]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
39236c6e | 2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | ||
32 | /* | |
33 | * File: i386/rtclock.c | |
34 | * Purpose: Routines for handling the machine dependent | |
91447636 A |
35 | * real-time clock. Historically, this clock is |
36 | * generated by the Intel 8254 Programmable Interval | |
37 | * Timer, but local apic timers are now used for | |
38 | * this purpose with the master time reference being | |
39 | * the cpu clock counted by the timestamp MSR. | |
1c79356b A |
40 | */ |
41 | ||
55e303ae A |
42 | |
43 | #include <mach/mach_types.h> | |
44 | ||
1c79356b | 45 | #include <kern/cpu_data.h> |
91447636 | 46 | #include <kern/cpu_number.h> |
1c79356b | 47 | #include <kern/clock.h> |
55e303ae | 48 | #include <kern/host_notify.h> |
1c79356b A |
49 | #include <kern/macro_help.h> |
50 | #include <kern/misc_protos.h> | |
51 | #include <kern/spl.h> | |
91447636 | 52 | #include <kern/assert.h> |
39236c6e | 53 | #include <kern/timer_queue.h> |
1c79356b A |
54 | #include <mach/vm_prot.h> |
55 | #include <vm/pmap.h> | |
56 | #include <vm/vm_kern.h> /* for kernel_map */ | |
0c530ab8 | 57 | #include <architecture/i386/pio.h> |
55e303ae | 58 | #include <i386/machine_cpu.h> |
91447636 | 59 | #include <i386/cpuid.h> |
91447636 | 60 | #include <i386/cpu_threads.h> |
b0d623f7 | 61 | #include <i386/mp.h> |
91447636 | 62 | #include <i386/machine_routines.h> |
6d2010ae | 63 | #include <i386/pal_routines.h> |
b0d623f7 A |
64 | #include <i386/proc_reg.h> |
65 | #include <i386/misc_protos.h> | |
55e303ae | 66 | #include <pexpert/pexpert.h> |
91447636 A |
67 | #include <machine/limits.h> |
68 | #include <machine/commpage.h> | |
69 | #include <sys/kdebug.h> | |
0c530ab8 | 70 | #include <i386/tsc.h> |
6d2010ae | 71 | #include <i386/rtclock_protos.h> |
91447636 | 72 | #define UI_CPUFREQ_ROUNDING_FACTOR 10000000 |
1c79356b | 73 | |
0c530ab8 | 74 | int rtclock_init(void); |
6601e61a | 75 | |
b0d623f7 A |
76 | uint64_t tsc_rebase_abs_time = 0; |
77 | ||
0c530ab8 A |
78 | static void rtc_set_timescale(uint64_t cycles); |
79 | static uint64_t rtc_export_speed(uint64_t cycles); | |
8f6c56a5 | 80 | |
060df5ea A |
81 | void |
82 | rtc_timer_start(void) | |
83 | { | |
84 | /* | |
85 | * Force a complete re-evaluation of timer deadlines. | |
86 | */ | |
39236c6e A |
87 | x86_lcpu()->rtcDeadline = EndOfAllTime; |
88 | timer_resync_deadlines(); | |
060df5ea A |
89 | } |
90 | ||
b0d623f7 A |
91 | static inline uint32_t |
92 | _absolutetime_to_microtime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *microsecs) | |
93 | { | |
94 | uint32_t remain; | |
b0d623f7 A |
95 | *secs = abstime / (uint64_t)NSEC_PER_SEC; |
96 | remain = (uint32_t)(abstime % (uint64_t)NSEC_PER_SEC); | |
97 | *microsecs = remain / NSEC_PER_USEC; | |
b0d623f7 A |
98 | return remain; |
99 | } | |
100 | ||
101 | static inline void | |
102 | _absolutetime_to_nanotime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *nanosecs) | |
103 | { | |
b0d623f7 A |
104 | *secs = abstime / (uint64_t)NSEC_PER_SEC; |
105 | *nanosecs = (clock_usec_t)(abstime % (uint64_t)NSEC_PER_SEC); | |
b0d623f7 A |
106 | } |
107 | ||
91447636 A |
108 | /* |
109 | * Nanotime/mach_absolutime_time | |
110 | * ----------------------------- | |
0c530ab8 A |
111 | * The timestamp counter (TSC) - which counts cpu clock cycles and can be read |
112 | * efficiently by the kernel and in userspace - is the reference for all timing. | |
113 | * The cpu clock rate is platform-dependent and may stop or be reset when the | |
114 | * processor is napped/slept. As a result, nanotime is the software abstraction | |
115 | * used to maintain a monotonic clock, adjusted from an outside reference as needed. | |
91447636 A |
116 | * |
117 | * The kernel maintains nanotime information recording: | |
0c530ab8 | 118 | * - the ratio of tsc to nanoseconds |
91447636 A |
119 | * with this ratio expressed as a 32-bit scale and shift |
120 | * (power of 2 divider); | |
0c530ab8 | 121 | * - { tsc_base, ns_base } pair of corresponding timestamps. |
6601e61a | 122 | * |
0c530ab8 A |
123 | * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage |
124 | * for the userspace nanotime routine to read. | |
6601e61a | 125 | * |
0c530ab8 A |
126 | * All of the routines which update the nanotime data are non-reentrant. This must |
127 | * be guaranteed by the caller. | |
91447636 A |
128 | */ |
129 | static inline void | |
6d2010ae | 130 | rtc_nanotime_set_commpage(pal_rtc_nanotime_t *rntp) |
91447636 | 131 | { |
0c530ab8 A |
132 | commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift); |
133 | } | |
6601e61a | 134 | |
0c530ab8 A |
135 | /* |
136 | * rtc_nanotime_init: | |
137 | * | |
138 | * Intialize the nanotime info from the base time. | |
139 | */ | |
140 | static inline void | |
6d2010ae | 141 | _rtc_nanotime_init(pal_rtc_nanotime_t *rntp, uint64_t base) |
0c530ab8 A |
142 | { |
143 | uint64_t tsc = rdtsc64(); | |
21362eb3 | 144 | |
6d2010ae | 145 | _pal_rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp); |
91447636 A |
146 | } |
147 | ||
39037602 | 148 | void |
0c530ab8 | 149 | rtc_nanotime_init(uint64_t base) |
91447636 | 150 | { |
6d2010ae A |
151 | _rtc_nanotime_init(&pal_rtc_nanotime_info, base); |
152 | rtc_nanotime_set_commpage(&pal_rtc_nanotime_info); | |
91447636 A |
153 | } |
154 | ||
0c530ab8 A |
155 | /* |
156 | * rtc_nanotime_init_commpage: | |
157 | * | |
158 | * Call back from the commpage initialization to | |
159 | * cause the commpage data to be filled in once the | |
160 | * commpages have been created. | |
161 | */ | |
162 | void | |
163 | rtc_nanotime_init_commpage(void) | |
91447636 | 164 | { |
0c530ab8 A |
165 | spl_t s = splclock(); |
166 | ||
6d2010ae | 167 | rtc_nanotime_set_commpage(&pal_rtc_nanotime_info); |
0c530ab8 | 168 | splx(s); |
91447636 A |
169 | } |
170 | ||
0c530ab8 A |
171 | /* |
172 | * rtc_nanotime_read: | |
173 | * | |
174 | * Returns the current nanotime value, accessable from any | |
175 | * context. | |
176 | */ | |
2d21ac55 | 177 | static inline uint64_t |
91447636 A |
178 | rtc_nanotime_read(void) |
179 | { | |
bd504ef0 | 180 | return _rtc_nanotime_read(&pal_rtc_nanotime_info); |
91447636 A |
181 | } |
182 | ||
91447636 | 183 | /* |
0c530ab8 A |
184 | * rtc_clock_napped: |
185 | * | |
4a3eedf9 A |
186 | * Invoked from power management when we exit from a low C-State (>= C4) |
187 | * and the TSC has stopped counting. The nanotime data is updated according | |
188 | * to the provided value which represents the new value for nanotime. | |
91447636 | 189 | */ |
0c530ab8 | 190 | void |
4a3eedf9 | 191 | rtc_clock_napped(uint64_t base, uint64_t tsc_base) |
0c530ab8 | 192 | { |
6d2010ae | 193 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; |
4a3eedf9 A |
194 | uint64_t oldnsecs; |
195 | uint64_t newnsecs; | |
196 | uint64_t tsc; | |
2d21ac55 A |
197 | |
198 | assert(!ml_get_interrupts_enabled()); | |
4a3eedf9 | 199 | tsc = rdtsc64(); |
bd504ef0 A |
200 | oldnsecs = rntp->ns_base + _rtc_tsc_to_nanoseconds(tsc - rntp->tsc_base, rntp); |
201 | newnsecs = base + _rtc_tsc_to_nanoseconds(tsc - tsc_base, rntp); | |
4a3eedf9 A |
202 | |
203 | /* | |
204 | * Only update the base values if time using the new base values | |
205 | * is later than the time using the old base values. | |
206 | */ | |
207 | if (oldnsecs < newnsecs) { | |
6d2010ae | 208 | _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp); |
4a3eedf9 A |
209 | rtc_nanotime_set_commpage(rntp); |
210 | } | |
0c530ab8 A |
211 | } |
212 | ||
0b4c1975 A |
213 | /* |
214 | * Invoked from power management to correct the SFLM TSC entry drift problem: | |
6d2010ae A |
215 | * a small delta is added to the tsc_base. This is equivalent to nudgin time |
216 | * backwards. We require this to be on the order of a TSC quantum which won't | |
217 | * cause callers of mach_absolute_time() to see time going backwards! | |
0b4c1975 A |
218 | */ |
219 | void | |
220 | rtc_clock_adjust(uint64_t tsc_base_delta) | |
221 | { | |
6d2010ae | 222 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; |
0b4c1975 | 223 | |
6d2010ae A |
224 | assert(!ml_get_interrupts_enabled()); |
225 | assert(tsc_base_delta < 100ULL); /* i.e. it's small */ | |
226 | _rtc_nanotime_adjust(tsc_base_delta, rntp); | |
227 | rtc_nanotime_set_commpage(rntp); | |
0b4c1975 A |
228 | } |
229 | ||
91447636 A |
230 | void |
231 | rtc_clock_stepping(__unused uint32_t new_frequency, | |
232 | __unused uint32_t old_frequency) | |
233 | { | |
0c530ab8 | 234 | panic("rtc_clock_stepping unsupported"); |
91447636 A |
235 | } |
236 | ||
91447636 | 237 | void |
0c530ab8 A |
238 | rtc_clock_stepped(__unused uint32_t new_frequency, |
239 | __unused uint32_t old_frequency) | |
91447636 | 240 | { |
2d21ac55 | 241 | panic("rtc_clock_stepped unsupported"); |
1c79356b A |
242 | } |
243 | ||
244 | /* | |
0c530ab8 A |
245 | * rtc_sleep_wakeup: |
246 | * | |
6d2010ae | 247 | * Invoked from power management when we have awoken from a sleep (S3) |
bd504ef0 A |
248 | * and the TSC has been reset, or from Deep Idle (S0) sleep when the TSC |
249 | * has progressed. The nanotime data is updated based on the passed-in value. | |
0c530ab8 A |
250 | * |
251 | * The caller must guarantee non-reentrancy. | |
91447636 A |
252 | */ |
253 | void | |
0c530ab8 A |
254 | rtc_sleep_wakeup( |
255 | uint64_t base) | |
91447636 | 256 | { |
060df5ea | 257 | /* Set fixed configuration for lapic timers */ |
fe8ab488 | 258 | rtc_timer->rtc_config(); |
060df5ea | 259 | |
91447636 A |
260 | /* |
261 | * Reset nanotime. | |
262 | * The timestamp counter will have been reset | |
263 | * but nanotime (uptime) marches onward. | |
91447636 | 264 | */ |
0c530ab8 | 265 | rtc_nanotime_init(base); |
91447636 A |
266 | } |
267 | ||
39037602 A |
268 | void |
269 | rtc_decrementer_configure(void) { | |
270 | rtc_timer->rtc_config(); | |
271 | } | |
fe8ab488 A |
272 | /* |
273 | * rtclock_early_init() is called very early at boot to | |
274 | * establish mach_absolute_time() and set it to zero. | |
275 | */ | |
276 | void | |
277 | rtclock_early_init(void) | |
278 | { | |
279 | assert(tscFreq); | |
280 | rtc_set_timescale(tscFreq); | |
281 | } | |
282 | ||
91447636 A |
283 | /* |
284 | * Initialize the real-time clock device. | |
285 | * In addition, various variables used to support the clock are initialized. | |
1c79356b A |
286 | */ |
287 | int | |
0c530ab8 | 288 | rtclock_init(void) |
1c79356b | 289 | { |
91447636 A |
290 | uint64_t cycles; |
291 | ||
0c530ab8 A |
292 | assert(!ml_get_interrupts_enabled()); |
293 | ||
91447636 | 294 | if (cpu_number() == master_cpu) { |
0c530ab8 A |
295 | |
296 | assert(tscFreq); | |
0c530ab8 | 297 | |
91447636 | 298 | /* |
0c530ab8 | 299 | * Adjust and set the exported cpu speed. |
91447636 | 300 | */ |
0c530ab8 | 301 | cycles = rtc_export_speed(tscFreq); |
91447636 A |
302 | |
303 | /* | |
304 | * Set min/max to actual. | |
305 | * ACPI may update these later if speed-stepping is detected. | |
306 | */ | |
0c530ab8 A |
307 | gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles; |
308 | gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles; | |
91447636 | 309 | |
060df5ea | 310 | rtc_timer_init(); |
91447636 | 311 | clock_timebase_init(); |
0c530ab8 | 312 | ml_init_lock_timeout(); |
bd504ef0 | 313 | ml_init_delay_spin_threshold(10); |
1c79356b | 314 | } |
91447636 | 315 | |
6d2010ae | 316 | /* Set fixed configuration for lapic timers */ |
fe8ab488 | 317 | rtc_timer->rtc_config(); |
060df5ea | 318 | rtc_timer_start(); |
91447636 | 319 | |
1c79356b A |
320 | return (1); |
321 | } | |
322 | ||
0c530ab8 A |
323 | // utility routine |
324 | // Code to calculate how many processor cycles are in a second... | |
1c79356b | 325 | |
0c530ab8 A |
326 | static void |
327 | rtc_set_timescale(uint64_t cycles) | |
1c79356b | 328 | { |
6d2010ae | 329 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; |
bd504ef0 A |
330 | uint32_t shift = 0; |
331 | ||
332 | /* the "scale" factor will overflow unless cycles>SLOW_TSC_THRESHOLD */ | |
333 | ||
334 | while ( cycles <= SLOW_TSC_THRESHOLD) { | |
335 | shift++; | |
336 | cycles <<= 1; | |
337 | } | |
338 | ||
b0d623f7 | 339 | rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles); |
2d21ac55 | 340 | |
bd504ef0 | 341 | rntp->shift = shift; |
1c79356b | 342 | |
15129b1c A |
343 | /* |
344 | * On some platforms, the TSC is not reset at warm boot. But the | |
345 | * rebase time must be relative to the current boot so we can't use | |
346 | * mach_absolute_time(). Instead, we convert the TSC delta since boot | |
347 | * to nanoseconds. | |
348 | */ | |
b0d623f7 | 349 | if (tsc_rebase_abs_time == 0) |
15129b1c A |
350 | tsc_rebase_abs_time = _rtc_tsc_to_nanoseconds( |
351 | rdtsc64() - tsc_at_boot, rntp); | |
b0d623f7 | 352 | |
0c530ab8 | 353 | rtc_nanotime_init(0); |
1c79356b A |
354 | } |
355 | ||
91447636 | 356 | static uint64_t |
0c530ab8 | 357 | rtc_export_speed(uint64_t cyc_per_sec) |
9bccf70c | 358 | { |
fe8ab488 | 359 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; |
0c530ab8 | 360 | uint64_t cycles; |
1c79356b | 361 | |
fe8ab488 A |
362 | if (rntp->shift != 0 ) |
363 | printf("Slow TSC, rtc_nanotime.shift == %d\n", rntp->shift); | |
364 | ||
0c530ab8 A |
365 | /* Round: */ |
366 | cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2)) | |
91447636 A |
367 | / UI_CPUFREQ_ROUNDING_FACTOR) |
368 | * UI_CPUFREQ_ROUNDING_FACTOR; | |
9bccf70c | 369 | |
91447636 A |
370 | /* |
371 | * Set current measured speed. | |
372 | */ | |
373 | if (cycles >= 0x100000000ULL) { | |
374 | gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL; | |
55e303ae | 375 | } else { |
91447636 | 376 | gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles; |
9bccf70c | 377 | } |
91447636 | 378 | gPEClockFrequencyInfo.cpu_frequency_hz = cycles; |
55e303ae | 379 | |
0c530ab8 | 380 | kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec); |
91447636 | 381 | return(cycles); |
9bccf70c | 382 | } |
1c79356b | 383 | |
55e303ae A |
384 | void |
385 | clock_get_system_microtime( | |
b0d623f7 A |
386 | clock_sec_t *secs, |
387 | clock_usec_t *microsecs) | |
9bccf70c | 388 | { |
0c530ab8 | 389 | uint64_t now = rtc_nanotime_read(); |
6601e61a | 390 | |
b0d623f7 | 391 | _absolutetime_to_microtime(now, secs, microsecs); |
1c79356b A |
392 | } |
393 | ||
55e303ae A |
394 | void |
395 | clock_get_system_nanotime( | |
b0d623f7 A |
396 | clock_sec_t *secs, |
397 | clock_nsec_t *nanosecs) | |
55e303ae | 398 | { |
0c530ab8 | 399 | uint64_t now = rtc_nanotime_read(); |
8f6c56a5 | 400 | |
b0d623f7 | 401 | _absolutetime_to_nanotime(now, secs, nanosecs); |
6601e61a A |
402 | } |
403 | ||
404 | void | |
0c530ab8 A |
405 | clock_gettimeofday_set_commpage( |
406 | uint64_t abstime, | |
407 | uint64_t epoch, | |
408 | uint64_t offset, | |
b0d623f7 A |
409 | clock_sec_t *secs, |
410 | clock_usec_t *microsecs) | |
0c530ab8 | 411 | { |
b0d623f7 | 412 | uint64_t now = abstime + offset; |
0c530ab8 | 413 | uint32_t remain; |
6601e61a | 414 | |
b0d623f7 | 415 | remain = _absolutetime_to_microtime(now, secs, microsecs); |
6601e61a | 416 | |
b0d623f7 | 417 | *secs += (clock_sec_t)epoch; |
6601e61a | 418 | |
2d21ac55 | 419 | commpage_set_timestamp(abstime - remain, *secs); |
91447636 A |
420 | } |
421 | ||
1c79356b A |
422 | void |
423 | clock_timebase_info( | |
424 | mach_timebase_info_t info) | |
425 | { | |
91447636 | 426 | info->numer = info->denom = 1; |
1c79356b A |
427 | } |
428 | ||
1c79356b | 429 | /* |
91447636 | 430 | * Real-time clock device interrupt. |
1c79356b | 431 | */ |
1c79356b | 432 | void |
0c530ab8 A |
433 | rtclock_intr( |
434 | x86_saved_state_t *tregs) | |
1c79356b | 435 | { |
0c530ab8 A |
436 | uint64_t rip; |
437 | boolean_t user_mode = FALSE; | |
91447636 A |
438 | |
439 | assert(get_preemption_level() > 0); | |
440 | assert(!ml_get_interrupts_enabled()); | |
441 | ||
0c530ab8 A |
442 | if (is_saved_state64(tregs) == TRUE) { |
443 | x86_saved_state64_t *regs; | |
444 | ||
445 | regs = saved_state64(tregs); | |
5d5c5d0d | 446 | |
b0d623f7 A |
447 | if (regs->isf.cs & 0x03) |
448 | user_mode = TRUE; | |
0c530ab8 A |
449 | rip = regs->isf.rip; |
450 | } else { | |
451 | x86_saved_state32_t *regs; | |
8ad349bb | 452 | |
0c530ab8 | 453 | regs = saved_state32(tregs); |
4452a7af | 454 | |
0c530ab8 A |
455 | if (regs->cs & 0x03) |
456 | user_mode = TRUE; | |
457 | rip = regs->eip; | |
458 | } | |
89b3af67 | 459 | |
0c530ab8 | 460 | /* call the generic etimer */ |
39236c6e | 461 | timer_intr(user_mode, rip); |
5d5c5d0d A |
462 | } |
463 | ||
060df5ea | 464 | |
0c530ab8 A |
465 | /* |
466 | * Request timer pop from the hardware | |
467 | */ | |
468 | ||
060df5ea | 469 | uint64_t |
fe8ab488 | 470 | setPop(uint64_t time) |
5d5c5d0d | 471 | { |
6d2010ae A |
472 | uint64_t now; |
473 | uint64_t pop; | |
060df5ea A |
474 | |
475 | /* 0 and EndOfAllTime are special-cases for "clear the timer" */ | |
6d2010ae | 476 | if (time == 0 || time == EndOfAllTime ) { |
060df5ea A |
477 | time = EndOfAllTime; |
478 | now = 0; | |
fe8ab488 | 479 | pop = rtc_timer->rtc_set(0, 0); |
060df5ea | 480 | } else { |
6d2010ae | 481 | now = rtc_nanotime_read(); /* The time in nanoseconds */ |
fe8ab488 | 482 | pop = rtc_timer->rtc_set(time, now); |
060df5ea | 483 | } |
4452a7af | 484 | |
6d2010ae | 485 | /* Record requested and actual deadlines set */ |
060df5ea | 486 | x86_lcpu()->rtcDeadline = time; |
6d2010ae | 487 | x86_lcpu()->rtcPop = pop; |
4452a7af | 488 | |
060df5ea | 489 | return pop - now; |
89b3af67 A |
490 | } |
491 | ||
6601e61a A |
492 | uint64_t |
493 | mach_absolute_time(void) | |
4452a7af | 494 | { |
0c530ab8 A |
495 | return rtc_nanotime_read(); |
496 | } | |
497 | ||
3e170ce0 A |
498 | uint64_t |
499 | mach_approximate_time(void) | |
500 | { | |
501 | return rtc_nanotime_read(); | |
502 | } | |
503 | ||
0c530ab8 A |
504 | void |
505 | clock_interval_to_absolutetime_interval( | |
506 | uint32_t interval, | |
507 | uint32_t scale_factor, | |
508 | uint64_t *result) | |
509 | { | |
510 | *result = (uint64_t)interval * scale_factor; | |
91447636 A |
511 | } |
512 | ||
513 | void | |
514 | absolutetime_to_microtime( | |
515 | uint64_t abstime, | |
b0d623f7 A |
516 | clock_sec_t *secs, |
517 | clock_usec_t *microsecs) | |
91447636 | 518 | { |
b0d623f7 | 519 | _absolutetime_to_microtime(abstime, secs, microsecs); |
1c79356b A |
520 | } |
521 | ||
6601e61a | 522 | void |
0c530ab8 | 523 | nanotime_to_absolutetime( |
b0d623f7 A |
524 | clock_sec_t secs, |
525 | clock_nsec_t nanosecs, | |
0c530ab8 | 526 | uint64_t *result) |
1c79356b | 527 | { |
0c530ab8 | 528 | *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs; |
1c79356b A |
529 | } |
530 | ||
531 | void | |
532 | absolutetime_to_nanoseconds( | |
0b4e3aa0 A |
533 | uint64_t abstime, |
534 | uint64_t *result) | |
1c79356b | 535 | { |
0b4e3aa0 | 536 | *result = abstime; |
1c79356b A |
537 | } |
538 | ||
539 | void | |
540 | nanoseconds_to_absolutetime( | |
0b4e3aa0 A |
541 | uint64_t nanoseconds, |
542 | uint64_t *result) | |
1c79356b | 543 | { |
0b4e3aa0 | 544 | *result = nanoseconds; |
1c79356b A |
545 | } |
546 | ||
55e303ae | 547 | void |
91447636 | 548 | machine_delay_until( |
39236c6e A |
549 | uint64_t interval, |
550 | uint64_t deadline) | |
55e303ae | 551 | { |
39236c6e A |
552 | (void)interval; |
553 | while (mach_absolute_time() < deadline) { | |
554 | cpu_pause(); | |
555 | } | |
55e303ae | 556 | } |