]> git.saurik.com Git - apple/xnu.git/blame - osfmk/i386/rtclock.c
xnu-1504.15.3.tar.gz
[apple/xnu.git] / osfmk / i386 / rtclock.c
CommitLineData
1c79356b 1/*
0b4c1975 2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
1c79356b 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
1c79356b 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
8f6c56a5 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
8f6c56a5 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31
32/*
33 * File: i386/rtclock.c
34 * Purpose: Routines for handling the machine dependent
91447636
A
35 * real-time clock. Historically, this clock is
36 * generated by the Intel 8254 Programmable Interval
37 * Timer, but local apic timers are now used for
38 * this purpose with the master time reference being
39 * the cpu clock counted by the timestamp MSR.
1c79356b
A
40 */
41
1c79356b 42#include <platforms.h>
1c79356b 43#include <mach_kdb.h>
55e303ae
A
44
45#include <mach/mach_types.h>
46
1c79356b 47#include <kern/cpu_data.h>
91447636 48#include <kern/cpu_number.h>
1c79356b 49#include <kern/clock.h>
55e303ae 50#include <kern/host_notify.h>
1c79356b
A
51#include <kern/macro_help.h>
52#include <kern/misc_protos.h>
53#include <kern/spl.h>
91447636 54#include <kern/assert.h>
7e4a7d39 55#include <kern/etimer.h>
1c79356b
A
56#include <mach/vm_prot.h>
57#include <vm/pmap.h>
58#include <vm/vm_kern.h> /* for kernel_map */
59#include <i386/ipl.h>
0c530ab8 60#include <architecture/i386/pio.h>
55e303ae 61#include <i386/machine_cpu.h>
91447636 62#include <i386/cpuid.h>
91447636 63#include <i386/cpu_threads.h>
b0d623f7 64#include <i386/mp.h>
91447636 65#include <i386/machine_routines.h>
b0d623f7
A
66#include <i386/proc_reg.h>
67#include <i386/misc_protos.h>
68#include <i386/lapic.h>
55e303ae 69#include <pexpert/pexpert.h>
91447636
A
70#include <machine/limits.h>
71#include <machine/commpage.h>
72#include <sys/kdebug.h>
0c530ab8 73#include <i386/tsc.h>
0c530ab8 74#include <i386/rtclock.h>
91447636 75
91447636 76#define UI_CPUFREQ_ROUNDING_FACTOR 10000000
1c79356b 77
0c530ab8 78int rtclock_config(void);
6601e61a 79
0c530ab8 80int rtclock_init(void);
6601e61a 81
b0d623f7
A
82uint64_t tsc_rebase_abs_time = 0;
83
060df5ea 84void rtclock_intr(x86_saved_state_t *regs);
6601e61a 85
0c530ab8
A
86static void rtc_set_timescale(uint64_t cycles);
87static uint64_t rtc_export_speed(uint64_t cycles);
8f6c56a5 88
2d21ac55 89rtc_nanotime_t rtc_nanotime_info = {0,0,0,0,1,0};
6601e61a 90
060df5ea
A
91static uint64_t rtc_decrementer_min;
92static uint64_t rtc_decrementer_max;
93
94static uint64_t
95deadline_to_decrementer(
96 uint64_t deadline,
97 uint64_t now)
98{
99 uint64_t delta;
100
101 if (deadline <= now)
102 return rtc_decrementer_min;
103 else {
104 delta = deadline - now;
105 return MIN(MAX(rtc_decrementer_min,delta),rtc_decrementer_max);
106 }
107}
108
109static inline uint64_t
110_absolutetime_to_tsc(uint64_t ns)
111{
112 uint32_t generation;
113 uint64_t tsc;
114
115 do {
116 generation = rtc_nanotime_info.generation;
117 tsc = tmrCvt(ns - rtc_nanotime_info.ns_base, tscFCvtn2t)
118 + rtc_nanotime_info.tsc_base;
119 } while (generation == 0 ||
120 generation != rtc_nanotime_info.generation);
121
122 return tsc;
123}
124
125/*
126 * Regular local APIC timer case:
127 */
128static void
129rtc_lapic_config_timer(void)
130{
131 lapic_config_timer(TRUE, one_shot, divide_by_1);
132}
133static uint64_t
134rtc_lapic_set_timer(uint64_t deadline, uint64_t now)
135{
136 uint64_t count;
137 uint64_t set = 0;
138
139 if (deadline > 0) {
140 /*
141 * Convert delta to bus ticks
142 * - time now is not relevant
143 */
144 count = deadline_to_decrementer(deadline, now);
145 set = now + count;
146 lapic_set_timer_fast((uint32_t) tmrCvt(count, busFCvtn2t));
147 } else {
148 lapic_set_timer(FALSE, one_shot, divide_by_1, 0);
149 }
150 return set;
151}
152
153/*
154 * TSC-deadline timer case:
155 */
156static void
157rtc_lapic_config_tsc_deadline_timer(void)
158{
159 lapic_config_tsc_deadline_timer();
160}
161static uint64_t
162rtc_lapic_set_tsc_deadline_timer(uint64_t deadline, uint64_t now)
163{
164 uint64_t set = 0;
165
166 if (deadline > 0) {
167 /*
168 * Convert to TSC
169 */
170 set = now + deadline_to_decrementer(deadline, now);
171 lapic_set_tsc_deadline_timer(_absolutetime_to_tsc(set));
172 } else {
173 lapic_set_tsc_deadline_timer(0);
174 }
175 return set;
176}
177
178/*
179 * Definitions for timer operations table
180 */
181typedef struct {
182 void (*config)(void);
183 uint64_t (*set) (uint64_t, uint64_t);
184} rtc_timer_t;
185
186rtc_timer_t rtc_timer_lapic = {
187 rtc_lapic_config_timer,
188 rtc_lapic_set_timer
189};
190
191rtc_timer_t rtc_timer_tsc_deadline = {
192 rtc_lapic_config_tsc_deadline_timer,
193 rtc_lapic_set_tsc_deadline_timer
194};
195
196rtc_timer_t *rtc_timer = &rtc_timer_lapic; /* defaults to LAPIC timer */
197
198/*
199 * rtc_timer_init() is called at startup on the boot processor only.
200 */
201static void
202rtc_timer_init(void)
203{
204 int TSC_deadline_timer = 0;
205
206 /* See whether we can use the local apic in TSC-deadline mode */
207 if ((cpuid_features() & CPUID_FEATURE_TSCTMR)) {
208 TSC_deadline_timer = 1;
209 PE_parse_boot_argn("TSC_deadline_timer", &TSC_deadline_timer,
210 sizeof(TSC_deadline_timer));
211 printf("TSC Deadline Timer supported %s enabled\n",
212 TSC_deadline_timer ? "and" : "but not");
213 }
214
215 if (TSC_deadline_timer) {
216 rtc_timer = &rtc_timer_tsc_deadline;
217 rtc_decrementer_max = UINT64_MAX; /* effectively none */
218 /*
219 * The min could be as low as 1nsec,
220 * but we're being conservative for now and making it the same
221 * as for the local apic timer.
222 */
223 rtc_decrementer_min = 1*NSEC_PER_USEC; /* 1 usec */
224 } else {
225 /*
226 * Compute the longest interval using LAPIC timer.
227 */
228 rtc_decrementer_max = tmrCvt(0x7fffffffULL, busFCvtt2n);
229 kprintf("maxDec: %lld\n", rtc_decrementer_max);
230 rtc_decrementer_min = 1*NSEC_PER_USEC; /* 1 usec */
231 }
232
233 /* Point LAPIC interrupts to hardclock() */
234 lapic_set_timer_func((i386_intr_func_t) rtclock_intr);
235}
236
237static inline uint64_t
238rtc_timer_set(uint64_t deadline, uint64_t now)
239{
240 return rtc_timer->set(deadline, now);
241}
242
243void
244rtc_timer_start(void)
245{
246 /*
247 * Force a complete re-evaluation of timer deadlines.
248 */
249 etimer_resync_deadlines();
250}
251
4a3eedf9
A
252/*
253 * tsc_to_nanoseconds:
254 *
255 * Basic routine to convert a raw 64 bit TSC value to a
256 * 64 bit nanosecond value. The conversion is implemented
257 * based on the scale factor and an implicit 32 bit shift.
258 */
259static inline uint64_t
260_tsc_to_nanoseconds(uint64_t value)
261{
b0d623f7 262#if defined(__i386__)
4a3eedf9
A
263 asm volatile("movl %%edx,%%esi ;"
264 "mull %%ecx ;"
265 "movl %%edx,%%edi ;"
266 "movl %%esi,%%eax ;"
267 "mull %%ecx ;"
268 "addl %%edi,%%eax ;"
269 "adcl $0,%%edx "
593a1d5f 270 : "+A" (value)
060df5ea 271 : "c" (rtc_nanotime_info.scale)
593a1d5f 272 : "esi", "edi");
b0d623f7
A
273#elif defined(__x86_64__)
274 asm volatile("mul %%rcx;"
275 "shrq $32, %%rax;"
276 "shlq $32, %%rdx;"
277 "orq %%rdx, %%rax;"
278 : "=a"(value)
279 : "a"(value), "c"(rtc_nanotime_info.scale)
280 : "rdx", "cc" );
281#else
282#error Unsupported architecture
283#endif
4a3eedf9
A
284
285 return (value);
286}
287
b0d623f7
A
288static inline uint32_t
289_absolutetime_to_microtime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *microsecs)
290{
291 uint32_t remain;
292#if defined(__i386__)
293 asm volatile(
294 "divl %3"
295 : "=a" (*secs), "=d" (remain)
296 : "A" (abstime), "r" (NSEC_PER_SEC));
297 asm volatile(
298 "divl %3"
299 : "=a" (*microsecs)
300 : "0" (remain), "d" (0), "r" (NSEC_PER_USEC));
301#elif defined(__x86_64__)
302 *secs = abstime / (uint64_t)NSEC_PER_SEC;
303 remain = (uint32_t)(abstime % (uint64_t)NSEC_PER_SEC);
304 *microsecs = remain / NSEC_PER_USEC;
305#else
306#error Unsupported architecture
307#endif
308 return remain;
309}
310
311static inline void
312_absolutetime_to_nanotime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *nanosecs)
313{
314#if defined(__i386__)
315 asm volatile(
316 "divl %3"
317 : "=a" (*secs), "=d" (*nanosecs)
318 : "A" (abstime), "r" (NSEC_PER_SEC));
319#elif defined(__x86_64__)
320 *secs = abstime / (uint64_t)NSEC_PER_SEC;
321 *nanosecs = (clock_usec_t)(abstime % (uint64_t)NSEC_PER_SEC);
322#else
323#error Unsupported architecture
324#endif
325}
326
1c79356b
A
327/*
328 * Configure the real-time clock device. Return success (1)
329 * or failure (0).
330 */
331
332int
0c530ab8 333rtclock_config(void)
1c79356b 334{
0c530ab8 335 /* nothing to do */
91447636
A
336 return (1);
337}
338
339
340/*
341 * Nanotime/mach_absolutime_time
342 * -----------------------------
0c530ab8
A
343 * The timestamp counter (TSC) - which counts cpu clock cycles and can be read
344 * efficiently by the kernel and in userspace - is the reference for all timing.
345 * The cpu clock rate is platform-dependent and may stop or be reset when the
346 * processor is napped/slept. As a result, nanotime is the software abstraction
347 * used to maintain a monotonic clock, adjusted from an outside reference as needed.
91447636
A
348 *
349 * The kernel maintains nanotime information recording:
0c530ab8 350 * - the ratio of tsc to nanoseconds
91447636
A
351 * with this ratio expressed as a 32-bit scale and shift
352 * (power of 2 divider);
0c530ab8 353 * - { tsc_base, ns_base } pair of corresponding timestamps.
6601e61a 354 *
0c530ab8
A
355 * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage
356 * for the userspace nanotime routine to read.
6601e61a 357 *
0c530ab8
A
358 * All of the routines which update the nanotime data are non-reentrant. This must
359 * be guaranteed by the caller.
91447636
A
360 */
361static inline void
362rtc_nanotime_set_commpage(rtc_nanotime_t *rntp)
363{
0c530ab8
A
364 commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift);
365}
6601e61a 366
0c530ab8
A
367/*
368 * rtc_nanotime_init:
369 *
370 * Intialize the nanotime info from the base time.
371 */
372static inline void
373_rtc_nanotime_init(rtc_nanotime_t *rntp, uint64_t base)
374{
375 uint64_t tsc = rdtsc64();
21362eb3 376
2d21ac55 377 _rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp);
91447636
A
378}
379
380static void
0c530ab8 381rtc_nanotime_init(uint64_t base)
91447636 382{
060df5ea
A
383 _rtc_nanotime_init(&rtc_nanotime_info, base);
384 rtc_nanotime_set_commpage(&rtc_nanotime_info);
91447636
A
385}
386
0c530ab8
A
387/*
388 * rtc_nanotime_init_commpage:
389 *
390 * Call back from the commpage initialization to
391 * cause the commpage data to be filled in once the
392 * commpages have been created.
393 */
394void
395rtc_nanotime_init_commpage(void)
91447636 396{
0c530ab8
A
397 spl_t s = splclock();
398
060df5ea 399 rtc_nanotime_set_commpage(&rtc_nanotime_info);
4452a7af 400
0c530ab8 401 splx(s);
91447636
A
402}
403
0c530ab8
A
404/*
405 * rtc_nanotime_read:
406 *
407 * Returns the current nanotime value, accessable from any
408 * context.
409 */
2d21ac55 410static inline uint64_t
91447636
A
411rtc_nanotime_read(void)
412{
2d21ac55
A
413
414#if CONFIG_EMBEDDED
415 if (gPEClockFrequencyInfo.timebase_frequency_hz > SLOW_TSC_THRESHOLD)
060df5ea 416 return _rtc_nanotime_read(&rtc_nanotime_info, 1); /* slow processor */
2d21ac55
A
417 else
418#endif
060df5ea 419 return _rtc_nanotime_read(&rtc_nanotime_info, 0); /* assume fast processor */
91447636
A
420}
421
91447636 422/*
0c530ab8
A
423 * rtc_clock_napped:
424 *
4a3eedf9
A
425 * Invoked from power management when we exit from a low C-State (>= C4)
426 * and the TSC has stopped counting. The nanotime data is updated according
427 * to the provided value which represents the new value for nanotime.
91447636 428 */
0c530ab8 429void
4a3eedf9 430rtc_clock_napped(uint64_t base, uint64_t tsc_base)
0c530ab8 431{
060df5ea 432 rtc_nanotime_t *rntp = &rtc_nanotime_info;
4a3eedf9
A
433 uint64_t oldnsecs;
434 uint64_t newnsecs;
435 uint64_t tsc;
2d21ac55
A
436
437 assert(!ml_get_interrupts_enabled());
4a3eedf9
A
438 tsc = rdtsc64();
439 oldnsecs = rntp->ns_base + _tsc_to_nanoseconds(tsc - rntp->tsc_base);
440 newnsecs = base + _tsc_to_nanoseconds(tsc - tsc_base);
441
442 /*
443 * Only update the base values if time using the new base values
444 * is later than the time using the old base values.
445 */
446 if (oldnsecs < newnsecs) {
447 _rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
448 rtc_nanotime_set_commpage(rntp);
449 }
0c530ab8
A
450}
451
0b4c1975
A
452
453/*
454 * Invoked from power management to correct the SFLM TSC entry drift problem:
455 * a small delta is added to the tsc_base. This is equivalent to nudging time
456 * backwards. We require this of the order of a TSC quantum which won't cause
457 * callers of mach_absolute_time() to see time going backwards!
458 */
459void
460rtc_clock_adjust(uint64_t tsc_base_delta)
461{
060df5ea 462 rtc_nanotime_t *rntp = &rtc_nanotime_info;
0b4c1975
A
463
464 assert(!ml_get_interrupts_enabled());
465 assert(tsc_base_delta < 100ULL); /* i.e. it's small */
466 _rtc_nanotime_adjust(tsc_base_delta, rntp);
467 rtc_nanotime_set_commpage(rntp);
468}
469
470
91447636
A
471void
472rtc_clock_stepping(__unused uint32_t new_frequency,
473 __unused uint32_t old_frequency)
474{
0c530ab8 475 panic("rtc_clock_stepping unsupported");
91447636
A
476}
477
91447636 478void
0c530ab8
A
479rtc_clock_stepped(__unused uint32_t new_frequency,
480 __unused uint32_t old_frequency)
91447636 481{
2d21ac55 482 panic("rtc_clock_stepped unsupported");
1c79356b
A
483}
484
485/*
0c530ab8
A
486 * rtc_sleep_wakeup:
487 *
488 * Invoked from power manageent when we have awoken from a sleep (S3)
489 * and the TSC has been reset. The nanotime data is updated based on
490 * the passed in value.
491 *
492 * The caller must guarantee non-reentrancy.
91447636
A
493 */
494void
0c530ab8
A
495rtc_sleep_wakeup(
496 uint64_t base)
91447636 497{
060df5ea
A
498 /* Set fixed configuration for lapic timers */
499 rtc_timer->config();
500
91447636
A
501 /*
502 * Reset nanotime.
503 * The timestamp counter will have been reset
504 * but nanotime (uptime) marches onward.
91447636 505 */
0c530ab8 506 rtc_nanotime_init(base);
91447636
A
507}
508
509/*
510 * Initialize the real-time clock device.
511 * In addition, various variables used to support the clock are initialized.
1c79356b
A
512 */
513int
0c530ab8 514rtclock_init(void)
1c79356b 515{
91447636
A
516 uint64_t cycles;
517
0c530ab8
A
518 assert(!ml_get_interrupts_enabled());
519
91447636 520 if (cpu_number() == master_cpu) {
0c530ab8
A
521
522 assert(tscFreq);
523 rtc_set_timescale(tscFreq);
524
91447636 525 /*
0c530ab8 526 * Adjust and set the exported cpu speed.
91447636 527 */
0c530ab8 528 cycles = rtc_export_speed(tscFreq);
91447636
A
529
530 /*
531 * Set min/max to actual.
532 * ACPI may update these later if speed-stepping is detected.
533 */
0c530ab8
A
534 gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles;
535 gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles;
91447636 536
060df5ea 537 rtc_timer_init();
91447636 538 clock_timebase_init();
0c530ab8 539 ml_init_lock_timeout();
1c79356b 540 }
91447636 541
060df5ea
A
542 /* Set fixed configuration for lapic timers */
543 rtc_timer->config();
544
545 rtc_timer_start();
91447636 546
1c79356b
A
547 return (1);
548}
549
0c530ab8
A
550// utility routine
551// Code to calculate how many processor cycles are in a second...
1c79356b 552
0c530ab8
A
553static void
554rtc_set_timescale(uint64_t cycles)
1c79356b 555{
060df5ea 556 rtc_nanotime_t *rntp = &rtc_nanotime_info;
b0d623f7 557 rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles);
2d21ac55
A
558
559 if (cycles <= SLOW_TSC_THRESHOLD)
b0d623f7 560 rntp->shift = (uint32_t)cycles;
2d21ac55 561 else
593a1d5f 562 rntp->shift = 32;
1c79356b 563
b0d623f7
A
564 if (tsc_rebase_abs_time == 0)
565 tsc_rebase_abs_time = mach_absolute_time();
566
0c530ab8 567 rtc_nanotime_init(0);
1c79356b
A
568}
569
91447636 570static uint64_t
0c530ab8 571rtc_export_speed(uint64_t cyc_per_sec)
9bccf70c 572{
0c530ab8 573 uint64_t cycles;
1c79356b 574
0c530ab8
A
575 /* Round: */
576 cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2))
91447636
A
577 / UI_CPUFREQ_ROUNDING_FACTOR)
578 * UI_CPUFREQ_ROUNDING_FACTOR;
9bccf70c 579
91447636
A
580 /*
581 * Set current measured speed.
582 */
583 if (cycles >= 0x100000000ULL) {
584 gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL;
55e303ae 585 } else {
91447636 586 gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles;
9bccf70c 587 }
91447636 588 gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
55e303ae 589
0c530ab8 590 kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec);
91447636 591 return(cycles);
9bccf70c 592}
1c79356b 593
55e303ae
A
594void
595clock_get_system_microtime(
b0d623f7
A
596 clock_sec_t *secs,
597 clock_usec_t *microsecs)
9bccf70c 598{
0c530ab8 599 uint64_t now = rtc_nanotime_read();
6601e61a 600
b0d623f7 601 _absolutetime_to_microtime(now, secs, microsecs);
1c79356b
A
602}
603
55e303ae
A
604void
605clock_get_system_nanotime(
b0d623f7
A
606 clock_sec_t *secs,
607 clock_nsec_t *nanosecs)
55e303ae 608{
0c530ab8 609 uint64_t now = rtc_nanotime_read();
8f6c56a5 610
b0d623f7 611 _absolutetime_to_nanotime(now, secs, nanosecs);
6601e61a
A
612}
613
614void
0c530ab8
A
615clock_gettimeofday_set_commpage(
616 uint64_t abstime,
617 uint64_t epoch,
618 uint64_t offset,
b0d623f7
A
619 clock_sec_t *secs,
620 clock_usec_t *microsecs)
0c530ab8 621{
b0d623f7 622 uint64_t now = abstime + offset;
0c530ab8 623 uint32_t remain;
6601e61a 624
b0d623f7 625 remain = _absolutetime_to_microtime(now, secs, microsecs);
6601e61a 626
b0d623f7 627 *secs += (clock_sec_t)epoch;
6601e61a 628
2d21ac55 629 commpage_set_timestamp(abstime - remain, *secs);
91447636
A
630}
631
1c79356b
A
632void
633clock_timebase_info(
634 mach_timebase_info_t info)
635{
91447636 636 info->numer = info->denom = 1;
1c79356b
A
637}
638
1c79356b 639/*
91447636 640 * Real-time clock device interrupt.
1c79356b 641 */
1c79356b 642void
0c530ab8
A
643rtclock_intr(
644 x86_saved_state_t *tregs)
1c79356b 645{
0c530ab8
A
646 uint64_t rip;
647 boolean_t user_mode = FALSE;
91447636
A
648
649 assert(get_preemption_level() > 0);
650 assert(!ml_get_interrupts_enabled());
651
0c530ab8
A
652 if (is_saved_state64(tregs) == TRUE) {
653 x86_saved_state64_t *regs;
654
655 regs = saved_state64(tregs);
5d5c5d0d 656
b0d623f7
A
657 if (regs->isf.cs & 0x03)
658 user_mode = TRUE;
0c530ab8
A
659 rip = regs->isf.rip;
660 } else {
661 x86_saved_state32_t *regs;
8ad349bb 662
0c530ab8 663 regs = saved_state32(tregs);
4452a7af 664
0c530ab8
A
665 if (regs->cs & 0x03)
666 user_mode = TRUE;
667 rip = regs->eip;
668 }
89b3af67 669
0c530ab8
A
670 /* call the generic etimer */
671 etimer_intr(user_mode, rip);
5d5c5d0d
A
672}
673
060df5ea 674
0c530ab8
A
675/*
676 * Request timer pop from the hardware
677 */
678
060df5ea 679uint64_t
0c530ab8
A
680setPop(
681 uint64_t time)
5d5c5d0d 682{
0c530ab8 683 uint64_t now;
060df5ea
A
684 uint64_t pop;
685
686 /* 0 and EndOfAllTime are special-cases for "clear the timer" */
687 if (time == 0 || time == EndOfAllTime) {
688 time = EndOfAllTime;
689 now = 0;
690 pop = rtc_timer_set(0, 0);
691 } else {
692 now = rtc_nanotime_read();
693 pop = rtc_timer_set(time, now);
694 }
4452a7af 695
060df5ea
A
696 /* Record actual deadline set */
697 x86_lcpu()->rtcDeadline = time;
698 x86_lcpu()->rtcPop = pop;
4452a7af 699
060df5ea
A
700 /*
701 * Pass back the delta we set
702 */
703 return pop - now;
89b3af67
A
704}
705
6601e61a
A
706uint64_t
707mach_absolute_time(void)
4452a7af 708{
0c530ab8
A
709 return rtc_nanotime_read();
710}
711
712void
713clock_interval_to_absolutetime_interval(
714 uint32_t interval,
715 uint32_t scale_factor,
716 uint64_t *result)
717{
718 *result = (uint64_t)interval * scale_factor;
91447636
A
719}
720
721void
722absolutetime_to_microtime(
723 uint64_t abstime,
b0d623f7
A
724 clock_sec_t *secs,
725 clock_usec_t *microsecs)
91447636 726{
b0d623f7 727 _absolutetime_to_microtime(abstime, secs, microsecs);
1c79356b
A
728}
729
730void
0c530ab8
A
731absolutetime_to_nanotime(
732 uint64_t abstime,
b0d623f7
A
733 clock_sec_t *secs,
734 clock_nsec_t *nanosecs)
6601e61a 735{
b0d623f7 736 _absolutetime_to_nanotime(abstime, secs, nanosecs);
6601e61a
A
737}
738
739void
0c530ab8 740nanotime_to_absolutetime(
b0d623f7
A
741 clock_sec_t secs,
742 clock_nsec_t nanosecs,
0c530ab8 743 uint64_t *result)
1c79356b 744{
0c530ab8 745 *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs;
1c79356b
A
746}
747
748void
749absolutetime_to_nanoseconds(
0b4e3aa0
A
750 uint64_t abstime,
751 uint64_t *result)
1c79356b 752{
0b4e3aa0 753 *result = abstime;
1c79356b
A
754}
755
756void
757nanoseconds_to_absolutetime(
0b4e3aa0
A
758 uint64_t nanoseconds,
759 uint64_t *result)
1c79356b 760{
0b4e3aa0 761 *result = nanoseconds;
1c79356b
A
762}
763
55e303ae 764void
91447636 765machine_delay_until(
55e303ae
A
766 uint64_t deadline)
767{
768 uint64_t now;
769
770 do {
771 cpu_pause();
772 now = mach_absolute_time();
773 } while (now < deadline);
774}