]> git.saurik.com Git - apple/xnu.git/blame - osfmk/i386/rtclock.c
xnu-2782.40.9.tar.gz
[apple/xnu.git] / osfmk / i386 / rtclock.c
CommitLineData
1c79356b 1/*
39236c6e 2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
1c79356b 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
1c79356b 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
8f6c56a5 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
8f6c56a5 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31
32/*
33 * File: i386/rtclock.c
34 * Purpose: Routines for handling the machine dependent
91447636
A
35 * real-time clock. Historically, this clock is
36 * generated by the Intel 8254 Programmable Interval
37 * Timer, but local apic timers are now used for
38 * this purpose with the master time reference being
39 * the cpu clock counted by the timestamp MSR.
1c79356b
A
40 */
41
55e303ae
A
42
43#include <mach/mach_types.h>
44
1c79356b 45#include <kern/cpu_data.h>
91447636 46#include <kern/cpu_number.h>
1c79356b 47#include <kern/clock.h>
55e303ae 48#include <kern/host_notify.h>
1c79356b
A
49#include <kern/macro_help.h>
50#include <kern/misc_protos.h>
51#include <kern/spl.h>
91447636 52#include <kern/assert.h>
39236c6e 53#include <kern/timer_queue.h>
1c79356b
A
54#include <mach/vm_prot.h>
55#include <vm/pmap.h>
56#include <vm/vm_kern.h> /* for kernel_map */
0c530ab8 57#include <architecture/i386/pio.h>
55e303ae 58#include <i386/machine_cpu.h>
91447636 59#include <i386/cpuid.h>
91447636 60#include <i386/cpu_threads.h>
b0d623f7 61#include <i386/mp.h>
91447636 62#include <i386/machine_routines.h>
6d2010ae 63#include <i386/pal_routines.h>
b0d623f7
A
64#include <i386/proc_reg.h>
65#include <i386/misc_protos.h>
55e303ae 66#include <pexpert/pexpert.h>
91447636
A
67#include <machine/limits.h>
68#include <machine/commpage.h>
69#include <sys/kdebug.h>
0c530ab8 70#include <i386/tsc.h>
6d2010ae 71#include <i386/rtclock_protos.h>
91447636 72#define UI_CPUFREQ_ROUNDING_FACTOR 10000000
1c79356b 73
0c530ab8 74int rtclock_init(void);
6601e61a 75
b0d623f7
A
76uint64_t tsc_rebase_abs_time = 0;
77
0c530ab8
A
78static void rtc_set_timescale(uint64_t cycles);
79static uint64_t rtc_export_speed(uint64_t cycles);
8f6c56a5 80
060df5ea
A
81void
82rtc_timer_start(void)
83{
84 /*
85 * Force a complete re-evaluation of timer deadlines.
86 */
39236c6e
A
87 x86_lcpu()->rtcDeadline = EndOfAllTime;
88 timer_resync_deadlines();
060df5ea
A
89}
90
b0d623f7
A
91static inline uint32_t
92_absolutetime_to_microtime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *microsecs)
93{
94 uint32_t remain;
b0d623f7
A
95 *secs = abstime / (uint64_t)NSEC_PER_SEC;
96 remain = (uint32_t)(abstime % (uint64_t)NSEC_PER_SEC);
97 *microsecs = remain / NSEC_PER_USEC;
b0d623f7
A
98 return remain;
99}
100
101static inline void
102_absolutetime_to_nanotime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *nanosecs)
103{
b0d623f7
A
104 *secs = abstime / (uint64_t)NSEC_PER_SEC;
105 *nanosecs = (clock_usec_t)(abstime % (uint64_t)NSEC_PER_SEC);
b0d623f7
A
106}
107
91447636
A
108/*
109 * Nanotime/mach_absolutime_time
110 * -----------------------------
0c530ab8
A
111 * The timestamp counter (TSC) - which counts cpu clock cycles and can be read
112 * efficiently by the kernel and in userspace - is the reference for all timing.
113 * The cpu clock rate is platform-dependent and may stop or be reset when the
114 * processor is napped/slept. As a result, nanotime is the software abstraction
115 * used to maintain a monotonic clock, adjusted from an outside reference as needed.
91447636
A
116 *
117 * The kernel maintains nanotime information recording:
0c530ab8 118 * - the ratio of tsc to nanoseconds
91447636
A
119 * with this ratio expressed as a 32-bit scale and shift
120 * (power of 2 divider);
0c530ab8 121 * - { tsc_base, ns_base } pair of corresponding timestamps.
6601e61a 122 *
0c530ab8
A
123 * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage
124 * for the userspace nanotime routine to read.
6601e61a 125 *
0c530ab8
A
126 * All of the routines which update the nanotime data are non-reentrant. This must
127 * be guaranteed by the caller.
91447636
A
128 */
129static inline void
6d2010ae 130rtc_nanotime_set_commpage(pal_rtc_nanotime_t *rntp)
91447636 131{
0c530ab8
A
132 commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift);
133}
6601e61a 134
0c530ab8
A
135/*
136 * rtc_nanotime_init:
137 *
138 * Intialize the nanotime info from the base time.
139 */
140static inline void
6d2010ae 141_rtc_nanotime_init(pal_rtc_nanotime_t *rntp, uint64_t base)
0c530ab8
A
142{
143 uint64_t tsc = rdtsc64();
21362eb3 144
6d2010ae 145 _pal_rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp);
91447636
A
146}
147
148static void
0c530ab8 149rtc_nanotime_init(uint64_t base)
91447636 150{
6d2010ae
A
151 _rtc_nanotime_init(&pal_rtc_nanotime_info, base);
152 rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
91447636
A
153}
154
0c530ab8
A
155/*
156 * rtc_nanotime_init_commpage:
157 *
158 * Call back from the commpage initialization to
159 * cause the commpage data to be filled in once the
160 * commpages have been created.
161 */
162void
163rtc_nanotime_init_commpage(void)
91447636 164{
0c530ab8
A
165 spl_t s = splclock();
166
6d2010ae 167 rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
0c530ab8 168 splx(s);
91447636
A
169}
170
0c530ab8
A
171/*
172 * rtc_nanotime_read:
173 *
174 * Returns the current nanotime value, accessable from any
175 * context.
176 */
2d21ac55 177static inline uint64_t
91447636
A
178rtc_nanotime_read(void)
179{
bd504ef0 180 return _rtc_nanotime_read(&pal_rtc_nanotime_info);
91447636
A
181}
182
91447636 183/*
0c530ab8
A
184 * rtc_clock_napped:
185 *
4a3eedf9
A
186 * Invoked from power management when we exit from a low C-State (>= C4)
187 * and the TSC has stopped counting. The nanotime data is updated according
188 * to the provided value which represents the new value for nanotime.
91447636 189 */
0c530ab8 190void
4a3eedf9 191rtc_clock_napped(uint64_t base, uint64_t tsc_base)
0c530ab8 192{
6d2010ae 193 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
4a3eedf9
A
194 uint64_t oldnsecs;
195 uint64_t newnsecs;
196 uint64_t tsc;
2d21ac55
A
197
198 assert(!ml_get_interrupts_enabled());
4a3eedf9 199 tsc = rdtsc64();
bd504ef0
A
200 oldnsecs = rntp->ns_base + _rtc_tsc_to_nanoseconds(tsc - rntp->tsc_base, rntp);
201 newnsecs = base + _rtc_tsc_to_nanoseconds(tsc - tsc_base, rntp);
4a3eedf9
A
202
203 /*
204 * Only update the base values if time using the new base values
205 * is later than the time using the old base values.
206 */
207 if (oldnsecs < newnsecs) {
6d2010ae 208 _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
4a3eedf9
A
209 rtc_nanotime_set_commpage(rntp);
210 }
0c530ab8
A
211}
212
0b4c1975
A
213/*
214 * Invoked from power management to correct the SFLM TSC entry drift problem:
6d2010ae
A
215 * a small delta is added to the tsc_base. This is equivalent to nudgin time
216 * backwards. We require this to be on the order of a TSC quantum which won't
217 * cause callers of mach_absolute_time() to see time going backwards!
0b4c1975
A
218 */
219void
220rtc_clock_adjust(uint64_t tsc_base_delta)
221{
6d2010ae 222 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
0b4c1975 223
6d2010ae
A
224 assert(!ml_get_interrupts_enabled());
225 assert(tsc_base_delta < 100ULL); /* i.e. it's small */
226 _rtc_nanotime_adjust(tsc_base_delta, rntp);
227 rtc_nanotime_set_commpage(rntp);
0b4c1975
A
228}
229
91447636
A
230void
231rtc_clock_stepping(__unused uint32_t new_frequency,
232 __unused uint32_t old_frequency)
233{
0c530ab8 234 panic("rtc_clock_stepping unsupported");
91447636
A
235}
236
91447636 237void
0c530ab8
A
238rtc_clock_stepped(__unused uint32_t new_frequency,
239 __unused uint32_t old_frequency)
91447636 240{
2d21ac55 241 panic("rtc_clock_stepped unsupported");
1c79356b
A
242}
243
244/*
0c530ab8
A
245 * rtc_sleep_wakeup:
246 *
6d2010ae 247 * Invoked from power management when we have awoken from a sleep (S3)
bd504ef0
A
248 * and the TSC has been reset, or from Deep Idle (S0) sleep when the TSC
249 * has progressed. The nanotime data is updated based on the passed-in value.
0c530ab8
A
250 *
251 * The caller must guarantee non-reentrancy.
91447636
A
252 */
253void
0c530ab8
A
254rtc_sleep_wakeup(
255 uint64_t base)
91447636 256{
060df5ea 257 /* Set fixed configuration for lapic timers */
fe8ab488 258 rtc_timer->rtc_config();
060df5ea 259
91447636
A
260 /*
261 * Reset nanotime.
262 * The timestamp counter will have been reset
263 * but nanotime (uptime) marches onward.
91447636 264 */
0c530ab8 265 rtc_nanotime_init(base);
91447636
A
266}
267
fe8ab488
A
268/*
269 * rtclock_early_init() is called very early at boot to
270 * establish mach_absolute_time() and set it to zero.
271 */
272void
273rtclock_early_init(void)
274{
275 assert(tscFreq);
276 rtc_set_timescale(tscFreq);
277}
278
91447636
A
279/*
280 * Initialize the real-time clock device.
281 * In addition, various variables used to support the clock are initialized.
1c79356b
A
282 */
283int
0c530ab8 284rtclock_init(void)
1c79356b 285{
91447636
A
286 uint64_t cycles;
287
0c530ab8
A
288 assert(!ml_get_interrupts_enabled());
289
91447636 290 if (cpu_number() == master_cpu) {
0c530ab8
A
291
292 assert(tscFreq);
0c530ab8 293
91447636 294 /*
0c530ab8 295 * Adjust and set the exported cpu speed.
91447636 296 */
0c530ab8 297 cycles = rtc_export_speed(tscFreq);
91447636
A
298
299 /*
300 * Set min/max to actual.
301 * ACPI may update these later if speed-stepping is detected.
302 */
0c530ab8
A
303 gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles;
304 gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles;
91447636 305
060df5ea 306 rtc_timer_init();
91447636 307 clock_timebase_init();
0c530ab8 308 ml_init_lock_timeout();
bd504ef0 309 ml_init_delay_spin_threshold(10);
1c79356b 310 }
91447636 311
6d2010ae 312 /* Set fixed configuration for lapic timers */
fe8ab488 313 rtc_timer->rtc_config();
060df5ea 314 rtc_timer_start();
91447636 315
1c79356b
A
316 return (1);
317}
318
0c530ab8
A
319// utility routine
320// Code to calculate how many processor cycles are in a second...
1c79356b 321
0c530ab8
A
322static void
323rtc_set_timescale(uint64_t cycles)
1c79356b 324{
6d2010ae 325 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
bd504ef0
A
326 uint32_t shift = 0;
327
328 /* the "scale" factor will overflow unless cycles>SLOW_TSC_THRESHOLD */
329
330 while ( cycles <= SLOW_TSC_THRESHOLD) {
331 shift++;
332 cycles <<= 1;
333 }
334
b0d623f7 335 rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles);
2d21ac55 336
bd504ef0 337 rntp->shift = shift;
1c79356b 338
15129b1c
A
339 /*
340 * On some platforms, the TSC is not reset at warm boot. But the
341 * rebase time must be relative to the current boot so we can't use
342 * mach_absolute_time(). Instead, we convert the TSC delta since boot
343 * to nanoseconds.
344 */
b0d623f7 345 if (tsc_rebase_abs_time == 0)
15129b1c
A
346 tsc_rebase_abs_time = _rtc_tsc_to_nanoseconds(
347 rdtsc64() - tsc_at_boot, rntp);
b0d623f7 348
0c530ab8 349 rtc_nanotime_init(0);
1c79356b
A
350}
351
91447636 352static uint64_t
0c530ab8 353rtc_export_speed(uint64_t cyc_per_sec)
9bccf70c 354{
fe8ab488 355 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
0c530ab8 356 uint64_t cycles;
1c79356b 357
fe8ab488
A
358 if (rntp->shift != 0 )
359 printf("Slow TSC, rtc_nanotime.shift == %d\n", rntp->shift);
360
0c530ab8
A
361 /* Round: */
362 cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2))
91447636
A
363 / UI_CPUFREQ_ROUNDING_FACTOR)
364 * UI_CPUFREQ_ROUNDING_FACTOR;
9bccf70c 365
91447636
A
366 /*
367 * Set current measured speed.
368 */
369 if (cycles >= 0x100000000ULL) {
370 gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL;
55e303ae 371 } else {
91447636 372 gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles;
9bccf70c 373 }
91447636 374 gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
55e303ae 375
0c530ab8 376 kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec);
91447636 377 return(cycles);
9bccf70c 378}
1c79356b 379
55e303ae
A
380void
381clock_get_system_microtime(
b0d623f7
A
382 clock_sec_t *secs,
383 clock_usec_t *microsecs)
9bccf70c 384{
0c530ab8 385 uint64_t now = rtc_nanotime_read();
6601e61a 386
b0d623f7 387 _absolutetime_to_microtime(now, secs, microsecs);
1c79356b
A
388}
389
55e303ae
A
390void
391clock_get_system_nanotime(
b0d623f7
A
392 clock_sec_t *secs,
393 clock_nsec_t *nanosecs)
55e303ae 394{
0c530ab8 395 uint64_t now = rtc_nanotime_read();
8f6c56a5 396
b0d623f7 397 _absolutetime_to_nanotime(now, secs, nanosecs);
6601e61a
A
398}
399
400void
0c530ab8
A
401clock_gettimeofday_set_commpage(
402 uint64_t abstime,
403 uint64_t epoch,
404 uint64_t offset,
b0d623f7
A
405 clock_sec_t *secs,
406 clock_usec_t *microsecs)
0c530ab8 407{
b0d623f7 408 uint64_t now = abstime + offset;
0c530ab8 409 uint32_t remain;
6601e61a 410
b0d623f7 411 remain = _absolutetime_to_microtime(now, secs, microsecs);
6601e61a 412
b0d623f7 413 *secs += (clock_sec_t)epoch;
6601e61a 414
2d21ac55 415 commpage_set_timestamp(abstime - remain, *secs);
91447636
A
416}
417
1c79356b
A
418void
419clock_timebase_info(
420 mach_timebase_info_t info)
421{
91447636 422 info->numer = info->denom = 1;
1c79356b
A
423}
424
1c79356b 425/*
91447636 426 * Real-time clock device interrupt.
1c79356b 427 */
1c79356b 428void
0c530ab8
A
429rtclock_intr(
430 x86_saved_state_t *tregs)
1c79356b 431{
0c530ab8
A
432 uint64_t rip;
433 boolean_t user_mode = FALSE;
91447636
A
434
435 assert(get_preemption_level() > 0);
436 assert(!ml_get_interrupts_enabled());
437
0c530ab8
A
438 if (is_saved_state64(tregs) == TRUE) {
439 x86_saved_state64_t *regs;
440
441 regs = saved_state64(tregs);
5d5c5d0d 442
b0d623f7
A
443 if (regs->isf.cs & 0x03)
444 user_mode = TRUE;
0c530ab8
A
445 rip = regs->isf.rip;
446 } else {
447 x86_saved_state32_t *regs;
8ad349bb 448
0c530ab8 449 regs = saved_state32(tregs);
4452a7af 450
0c530ab8
A
451 if (regs->cs & 0x03)
452 user_mode = TRUE;
453 rip = regs->eip;
454 }
89b3af67 455
0c530ab8 456 /* call the generic etimer */
39236c6e 457 timer_intr(user_mode, rip);
5d5c5d0d
A
458}
459
060df5ea 460
0c530ab8
A
461/*
462 * Request timer pop from the hardware
463 */
464
060df5ea 465uint64_t
fe8ab488 466setPop(uint64_t time)
5d5c5d0d 467{
6d2010ae
A
468 uint64_t now;
469 uint64_t pop;
060df5ea
A
470
471 /* 0 and EndOfAllTime are special-cases for "clear the timer" */
6d2010ae 472 if (time == 0 || time == EndOfAllTime ) {
060df5ea
A
473 time = EndOfAllTime;
474 now = 0;
fe8ab488 475 pop = rtc_timer->rtc_set(0, 0);
060df5ea 476 } else {
6d2010ae 477 now = rtc_nanotime_read(); /* The time in nanoseconds */
fe8ab488 478 pop = rtc_timer->rtc_set(time, now);
060df5ea 479 }
4452a7af 480
6d2010ae 481 /* Record requested and actual deadlines set */
060df5ea 482 x86_lcpu()->rtcDeadline = time;
6d2010ae 483 x86_lcpu()->rtcPop = pop;
4452a7af 484
060df5ea 485 return pop - now;
89b3af67
A
486}
487
6601e61a
A
488uint64_t
489mach_absolute_time(void)
4452a7af 490{
0c530ab8
A
491 return rtc_nanotime_read();
492}
493
494void
495clock_interval_to_absolutetime_interval(
496 uint32_t interval,
497 uint32_t scale_factor,
498 uint64_t *result)
499{
500 *result = (uint64_t)interval * scale_factor;
91447636
A
501}
502
503void
504absolutetime_to_microtime(
505 uint64_t abstime,
b0d623f7
A
506 clock_sec_t *secs,
507 clock_usec_t *microsecs)
91447636 508{
b0d623f7 509 _absolutetime_to_microtime(abstime, secs, microsecs);
1c79356b
A
510}
511
6601e61a 512void
0c530ab8 513nanotime_to_absolutetime(
b0d623f7
A
514 clock_sec_t secs,
515 clock_nsec_t nanosecs,
0c530ab8 516 uint64_t *result)
1c79356b 517{
0c530ab8 518 *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs;
1c79356b
A
519}
520
521void
522absolutetime_to_nanoseconds(
0b4e3aa0
A
523 uint64_t abstime,
524 uint64_t *result)
1c79356b 525{
0b4e3aa0 526 *result = abstime;
1c79356b
A
527}
528
529void
530nanoseconds_to_absolutetime(
0b4e3aa0
A
531 uint64_t nanoseconds,
532 uint64_t *result)
1c79356b 533{
0b4e3aa0 534 *result = nanoseconds;
1c79356b
A
535}
536
55e303ae 537void
91447636 538machine_delay_until(
39236c6e
A
539 uint64_t interval,
540 uint64_t deadline)
55e303ae 541{
39236c6e
A
542 (void)interval;
543 while (mach_absolute_time() < deadline) {
544 cpu_pause();
545 }
55e303ae 546}