21ac55 2747 vm_size_t upl_size;
1c79356b
A
2748 off_t upl_f_offset;
2749 int pages_in_upl;
2750 int start_offset;
2751 int xfer_resid;
2752 int io_size;
1c79356b
A
2753 int io_offset;
2754 int bytes_to_zero;
2755 int bytes_to_move;
2756 kern_return_t kret;
2757 int retval = 0;
91447636 2758 int io_resid;
1c79356b
A
2759 long long total_size;
2760 long long zero_cnt;
2761 off_t zero_off;
2762 long long zero_cnt1;
2763 off_t zero_off1;
6d2010ae
A
2764 off_t write_off = 0;
2765 int write_cnt = 0;
2766 boolean_t first_pass = FALSE;
91447636 2767 struct cl_extent cl;
91447636 2768 struct cl_writebehind *wbp;
2d21ac55 2769 int bflag;
b0d623f7
A
2770 u_int max_cluster_pgcount;
2771 u_int max_io_size;
1c79356b
A
2772
2773 if (uio) {
2774 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
2d21ac55 2775 (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0);
1c79356b 2776
2d21ac55 2777 io_resid = io_req_size;
1c79356b
A
2778 } else {
2779 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
2780 0, 0, (int)oldEOF, (int)newEOF, 0);
2781
91447636 2782 io_resid = 0;
1c79356b 2783 }
b0d623f7
A
2784 if (flags & IO_PASSIVE)
2785 bflag = CL_PASSIVE;
2786 else
2787 bflag = 0;
316670eb
A
2788 if (flags & IO_NOCACHE)
2789 bflag |= CL_NOCACHE;
2790
1c79356b
A
2791 zero_cnt = 0;
2792 zero_cnt1 = 0;
91447636
A
2793 zero_off = 0;
2794 zero_off1 = 0;
1c79356b 2795
cf7d32b8
A
2796 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
2797 max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2798
1c79356b
A
2799 if (flags & IO_HEADZEROFILL) {
2800 /*
2801 * some filesystems (HFS is one) don't support unallocated holes within a file...
2802 * so we zero fill the intervening space between the old EOF and the offset
2803 * where the next chunk of real data begins.... ftruncate will also use this
2804 * routine to zero fill to the new EOF when growing a file... in this case, the
2805 * uio structure will not be provided
2806 */
2807 if (uio) {
2808 if (headOff < uio->uio_offset) {
2809 zero_cnt = uio->uio_offset - headOff;
2810 zero_off = headOff;
2811 }
2812 } else if (headOff < newEOF) {
2813 zero_cnt = newEOF - headOff;
2814 zero_off = headOff;
2815 }
b0d623f7
A
2816 } else {
2817 if (uio && uio->uio_offset > oldEOF) {
2818 zero_off = uio->uio_offset & ~PAGE_MASK_64;
2819
2820 if (zero_off >= oldEOF) {
2821 zero_cnt = uio->uio_offset - zero_off;
2822
2823 flags |= IO_HEADZEROFILL;
2824 }
2825 }
1c79356b
A
2826 }
2827 if (flags & IO_TAILZEROFILL) {
2828 if (uio) {
2d21ac55 2829 zero_off1 = uio->uio_offset + io_req_size;
1c79356b
A
2830
2831 if (zero_off1 < tailOff)
2832 zero_cnt1 = tailOff - zero_off1;
2833 }
b0d623f7
A
2834 } else {
2835 if (uio && newEOF > oldEOF) {
2836 zero_off1 = uio->uio_offset + io_req_size;
2837
2838 if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) {
2839 zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64);
2840
2841 flags |= IO_TAILZEROFILL;
2842 }
2843 }
1c79356b 2844 }
55e303ae 2845 if (zero_cnt == 0 && uio == (struct uio *) 0) {
91447636
A
2846 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
2847 retval, 0, 0, 0, 0);
2848 return (0);
55e303ae 2849 }
6d2010ae
A
2850 if (uio) {
2851 write_off = uio->uio_offset;
2852 write_cnt = uio_resid(uio);
2853 /*
2854 * delay updating the sequential write info
2855 * in the control block until we've obtained
2856 * the lock for it
2857 */
2858 first_pass = TRUE;
2859 }
91447636 2860 while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
1c79356b
A
2861 /*
2862 * for this iteration of the loop, figure out where our starting point is
2863 */
2864 if (zero_cnt) {
2865 start_offset = (int)(zero_off & PAGE_MASK_64);
2866 upl_f_offset = zero_off - start_offset;
91447636 2867 } else if (io_resid) {
1c79356b
A
2868 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
2869 upl_f_offset = uio->uio_offset - start_offset;
2870 } else {
2871 start_offset = (int)(zero_off1 & PAGE_MASK_64);
2872 upl_f_offset = zero_off1 - start_offset;
2873 }
2874 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE,
2875 (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0);
2876
cf7d32b8
A
2877 if (total_size > max_io_size)
2878 total_size = max_io_size;
1c79356b 2879
91447636 2880 cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64);
55e303ae 2881
2d21ac55 2882 if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) {
55e303ae 2883 /*
91447636 2884 * assumption... total_size <= io_resid
55e303ae
A
2885 * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
2886 */
cf7d32b8 2887 if ((start_offset + total_size) > max_io_size)
b7266188 2888 total_size = max_io_size - start_offset;
55e303ae
A
2889 xfer_resid = total_size;
2890
2d21ac55 2891 retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1);
b0d623f7 2892
55e303ae
A
2893 if (retval)
2894 break;
2895
2d21ac55 2896 io_resid -= (total_size - xfer_resid);
55e303ae
A
2897 total_size = xfer_resid;
2898 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
2899 upl_f_offset = uio->uio_offset - start_offset;
2900
2901 if (total_size == 0) {
2902 if (start_offset) {
2903 /*
2904 * the write did not finish on a page boundary
2905 * which will leave upl_f_offset pointing to the
2906 * beginning of the last page written instead of
2907 * the page beyond it... bump it in this case
2908 * so that the cluster code records the last page
2909 * written as dirty
2910 */
2911 upl_f_offset += PAGE_SIZE_64;
2912 }
2913 upl_size = 0;
2914
2915 goto check_cluster;
2916 }
2917 }
1c79356b
A
2918 /*
2919 * compute the size of the upl needed to encompass
2920 * the requested write... limit each call to cluster_io
0b4e3aa0
A
2921 * to the maximum UPL size... cluster_io will clip if
2922 * this exceeds the maximum io_size for the device,
2923 * make sure to account for
1c79356b
A
2924 * a starting offset that's not page aligned
2925 */
2926 upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
2927
cf7d32b8
A
2928 if (upl_size > max_io_size)
2929 upl_size = max_io_size;
1c79356b
A
2930
2931 pages_in_upl = upl_size / PAGE_SIZE;
2932 io_size = upl_size - start_offset;
2933
2934 if ((long long)io_size > total_size)
2935 io_size = total_size;
2936
55e303ae
A
2937 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0);
2938
1c79356b 2939
91447636
A
2940 /*
2941 * Gather the pages from the buffer cache.
2942 * The UPL_WILL_MODIFY flag lets the UPL subsystem know
2943 * that we intend to modify these pages.
2944 */
0b4e3aa0 2945 kret = ubc_create_upl(vp,
91447636
A
2946 upl_f_offset,
2947 upl_size,
2948 &upl,
2949 &pl,
b0d623f7 2950 UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY));
1c79356b 2951 if (kret != KERN_SUCCESS)
2d21ac55 2952 panic("cluster_write_copy: failed to get pagelist");
1c79356b 2953
55e303ae 2954 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END,
b0d623f7 2955 upl, (int)upl_f_offset, start_offset, 0, 0);
1c79356b 2956
b0d623f7 2957 if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) {
0b4e3aa0 2958 int read_size;
1c79356b 2959
0b4e3aa0 2960 /*
1c79356b
A
2961 * we're starting in the middle of the first page of the upl
2962 * and the page isn't currently valid, so we're going to have
2963 * to read it in first... this is a synchronous operation
2964 */
2965 read_size = PAGE_SIZE;
2966
b0d623f7
A
2967 if ((upl_f_offset + read_size) > oldEOF)
2968 read_size = oldEOF - upl_f_offset;
9bccf70c 2969
91447636 2970 retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
2d21ac55 2971 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
1c79356b 2972 if (retval) {
0b4e3aa0 2973 /*
1c79356b
A
2974 * we had an error during the read which causes us to abort
2975 * the current cluster_write request... before we do, we need
2976 * to release the rest of the pages in the upl without modifying
2977 * there state and mark the failed page in error
2978 */
935ed37a 2979 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
91447636
A
2980
2981 if (upl_size > PAGE_SIZE)
2982 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
1c79356b
A
2983
2984 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
b0d623f7 2985 upl, 0, 0, retval, 0);
1c79356b
A
2986 break;
2987 }
2988 }
2989 if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) {
2990 /*
2991 * the last offset we're writing to in this upl does not end on a page
2992 * boundary... if it's not beyond the old EOF, then we'll also need to
2993 * pre-read this page in if it isn't already valid
2994 */
2995 upl_offset = upl_size - PAGE_SIZE;
2996
2997 if ((upl_f_offset + start_offset + io_size) < oldEOF &&
2998 !upl_valid_page(pl, upl_offset / PAGE_SIZE)) {
2999 int read_size;
3000
3001 read_size = PAGE_SIZE;
3002
b0d623f7
A
3003 if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF)
3004 read_size = oldEOF - (upl_f_offset + upl_offset);
9bccf70c 3005
91447636 3006 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
2d21ac55 3007 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
1c79356b 3008 if (retval) {
0b4e3aa0 3009 /*
1c79356b 3010 * we had an error during the read which causes us to abort
0b4e3aa0
A
3011 * the current cluster_write request... before we do, we
3012 * need to release the rest of the pages in the upl without
3013 * modifying there state and mark the failed page in error
1c79356b 3014 */
935ed37a 3015 ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
91447636
A
3016
3017 if (upl_size > PAGE_SIZE)
3018 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
1c79356b
A
3019
3020 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
b0d623f7 3021 upl, 0, 0, retval, 0);
1c79356b
A
3022 break;
3023 }
3024 }
3025 }
1c79356b
A
3026 xfer_resid = io_size;
3027 io_offset = start_offset;
3028
3029 while (zero_cnt && xfer_resid) {
3030
3031 if (zero_cnt < (long long)xfer_resid)
3032 bytes_to_zero = zero_cnt;
3033 else
3034 bytes_to_zero = xfer_resid;
3035
b0d623f7 3036 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero);
9bccf70c 3037
1c79356b
A
3038 xfer_resid -= bytes_to_zero;
3039 zero_cnt -= bytes_to_zero;
3040 zero_off += bytes_to_zero;
3041 io_offset += bytes_to_zero;
3042 }
91447636 3043 if (xfer_resid && io_resid) {
2d21ac55
A
3044 u_int32_t io_requested;
3045
91447636 3046 bytes_to_move = min(io_resid, xfer_resid);
2d21ac55 3047 io_requested = bytes_to_move;
1c79356b 3048
2d21ac55 3049 retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested);
9bccf70c 3050
1c79356b 3051 if (retval) {
9bccf70c 3052 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
1c79356b
A
3053
3054 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
b0d623f7 3055 upl, 0, 0, retval, 0);
1c79356b 3056 } else {
2d21ac55 3057 io_resid -= bytes_to_move;
1c79356b
A
3058 xfer_resid -= bytes_to_move;
3059 io_offset += bytes_to_move;
3060 }
3061 }
3062 while (xfer_resid && zero_cnt1 && retval == 0) {
3063
3064 if (zero_cnt1 < (long long)xfer_resid)
3065 bytes_to_zero = zero_cnt1;
3066 else
3067 bytes_to_zero = xfer_resid;
3068
b0d623f7
A
3069 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero);
3070
1c79356b
A
3071 xfer_resid -= bytes_to_zero;
3072 zero_cnt1 -= bytes_to_zero;
3073 zero_off1 += bytes_to_zero;
3074 io_offset += bytes_to_zero;
3075 }
1c79356b 3076 if (retval == 0) {
9bccf70c 3077 int cl_index;
2d21ac55 3078 int ret_cluster_try_push;
1c79356b
A
3079
3080 io_size += start_offset;
3081
2d21ac55 3082 if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) {
1c79356b
A
3083 /*
3084 * if we're extending the file with this write
3085 * we'll zero fill the rest of the page so that
3086 * if the file gets extended again in such a way as to leave a
3087 * hole starting at this EOF, we'll have zero's in the correct spot
3088 */
55e303ae 3089 cluster_zero(upl, io_size, upl_size - io_size, NULL);
1c79356b 3090 }
935ed37a
A
3091 /*
3092 * release the upl now if we hold one since...
3093 * 1) pages in it may be present in the sparse cluster map
3094 * and may span 2 separate buckets there... if they do and
3095 * we happen to have to flush a bucket to make room and it intersects
3096 * this upl, a deadlock may result on page BUSY
3097 * 2) we're delaying the I/O... from this point forward we're just updating
3098 * the cluster state... no need to hold the pages, so commit them
3099 * 3) IO_SYNC is set...
3100 * because we had to ask for a UPL that provides currenty non-present pages, the
3101 * UPL has been automatically set to clear the dirty flags (both software and hardware)
3102 * upon committing it... this is not the behavior we want since it's possible for
3103 * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
3104 * we'll pick these pages back up later with the correct behavior specified.
3105 * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
3106 * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
3107 * we hold since the flushing context is holding the cluster lock.
3108 */
3109 ubc_upl_commit_range(upl, 0, upl_size,
3110 UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
3111check_cluster:
3112 /*
3113 * calculate the last logical block number
3114 * that this delayed I/O encompassed
3115 */
3116 cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
3117
b0d623f7 3118 if (flags & IO_SYNC) {
9bccf70c
A
3119 /*
3120 * if the IO_SYNC flag is set than we need to
3121 * bypass any clusters and immediately issue
3122 * the I/O
3123 */
3124 goto issue_io;
b0d623f7 3125 }
91447636
A
3126 /*
3127 * take the lock to protect our accesses
3128 * of the writebehind and sparse cluster state
3129 */
3130 wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
3131
91447636 3132 if (wbp->cl_scmap) {
55e303ae 3133
91447636 3134 if ( !(flags & IO_NOCACHE)) {
55e303ae
A
3135 /*
3136 * we've fallen into the sparse
3137 * cluster method of delaying dirty pages
55e303ae 3138 */
b0d623f7 3139 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
91447636
A
3140
3141 lck_mtx_unlock(&wbp->cl_lockw);
55e303ae
A
3142
3143 continue;
3144 }
3145 /*
3146 * must have done cached writes that fell into
3147 * the sparse cluster mechanism... we've switched
3148 * to uncached writes on the file, so go ahead
3149 * and push whatever's in the sparse map
3150 * and switch back to normal clustering
55e303ae 3151 */
91447636 3152 wbp->cl_number = 0;
935ed37a 3153
6d2010ae 3154 sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg);
55e303ae
A
3155 /*
3156 * no clusters of either type present at this point
3157 * so just go directly to start_new_cluster since
3158 * we know we need to delay this I/O since we've
3159 * already released the pages back into the cache
3160 * to avoid the deadlock with sparse_cluster_push
3161 */
3162 goto start_new_cluster;
6d2010ae
A
3163 }
3164 if (first_pass) {
3165 if (write_off == wbp->cl_last_write)
3166 wbp->cl_seq_written += write_cnt;
3167 else
3168 wbp->cl_seq_written = write_cnt;
3169
3170 wbp->cl_last_write = write_off + write_cnt;
3171
3172 first_pass = FALSE;
3173 }
91447636 3174 if (wbp->cl_number == 0)
9bccf70c
A
3175 /*
3176 * no clusters currently present
3177 */
3178 goto start_new_cluster;
1c79356b 3179
91447636 3180 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
1c79356b 3181 /*
55e303ae
A
3182 * check each cluster that we currently hold
3183 * try to merge some or all of this write into
3184 * one or more of the existing clusters... if
3185 * any portion of the write remains, start a
3186 * new cluster
1c79356b 3187 */
91447636 3188 if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) {
9bccf70c
A
3189 /*
3190 * the current write starts at or after the current cluster
3191 */
cf7d32b8 3192 if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
1c79356b
A
3193 /*
3194 * we have a write that fits entirely
3195 * within the existing cluster limits
3196 */
91447636 3197 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr)
1c79356b 3198 /*
9bccf70c 3199 * update our idea of where the cluster ends
1c79356b 3200 */
91447636 3201 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
9bccf70c 3202 break;
1c79356b 3203 }
cf7d32b8 3204 if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
1c79356b
A
3205 /*
3206 * we have a write that starts in the middle of the current cluster
55e303ae
A
3207 * but extends beyond the cluster's limit... we know this because
3208 * of the previous checks
3209 * we'll extend the current cluster to the max
91447636 3210 * and update the b_addr for the current write to reflect that
55e303ae
A
3211 * the head of it was absorbed into this cluster...
3212 * note that we'll always have a leftover tail in this case since
3213 * full absorbtion would have occurred in the clause above
1c79356b 3214 */
cf7d32b8 3215 wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount;
55e303ae 3216
91447636 3217 cl.b_addr = wbp->cl_clusters[cl_index].e_addr;
1c79356b
A
3218 }
3219 /*
55e303ae
A
3220 * we come here for the case where the current write starts
3221 * beyond the limit of the existing cluster or we have a leftover
3222 * tail after a partial absorbtion
9bccf70c
A
3223 *
3224 * in either case, we'll check the remaining clusters before
3225 * starting a new one
1c79356b 3226 */
9bccf70c 3227 } else {
1c79356b 3228 /*
55e303ae 3229 * the current write starts in front of the cluster we're currently considering
1c79356b 3230 */
cf7d32b8 3231 if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) {
1c79356b 3232 /*
55e303ae
A
3233 * we can just merge the new request into
3234 * this cluster and leave it in the cache
3235 * since the resulting cluster is still
3236 * less than the maximum allowable size
1c79356b 3237 */
91447636 3238 wbp->cl_clusters[cl_index].b_addr = cl.b_addr;
1c79356b 3239
91447636 3240 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) {
9bccf70c
A
3241 /*
3242 * the current write completely
55e303ae 3243 * envelops the existing cluster and since
cf7d32b8 3244 * each write is limited to at most max_cluster_pgcount pages
55e303ae
A
3245 * we can just use the start and last blocknos of the write
3246 * to generate the cluster limits
9bccf70c 3247 */
91447636 3248 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
9bccf70c
A
3249 }
3250 break;
1c79356b 3251 }
9bccf70c 3252
1c79356b 3253 /*
9bccf70c
A
3254 * if we were to combine this write with the current cluster
3255 * we would exceed the cluster size limit.... so,
3256 * let's see if there's any overlap of the new I/O with
55e303ae
A
3257 * the cluster we're currently considering... in fact, we'll
3258 * stretch the cluster out to it's full limit and see if we
3259 * get an intersection with the current write
9bccf70c 3260 *
1c79356b 3261 */
cf7d32b8 3262 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) {
1c79356b 3263 /*
55e303ae
A
3264 * the current write extends into the proposed cluster
3265 * clip the length of the current write after first combining it's
3266 * tail with the newly shaped cluster
1c79356b 3267 */
cf7d32b8 3268 wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount;
55e303ae 3269
91447636 3270 cl.e_addr = wbp->cl_clusters[cl_index].b_addr;
55e303ae 3271 }
9bccf70c
A
3272 /*
3273 * if we get here, there was no way to merge
55e303ae
A
3274 * any portion of this write with this cluster
3275 * or we could only merge part of it which
3276 * will leave a tail...
9bccf70c
A
3277 * we'll check the remaining clusters before starting a new one
3278 */
1c79356b 3279 }
9bccf70c 3280 }
91447636 3281 if (cl_index < wbp->cl_number)
9bccf70c 3282 /*
55e303ae
A
3283 * we found an existing cluster(s) that we
3284 * could entirely merge this I/O into
9bccf70c
A
3285 */
3286 goto delay_io;
3287
6d2010ae
A
3288 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) &&
3289 wbp->cl_number == MAX_CLUSTERS &&
3290 wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
3291 uint32_t n;
3292
3293 if (vp->v_mount->mnt_kern_flag & MNTK_SSD)
3294 n = WRITE_BEHIND_SSD;
3295 else
3296 n = WRITE_BEHIND;
3297
3298 while (n--)
3299 cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg);
3300 }
3301 if (wbp->cl_number < MAX_CLUSTERS) {
9bccf70c
A
3302 /*
3303 * we didn't find an existing cluster to
3304 * merge into, but there's room to start
1c79356b
A
3305 * a new one
3306 */
9bccf70c 3307 goto start_new_cluster;
6d2010ae 3308 }
9bccf70c
A
3309 /*
3310 * no exisitng cluster to merge with and no
3311 * room to start a new one... we'll try
55e303ae
A
3312 * pushing one of the existing ones... if none of
3313 * them are able to be pushed, we'll switch
3314 * to the sparse cluster mechanism
91447636 3315 * cluster_try_push updates cl_number to the
55e303ae
A
3316 * number of remaining clusters... and
3317 * returns the number of currently unused clusters
9bccf70c 3318 */
2d21ac55
A
3319 ret_cluster_try_push = 0;
3320
3321 /*
3322 * if writes are not deferred, call cluster push immediately
3323 */
91447636 3324 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
91447636 3325
6d2010ae 3326 ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg);
91447636 3327 }
9bccf70c 3328
2d21ac55
A
3329 /*
3330 * execute following regardless of writes being deferred or not
3331 */
91447636 3332 if (ret_cluster_try_push == 0) {
55e303ae
A
3333 /*
3334 * no more room in the normal cluster mechanism
3335 * so let's switch to the more expansive but expensive
3336 * sparse mechanism....
55e303ae 3337 */
2d21ac55 3338 sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg);
b0d623f7 3339 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
91447636
A
3340
3341 lck_mtx_unlock(&wbp->cl_lockw);
55e303ae
A
3342
3343 continue;
9bccf70c
A
3344 }
3345start_new_cluster:
91447636
A
3346 wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
3347 wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
9bccf70c 3348
2d21ac55
A
3349 wbp->cl_clusters[wbp->cl_number].io_flags = 0;
3350
91447636 3351 if (flags & IO_NOCACHE)
2d21ac55
A
3352 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE;
3353
3354 if (bflag & CL_PASSIVE)
3355 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE;
3356
91447636 3357 wbp->cl_number++;
55e303ae 3358delay_io:
91447636
A
3359 lck_mtx_unlock(&wbp->cl_lockw);
3360
9bccf70c
A
3361 continue;
3362issue_io:
3363 /*
935ed37a 3364 * we don't hold the lock at this point
91447636 3365 *
935ed37a 3366 * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
91447636 3367 * so that we correctly deal with a change in state of the hardware modify bit...
2d21ac55
A
3368 * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
3369 * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
91447636 3370 * responsible for generating the correct sized I/O(s)
9bccf70c 3371 */
2d21ac55 3372 retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg);
1c79356b
A
3373 }
3374 }
2d21ac55 3375 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0);
1c79356b
A
3376
3377 return (retval);
3378}
3379
2d21ac55
A
3380
3381
9bccf70c 3382int
91447636 3383cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags)
1c79356b 3384{
2d21ac55
A
3385 return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL);
3386}
3387
3388
3389int
3390cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg)
3391{
3392 int retval = 0;
3393 int flags;
3394 user_ssize_t cur_resid;
3395 u_int32_t io_size;
3396 u_int32_t read_length = 0;
3397 int read_type = IO_COPY;
1c79356b 3398
91447636 3399 flags = xflags;
1c79356b 3400
91447636
A
3401 if (vp->v_flag & VNOCACHE_DATA)
3402 flags |= IO_NOCACHE;
2d21ac55 3403 if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
91447636 3404 flags |= IO_RAOFF;
316670eb
A
3405
3406 /*
3407 * If we're doing an encrypted IO, then first check to see
3408 * if the IO requested was page aligned. If not, then bail
3409 * out immediately.
3410 */
3411 if (flags & IO_ENCRYPTED) {
3412 if (read_length & PAGE_MASK) {
3413 retval = EINVAL;
3414 return retval;
3415 }
3416 }
91447636 3417
316670eb 3418 /*
2d21ac55
A
3419 * do a read through the cache if one of the following is true....
3420 * NOCACHE is not true
3421 * the uio request doesn't target USERSPACE
316670eb
A
3422 * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
3423 * Reading encrypted data from a CP filesystem should never result in the data touching
3424 * the UBC.
3425 *
2d21ac55
A
3426 * otherwise, find out if we want the direct or contig variant for
3427 * the first vector in the uio request
3428 */
316670eb
A
3429 if (((flags & IO_NOCACHE) || (flags & IO_ENCRYPTED)) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) {
3430 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3431 }
3432
2d21ac55 3433 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
91447636 3434
2d21ac55
A
3435 switch (read_type) {
3436
3437 case IO_COPY:
91447636 3438 /*
2d21ac55
A
3439 * make sure the uio_resid isn't too big...
3440 * internally, we want to handle all of the I/O in
3441 * chunk sizes that fit in a 32 bit int
91447636 3442 */
2d21ac55
A
3443 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE))
3444 io_size = MAX_IO_REQUEST_SIZE;
3445 else
3446 io_size = (u_int32_t)cur_resid;
91447636 3447
2d21ac55
A
3448 retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg);
3449 break;
1c79356b 3450
2d21ac55
A
3451 case IO_DIRECT:
3452 retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg);
3453 break;
91447636 3454
2d21ac55
A
3455 case IO_CONTIG:
3456 retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags);
3457 break;
3458
3459 case IO_UNKNOWN:
3460 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3461 break;
3462 }
3463 }
3464 return (retval);
3465}
91447636 3466
91447636 3467
91447636 3468
2d21ac55 3469static void
b0d623f7 3470cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference)
2d21ac55
A
3471{
3472 int range;
3473 int abort_flags = UPL_ABORT_FREE_ON_EMPTY;
1c79356b 3474
2d21ac55 3475 if ((range = last_pg - start_pg)) {
b0d623f7 3476 if (take_reference)
2d21ac55
A
3477 abort_flags |= UPL_ABORT_REFERENCE;
3478
3479 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags);
3480 }
1c79356b
A
3481}
3482
2d21ac55 3483
9bccf70c 3484static int
2d21ac55 3485cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1c79356b
A
3486{
3487 upl_page_info_t *pl;
3488 upl_t upl;
3489 vm_offset_t upl_offset;
b0d623f7 3490 u_int32_t upl_size;
1c79356b
A
3491 off_t upl_f_offset;
3492 int start_offset;
3493 int start_pg;
3494 int last_pg;
91447636 3495 int uio_last = 0;
1c79356b
A
3496 int pages_in_upl;
3497 off_t max_size;
55e303ae
A
3498 off_t last_ioread_offset;
3499 off_t last_request_offset;
1c79356b 3500 kern_return_t kret;
1c79356b
A
3501 int error = 0;
3502 int retval = 0;
2d21ac55
A
3503 u_int32_t size_of_prefetch;
3504 u_int32_t xsize;
3505 u_int32_t io_size;
cf7d32b8 3506 u_int32_t max_rd_size;
b0d623f7
A
3507 u_int32_t max_io_size;
3508 u_int32_t max_prefetch;
55e303ae
A
3509 u_int rd_ahead_enabled = 1;
3510 u_int prefetch_enabled = 1;
91447636
A
3511 struct cl_readahead * rap;
3512 struct clios iostate;
3513 struct cl_extent extent;
2d21ac55
A
3514 int bflag;
3515 int take_reference = 1;
2d21ac55 3516 int policy = IOPOL_DEFAULT;
6d2010ae 3517 boolean_t iolock_inited = FALSE;
b0d623f7
A
3518
3519 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
3520 (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0);
316670eb
A
3521
3522 if (flags & IO_ENCRYPTED) {
3523 panic ("encrypted blocks will hit UBC!");
3524 }
b0d623f7 3525
6d2010ae 3526 policy = proc_get_task_selfdiskacc();
2d21ac55 3527
316670eb 3528 if (policy == IOPOL_THROTTLE || policy == IOPOL_UTILITY || (flags & IO_NOCACHE))
2d21ac55
A
3529 take_reference = 0;
3530
3531 if (flags & IO_PASSIVE)
cf7d32b8 3532 bflag = CL_PASSIVE;
2d21ac55 3533 else
b0d623f7 3534 bflag = 0;
cf7d32b8 3535
316670eb
A
3536 if (flags & IO_NOCACHE)
3537 bflag |= CL_NOCACHE;
3538
b0d623f7 3539 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
6d2010ae 3540 max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD));
b0d623f7 3541 max_rd_size = max_prefetch;
55e303ae 3542
2d21ac55 3543 last_request_offset = uio->uio_offset + io_req_size;
55e303ae 3544
b0d623f7
A
3545 if (last_request_offset > filesize)
3546 last_request_offset = filesize;
3547
2d21ac55 3548 if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) {
55e303ae 3549 rd_ahead_enabled = 0;
91447636
A
3550 rap = NULL;
3551 } else {
b0d623f7 3552 if (cluster_hard_throttle_on(vp, 1)) {
316670eb
A
3553 /*
3554 * we're in the throttle window, at the very least
3555 * we want to limit the size of the I/O we're about
3556 * to issue
3557 */
91447636
A
3558 rd_ahead_enabled = 0;
3559 prefetch_enabled = 0;
55e303ae 3560
316670eb 3561 max_rd_size = THROTTLE_MAX_IOSIZE;
91447636
A
3562 }
3563 if ((rap = cluster_get_rap(vp)) == NULL)
3564 rd_ahead_enabled = 0;
b0d623f7
A
3565 else {
3566 extent.b_addr = uio->uio_offset / PAGE_SIZE_64;
3567 extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64;
3568 }
55e303ae 3569 }
91447636 3570 if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) {
55e303ae
A
3571 /*
3572 * determine if we already have a read-ahead in the pipe courtesy of the
3573 * last read systemcall that was issued...
3574 * if so, pick up it's extent to determine where we should start
3575 * with respect to any read-ahead that might be necessary to
3576 * garner all the data needed to complete this read systemcall
3577 */
91447636 3578 last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64;
1c79356b 3579
55e303ae
A
3580 if (last_ioread_offset < uio->uio_offset)
3581 last_ioread_offset = (off_t)0;
3582 else if (last_ioread_offset > last_request_offset)
3583 last_ioread_offset = last_request_offset;
3584 } else
3585 last_ioread_offset = (off_t)0;
1c79356b 3586
2d21ac55 3587 while (io_req_size && uio->uio_offset < filesize && retval == 0) {
b0d623f7
A
3588
3589 max_size = filesize - uio->uio_offset;
1c79356b 3590
2d21ac55
A
3591 if ((off_t)(io_req_size) < max_size)
3592 io_size = io_req_size;
1c79356b
A
3593 else
3594 io_size = max_size;
9bccf70c 3595
91447636 3596 if (!(flags & IO_NOCACHE)) {
1c79356b 3597
55e303ae 3598 while (io_size) {
2d21ac55
A
3599 u_int32_t io_resid;
3600 u_int32_t io_requested;
1c79356b 3601
55e303ae
A
3602 /*
3603 * if we keep finding the pages we need already in the cache, then
2d21ac55 3604 * don't bother to call cluster_read_prefetch since it costs CPU cycles
55e303ae
A
3605 * to determine that we have all the pages we need... once we miss in
3606 * the cache and have issued an I/O, than we'll assume that we're likely
3607 * to continue to miss in the cache and it's to our advantage to try and prefetch
3608 */
3609 if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) {
3610 if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) {
3611 /*
3612 * we've already issued I/O for this request and
3613 * there's still work to do and
3614 * our prefetch stream is running dry, so issue a
3615 * pre-fetch I/O... the I/O latency will overlap
3616 * with the copying of the data
3617 */
3618 if (size_of_prefetch > max_rd_size)
3619 size_of_prefetch = max_rd_size;
1c79356b 3620
2d21ac55 3621 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
1c79356b 3622
55e303ae
A
3623 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
3624
3625 if (last_ioread_offset > last_request_offset)
3626 last_ioread_offset = last_request_offset;
3627 }
3628 }
3629 /*
3630 * limit the size of the copy we're about to do so that
3631 * we can notice that our I/O pipe is running dry and
3632 * get the next I/O issued before it does go dry
3633 */
cf7d32b8
A
3634 if (last_ioread_offset && io_size > (max_io_size / 4))
3635 io_resid = (max_io_size / 4);
55e303ae
A
3636 else
3637 io_resid = io_size;
1c79356b 3638
55e303ae 3639 io_requested = io_resid;
1c79356b 3640
6d2010ae 3641 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference);
2d21ac55
A
3642
3643 xsize = io_requested - io_resid;
1c79356b 3644
2d21ac55
A
3645 io_size -= xsize;
3646 io_req_size -= xsize;
1c79356b 3647
55e303ae
A
3648 if (retval || io_resid)
3649 /*
3650 * if we run into a real error or
3651 * a page that is not in the cache
3652 * we need to leave streaming mode
3653 */
3654 break;
3655
b0d623f7 3656 if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) {
55e303ae
A
3657 /*
3658 * we're already finished the I/O for this read request
3659 * let's see if we should do a read-ahead
3660 */
2d21ac55 3661 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
55e303ae 3662 }
1c79356b 3663 }
1c79356b
A
3664 if (retval)
3665 break;
1c79356b 3666 if (io_size == 0) {
91447636
A
3667 if (rap != NULL) {
3668 if (extent.e_addr < rap->cl_lastr)
3669 rap->cl_maxra = 0;
3670 rap->cl_lastr = extent.e_addr;
3671 }
1c79356b
A
3672 break;
3673 }
b0d623f7
A
3674 /*
3675 * recompute max_size since cluster_copy_ubc_data_internal
3676 * may have advanced uio->uio_offset
3677 */
3678 max_size = filesize - uio->uio_offset;
1c79356b 3679 }
316670eb
A
3680
3681 iostate.io_completed = 0;
3682 iostate.io_issued = 0;
3683 iostate.io_error = 0;
3684 iostate.io_wanted = 0;
3685
3686 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
3687 if (cluster_hard_throttle_on(vp, 0) == 2) {
3688 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
3689 /*
3690 * we're in the throttle window and at least 1 I/O
3691 * has already been issued by a throttleable thread
3692 * in this window, so return with EAGAIN to indicate
3693 * to the FS issuing the cluster_read call that it
3694 * should now throttle after dropping any locks
3695 */
3696 throttle_info_update_by_mount(vp->v_mount);
3697
3698 retval = EAGAIN;
3699 break;
3700 }
3701 }
3702 }
3703
b0d623f7
A
3704 /*
3705 * compute the size of the upl needed to encompass
3706 * the requested read... limit each call to cluster_io
3707 * to the maximum UPL size... cluster_io will clip if
3708 * this exceeds the maximum io_size for the device,
3709 * make sure to account for
3710 * a starting offset that's not page aligned
3711 */
3712 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3713 upl_f_offset = uio->uio_offset - (off_t)start_offset;
3714
55e303ae
A
3715 if (io_size > max_rd_size)
3716 io_size = max_rd_size;
3717
1c79356b 3718 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
55e303ae 3719
2d21ac55 3720 if (flags & IO_NOCACHE) {
cf7d32b8
A
3721 if (upl_size > max_io_size)
3722 upl_size = max_io_size;
2d21ac55 3723 } else {
cf7d32b8
A
3724 if (upl_size > max_io_size / 4)
3725 upl_size = max_io_size / 4;
2d21ac55 3726 }
1c79356b
A
3727 pages_in_upl = upl_size / PAGE_SIZE;
3728
3729 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
b0d623f7 3730 upl, (int)upl_f_offset, upl_size, start_offset, 0);
1c79356b 3731
0b4e3aa0 3732 kret = ubc_create_upl(vp,
91447636
A
3733 upl_f_offset,
3734 upl_size,
3735 &upl,
3736 &pl,
2d21ac55 3737 UPL_FILE_IO | UPL_SET_LITE);
1c79356b 3738 if (kret != KERN_SUCCESS)
2d21ac55 3739 panic("cluster_read_copy: failed to get pagelist");
1c79356b 3740
1c79356b 3741 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END,
b0d623f7 3742 upl, (int)upl_f_offset, upl_size, start_offset, 0);
1c79356b
A
3743
3744 /*
3745 * scan from the beginning of the upl looking for the first
3746 * non-valid page.... this will become the first page in
3747 * the request we're going to make to 'cluster_io'... if all
3748 * of the pages are valid, we won't call through to 'cluster_io'
3749 */
3750 for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
3751 if (!upl_valid_page(pl, start_pg))
3752 break;
3753 }
3754
3755 /*
3756 * scan from the starting invalid page looking for a valid
3757 * page before the end of the upl is reached, if we
3758 * find one, then it will be the last page of the request to
3759 * 'cluster_io'
3760 */
3761 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
3762 if (upl_valid_page(pl, last_pg))
3763 break;
3764 }
3765
3766 if (start_pg < last_pg) {
3767 /*
3768 * we found a range of 'invalid' pages that must be filled
3769 * if the last page in this range is the last page of the file
3770 * we may have to clip the size of it to keep from reading past
3771 * the end of the last physical block associated with the file
3772 */
6d2010ae
A
3773 if (iolock_inited == FALSE) {
3774 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
3775
3776 iolock_inited = TRUE;
3777 }
1c79356b
A
3778 upl_offset = start_pg * PAGE_SIZE;
3779 io_size = (last_pg - start_pg) * PAGE_SIZE;
3780
b0d623f7 3781 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
1c79356b 3782 io_size = filesize - (upl_f_offset + upl_offset);
9bccf70c 3783
1c79356b 3784 /*
55e303ae 3785 * issue an asynchronous read to cluster_io
1c79356b
A
3786 */
3787
3788 error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
2d21ac55 3789 io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg);
6d2010ae
A
3790
3791 if (rap) {
3792 if (extent.e_addr < rap->cl_maxra) {
3793 /*
3794 * we've just issued a read for a block that should have been
3795 * in the cache courtesy of the read-ahead engine... something
3796 * has gone wrong with the pipeline, so reset the read-ahead
3797 * logic which will cause us to restart from scratch
3798 */
3799 rap->cl_maxra = 0;
3800 }
3801 }
1c79356b
A
3802 }
3803 if (error == 0) {
3804 /*
3805 * if the read completed successfully, or there was no I/O request
55e303ae
A
3806 * issued, than copy the data into user land via 'cluster_upl_copy_data'
3807 * we'll first add on any 'valid'
1c79356b
A
3808 * pages that were present in the upl when we acquired it.
3809 */
3810 u_int val_size;
1c79356b
A
3811
3812 for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
3813 if (!upl_valid_page(pl, uio_last))
3814 break;
3815 }
2d21ac55
A
3816 if (uio_last < pages_in_upl) {
3817 /*
3818 * there were some invalid pages beyond the valid pages
3819 * that we didn't issue an I/O for, just release them
3820 * unchanged now, so that any prefetch/readahed can
3821 * include them
3822 */
3823 ubc_upl_abort_range(upl, uio_last * PAGE_SIZE,
3824 (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
3825 }
3826
1c79356b 3827 /*
2d21ac55 3828 * compute size to transfer this round, if io_req_size is
55e303ae 3829 * still non-zero after this attempt, we'll loop around and
1c79356b
A
3830 * set up for another I/O.
3831 */
3832 val_size = (uio_last * PAGE_SIZE) - start_offset;
3833
55e303ae 3834 if (val_size > max_size)
1c79356b
A
3835 val_size = max_size;
3836
2d21ac55
A
3837 if (val_size > io_req_size)
3838 val_size = io_req_size;
1c79356b 3839
2d21ac55 3840 if ((uio->uio_offset + val_size) > last_ioread_offset)
55e303ae 3841 last_ioread_offset = uio->uio_offset + val_size;
1c79356b 3842
55e303ae 3843 if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) {
1c79356b 3844
2d21ac55
A
3845 if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) {
3846 /*
3847 * if there's still I/O left to do for this request, and...
3848 * we're not in hard throttle mode, and...
3849 * we're close to using up the previous prefetch, then issue a
3850 * new pre-fetch I/O... the I/O latency will overlap
3851 * with the copying of the data
3852 */
3853 if (size_of_prefetch > max_rd_size)
3854 size_of_prefetch = max_rd_size;
3855
3856 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
3857
3858 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
55e303ae 3859
2d21ac55
A
3860 if (last_ioread_offset > last_request_offset)
3861 last_ioread_offset = last_request_offset;
3862 }
1c79356b 3863
55e303ae
A
3864 } else if ((uio->uio_offset + val_size) == last_request_offset) {
3865 /*
3866 * this transfer will finish this request, so...
3867 * let's try to read ahead if we're in
3868 * a sequential access pattern and we haven't
3869 * explicitly disabled it
3870 */
3871 if (rd_ahead_enabled)
2d21ac55 3872 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
91447636
A
3873
3874 if (rap != NULL) {
3875 if (extent.e_addr < rap->cl_lastr)
3876 rap->cl_maxra = 0;
3877 rap->cl_lastr = extent.e_addr;
3878 }
9bccf70c 3879 }
6d2010ae
A
3880 if (iostate.io_issued > iostate.io_completed)
3881 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
cf7d32b8 3882
55e303ae
A
3883 if (iostate.io_error)
3884 error = iostate.io_error;
2d21ac55
A
3885 else {
3886 u_int32_t io_requested;
3887
3888 io_requested = val_size;
3889
3890 retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested);
3891
3892 io_req_size -= (val_size - io_requested);
3893 }
6d2010ae
A
3894 } else {
3895 if (iostate.io_issued > iostate.io_completed)
3896 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
1c79356b
A
3897 }
3898 if (start_pg < last_pg) {
3899 /*
3900 * compute the range of pages that we actually issued an I/O for
3901 * and either commit them as valid if the I/O succeeded
2d21ac55
A
3902 * or abort them if the I/O failed or we're not supposed to
3903 * keep them in the cache
1c79356b
A
3904 */
3905 io_size = (last_pg - start_pg) * PAGE_SIZE;
3906
b0d623f7 3907 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0);
1c79356b 3908
91447636 3909 if (error || (flags & IO_NOCACHE))
0b4e3aa0 3910 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
2d21ac55 3911 UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
b0d623f7
A
3912 else {
3913 int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY;
3914
3915 if (take_reference)
3916 commit_flags |= UPL_COMMIT_INACTIVATE;
3917 else
3918 commit_flags |= UPL_COMMIT_SPECULATE;
1c79356b 3919
b0d623f7
A
3920 ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags);
3921 }
3922 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0);
1c79356b
A
3923 }
3924 if ((last_pg - start_pg) < pages_in_upl) {
1c79356b
A
3925 /*
3926 * the set of pages that we issued an I/O for did not encompass
3927 * the entire upl... so just release these without modifying
55e303ae 3928 * their state
1c79356b
A
3929 */
3930 if (error)
9bccf70c 3931 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
1c79356b 3932 else {
1c79356b 3933
2d21ac55 3934 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
b0d623f7 3935 upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
2d21ac55
A
3936
3937 /*
3938 * handle any valid pages at the beginning of
3939 * the upl... release these appropriately
3940 */
b0d623f7 3941 cluster_read_upl_release(upl, 0, start_pg, take_reference);
2d21ac55
A
3942
3943 /*
3944 * handle any valid pages immediately after the
3945 * pages we issued I/O for... ... release these appropriately
3946 */
b0d623f7 3947 cluster_read_upl_release(upl, last_pg, uio_last, take_reference);
2d21ac55 3948
b0d623f7 3949 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0);
1c79356b
A
3950 }
3951 }
3952 if (retval == 0)
3953 retval = error;
91447636 3954
2d21ac55 3955 if (io_req_size) {
b0d623f7 3956 if (cluster_hard_throttle_on(vp, 1)) {
316670eb
A
3957 /*
3958 * we're in the throttle window, at the very least
3959 * we want to limit the size of the I/O we're about
3960 * to issue
3961 */
91447636
A
3962 rd_ahead_enabled = 0;
3963 prefetch_enabled = 0;
316670eb 3964 max_rd_size = THROTTLE_MAX_IOSIZE;
91447636 3965 } else {
316670eb 3966 if (max_rd_size == THROTTLE_MAX_IOSIZE) {
2d21ac55
A
3967 /*
3968 * coming out of throttled state
3969 */
316670eb 3970 if (policy != IOPOL_THROTTLE && policy != IOPOL_UTILITY) {
b0d623f7
A
3971 if (rap != NULL)
3972 rd_ahead_enabled = 1;
3973 prefetch_enabled = 1;
3974 }
cf7d32b8 3975 max_rd_size = max_prefetch;
2d21ac55
A
3976 last_ioread_offset = 0;
3977 }
91447636
A
3978 }
3979 }
3980 }
6d2010ae
A
3981 if (iolock_inited == TRUE) {
3982 if (iostate.io_issued > iostate.io_completed) {
3983 /*
3984 * cluster_io returned an error after it
3985 * had already issued some I/O. we need
3986 * to wait for that I/O to complete before
3987 * we can destroy the iostate mutex...
3988 * 'retval' already contains the early error
3989 * so no need to pick it up from iostate.io_error
3990 */
3991 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
3992 }
3993 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
3994 }
91447636
A
3995 if (rap != NULL) {
3996 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
2d21ac55 3997 (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0);
91447636
A
3998
3999 lck_mtx_unlock(&rap->cl_lockr);
4000 } else {
4001 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
2d21ac55 4002 (int)uio->uio_offset, io_req_size, 0, retval, 0);
1c79356b
A
4003 }
4004
4005 return (retval);
4006}
4007
b4c24cb9 4008
9bccf70c 4009static int
2d21ac55
A
4010cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
4011 int flags, int (*callback)(buf_t, void *), void *callback_arg)
1c79356b
A
4012{
4013 upl_t upl;
4014 upl_page_info_t *pl;
2d21ac55 4015 off_t max_io_size;
b0d623f7
A
4016 vm_offset_t upl_offset, vector_upl_offset = 0;
4017 upl_size_t upl_size, vector_upl_size = 0;
2d21ac55
A
4018 vm_size_t upl_needed_size;
4019 unsigned int pages_in_pl;
1c79356b
A
4020 int upl_flags;
4021 kern_return_t kret;
2d21ac55 4022 unsigned int i;
1c79356b 4023 int force_data_sync;
1c79356b 4024 int retval = 0;
91447636 4025 int no_zero_fill = 0;
2d21ac55
A
4026 int io_flag = 0;
4027 int misaligned = 0;
d7e50217 4028 struct clios iostate;
2d21ac55
A
4029 user_addr_t iov_base;
4030 u_int32_t io_req_size;
4031 u_int32_t offset_in_file;
4032 u_int32_t offset_in_iovbase;
4033 u_int32_t io_size;
4034 u_int32_t io_min;
4035 u_int32_t xsize;
4036 u_int32_t devblocksize;
4037 u_int32_t mem_alignment_mask;
b0d623f7
A
4038 u_int32_t max_upl_size;
4039 u_int32_t max_rd_size;
4040 u_int32_t max_rd_ahead;
316670eb 4041 u_int32_t max_vector_size;
6d2010ae 4042 boolean_t strict_uncached_IO = FALSE;
316670eb 4043 boolean_t io_throttled = FALSE;
cf7d32b8 4044
b0d623f7
A
4045 u_int32_t vector_upl_iosize = 0;
4046 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
4047 off_t v_upl_uio_offset = 0;
4048 int vector_upl_index=0;
4049 upl_t vector_upl = NULL;
cf7d32b8 4050
b0d623f7
A
4051 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
4052 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
cf7d32b8 4053
b0d623f7 4054 max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ);
2d21ac55 4055
b0d623f7
A
4056 max_rd_size = max_upl_size;
4057 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
1c79356b 4058
b0d623f7 4059 io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO;
6d2010ae 4060
b0d623f7
A
4061 if (flags & IO_PASSIVE)
4062 io_flag |= CL_PASSIVE;
1c79356b 4063
316670eb
A
4064 if (flags & IO_ENCRYPTED) {
4065 io_flag |= CL_RAW_ENCRYPTED;
4066 }
4067
4068 if (flags & IO_NOCACHE) {
4069 io_flag |= CL_NOCACHE;
4070 }
4071
d7e50217
A
4072 iostate.io_completed = 0;
4073 iostate.io_issued = 0;
4074 iostate.io_error = 0;
4075 iostate.io_wanted = 0;
4076
6d2010ae
A
4077 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4078
2d21ac55
A
4079 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4080 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4081
4082 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4083 (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0);
4084
4085 if (devblocksize == 1) {
4086 /*
4087 * the AFP client advertises a devblocksize of 1
4088 * however, its BLOCKMAP routine maps to physical
4089 * blocks that are PAGE_SIZE in size...
4090 * therefore we can't ask for I/Os that aren't page aligned
4091 * or aren't multiples of PAGE_SIZE in size
4092 * by setting devblocksize to PAGE_SIZE, we re-instate
4093 * the old behavior we had before the mem_alignment_mask
4094 * changes went in...
4095 */
4096 devblocksize = PAGE_SIZE;
4097 }
6d2010ae
A
4098
4099 strict_uncached_IO = ubc_strict_uncached_IO(vp);
4100
2d21ac55
A
4101next_dread:
4102 io_req_size = *read_length;
4103 iov_base = uio_curriovbase(uio);
4104
4105 max_io_size = filesize - uio->uio_offset;
4106
4107 if ((off_t)io_req_size > max_io_size)
4108 io_req_size = max_io_size;
4109
4110 offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1);
4111 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
4112
4113 if (offset_in_file || offset_in_iovbase) {
4114 /*
4115 * one of the 2 important offsets is misaligned
4116 * so fire an I/O through the cache for this entire vector
4117 */
4118 misaligned = 1;
4119 }
4120 if (iov_base & (devblocksize - 1)) {
4121 /*
4122 * the offset in memory must be on a device block boundary
4123 * so that we can guarantee that we can generate an
4124 * I/O that ends on a page boundary in cluster_io
4125 */
4126 misaligned = 1;
316670eb
A
4127 }
4128
4129 /*
4130 * The user must request IO in aligned chunks. If the
4131 * offset into the file is bad, or the userland pointer
4132 * is non-aligned, then we cannot service the encrypted IO request.
4133 */
4134 if ((flags & IO_ENCRYPTED) && (misaligned)) {
4135 retval = EINVAL;
4136 }
4137
2d21ac55
A
4138 /*
4139 * When we get to this point, we know...
4140 * -- the offset into the file is on a devblocksize boundary
4141 */
4142
4143 while (io_req_size && retval == 0) {
4144 u_int32_t io_start;
1c79356b 4145
b0d623f7 4146 if (cluster_hard_throttle_on(vp, 1)) {
316670eb
A
4147 /*
4148 * we're in the throttle window, at the very least
4149 * we want to limit the size of the I/O we're about
4150 * to issue
4151 */
4152 max_rd_size = THROTTLE_MAX_IOSIZE;
4153 max_rd_ahead = THROTTLE_MAX_IOSIZE - 1;
4154 max_vector_size = THROTTLE_MAX_IOSIZE;
91447636 4155 } else {
cf7d32b8 4156 max_rd_size = max_upl_size;
b0d623f7 4157 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
316670eb 4158 max_vector_size = MAX_VECTOR_UPL_SIZE;
91447636 4159 }
2d21ac55 4160 io_start = io_size = io_req_size;
1c79356b 4161
d7e50217
A
4162 /*
4163 * First look for pages already in the cache
316670eb
A
4164 * and move them to user space. But only do this
4165 * check if we are not retrieving encrypted data directly
4166 * from the filesystem; those blocks should never
4167 * be in the UBC.
2d21ac55
A
4168 *
4169 * cluster_copy_ubc_data returns the resid
4170 * in io_size
d7e50217 4171 */
316670eb 4172 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
6d2010ae
A
4173 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
4174 }
2d21ac55
A
4175 /*
4176 * calculate the number of bytes actually copied
4177 * starting size - residual
4178 */
4179 xsize = io_start - io_size;
4180
4181 io_req_size -= xsize;
4182
b0d623f7
A
4183 if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) {
4184 /*
4185 * We found something in the cache or we have an iov_base that's not
4186 * page-aligned.
4187 *
4188 * Issue all I/O's that have been collected within this Vectored UPL.
4189 */
4190 if(vector_upl_index) {
4191 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4192 reset_vector_run_state();
4193 }
4194
4195 if(xsize)
4196 useVectorUPL = 0;
4197
4198 /*
4199 * After this point, if we are using the Vector UPL path and the base is
4200 * not page-aligned then the UPL with that base will be the first in the vector UPL.
4201 */
4202 }
4203
2d21ac55 4204 /*
316670eb
A
4205 * check to see if we are finished with this request.
4206 *
4207 * If we satisfied this IO already, then io_req_size will be 0.
4208 * Otherwise, see if the IO was mis-aligned and needs to go through
4209 * the UBC to deal with the 'tail'.
4210 *
2d21ac55 4211 */
316670eb 4212 if (io_req_size == 0 || (misaligned)) {
2d21ac55
A
4213 /*
4214 * see if there's another uio vector to
4215 * process that's of type IO_DIRECT
4216 *
4217 * break out of while loop to get there
d7e50217 4218 */
2d21ac55 4219 break;
0b4e3aa0 4220 }
d7e50217 4221 /*
2d21ac55 4222 * assume the request ends on a device block boundary
d7e50217 4223 */
2d21ac55
A
4224 io_min = devblocksize;
4225
4226 /*
4227 * we can handle I/O's in multiples of the device block size
4228 * however, if io_size isn't a multiple of devblocksize we
4229 * want to clip it back to the nearest page boundary since
4230 * we are going to have to go through cluster_read_copy to
4231 * deal with the 'overhang'... by clipping it to a PAGE_SIZE
4232 * multiple, we avoid asking the drive for the same physical
4233 * blocks twice.. once for the partial page at the end of the
4234 * request and a 2nd time for the page we read into the cache
4235 * (which overlaps the end of the direct read) in order to
4236 * get at the overhang bytes
4237 */
316670eb
A
4238 if (io_size & (devblocksize - 1)) {
4239 if (flags & IO_ENCRYPTED) {
4240 /*
4241 * Normally, we'd round down to the previous page boundary to
4242 * let the UBC manage the zero-filling of the file past the EOF.
4243 * But if we're doing encrypted IO, we can't let any of
4244 * the data hit the UBC. This means we have to do the full
4245 * IO to the upper block boundary of the device block that
4246 * contains the EOF. The user will be responsible for not
4247 * interpreting data PAST the EOF in its buffer.
4248 *
4249 * So just bump the IO back up to a multiple of devblocksize
4250 */
4251 io_size = ((io_size + devblocksize) & ~(devblocksize - 1));
4252 io_min = io_size;
4253 }
4254 else {
4255 /*
4256 * Clip the request to the previous page size boundary
4257 * since request does NOT end on a device block boundary
4258 */
4259 io_size &= ~PAGE_MASK;
4260 io_min = PAGE_SIZE;
4261 }
4262
2d21ac55
A
4263 }
4264 if (retval || io_size < io_min) {
4265 /*
4266 * either an error or we only have the tail left to
4267 * complete via the copy path...
d7e50217
A
4268 * we may have already spun some portion of this request
4269 * off as async requests... we need to wait for the I/O
4270 * to complete before returning
4271 */
2d21ac55 4272 goto wait_for_dreads;
d7e50217 4273 }
55e303ae 4274
316670eb
A
4275 /*
4276 * Don't re-check the UBC data if we are looking for uncached IO
4277 * or asking for encrypted blocks.
4278 */
4279 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
1c79356b 4280
6d2010ae 4281 if ((xsize = io_size) > max_rd_size)
316670eb 4282 xsize = max_rd_size;
55e303ae 4283
6d2010ae
A
4284 io_size = 0;
4285
4286 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
4287
4288 if (io_size == 0) {
4289 /*
4290 * a page must have just come into the cache
4291 * since the first page in this range is no
4292 * longer absent, go back and re-evaluate
4293 */
4294 continue;
4295 }
2d21ac55 4296 }
316670eb
A
4297 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
4298 if (cluster_hard_throttle_on(vp, 0) == 2) {
4299 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
4300 /*
4301 * we're in the throttle window and at least 1 I/O
4302 * has already been issued by a throttleable thread
4303 * in this window, so return with EAGAIN to indicate
4304 * to the FS issuing the cluster_read call that it
4305 * should now throttle after dropping any locks
4306 */
4307 throttle_info_update_by_mount(vp->v_mount);
4308
4309 io_throttled = TRUE;
4310 goto wait_for_dreads;
4311 }
4312 }
4313 }
4314 if (io_size > max_rd_size)
4315 io_size = max_rd_size;
6d2010ae 4316
cc9f6e38 4317 iov_base = uio_curriovbase(uio);
1c79356b 4318
2d21ac55 4319 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
d7e50217 4320 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
1c79356b 4321
d7e50217 4322 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
cc9f6e38 4323 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
1c79356b 4324
0b4c1975 4325 if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0))
91447636 4326 no_zero_fill = 1;
0b4c1975 4327 else
91447636 4328 no_zero_fill = 0;
0b4c1975 4329
d7e50217
A
4330 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
4331 pages_in_pl = 0;
4332 upl_size = upl_needed_size;
55e303ae 4333 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
1c79356b 4334
91447636
A
4335 if (no_zero_fill)
4336 upl_flags |= UPL_NOZEROFILL;
4337 if (force_data_sync)
4338 upl_flags |= UPL_FORCE_DATA_SYNC;
4339
91447636 4340 kret = vm_map_create_upl(current_map(),
cc9f6e38 4341 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
91447636 4342 &upl_size, &upl, NULL, &pages_in_pl, &upl_flags);
1c79356b 4343
d7e50217
A
4344 if (kret != KERN_SUCCESS) {
4345 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4346 (int)upl_offset, upl_size, io_size, kret, 0);
d7e50217 4347 /*
2d21ac55 4348 * failed to get pagelist
d7e50217
A
4349 *
4350 * we may have already spun some portion of this request
4351 * off as async requests... we need to wait for the I/O
4352 * to complete before returning
4353 */
2d21ac55 4354 goto wait_for_dreads;
d7e50217
A
4355 }
4356 pages_in_pl = upl_size / PAGE_SIZE;
4357 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
1c79356b 4358
d7e50217 4359 for (i = 0; i < pages_in_pl; i++) {
0b4c1975 4360 if (!upl_page_present(pl, i))
d7e50217
A
4361 break;
4362 }
4363 if (i == pages_in_pl)
4364 break;
0b4e3aa0 4365
0b4c1975 4366 ubc_upl_abort(upl, 0);
1c79356b 4367 }
d7e50217
A
4368 if (force_data_sync >= 3) {
4369 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4370 (int)upl_offset, upl_size, io_size, kret, 0);
1c79356b 4371
2d21ac55 4372 goto wait_for_dreads;
d7e50217
A
4373 }
4374 /*
4375 * Consider the possibility that upl_size wasn't satisfied.
4376 */
2d21ac55
A
4377 if (upl_size < upl_needed_size) {
4378 if (upl_size && upl_offset == 0)
4379 io_size = upl_size;
4380 else
4381 io_size = 0;
4382 }
d7e50217 4383 if (io_size == 0) {
0b4c1975 4384 ubc_upl_abort(upl, 0);
2d21ac55 4385 goto wait_for_dreads;
d7e50217
A
4386 }
4387 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4388 (int)upl_offset, upl_size, io_size, kret, 0);
1c79356b 4389
b0d623f7
A
4390 if(useVectorUPL) {
4391 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
4392 if(end_off)
4393 issueVectorUPL = 1;
4394 /*
4395 * After this point, if we are using a vector UPL, then
4396 * either all the UPL elements end on a page boundary OR
4397 * this UPL is the last element because it does not end
4398 * on a page boundary.
4399 */
4400 }
4401
d7e50217
A
4402 /*
4403 * request asynchronously so that we can overlap
4404 * the preparation of the next I/O
4405 * if there are already too many outstanding reads
4406 * wait until some have completed before issuing the next read
4407 */
6d2010ae
A
4408 if (iostate.io_issued > iostate.io_completed)
4409 cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct");
91447636 4410
d7e50217
A
4411 if (iostate.io_error) {
4412 /*
4413 * one of the earlier reads we issued ran into a hard error
4414 * don't issue any more reads, cleanup the UPL
4415 * that was just created but not used, then
4416 * go wait for any other reads to complete before
4417 * returning the error to the caller
4418 */
0b4c1975 4419 ubc_upl_abort(upl, 0);
1c79356b 4420
2d21ac55 4421 goto wait_for_dreads;
d7e50217
A
4422 }
4423 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
b0d623f7 4424 upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
1c79356b 4425
2d21ac55 4426
b0d623f7
A
4427 if(!useVectorUPL) {
4428 if (no_zero_fill)
4429 io_flag &= ~CL_PRESERVE;
4430 else
4431 io_flag |= CL_PRESERVE;
4432
4433 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4434
4435 } else {
1c79356b 4436
b0d623f7
A
4437 if(!vector_upl_index) {
4438 vector_upl = vector_upl_create(upl_offset);
4439 v_upl_uio_offset = uio->uio_offset;
4440 vector_upl_offset = upl_offset;
4441 }
4442
4443 vector_upl_set_subupl(vector_upl,upl, upl_size);
4444 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
4445 vector_upl_index++;
4446 vector_upl_size += upl_size;
4447 vector_upl_iosize += io_size;
4448
316670eb 4449 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
b0d623f7
A
4450 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4451 reset_vector_run_state();
4452 }
4453 }
d7e50217
A
4454 /*
4455 * update the uio structure
4456 */
316670eb
A
4457 if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) {
4458 uio_update(uio, (user_size_t)max_io_size);
4459 }
4460 else {
4461 uio_update(uio, (user_size_t)io_size);
4462 }
4463 /*
4464 * Under normal circumstances, the io_size should not be
4465 * bigger than the io_req_size, but we may have had to round up
4466 * to the end of the page in the encrypted IO case. In that case only,
4467 * ensure that we only decrement io_req_size to 0.
4468 */
4469 if ((flags & IO_ENCRYPTED) && (io_size > io_req_size)) {
4470 io_req_size = 0;
4471 }
4472 else {
4473 io_req_size -= io_size;
4474 }
2d21ac55 4475
d7e50217 4476 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
b0d623f7 4477 upl, (int)uio->uio_offset, io_req_size, retval, 0);
1c79356b
A
4478
4479 } /* end while */
4480
2d21ac55 4481 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) {
91447636 4482
2d21ac55
A
4483 retval = cluster_io_type(uio, read_type, read_length, 0);
4484
4485 if (retval == 0 && *read_type == IO_DIRECT) {
4486
4487 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4488 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4489
4490 goto next_dread;
4491 }
4492 }
4493
4494wait_for_dreads:
b0d623f7
A
4495
4496 if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
4497 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4498 reset_vector_run_state();
4499 }
4500 /*
4501 * make sure all async reads that are part of this stream
4502 * have completed before we return
4503 */
6d2010ae
A
4504 if (iostate.io_issued > iostate.io_completed)
4505 cluster_iostate_wait(&iostate, 0, "cluster_read_direct");
b0d623f7 4506
d7e50217 4507 if (iostate.io_error)
2d21ac55
A
4508 retval = iostate.io_error;
4509
6d2010ae
A
4510 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4511
316670eb
A
4512 if (io_throttled == TRUE && retval == 0)
4513 retval = EAGAIN;
4514
2d21ac55
A
4515 if (io_req_size && retval == 0) {
4516 /*
4517 * we couldn't handle the tail of this request in DIRECT mode
4518 * so fire it through the copy path
4519 */
4520 retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg);
1c79356b 4521
2d21ac55
A
4522 *read_type = IO_UNKNOWN;
4523 }
1c79356b 4524 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
2d21ac55 4525 (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0);
1c79356b
A
4526
4527 return (retval);
4528}
4529
4530
9bccf70c 4531static int
2d21ac55
A
4532cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
4533 int (*callback)(buf_t, void *), void *callback_arg, int flags)
0b4e3aa0 4534{
b4c24cb9 4535 upl_page_info_t *pl;
2d21ac55 4536 upl_t upl[MAX_VECTS];
0b4e3aa0 4537 vm_offset_t upl_offset;
2d21ac55 4538 addr64_t dst_paddr = 0;
cc9f6e38 4539 user_addr_t iov_base;
2d21ac55 4540 off_t max_size;
b0d623f7 4541 upl_size_t upl_size;
2d21ac55
A
4542 vm_size_t upl_needed_size;
4543 mach_msg_type_number_t pages_in_pl;
0b4e3aa0
A
4544 int upl_flags;
4545 kern_return_t kret;
b4c24cb9 4546 struct clios iostate;
2d21ac55
A
4547 int error= 0;
4548 int cur_upl = 0;
4549 int num_upl = 0;
4550 int n;
4551 u_int32_t xsize;
4552 u_int32_t io_size;
4553 u_int32_t devblocksize;
4554 u_int32_t mem_alignment_mask;
4555 u_int32_t tail_size = 0;
4556 int bflag;
4557
4558 if (flags & IO_PASSIVE)
b0d623f7 4559 bflag = CL_PASSIVE;
2d21ac55 4560 else
b0d623f7 4561 bflag = 0;
316670eb
A
4562
4563 if (flags & IO_NOCACHE)
4564 bflag |= CL_NOCACHE;
4565
0b4e3aa0
A
4566 /*
4567 * When we enter this routine, we know
2d21ac55
A
4568 * -- the read_length will not exceed the current iov_len
4569 * -- the target address is physically contiguous for read_length
0b4e3aa0 4570 */
2d21ac55 4571 cluster_syncup(vp, filesize, callback, callback_arg);
0b4e3aa0 4572
2d21ac55
A
4573 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4574 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
91447636 4575
2d21ac55
A
4576 iostate.io_completed = 0;
4577 iostate.io_issued = 0;
4578 iostate.io_error = 0;
4579 iostate.io_wanted = 0;
4580
6d2010ae
A
4581 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4582
2d21ac55
A
4583next_cread:
4584 io_size = *read_length;
0b4e3aa0
A
4585
4586 max_size = filesize - uio->uio_offset;
4587
2d21ac55 4588 if (io_size > max_size)
b4c24cb9 4589 io_size = max_size;
0b4e3aa0 4590
2d21ac55
A
4591 iov_base = uio_curriovbase(uio);
4592
4593 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
0b4e3aa0
A
4594 upl_needed_size = upl_offset + io_size;
4595
4596 pages_in_pl = 0;
4597 upl_size = upl_needed_size;
55e303ae 4598 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
0b4e3aa0 4599
2d21ac55
A
4600
4601 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START,
4602 (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0);
4603
0b4e3aa0 4604 kret = vm_map_get_upl(current_map(),
cc9f6e38 4605 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2d21ac55
A
4606 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
4607
4608 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END,
4609 (int)upl_offset, upl_size, io_size, kret, 0);
0b4e3aa0 4610
b4c24cb9
A
4611 if (kret != KERN_SUCCESS) {
4612 /*
2d21ac55 4613 * failed to get pagelist
b4c24cb9 4614 */
2d21ac55
A
4615 error = EINVAL;
4616 goto wait_for_creads;
b4c24cb9 4617 }
2d21ac55
A
4618 num_upl++;
4619
b4c24cb9
A
4620 if (upl_size < upl_needed_size) {
4621 /*
4622 * The upl_size wasn't satisfied.
4623 */
2d21ac55
A
4624 error = EINVAL;
4625 goto wait_for_creads;
b4c24cb9 4626 }
2d21ac55 4627 pl = ubc_upl_pageinfo(upl[cur_upl]);
b4c24cb9 4628
cc9f6e38 4629 dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset;
0b4e3aa0 4630
b4c24cb9 4631 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
2d21ac55 4632 u_int32_t head_size;
b4c24cb9 4633
2d21ac55 4634 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
b4c24cb9
A
4635
4636 if (head_size > io_size)
4637 head_size = io_size;
4638
2d21ac55 4639 error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg);
b4c24cb9 4640
2d21ac55
A
4641 if (error)
4642 goto wait_for_creads;
b4c24cb9 4643
b4c24cb9
A
4644 upl_offset += head_size;
4645 dst_paddr += head_size;
4646 io_size -= head_size;
2d21ac55
A
4647
4648 iov_base += head_size;
4649 }
4650 if ((u_int32_t)iov_base & mem_alignment_mask) {
4651 /*
4652 * request doesn't set up on a memory boundary
4653 * the underlying DMA engine can handle...
4654 * return an error instead of going through
4655 * the slow copy path since the intent of this
4656 * path is direct I/O to device memory
4657 */
4658 error = EINVAL;
4659 goto wait_for_creads;
b4c24cb9 4660 }
2d21ac55 4661
b4c24cb9 4662 tail_size = io_size & (devblocksize - 1);
b4c24cb9 4663
2d21ac55 4664 io_size -= tail_size;
b4c24cb9
A
4665
4666 while (io_size && error == 0) {
b4c24cb9 4667
2d21ac55
A
4668 if (io_size > MAX_IO_CONTIG_SIZE)
4669 xsize = MAX_IO_CONTIG_SIZE;
b4c24cb9
A
4670 else
4671 xsize = io_size;
4672 /*
4673 * request asynchronously so that we can overlap
4674 * the preparation of the next I/O... we'll do
4675 * the commit after all the I/O has completed
4676 * since its all issued against the same UPL
4677 * if there are already too many outstanding reads
d7e50217 4678 * wait until some have completed before issuing the next
b4c24cb9 4679 */
6d2010ae
A
4680 if (iostate.io_issued > iostate.io_completed)
4681 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig");
cf7d32b8 4682
2d21ac55
A
4683 if (iostate.io_error) {
4684 /*
4685 * one of the earlier reads we issued ran into a hard error
4686 * don't issue any more reads...
4687 * go wait for any other reads to complete before
4688 * returning the error to the caller
4689 */
4690 goto wait_for_creads;
4691 }
4692 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize,
4693 CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag,
4694 (buf_t)NULL, &iostate, callback, callback_arg);
b4c24cb9
A
4695 /*
4696 * The cluster_io read was issued successfully,
4697 * update the uio structure
4698 */
4699 if (error == 0) {
cc9f6e38
A
4700 uio_update(uio, (user_size_t)xsize);
4701
4702 dst_paddr += xsize;
4703 upl_offset += xsize;
4704 io_size -= xsize;
b4c24cb9
A
4705 }
4706 }
2d21ac55
A
4707 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) {
4708
4709 error = cluster_io_type(uio, read_type, read_length, 0);
4710
4711 if (error == 0 && *read_type == IO_CONTIG) {
4712 cur_upl++;
4713 goto next_cread;
4714 }
4715 } else
4716 *read_type = IO_UNKNOWN;
4717
4718wait_for_creads:
0b4e3aa0 4719 /*
d7e50217
A
4720 * make sure all async reads that are part of this stream
4721 * have completed before we proceed
0b4e3aa0 4722 */
6d2010ae
A
4723 if (iostate.io_issued > iostate.io_completed)
4724 cluster_iostate_wait(&iostate, 0, "cluster_read_contig");
91447636
A
4725
4726 if (iostate.io_error)
b4c24cb9 4727 error = iostate.io_error;
91447636 4728
6d2010ae
A
4729 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4730
b4c24cb9 4731 if (error == 0 && tail_size)
2d21ac55 4732 error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg);
0b4e3aa0 4733
2d21ac55
A
4734 for (n = 0; n < num_upl; n++)
4735 /*
4736 * just release our hold on each physically contiguous
4737 * region without changing any state
4738 */
4739 ubc_upl_abort(upl[n], 0);
0b4e3aa0
A
4740
4741 return (error);
4742}
1c79356b 4743
b4c24cb9 4744
2d21ac55
A
4745static int
4746cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length)
4747{
4748 user_size_t iov_len;
4749 user_addr_t iov_base = 0;
4750 upl_t upl;
b0d623f7 4751 upl_size_t upl_size;
2d21ac55
A
4752 int upl_flags;
4753 int retval = 0;
4754
4755 /*
4756 * skip over any emtpy vectors
4757 */
4758 uio_update(uio, (user_size_t)0);
4759
4760 iov_len = uio_curriovlen(uio);
4761
b0d623f7 4762 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0);
2d21ac55
A
4763
4764 if (iov_len) {
4765 iov_base = uio_curriovbase(uio);
4766 /*
4767 * make sure the size of the vector isn't too big...
4768 * internally, we want to handle all of the I/O in
4769 * chunk sizes that fit in a 32 bit int
4770 */
4771 if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE)
4772 upl_size = MAX_IO_REQUEST_SIZE;
4773 else
4774 upl_size = (u_int32_t)iov_len;
4775
4776 upl_flags = UPL_QUERY_OBJECT_TYPE;
4777
4778 if ((vm_map_get_upl(current_map(),
4779 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4780 &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
4781 /*
4782 * the user app must have passed in an invalid address
4783 */
4784 retval = EFAULT;
4785 }
4786 if (upl_size == 0)
4787 retval = EFAULT;
4788
4789 *io_length = upl_size;
4790
4791 if (upl_flags & UPL_PHYS_CONTIG)
4792 *io_type = IO_CONTIG;
4793 else if (iov_len >= min_length)
4794 *io_type = IO_DIRECT;
4795 else
4796 *io_type = IO_COPY;
4797 } else {
4798 /*
4799 * nothing left to do for this uio
4800 */
4801 *io_length = 0;
4802 *io_type = IO_UNKNOWN;
4803 }
b0d623f7 4804 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0);
2d21ac55
A
4805
4806 return (retval);
4807}
4808
4809
1c79356b
A
4810/*
4811 * generate advisory I/O's in the largest chunks possible
4812 * the completed pages will be released into the VM cache
4813 */
9bccf70c 4814int
91447636 4815advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid)
2d21ac55
A
4816{
4817 return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE);
4818}
4819
4820int
4821advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
1c79356b 4822{
1c79356b
A
4823 upl_page_info_t *pl;
4824 upl_t upl;
4825 vm_offset_t upl_offset;
b0d623f7 4826 int upl_size;
1c79356b
A
4827 off_t upl_f_offset;
4828 int start_offset;
4829 int start_pg;
4830 int last_pg;
4831 int pages_in_upl;
4832 off_t max_size;
4833 int io_size;
4834 kern_return_t kret;
4835 int retval = 0;
9bccf70c 4836 int issued_io;
55e303ae 4837 int skip_range;
b0d623f7
A
4838 uint32_t max_io_size;
4839
4840
91447636 4841 if ( !UBCINFOEXISTS(vp))
1c79356b
A
4842 return(EINVAL);
4843
ca66cea6
A
4844 if (resid < 0)
4845 return(EINVAL);
4846
cf7d32b8 4847 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
b0d623f7 4848
316670eb
A
4849#if CONFIG_EMBEDDED
4850 if (max_io_size > speculative_prefetch_max_iosize)
4851 max_io_size = speculative_prefetch_max_iosize;
4852#else
4853 if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) {
4854 if (max_io_size > speculative_prefetch_max_iosize)
4855 max_io_size = speculative_prefetch_max_iosize;
4856 }
4857#endif
4858
1c79356b 4859 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
b0d623f7 4860 (int)f_offset, resid, (int)filesize, 0, 0);
1c79356b
A
4861
4862 while (resid && f_offset < filesize && retval == 0) {
4863 /*
4864 * compute the size of the upl needed to encompass
4865 * the requested read... limit each call to cluster_io
0b4e3aa0
A
4866 * to the maximum UPL size... cluster_io will clip if
4867 * this exceeds the maximum io_size for the device,
4868 * make sure to account for
1c79356b
A
4869 * a starting offset that's not page aligned
4870 */
4871 start_offset = (int)(f_offset & PAGE_MASK_64);
4872 upl_f_offset = f_offset - (off_t)start_offset;
4873 max_size = filesize - f_offset;
4874
4875 if (resid < max_size)
4876 io_size = resid;
4877 else
4878 io_size = max_size;
4879
4880 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
cf7d32b8
A
4881 if ((uint32_t)upl_size > max_io_size)
4882 upl_size = max_io_size;
55e303ae
A
4883
4884 skip_range = 0;
4885 /*
4886 * return the number of contiguously present pages in the cache
4887 * starting at upl_f_offset within the file
4888 */
4889 ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range);
4890
4891 if (skip_range) {
4892 /*
4893 * skip over pages already present in the cache
4894 */
4895 io_size = skip_range - start_offset;
4896
4897 f_offset += io_size;
4898 resid -= io_size;
4899
4900 if (skip_range == upl_size)
4901 continue;
4902 /*
4903 * have to issue some real I/O
4904 * at this point, we know it's starting on a page boundary
4905 * because we've skipped over at least the first page in the request
4906 */
4907 start_offset = 0;
4908 upl_f_offset += skip_range;
4909 upl_size -= skip_range;
4910 }
1c79356b
A
4911 pages_in_upl = upl_size / PAGE_SIZE;
4912
55e303ae 4913 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
b0d623f7 4914 upl, (int)upl_f_offset, upl_size, start_offset, 0);
55e303ae 4915
0b4e3aa0 4916 kret = ubc_create_upl(vp,
91447636
A
4917 upl_f_offset,
4918 upl_size,
4919 &upl,
4920 &pl,
4921 UPL_RET_ONLY_ABSENT | UPL_SET_LITE);
1c79356b 4922 if (kret != KERN_SUCCESS)
9bccf70c
A
4923 return(retval);
4924 issued_io = 0;
1c79356b
A
4925
4926 /*
9bccf70c
A
4927 * before we start marching forward, we must make sure we end on
4928 * a present page, otherwise we will be working with a freed
4929 * upl
1c79356b 4930 */
9bccf70c
A
4931 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
4932 if (upl_page_present(pl, last_pg))
4933 break;
1c79356b 4934 }
9bccf70c 4935 pages_in_upl = last_pg + 1;
1c79356b 4936
1c79356b 4937
55e303ae 4938 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END,
b0d623f7 4939 upl, (int)upl_f_offset, upl_size, start_offset, 0);
9bccf70c
A
4940
4941
4942 for (last_pg = 0; last_pg < pages_in_upl; ) {
1c79356b 4943 /*
9bccf70c
A
4944 * scan from the beginning of the upl looking for the first
4945 * page that is present.... this will become the first page in
4946 * the request we're going to make to 'cluster_io'... if all
4947 * of the pages are absent, we won't call through to 'cluster_io'
1c79356b 4948 */
9bccf70c
A
4949 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
4950 if (upl_page_present(pl, start_pg))
4951 break;
1c79356b 4952 }
1c79356b 4953
1c79356b 4954 /*
9bccf70c
A
4955 * scan from the starting present page looking for an absent
4956 * page before the end of the upl is reached, if we
4957 * find one, then it will terminate the range of pages being
4958 * presented to 'cluster_io'
1c79356b 4959 */
9bccf70c
A
4960 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
4961 if (!upl_page_present(pl, last_pg))
4962 break;
4963 }
4964
4965 if (last_pg > start_pg) {
4966 /*
4967 * we found a range of pages that must be filled
4968 * if the last page in this range is the last page of the file
4969 * we may have to clip the size of it to keep from reading past
4970 * the end of the last physical block associated with the file
4971 */
4972 upl_offset = start_pg * PAGE_SIZE;
4973 io_size = (last_pg - start_pg) * PAGE_SIZE;
4974
b0d623f7 4975 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
9bccf70c
A
4976 io_size = filesize - (upl_f_offset + upl_offset);
4977
4978 /*
4979 * issue an asynchronous read to cluster_io
4980 */
91447636 4981 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
2d21ac55 4982 CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
1c79356b 4983
9bccf70c
A
4984 issued_io = 1;
4985 }
1c79356b 4986 }
9bccf70c
A
4987 if (issued_io == 0)
4988 ubc_upl_abort(upl, 0);
4989
4990 io_size = upl_size - start_offset;
1c79356b
A
4991
4992 if (io_size > resid)
4993 io_size = resid;
4994 f_offset += io_size;
4995 resid -= io_size;
4996 }
9bccf70c 4997
1c79356b
A
4998 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END,
4999 (int)f_offset, resid, retval, 0, 0);
5000
5001 return(retval);
5002}
5003
5004
9bccf70c 5005int
91447636 5006cluster_push(vnode_t vp, int flags)
2d21ac55
A
5007{
5008 return cluster_push_ext(vp, flags, NULL, NULL);
5009}
5010
5011
5012int
5013cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg)
9bccf70c 5014{
91447636 5015 int retval;
b0d623f7 5016 int my_sparse_wait = 0;
91447636 5017 struct cl_writebehind *wbp;
9bccf70c 5018
91447636 5019 if ( !UBCINFOEXISTS(vp)) {
b0d623f7 5020 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -1, 0);
91447636
A
5021 return (0);
5022 }
5023 /* return if deferred write is set */
5024 if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) {
5025 return (0);
5026 }
5027 if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
b0d623f7 5028 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -2, 0);
91447636
A
5029 return (0);
5030 }
5031 if (wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
5032 lck_mtx_unlock(&wbp->cl_lockw);
9bccf70c 5033
b0d623f7 5034 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -3, 0);
91447636
A
5035 return(0);
5036 }
9bccf70c 5037 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
b0d623f7
A
5038 wbp->cl_scmap, wbp->cl_number, flags, 0, 0);
5039
5040 /*
5041 * if we have an fsync in progress, we don't want to allow any additional
5042 * sync/fsync/close(s) to occur until it finishes.
5043 * note that its possible for writes to continue to occur to this file
5044 * while we're waiting and also once the fsync starts to clean if we're
5045 * in the sparse map case
5046 */
5047 while (wbp->cl_sparse_wait) {
5048 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
5049
5050 msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5051
5052 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
5053 }
5054 if (flags & IO_SYNC) {
5055 my_sparse_wait = 1;
5056 wbp->cl_sparse_wait = 1;
9bccf70c 5057
b0d623f7
A
5058 /*
5059 * this is an fsync (or equivalent)... we must wait for any existing async
5060 * cleaning operations to complete before we evaulate the current state
5061 * and finish cleaning... this insures that all writes issued before this
5062 * fsync actually get cleaned to the disk before this fsync returns
5063 */
5064 while (wbp->cl_sparse_pushes) {
5065 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
5066
5067 msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5068
5069 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
5070 }
5071 }
91447636 5072 if (wbp->cl_scmap) {
b0d623f7
A
5073 void *scmap;
5074
5075 if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) {
5076
5077 scmap = wbp->cl_scmap;
5078 wbp->cl_scmap = NULL;
5079
5080 wbp->cl_sparse_pushes++;
5081
5082 lck_mtx_unlock(&wbp->cl_lockw);
5083
6d2010ae 5084 sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg);
b0d623f7
A
5085
5086 lck_mtx_lock(&wbp->cl_lockw);
9bccf70c 5087
b0d623f7
A
5088 wbp->cl_sparse_pushes--;
5089
5090 if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0)
5091 wakeup((caddr_t)&wbp->cl_sparse_pushes);
5092 } else {
6d2010ae 5093 sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg);
b0d623f7 5094 }
55e303ae 5095 retval = 1;
b0d623f7 5096 } else {
6d2010ae 5097 retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg);
b0d623f7 5098 }
91447636
A
5099 lck_mtx_unlock(&wbp->cl_lockw);
5100
5101 if (flags & IO_SYNC)
2d21ac55 5102 (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push");
9bccf70c 5103
b0d623f7
A
5104 if (my_sparse_wait) {
5105 /*
5106 * I'm the owner of the serialization token
5107 * clear it and wakeup anyone that is waiting
5108 * for me to finish
5109 */
5110 lck_mtx_lock(&wbp->cl_lockw);
5111
5112 wbp->cl_sparse_wait = 0;
5113 wakeup((caddr_t)&wbp->cl_sparse_wait);
5114
5115 lck_mtx_unlock(&wbp->cl_lockw);
5116 }
55e303ae 5117 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
b0d623f7 5118 wbp->cl_scmap, wbp->cl_number, retval, 0, 0);
9bccf70c 5119
55e303ae
A
5120 return (retval);
5121}
9bccf70c 5122
9bccf70c 5123
91447636
A
5124__private_extern__ void
5125cluster_release(struct ubc_info *ubc)
55e303ae 5126{
91447636
A
5127 struct cl_writebehind *wbp;
5128 struct cl_readahead *rap;
5129
5130 if ((wbp = ubc->cl_wbehind)) {
9bccf70c 5131
b0d623f7 5132 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0);
91447636
A
5133
5134 if (wbp->cl_scmap)
5135 vfs_drt_control(&(wbp->cl_scmap), 0);
5136 } else {
b0d623f7 5137 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0);
91447636 5138 }
9bccf70c 5139
91447636 5140 rap = ubc->cl_rahead;
55e303ae 5141
91447636
A
5142 if (wbp != NULL) {
5143 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
5144 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
5145 }
5146 if ((rap = ubc->cl_rahead)) {
5147 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
5148 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
55e303ae 5149 }
91447636
A
5150 ubc->cl_rahead = NULL;
5151 ubc->cl_wbehind = NULL;
5152
b0d623f7 5153 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0);
91447636
A
5154}
5155
5156
9bccf70c 5157static int
6d2010ae 5158cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
9bccf70c
A
5159{
5160 int cl_index;
5161 int cl_index1;
5162 int min_index;
5163 int cl_len;
55e303ae 5164 int cl_pushed = 0;
91447636 5165 struct cl_wextent l_clusters[MAX_CLUSTERS];
b0d623f7
A
5166 u_int max_cluster_pgcount;
5167
5168
5169 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
9bccf70c 5170 /*
91447636
A
5171 * the write behind context exists and has
5172 * already been locked...
2d21ac55
A
5173 */
5174 if (wbp->cl_number == 0)
5175 /*
5176 * no clusters to push
5177 * return number of empty slots
5178 */
5179 return (MAX_CLUSTERS);
5180
5181 /*
9bccf70c 5182 * make a local 'sorted' copy of the clusters
91447636 5183 * and clear wbp->cl_number so that new clusters can
9bccf70c
A
5184 * be developed
5185 */
91447636
A
5186 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5187 for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) {
5188 if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr)
9bccf70c
A
5189 continue;
5190 if (min_index == -1)
5191 min_index = cl_index1;
91447636 5192 else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr)
9bccf70c
A
5193 min_index = cl_index1;
5194 }
5195 if (min_index == -1)
5196 break;
b0d623f7 5197
91447636
A
5198 l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr;
5199 l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr;
2d21ac55 5200 l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags;
9bccf70c 5201
91447636 5202 wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr;
9bccf70c 5203 }
91447636
A
5204 wbp->cl_number = 0;
5205
5206 cl_len = cl_index;
9bccf70c 5207
2d21ac55 5208 if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) {
55e303ae
A
5209 int i;
5210
5211 /*
5212 * determine if we appear to be writing the file sequentially
5213 * if not, by returning without having pushed any clusters
5214 * we will cause this vnode to be pushed into the sparse cluster mechanism
5215 * used for managing more random I/O patterns
5216 *
5217 * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
2d21ac55 5218 * that's why we're in try_push with PUSH_DELAY...
55e303ae
A
5219 *
5220 * check to make sure that all the clusters except the last one are 'full'... and that each cluster
5221 * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
91447636
A
5222 * so we can just make a simple pass through, up to, but not including the last one...
5223 * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
55e303ae
A
5224 * are sequential
5225 *
5226 * we let the last one be partial as long as it was adjacent to the previous one...
5227 * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
5228 * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
5229 */
5230 for (i = 0; i < MAX_CLUSTERS - 1; i++) {
cf7d32b8 5231 if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount)
55e303ae 5232 goto dont_try;
91447636 5233 if (l_clusters[i].e_addr != l_clusters[i+1].b_addr)
55e303ae
A
5234 goto dont_try;
5235 }
5236 }
5237 for (cl_index = 0; cl_index < cl_len; cl_index++) {
2d21ac55
A
5238 int flags;
5239 struct cl_extent cl;
91447636 5240
6d2010ae
A
5241 flags = io_flags & (IO_PASSIVE|IO_CLOSE);
5242
9bccf70c 5243 /*
91447636 5244 * try to push each cluster in turn...
9bccf70c 5245 */
2d21ac55 5246 if (l_clusters[cl_index].io_flags & CLW_IONOCACHE)
6d2010ae 5247 flags |= IO_NOCACHE;
2d21ac55 5248
6d2010ae 5249 if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE)
2d21ac55
A
5250 flags |= IO_PASSIVE;
5251
5252 if (push_flag & PUSH_SYNC)
5253 flags |= IO_SYNC;
5254
91447636
A
5255 cl.b_addr = l_clusters[cl_index].b_addr;
5256 cl.e_addr = l_clusters[cl_index].e_addr;
9bccf70c 5257
2d21ac55 5258 cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
9bccf70c 5259
91447636
A
5260 l_clusters[cl_index].b_addr = 0;
5261 l_clusters[cl_index].e_addr = 0;
5262
5263 cl_pushed++;
5264
2d21ac55 5265 if ( !(push_flag & PUSH_ALL) )
91447636 5266 break;
9bccf70c 5267 }
55e303ae 5268dont_try:
9bccf70c
A
5269 if (cl_len > cl_pushed) {
5270 /*
5271 * we didn't push all of the clusters, so
5272 * lets try to merge them back in to the vnode
5273 */
91447636 5274 if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) {
9bccf70c
A
5275 /*
5276 * we picked up some new clusters while we were trying to
91447636
A
5277 * push the old ones... this can happen because I've dropped
5278 * the vnode lock... the sum of the
9bccf70c 5279 * leftovers plus the new cluster count exceeds our ability
55e303ae 5280 * to represent them, so switch to the sparse cluster mechanism
91447636
A
5281 *
5282 * collect the active public clusters...
9bccf70c 5283 */
2d21ac55 5284 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
55e303ae
A
5285
5286 for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
91447636 5287 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
9bccf70c 5288 continue;
91447636
A
5289 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5290 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
2d21ac55 5291 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
9bccf70c 5292
55e303ae 5293 cl_index1++;
9bccf70c 5294 }
55e303ae
A
5295 /*
5296 * update the cluster count
5297 */
91447636 5298 wbp->cl_number = cl_index1;
55e303ae
A
5299
5300 /*
5301 * and collect the original clusters that were moved into the
5302 * local storage for sorting purposes
5303 */
2d21ac55 5304 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
55e303ae 5305
9bccf70c
A
5306 } else {
5307 /*
5308 * we've got room to merge the leftovers back in
5309 * just append them starting at the next 'hole'
91447636 5310 * represented by wbp->cl_number
9bccf70c 5311 */
91447636
A
5312 for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) {
5313 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
9bccf70c
A
5314 continue;
5315
91447636
A
5316 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5317 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
2d21ac55 5318 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
9bccf70c 5319
9bccf70c
A
5320 cl_index1++;
5321 }
5322 /*
5323 * update the cluster count
5324 */
91447636 5325 wbp->cl_number = cl_index1;
9bccf70c
A
5326 }
5327 }
2d21ac55 5328 return (MAX_CLUSTERS - wbp->cl_number);
9bccf70c
A
5329}
5330
5331
5332
5333static int
2d21ac55 5334cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1c79356b 5335{
1c79356b
A
5336 upl_page_info_t *pl;
5337 upl_t upl;
5338 vm_offset_t upl_offset;
5339 int upl_size;
5340 off_t upl_f_offset;
5341 int pages_in_upl;
5342 int start_pg;
5343 int last_pg;
5344 int io_size;
5345 int io_flags;
55e303ae 5346 int upl_flags;
2d21ac55 5347 int bflag;
1c79356b 5348 int size;
91447636
A
5349 int error = 0;
5350 int retval;
1c79356b
A
5351 kern_return_t kret;
5352
2d21ac55 5353 if (flags & IO_PASSIVE)
6d2010ae 5354 bflag = CL_PASSIVE;
2d21ac55 5355 else
6d2010ae 5356 bflag = 0;
1c79356b 5357
9bccf70c 5358 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
91447636 5359 (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
9bccf70c 5360
91447636 5361 if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) {
9bccf70c 5362 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0);
1c79356b 5363
91447636 5364 return (0);
9bccf70c 5365 }
1c79356b 5366 upl_size = pages_in_upl * PAGE_SIZE;
91447636 5367 upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
1c79356b 5368
9bccf70c
A
5369 if (upl_f_offset + upl_size >= EOF) {
5370
5371 if (upl_f_offset >= EOF) {
5372 /*
5373 * must have truncated the file and missed
5374 * clearing a dangling cluster (i.e. it's completely
5375 * beyond the new EOF
5376 */
5377 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0);
5378
91447636 5379 return(0);
9bccf70c
A
5380 }
5381 size = EOF - upl_f_offset;
1c79356b 5382
55e303ae 5383 upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
9bccf70c 5384 pages_in_upl = upl_size / PAGE_SIZE;
55e303ae 5385 } else
9bccf70c 5386 size = upl_size;
55e303ae
A
5387
5388 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
5389
91447636
A
5390 /*
5391 * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
5392 *
5393 * - only pages that are currently dirty are returned... these are the ones we need to clean
5394 * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
5395 * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
5396 * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if
5397 * someone dirties this page while the I/O is in progress, we don't lose track of the new state
5398 *
5399 * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
5400 */
5401
5402 if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE))
55e303ae
A
5403 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED;
5404 else
5405 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
5406
0b4e3aa0
A
5407 kret = ubc_create_upl(vp,
5408 upl_f_offset,
5409 upl_size,
5410 &upl,
9bccf70c 5411 &pl,
55e303ae 5412 upl_flags);
1c79356b
A
5413 if (kret != KERN_SUCCESS)
5414 panic("cluster_push: failed to get pagelist");
5415
b0d623f7 5416 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0);
9bccf70c 5417
55e303ae
A
5418 /*
5419 * since we only asked for the dirty pages back
5420 * it's possible that we may only get a few or even none, so...
5421 * before we start marching forward, we must make sure we know
5422 * where the last present page is in the UPL, otherwise we could
5423 * end up working with a freed upl due to the FREE_ON_EMPTY semantics
5424 * employed by commit_range and abort_range.
5425 */
5426 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
5427 if (upl_page_present(pl, last_pg))
5428 break;
9bccf70c 5429 }
55e303ae 5430 pages_in_upl = last_pg + 1;
1c79356b 5431
55e303ae
A
5432 if (pages_in_upl == 0) {
5433 ubc_upl_abort(upl, 0);
1c79356b 5434
55e303ae 5435 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0);
91447636 5436 return(0);
55e303ae
A
5437 }
5438
5439 for (last_pg = 0; last_pg < pages_in_upl; ) {
5440 /*
5441 * find the next dirty page in the UPL
5442 * this will become the first page in the
5443 * next I/O to generate
5444 */
1c79356b 5445 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
55e303ae 5446 if (upl_dirty_page(pl, start_pg))
1c79356b 5447 break;
55e303ae
A
5448 if (upl_page_present(pl, start_pg))
5449 /*
5450 * RET_ONLY_DIRTY will return non-dirty 'precious' pages
5451 * just release these unchanged since we're not going
5452 * to steal them or change their state
5453 */
5454 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
1c79356b 5455 }
55e303ae
A
5456 if (start_pg >= pages_in_upl)
5457 /*
5458 * done... no more dirty pages to push
5459 */
5460 break;
5461 if (start_pg > last_pg)
5462 /*
5463 * skipped over some non-dirty pages
5464 */
5465 size -= ((start_pg - last_pg) * PAGE_SIZE);
1c79356b 5466
55e303ae
A
5467 /*
5468 * find a range of dirty pages to write
5469 */
1c79356b 5470 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
55e303ae 5471 if (!upl_dirty_page(pl, last_pg))
1c79356b
A
5472 break;
5473 }
5474 upl_offset = start_pg * PAGE_SIZE;
5475
5476 io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
5477
2d21ac55 5478 io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag;
91447636
A
5479
5480 if ( !(flags & IO_SYNC))
5481 io_flags |= CL_ASYNC;
5482
6d2010ae
A
5483 if (flags & IO_CLOSE)
5484 io_flags |= CL_CLOSE;
5485
316670eb
A
5486 if (flags & IO_NOCACHE)
5487 io_flags |= CL_NOCACHE;
5488
91447636 5489 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
2d21ac55 5490 io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
1c79356b 5491
91447636
A
5492 if (error == 0 && retval)
5493 error = retval;
1c79356b
A
5494
5495 size -= io_size;
5496 }
9bccf70c
A
5497 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
5498
91447636 5499 return(error);
1c79356b 5500}
b4c24cb9
A
5501
5502
91447636
A
5503/*
5504 * sparse_cluster_switch is called with the write behind lock held
5505 */
5506static void
2d21ac55 5507sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
b4c24cb9 5508{
91447636 5509 int cl_index;
b4c24cb9 5510
b0d623f7 5511 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, vp, wbp->cl_scmap, 0, 0, 0);
91447636
A
5512
5513 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5514 int flags;
5515 struct cl_extent cl;
5516
5517 for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) {
b4c24cb9 5518
2d21ac55 5519 if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) {
91447636
A
5520 if (flags & UPL_POP_DIRTY) {
5521 cl.e_addr = cl.b_addr + 1;
b4c24cb9 5522
b0d623f7 5523 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg);
91447636 5524 }
55e303ae
A
5525 }
5526 }
5527 }
91447636
A
5528 wbp->cl_number = 0;
5529
b0d623f7 5530 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, vp, wbp->cl_scmap, 0, 0, 0);
55e303ae
A
5531}
5532
5533
91447636 5534/*
b0d623f7
A
5535 * sparse_cluster_push must be called with the write-behind lock held if the scmap is
5536 * still associated with the write-behind context... however, if the scmap has been disassociated
5537 * from the write-behind context (the cluster_push case), the wb lock is not held
91447636
A
5538 */
5539static void
6d2010ae 5540sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
55e303ae 5541{
91447636
A
5542 struct cl_extent cl;
5543 off_t offset;
5544 u_int length;
55e303ae 5545
b0d623f7 5546 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, vp, (*scmap), 0, push_flag, 0);
55e303ae 5547
2d21ac55 5548 if (push_flag & PUSH_ALL)
b0d623f7 5549 vfs_drt_control(scmap, 1);
55e303ae
A
5550
5551 for (;;) {
b0d623f7 5552 if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS)
55e303ae 5553 break;
55e303ae 5554
91447636
A
5555 cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
5556 cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
5557
6d2010ae 5558 cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg);
2d21ac55 5559
2d21ac55 5560 if ( !(push_flag & PUSH_ALL) )
55e303ae
A
5561 break;
5562 }
b0d623f7 5563 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
55e303ae
A
5564}
5565
5566
91447636
A
5567/*
5568 * sparse_cluster_add is called with the write behind lock held
5569 */
5570static void
b0d623f7 5571sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
55e303ae 5572{
91447636
A
5573 u_int new_dirty;
5574 u_int length;
5575 off_t offset;
55e303ae 5576
b0d623f7 5577 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0);
55e303ae 5578
91447636
A
5579 offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5580 length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE;
55e303ae 5581
b0d623f7 5582 while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) {
55e303ae
A
5583 /*
5584 * no room left in the map
5585 * only a partial update was done
5586 * push out some pages and try again
5587 */
6d2010ae 5588 sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg);
55e303ae
A
5589
5590 offset += (new_dirty * PAGE_SIZE_64);
5591 length -= (new_dirty * PAGE_SIZE);
5592 }
b0d623f7 5593 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
55e303ae
A
5594}
5595
5596
5597static int
2d21ac55 5598cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
55e303ae 5599{
55e303ae
A
5600 upl_page_info_t *pl;
5601 upl_t upl;
5602 addr64_t ubc_paddr;
5603 kern_return_t kret;
5604 int error = 0;
91447636
A
5605 int did_read = 0;
5606 int abort_flags;
5607 int upl_flags;
2d21ac55
A
5608 int bflag;
5609
5610 if (flags & IO_PASSIVE)
6d2010ae 5611 bflag = CL_PASSIVE;
2d21ac55 5612 else
6d2010ae 5613 bflag = 0;
55e303ae 5614
316670eb
A
5615 if (flags & IO_NOCACHE)
5616 bflag |= CL_NOCACHE;
5617
91447636 5618 upl_flags = UPL_SET_LITE;
2d21ac55
A
5619
5620 if ( !(flags & CL_READ) ) {
91447636
A
5621 /*
5622 * "write" operation: let the UPL subsystem know
5623 * that we intend to modify the buffer cache pages
5624 * we're gathering.
5625 */
5626 upl_flags |= UPL_WILL_MODIFY;
2d21ac55
A
5627 } else {
5628 /*
5629 * indicate that there is no need to pull the
5630 * mapping for this page... we're only going
5631 * to read from it, not modify it.
5632 */
5633 upl_flags |= UPL_FILE_IO;
91447636 5634 }
55e303ae
A
5635 kret = ubc_create_upl(vp,
5636 uio->uio_offset & ~PAGE_MASK_64,
5637 PAGE_SIZE,
5638 &upl,
5639 &pl,
91447636 5640 upl_flags);
55e303ae
A
5641
5642 if (kret != KERN_SUCCESS)
5643 return(EINVAL);
5644
5645 if (!upl_valid_page(pl, 0)) {
5646 /*
5647 * issue a synchronous read to cluster_io
5648 */
91447636 5649 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
2d21ac55 5650 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
55e303ae 5651 if (error) {
b4c24cb9
A
5652 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
5653
5654 return(error);
5655 }
91447636 5656 did_read = 1;
b4c24cb9 5657 }
55e303ae 5658 ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
b4c24cb9 5659
55e303ae
A
5660/*
5661 * NOTE: There is no prototype for the following in BSD. It, and the definitions
5662 * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
5663 * osfmk/ppc/mappings.h. They are not included here because there appears to be no
5664 * way to do so without exporting them to kexts as well.
5665 */
de355530 5666 if (flags & CL_READ)
55e303ae
A
5667// copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
5668 copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
de355530 5669 else
4a249263
A
5670// copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
5671 copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */
55e303ae
A
5672
5673 if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) {
5674 /*
5675 * issue a synchronous write to cluster_io
5676 */
91447636 5677 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
2d21ac55 5678 bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
de355530 5679 }
2d21ac55 5680 if (error == 0)
cc9f6e38
A
5681 uio_update(uio, (user_size_t)xsize);
5682
91447636
A
5683 if (did_read)
5684 abort_flags = UPL_ABORT_FREE_ON_EMPTY;
5685 else
5686 abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
5687
5688 ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags);
55e303ae
A
5689
5690 return (error);
5691}
5692
5693
5694
5695int
2d21ac55 5696cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid)
55e303ae
A
5697{
5698 int pg_offset;
5699 int pg_index;
5700 int csize;
5701 int segflg;
5702 int retval = 0;
2d21ac55 5703 int xsize;
55e303ae 5704 upl_page_info_t *pl;
55e303ae 5705
2d21ac55
A
5706 xsize = *io_resid;
5707
55e303ae 5708 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
2d21ac55 5709 (int)uio->uio_offset, upl_offset, xsize, 0, 0);
55e303ae
A
5710
5711 segflg = uio->uio_segflg;
5712
5713 switch(segflg) {
5714
91447636
A
5715 case UIO_USERSPACE32:
5716 case UIO_USERISPACE32:
5717 uio->uio_segflg = UIO_PHYS_USERSPACE32;
5718 break;
5719
55e303ae
A
5720 case UIO_USERSPACE:
5721 case UIO_USERISPACE:
5722 uio->uio_segflg = UIO_PHYS_USERSPACE;
5723 break;
5724
91447636
A
5725 case UIO_USERSPACE64:
5726 case UIO_USERISPACE64:
5727 uio->uio_segflg = UIO_PHYS_USERSPACE64;
5728 break;
5729
55e303ae
A
5730 case UIO_SYSSPACE:
5731 uio->uio_segflg = UIO_PHYS_SYSSPACE;
5732 break;
91447636 5733
55e303ae
A
5734 }
5735 pl = ubc_upl_pageinfo(upl);
5736
5737 pg_index = upl_offset / PAGE_SIZE;
5738 pg_offset = upl_offset & PAGE_MASK;
5739 csize = min(PAGE_SIZE - pg_offset, xsize);
5740
5741 while (xsize && retval == 0) {
5742 addr64_t paddr;
5743
5744 paddr = ((addr64_t)upl_phys_page(pl, pg_index) << 12) + pg_offset;
de355530 5745
55e303ae
A
5746 retval = uiomove64(paddr, csize, uio);
5747
5748 pg_index += 1;
5749 pg_offset = 0;
5750 xsize -= csize;
5751 csize = min(PAGE_SIZE, xsize);
5752 }
2d21ac55
A
5753 *io_resid = xsize;
5754
55e303ae
A
5755 uio->uio_segflg = segflg;
5756
55e303ae 5757 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
2d21ac55 5758 (int)uio->uio_offset, xsize, retval, segflg, 0);
55e303ae
A
5759
5760 return (retval);
5761}
5762
5763
5764int
91447636 5765cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty)
2d21ac55
A
5766{
5767
5768 return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1));
5769}
5770
5771
5772static int
5773cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference)
55e303ae
A
5774{
5775 int segflg;
5776 int io_size;
5777 int xsize;
5778 int start_offset;
55e303ae
A
5779 int retval = 0;
5780 memory_object_control_t control;
55e303ae 5781
2d21ac55 5782 io_size = *io_resid;
55e303ae
A
5783
5784 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
6d2010ae 5785 (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0);
55e303ae
A
5786
5787 control = ubc_getobject(vp, UBC_FLAGS_NONE);
2d21ac55 5788
55e303ae
A
5789 if (control == MEMORY_OBJECT_CONTROL_NULL) {
5790 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
2d21ac55 5791 (int)uio->uio_offset, io_size, retval, 3, 0);
55e303ae
A
5792
5793 return(0);
5794 }
55e303ae
A
5795 segflg = uio->uio_segflg;
5796
5797 switch(segflg) {
5798
91447636
A
5799 case UIO_USERSPACE32:
5800 case UIO_USERISPACE32:
5801 uio->uio_segflg = UIO_PHYS_USERSPACE32;
5802 break;
5803
5804 case UIO_USERSPACE64:
5805 case UIO_USERISPACE64:
5806 uio->uio_segflg = UIO_PHYS_USERSPACE64;
5807 break;
5808
55e303ae
A
5809 case UIO_USERSPACE:
5810 case UIO_USERISPACE:
5811 uio->uio_segflg = UIO_PHYS_USERSPACE;
5812 break;
5813
5814 case UIO_SYSSPACE:
5815 uio->uio_segflg = UIO_PHYS_SYSSPACE;
5816 break;
5817 }
55e303ae 5818
91447636
A
5819 if ( (io_size = *io_resid) ) {
5820 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
5821 xsize = uio_resid(uio);
55e303ae 5822
2d21ac55
A
5823 retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio,
5824 start_offset, io_size, mark_dirty, take_reference);
91447636
A
5825 xsize -= uio_resid(uio);
5826 io_size -= xsize;
55e303ae
A
5827 }
5828 uio->uio_segflg = segflg;
5829 *io_resid = io_size;
5830
55e303ae 5831 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
2d21ac55 5832 (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0);
55e303ae
A
5833
5834 return(retval);
5835}
5836
5837
5838int
91447636 5839is_file_clean(vnode_t vp, off_t filesize)
55e303ae
A
5840{
5841 off_t f_offset;
5842 int flags;
5843 int total_dirty = 0;
5844
5845 for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) {
2d21ac55 5846 if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) {
55e303ae
A
5847 if (flags & UPL_POP_DIRTY) {
5848 total_dirty++;
5849 }
5850 }
5851 }
5852 if (total_dirty)
5853 return(EINVAL);
5854
5855 return (0);
5856}
5857
5858
5859
5860/*
5861 * Dirty region tracking/clustering mechanism.
5862 *
5863 * This code (vfs_drt_*) provides a mechanism for tracking and clustering
5864 * dirty regions within a larger space (file). It is primarily intended to
5865 * support clustering in large files with many dirty areas.
5866 *
5867 * The implementation assumes that the dirty regions are pages.
5868 *
5869 * To represent dirty pages within the file, we store bit vectors in a
5870 * variable-size circular hash.
5871 */
5872
5873/*
5874 * Bitvector size. This determines the number of pages we group in a
5875 * single hashtable entry. Each hashtable entry is aligned to this
5876 * size within the file.
5877 */
5878#define DRT_BITVECTOR_PAGES 256
5879
5880/*
5881 * File offset handling.
5882 *
5883 * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
5884 * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)
5885 */
5886#define DRT_ADDRESS_MASK (~((1 << 20) - 1))
5887#define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
5888
5889/*
5890 * Hashtable address field handling.
5891 *
5892 * The low-order bits of the hashtable address are used to conserve
5893 * space.
5894 *
5895 * DRT_HASH_COUNT_MASK must be large enough to store the range
5896 * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
5897 * to indicate that the bucket is actually unoccupied.
5898 */
5899#define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
5900#define DRT_HASH_SET_ADDRESS(scm, i, a) \
5901 do { \
5902 (scm)->scm_hashtable[(i)].dhe_control = \
5903 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
5904 } while (0)
5905#define DRT_HASH_COUNT_MASK 0x1ff
5906#define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
5907#define DRT_HASH_SET_COUNT(scm, i, c) \
5908 do { \
5909 (scm)->scm_hashtable[(i)].dhe_control = \
5910 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
5911 } while (0)
5912#define DRT_HASH_CLEAR(scm, i) \
5913 do { \
5914 (scm)->scm_hashtable[(i)].dhe_control = 0; \
5915 } while (0)
5916#define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
5917#define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
5918#define DRT_HASH_COPY(oscm, oi, scm, i) \
5919 do { \
5920 (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
5921 DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
5922 } while(0);
5923
5924
5925/*
5926 * Hash table moduli.
5927 *
5928 * Since the hashtable entry's size is dependent on the size of
5929 * the bitvector, and since the hashtable size is constrained to
5930 * both being prime and fitting within the desired allocation
5931 * size, these values need to be manually determined.
5932 *
5933 * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
5934 *
5935 * The small hashtable allocation is 1024 bytes, so the modulus is 23.
5936 * The large hashtable allocation is 16384 bytes, so the modulus is 401.
5937 */
5938#define DRT_HASH_SMALL_MODULUS 23
5939#define DRT_HASH_LARGE_MODULUS 401
5940
b7266188
A
5941/*
5942 * Physical memory required before the large hash modulus is permitted.
5943 *
5944 * On small memory systems, the large hash modulus can lead to phsyical
5945 * memory starvation, so we avoid using it there.
5946 */
5947#define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
5948
55e303ae
A
5949#define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
5950#define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
5951
5952/* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
5953
5954/*
5955 * Hashtable bitvector handling.
5956 *
5957 * Bitvector fields are 32 bits long.
5958 */
5959
5960#define DRT_HASH_SET_BIT(scm, i, bit) \
5961 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
5962
5963#define DRT_HASH_CLEAR_BIT(scm, i, bit) \
5964 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
5965
5966#define DRT_HASH_TEST_BIT(scm, i, bit) \
5967 ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
5968
5969#define DRT_BITVECTOR_CLEAR(scm, i) \
5970 bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
5971
5972#define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
5973 bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
5974 &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
5975 (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
5976
5977
5978
5979/*
5980 * Hashtable entry.
5981 */
5982struct vfs_drt_hashentry {
5983 u_int64_t dhe_control;
5984 u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
5985};
5986
5987/*
5988 * Dirty Region Tracking structure.
5989 *
5990 * The hashtable is allocated entirely inside the DRT structure.
5991 *
5992 * The hash is a simple circular prime modulus arrangement, the structure
5993 * is resized from small to large if it overflows.
5994 */
5995
5996struct vfs_drt_clustermap {
5997 u_int32_t scm_magic; /* sanity/detection */
5998#define DRT_SCM_MAGIC 0x12020003
5999 u_int32_t scm_modulus; /* current ring size */
6000 u_int32_t scm_buckets; /* number of occupied buckets */
6001 u_int32_t scm_lastclean; /* last entry we cleaned */
6002 u_int32_t scm_iskips; /* number of slot skips */
6003
6004 struct vfs_drt_hashentry scm_hashtable[0];
6005};
6006
6007
6008#define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
6009#define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
6010
6011/*
6012 * Debugging codes and arguments.
6013 */
6014#define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
6015#define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
6016#define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
6017#define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
6018#define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
6019 * dirty */
6020 /* 0, setcount */
6021 /* 1 (clean, no map) */
6022 /* 2 (map alloc fail) */
6023 /* 3, resid (partial) */
6024#define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
6025#define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
6026 * lastclean, iskips */
6027
6028
55e303ae
A
6029static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp);
6030static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap);
6031static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap,
6032 u_int64_t offset, int *indexp);
6033static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp,
6034 u_int64_t offset,
6035 int *indexp,
6036 int recursed);
6037static kern_return_t vfs_drt_do_mark_pages(
6038 void **cmapp,
6039 u_int64_t offset,
6040 u_int length,
2d21ac55 6041 u_int *setcountp,
55e303ae
A
6042 int dirty);
6043static void vfs_drt_trace(
6044 struct vfs_drt_clustermap *cmap,
6045 int code,
6046 int arg1,
6047 int arg2,
6048 int arg3,
6049 int arg4);
6050
6051
6052/*
6053 * Allocate and initialise a sparse cluster map.
6054 *
6055 * Will allocate a new map, resize or compact an existing map.
6056 *
6057 * XXX we should probably have at least one intermediate map size,
6058 * as the 1:16 ratio seems a bit drastic.
6059 */
6060static kern_return_t
6061vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp)
6062{
6063 struct vfs_drt_clustermap *cmap, *ocmap;
6064 kern_return_t kret;
6065 u_int64_t offset;
2d21ac55
A
6066 u_int32_t i;
6067 int nsize, active_buckets, index, copycount;
55e303ae
A
6068
6069 ocmap = NULL;
6070 if (cmapp != NULL)
6071 ocmap = *cmapp;
6072
6073 /*
6074 * Decide on the size of the new map.
6075 */
6076 if (ocmap == NULL) {
6077 nsize = DRT_HASH_SMALL_MODULUS;
6078 } else {
6079 /* count the number of active buckets in the old map */
6080 active_buckets = 0;
6081 for (i = 0; i < ocmap->scm_modulus; i++) {
6082 if (!DRT_HASH_VACANT(ocmap, i) &&
6083 (DRT_HASH_GET_COUNT(ocmap, i) != 0))
6084 active_buckets++;
6085 }
6086 /*
6087 * If we're currently using the small allocation, check to
6088 * see whether we should grow to the large one.
6089 */
6090 if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
b7266188
A
6091 /*
6092 * If the ring is nearly full and we are allowed to
6093 * use the large modulus, upgrade.
6094 */
6095 if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) &&
6096 (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) {
55e303ae
A
6097 nsize = DRT_HASH_LARGE_MODULUS;
6098 } else {
6099 nsize = DRT_HASH_SMALL_MODULUS;
6100 }
6101 } else {
6102 /* already using the large modulus */
6103 nsize = DRT_HASH_LARGE_MODULUS;
6104 /*
6105 * If the ring is completely full, there's
6106 * nothing useful for us to do. Behave as
6107 * though we had compacted into the new
6108 * array and return.
6109 */
6110 if (active_buckets >= DRT_HASH_LARGE_MODULUS)
6111 return(KERN_SUCCESS);
6112 }
6113 }
6114
6115 /*
6116 * Allocate and initialise the new map.
6117 */
6118
6119 kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
6120 (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
6121 if (kret != KERN_SUCCESS)
6122 return(kret);
6123 cmap->scm_magic = DRT_SCM_MAGIC;
6124 cmap->scm_modulus = nsize;
6125 cmap->scm_buckets = 0;
6126 cmap->scm_lastclean = 0;
6127 cmap->scm_iskips = 0;
6128 for (i = 0; i < cmap->scm_modulus; i++) {
6129 DRT_HASH_CLEAR(cmap, i);
6130 DRT_HASH_VACATE(cmap, i);
6131 DRT_BITVECTOR_CLEAR(cmap, i);
6132 }
6133
6134 /*
6135 * If there's an old map, re-hash entries from it into the new map.
6136 */
6137 copycount = 0;
6138 if (ocmap != NULL) {
6139 for (i = 0; i < ocmap->scm_modulus; i++) {
6140 /* skip empty buckets */
6141 if (DRT_HASH_VACANT(ocmap, i) ||
6142 (DRT_HASH_GET_COUNT(ocmap, i) == 0))
6143 continue;
6144 /* get new index */
6145 offset = DRT_HASH_GET_ADDRESS(ocmap, i);
6146 kret = vfs_drt_get_index(&cmap, offset, &index, 1);
6147 if (kret != KERN_SUCCESS) {
6148 /* XXX need to bail out gracefully here */
6149 panic("vfs_drt: new cluster map mysteriously too small");
2d21ac55 6150 index = 0;
55e303ae
A
6151 }
6152 /* copy */
6153 DRT_HASH_COPY(ocmap, i, cmap, index);
6154 copycount++;
6155 }
6156 }
6157
6158 /* log what we've done */
6159 vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0);
6160
6161 /*
6162 * It's important to ensure that *cmapp always points to
6163 * a valid map, so we must overwrite it before freeing
6164 * the old map.
6165 */
6166 *cmapp = cmap;
6167 if (ocmap != NULL) {
6168 /* emit stats into trace buffer */
6169 vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA,
6170 ocmap->scm_modulus,
6171 ocmap->scm_buckets,
6172 ocmap->scm_lastclean,
6173 ocmap->scm_iskips);
6174
6175 vfs_drt_free_map(ocmap);
6176 }
6177 return(KERN_SUCCESS);
6178}
6179
6180
6181/*
6182 * Free a sparse cluster map.
6183 */
6184static kern_return_t
6185vfs_drt_free_map(struct vfs_drt_clustermap *cmap)
6186{
55e303ae
A
6187 kmem_free(kernel_map, (vm_offset_t)cmap,
6188 (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
6189 return(KERN_SUCCESS);
6190}
6191
6192
6193/*
6194 * Find the hashtable slot currently occupied by an entry for the supplied offset.
6195 */
6196static kern_return_t
6197vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp)
6198{
2d21ac55
A
6199 int index;
6200 u_int32_t i;
55e303ae
A
6201
6202 offset = DRT_ALIGN_ADDRESS(offset);
6203 index = DRT_HASH(cmap, offset);
6204
6205 /* traverse the hashtable */
6206 for (i = 0; i < cmap->scm_modulus; i++) {
6207
6208 /*
6209 * If the slot is vacant, we can stop.
6210 */
6211 if (DRT_HASH_VACANT(cmap, index))
6212 break;
6213
6214 /*
6215 * If the address matches our offset, we have success.
6216 */
6217 if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) {
6218 *indexp = index;
6219 return(KERN_SUCCESS);
6220 }
6221
6222 /*
6223 * Move to the next slot, try again.
6224 */
6225 index = DRT_HASH_NEXT(cmap, index);
6226 }
6227 /*
6228 * It's not there.
6229 */
6230 return(KERN_FAILURE);
6231}
6232
6233/*
6234 * Find the hashtable slot for the supplied offset. If we haven't allocated
6235 * one yet, allocate one and populate the address field. Note that it will
6236 * not have a nonzero page count and thus will still technically be free, so
6237 * in the case where we are called to clean pages, the slot will remain free.
6238 */
6239static kern_return_t
6240vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed)
6241{
6242 struct vfs_drt_clustermap *cmap;
6243 kern_return_t kret;
2d21ac55
A
6244 u_int32_t index;
6245 u_int32_t i;
55e303ae
A
6246
6247 cmap = *cmapp;
6248
6249 /* look for an existing entry */
6250 kret = vfs_drt_search_index(cmap, offset, indexp);
6251 if (kret == KERN_SUCCESS)
6252 return(kret);
6253
6254 /* need to allocate an entry */
6255 offset = DRT_ALIGN_ADDRESS(offset);
6256 index = DRT_HASH(cmap, offset);
6257
6258 /* scan from the index forwards looking for a vacant slot */
6259 for (i = 0; i < cmap->scm_modulus; i++) {
6260 /* slot vacant? */
6261 if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) {
6262 cmap->scm_buckets++;
6263 if (index < cmap->scm_lastclean)
6264 cmap->scm_lastclean = index;
6265 DRT_HASH_SET_ADDRESS(cmap, index, offset);
6266 DRT_HASH_SET_COUNT(cmap, index, 0);
6267 DRT_BITVECTOR_CLEAR(cmap, index);
6268 *indexp = index;
6269 vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0);
6270 return(KERN_SUCCESS);
6271 }
6272 cmap->scm_iskips += i;
6273 index = DRT_HASH_NEXT(cmap, index);
6274 }
6275
6276 /*
6277 * We haven't found a vacant slot, so the map is full. If we're not
6278 * already recursed, try reallocating/compacting it.
6279 */
6280 if (recursed)
6281 return(KERN_FAILURE);
6282 kret = vfs_drt_alloc_map(cmapp);
6283 if (kret == KERN_SUCCESS) {
6284 /* now try to insert again */
6285 kret = vfs_drt_get_index(cmapp, offset, indexp, 1);
6286 }
6287 return(kret);
6288}
6289
6290/*
6291 * Implementation of set dirty/clean.
6292 *
6293 * In the 'clean' case, not finding a map is OK.
6294 */
6295static kern_return_t
6296vfs_drt_do_mark_pages(
6297 void **private,
6298 u_int64_t offset,
6299 u_int length,
2d21ac55 6300 u_int *setcountp,
55e303ae
A
6301 int dirty)
6302{
6303 struct vfs_drt_clustermap *cmap, **cmapp;
6304 kern_return_t kret;
6305 int i, index, pgoff, pgcount, setcount, ecount;
6306
6307 cmapp = (struct vfs_drt_clustermap **)private;
6308 cmap = *cmapp;
6309
6310 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0);
6311
6312 if (setcountp != NULL)
6313 *setcountp = 0;
6314
6315 /* allocate a cluster map if we don't already have one */
6316 if (cmap == NULL) {
6317 /* no cluster map, nothing to clean */
6318 if (!dirty) {
6319 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0);
6320 return(KERN_SUCCESS);
6321 }
6322 kret = vfs_drt_alloc_map(cmapp);
6323 if (kret != KERN_SUCCESS) {
6324 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0);
6325 return(kret);
6326 }
6327 }
6328 setcount = 0;
6329
6330 /*
6331 * Iterate over the length of the region.
6332 */
6333 while (length > 0) {
6334 /*
6335 * Get the hashtable index for this offset.
6336 *
6337 * XXX this will add blank entries if we are clearing a range
6338 * that hasn't been dirtied.
6339 */
6340 kret = vfs_drt_get_index(cmapp, offset, &index, 0);
6341 cmap = *cmapp; /* may have changed! */
6342 /* this may be a partial-success return */
6343 if (kret != KERN_SUCCESS) {
6344 if (setcountp != NULL)
6345 *setcountp = setcount;
6346 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0);
6347
6348 return(kret);
6349 }
6350
6351 /*
6352 * Work out how many pages we're modifying in this
6353 * hashtable entry.
6354 */
6355 pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE;
6356 pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff));
6357
6358 /*
6359 * Iterate over pages, dirty/clearing as we go.
6360 */
6361 ecount = DRT_HASH_GET_COUNT(cmap, index);
6362 for (i = 0; i < pgcount; i++) {
6363 if (dirty) {
6364 if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6365 DRT_HASH_SET_BIT(cmap, index, pgoff + i);
6366 ecount++;
6367 setcount++;
6368 }
6369 } else {
6370 if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6371 DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
6372 ecount--;
6373 setcount++;
6374 }
6375 }
6376 }
6377 DRT_HASH_SET_COUNT(cmap, index, ecount);
91447636 6378
55e303ae
A
6379 offset += pgcount * PAGE_SIZE;
6380 length -= pgcount * PAGE_SIZE;
6381 }
6382 if (setcountp != NULL)
6383 *setcountp = setcount;
6384
6385 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0);
6386
6387 return(KERN_SUCCESS);
6388}
6389
6390/*
6391 * Mark a set of pages as dirty/clean.
6392 *
6393 * This is a public interface.
6394 *
6395 * cmapp
6396 * Pointer to storage suitable for holding a pointer. Note that
6397 * this must either be NULL or a value set by this function.
6398 *
6399 * size
6400 * Current file size in bytes.
6401 *
6402 * offset
6403 * Offset of the first page to be marked as dirty, in bytes. Must be
6404 * page-aligned.
6405 *
6406 * length
6407 * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
6408 *
6409 * setcountp
6410 * Number of pages newly marked dirty by this call (optional).
6411 *
6412 * Returns KERN_SUCCESS if all the pages were successfully marked.
6413 */
6414static kern_return_t
2d21ac55 6415vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp)
55e303ae
A
6416{
6417 /* XXX size unused, drop from interface */
6418 return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1));
6419}
6420
91447636 6421#if 0
55e303ae
A
6422static kern_return_t
6423vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length)
6424{
6425 return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0));
6426}
91447636 6427#endif
55e303ae
A
6428
6429/*
6430 * Get a cluster of dirty pages.
6431 *
6432 * This is a public interface.
6433 *
6434 * cmapp
6435 * Pointer to storage managed by drt_mark_pages. Note that this must
6436 * be NULL or a value set by drt_mark_pages.
6437 *
6438 * offsetp
6439 * Returns the byte offset into the file of the first page in the cluster.
6440 *
6441 * lengthp
6442 * Returns the length in bytes of the cluster of dirty pages.
6443 *
6444 * Returns success if a cluster was found. If KERN_FAILURE is returned, there
6445 * are no dirty pages meeting the minmum size criteria. Private storage will
6446 * be released if there are no more dirty pages left in the map
6447 *
6448 */
6449static kern_return_t
6450vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp)
6451{
6452 struct vfs_drt_clustermap *cmap;
6453 u_int64_t offset;
6454 u_int length;
2d21ac55
A
6455 u_int32_t j;
6456 int index, i, fs, ls;
55e303ae
A
6457
6458 /* sanity */
6459 if ((cmapp == NULL) || (*cmapp == NULL))
6460 return(KERN_FAILURE);
6461 cmap = *cmapp;
6462
6463 /* walk the hashtable */
6464 for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) {
6465 index = DRT_HASH(cmap, offset);
6466
6467 if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0))
6468 continue;
6469
6470 /* scan the bitfield for a string of bits */
6471 fs = -1;
6472
6473 for (i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6474 if (DRT_HASH_TEST_BIT(cmap, index, i)) {
6475 fs = i;
6476 break;
6477 }
6478 }
6479 if (fs == -1) {
6480 /* didn't find any bits set */
6481 panic("vfs_drt: entry summary count > 0 but no bits set in map");
6482 }
6483 for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
6484 if (!DRT_HASH_TEST_BIT(cmap, index, i))
6485 break;
6486 }
6487
6488 /* compute offset and length, mark pages clean */
6489 offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs);
6490 length = ls * PAGE_SIZE;
6491 vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0);
6492 cmap->scm_lastclean = index;
6493
6494 /* return successful */
6495 *offsetp = (off_t)offset;
6496 *lengthp = length;
6497
6498 vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0);
6499 return(KERN_SUCCESS);
6500 }
6501 /*
6502 * We didn't find anything... hashtable is empty
6503 * emit stats into trace buffer and
6504 * then free it
6505 */
6506 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6507 cmap->scm_modulus,
6508 cmap->scm_buckets,
6509 cmap->scm_lastclean,
6510 cmap->scm_iskips);
6511
6512 vfs_drt_free_map(cmap);
6513 *cmapp = NULL;
6514
6515 return(KERN_FAILURE);
6516}
6517
6518
6519static kern_return_t
6520vfs_drt_control(void **cmapp, int op_type)
6521{
6522 struct vfs_drt_clustermap *cmap;
6523
6524 /* sanity */
6525 if ((cmapp == NULL) || (*cmapp == NULL))
6526 return(KERN_FAILURE);
6527 cmap = *cmapp;
6528
6529 switch (op_type) {
6530 case 0:
6531 /* emit stats into trace buffer */
6532 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6533 cmap->scm_modulus,
6534 cmap->scm_buckets,
6535 cmap->scm_lastclean,
6536 cmap->scm_iskips);
6537
6538 vfs_drt_free_map(cmap);
6539 *cmapp = NULL;
6540 break;
6541
6542 case 1:
6543 cmap->scm_lastclean = 0;
6544 break;
6545 }
6546 return(KERN_SUCCESS);
6547}
6548
6549
6550
6551/*
6552 * Emit a summary of the state of the clustermap into the trace buffer
6553 * along with some caller-provided data.
6554 */
91447636 6555#if KDEBUG
55e303ae 6556static void
91447636 6557vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4)
55e303ae
A
6558{
6559 KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0);
6560}
91447636
A
6561#else
6562static void
6563vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code,
6564 __unused int arg1, __unused int arg2, __unused int arg3,
6565 __unused int arg4)
6566{
6567}
6568#endif
55e303ae 6569
91447636 6570#if 0
55e303ae
A
6571/*
6572 * Perform basic sanity check on the hash entry summary count
6573 * vs. the actual bits set in the entry.
6574 */
6575static void
6576vfs_drt_sanity(struct vfs_drt_clustermap *cmap)
6577{
6578 int index, i;
6579 int bits_on;
6580
6581 for (index = 0; index < cmap->scm_modulus; index++) {
6582 if (DRT_HASH_VACANT(cmap, index))
6583 continue;
6584
6585 for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6586 if (DRT_HASH_TEST_BIT(cmap, index, i))
6587 bits_on++;
6588 }
6589 if (bits_on != DRT_HASH_GET_COUNT(cmap, index))
6590 panic("bits_on = %d, index = %d\n", bits_on, index);
6591 }
b4c24cb9 6592}
91447636 6593#endif