]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
f427ee49 | 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
0a7de745 | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
0a7de745 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
0a7de745 | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
0a7de745 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
0a7de745 | 31 | /* |
1c79356b A |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
0a7de745 | 35 | * |
1c79356b A |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
0a7de745 | 41 | * |
1c79356b A |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
0a7de745 | 45 | * |
1c79356b | 46 | * Carnegie Mellon requests users of this software to return to |
0a7de745 | 47 | * |
1c79356b A |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
0a7de745 | 52 | * |
1c79356b A |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: kern/zalloc.c | |
60 | * Author: Avadis Tevanian, Jr. | |
61 | * | |
62 | * Zone-based memory allocator. A zone is a collection of fixed size | |
63 | * data blocks for which quick allocation/deallocation is possible. | |
64 | */ | |
91447636 | 65 | |
f427ee49 | 66 | #define ZALLOC_ALLOW_DEPRECATED 1 |
91447636 A |
67 | #include <mach/mach_types.h> |
68 | #include <mach/vm_param.h> | |
69 | #include <mach/kern_return.h> | |
70 | #include <mach/mach_host_server.h> | |
6d2010ae | 71 | #include <mach/task_server.h> |
91447636 | 72 | #include <mach/machine/vm_types.h> |
316670eb | 73 | #include <mach/vm_map.h> |
a39ff7e2 | 74 | #include <mach/sdt.h> |
91447636 | 75 | |
5ba3f43e | 76 | #include <kern/bits.h> |
f427ee49 | 77 | #include <kern/startup.h> |
91447636 | 78 | #include <kern/kern_types.h> |
1c79356b | 79 | #include <kern/assert.h> |
39037602 | 80 | #include <kern/backtrace.h> |
91447636 | 81 | #include <kern/host.h> |
1c79356b A |
82 | #include <kern/macro_help.h> |
83 | #include <kern/sched.h> | |
b0d623f7 | 84 | #include <kern/locks.h> |
1c79356b A |
85 | #include <kern/sched_prim.h> |
86 | #include <kern/misc_protos.h> | |
0b4e3aa0 | 87 | #include <kern/thread_call.h> |
f427ee49 | 88 | #include <kern/zalloc_internal.h> |
91447636 A |
89 | #include <kern/kalloc.h> |
90 | ||
5c9f4661 A |
91 | #include <prng/random.h> |
92 | ||
91447636 A |
93 | #include <vm/pmap.h> |
94 | #include <vm/vm_map.h> | |
1c79356b | 95 | #include <vm/vm_kern.h> |
91447636 | 96 | #include <vm/vm_page.h> |
f427ee49 | 97 | #include <vm/vm_compressor.h> /* C_SLOT_PACKED_PTR* */ |
91447636 | 98 | |
316670eb A |
99 | #include <pexpert/pexpert.h> |
100 | ||
1c79356b | 101 | #include <machine/machparam.h> |
39236c6e | 102 | #include <machine/machine_routines.h> /* ml_cpu_get_info */ |
1c79356b | 103 | |
f427ee49 A |
104 | #include <os/atomic.h> |
105 | ||
2d21ac55 | 106 | #include <libkern/OSDebug.h> |
7ddcb079 | 107 | #include <libkern/OSAtomic.h> |
d9a64523 | 108 | #include <libkern/section_keywords.h> |
2d21ac55 A |
109 | #include <sys/kdebug.h> |
110 | ||
5ba3f43e A |
111 | #include <san/kasan.h> |
112 | ||
f427ee49 A |
113 | #if KASAN_ZALLOC |
114 | #define ZONE_ENABLE_LOGGING 0 | |
115 | #elif DEBUG || DEVELOPMENT | |
116 | #define ZONE_ENABLE_LOGGING 1 | |
117 | #else | |
118 | #define ZONE_ENABLE_LOGGING 0 | |
119 | #endif | |
120 | ||
121 | extern void vm_pageout_garbage_collect(int collect); | |
122 | ||
123 | /* Returns pid of the task with the largest number of VM map entries. */ | |
124 | extern pid_t find_largest_process_vm_map_entries(void); | |
125 | ||
126 | /* | |
127 | * Callout to jetsam. If pid is -1, we wake up the memorystatus thread to do asynchronous kills. | |
128 | * For any other pid we try to kill that process synchronously. | |
129 | */ | |
130 | extern boolean_t memorystatus_kill_on_zone_map_exhaustion(pid_t pid); | |
131 | ||
132 | extern zone_t vm_map_entry_zone; | |
133 | extern zone_t vm_object_zone; | |
134 | extern vm_offset_t kmapoff_kaddr; | |
135 | extern unsigned int kmapoff_pgcnt; | |
136 | extern unsigned int stack_total; | |
137 | extern unsigned long long stack_allocs; | |
138 | ||
139 | /* | |
140 | * The max # of elements in a chunk should fit into | |
141 | * zone_page_metadata.free_count (uint16_t). | |
142 | * | |
143 | * Update this if the type of free_count changes. | |
144 | */ | |
145 | #define ZONE_CHUNK_MAXELEMENTS (UINT16_MAX) | |
146 | ||
147 | #define ZONE_PAGECOUNT_BITS 14 | |
148 | ||
149 | /* Zone elements must fit both a next pointer and a backup pointer */ | |
150 | #define ZONE_MIN_ELEM_SIZE (2 * sizeof(vm_offset_t)) | |
151 | #define ZONE_MAX_ALLOC_SIZE (32 * 1024) | |
152 | ||
153 | /* per-cpu zones are special because of counters */ | |
154 | #define ZONE_MIN_PCPU_ELEM_SIZE (1 * sizeof(vm_offset_t)) | |
155 | ||
156 | struct zone_map_range { | |
157 | vm_offset_t min_address; | |
158 | vm_offset_t max_address; | |
159 | }; | |
160 | ||
161 | struct zone_page_metadata { | |
162 | /* The index of the zone this metadata page belongs to */ | |
163 | zone_id_t zm_index; | |
164 | ||
165 | /* | |
166 | * zm_secondary_page == 0: number of pages in this run | |
167 | * zm_secondary_page == 1: offset to the chunk start | |
168 | */ | |
169 | uint16_t zm_page_count : ZONE_PAGECOUNT_BITS; | |
170 | ||
171 | /* Whether this page is part of a chunk run */ | |
172 | uint16_t zm_percpu : 1; | |
173 | uint16_t zm_secondary_page : 1; | |
174 | ||
175 | /* | |
176 | * The start of the freelist can be maintained as a 16-bit | |
177 | * offset instead of a pointer because the free elements would | |
178 | * be at max ZONE_MAX_ALLOC_SIZE bytes away from the start | |
179 | * of the allocation chunk. | |
180 | * | |
181 | * Offset from start of the allocation chunk to free element | |
182 | * list head. | |
183 | */ | |
184 | uint16_t zm_freelist_offs; | |
185 | ||
186 | /* | |
187 | * zm_secondary_page == 0: number of allocated elements in the chunk | |
188 | * zm_secondary_page == 1: unused | |
189 | * | |
190 | * PAGE_METADATA_EMPTY_FREELIST indicates an empty freelist | |
191 | */ | |
192 | uint16_t zm_alloc_count; | |
193 | #define PAGE_METADATA_EMPTY_FREELIST UINT16_MAX | |
194 | ||
195 | zone_pva_t zm_page_next; | |
196 | zone_pva_t zm_page_prev; | |
197 | ||
198 | /* | |
199 | * This is only for the sake of debuggers | |
200 | */ | |
201 | #define ZONE_FOREIGN_COOKIE 0x123456789abcdef | |
202 | uint64_t zm_foreign_cookie[]; | |
203 | }; | |
204 | ||
205 | ||
206 | /* Align elements that use the zone page list to 32 byte boundaries. */ | |
207 | #define ZONE_PAGE_FIRST_OFFSET(kind) ((kind) == ZONE_ADDR_NATIVE ? 0 : 32) | |
208 | ||
209 | static_assert(sizeof(struct zone_page_metadata) == 16, "validate packing"); | |
210 | ||
211 | static __security_const_late struct { | |
212 | struct zone_map_range zi_map_range; | |
213 | struct zone_map_range zi_general_range; | |
214 | struct zone_map_range zi_meta_range; | |
215 | struct zone_map_range zi_foreign_range; | |
216 | ||
217 | /* | |
218 | * The metadata lives within the zi_meta_range address range. | |
219 | * | |
220 | * The correct formula to find a metadata index is: | |
221 | * absolute_page_index - page_index(zi_meta_range.min_address) | |
222 | * | |
223 | * And then this index is used to dereference zi_meta_range.min_address | |
224 | * as a `struct zone_page_metadata` array. | |
225 | * | |
226 | * To avoid doing that substraction all the time in the various fast-paths, | |
227 | * zi_array_base is offset by `page_index(zi_meta_range.min_address)` | |
228 | * to avoid redoing that math all the time. | |
229 | */ | |
230 | struct zone_page_metadata *zi_array_base; | |
231 | } zone_info; | |
232 | ||
0a7de745 A |
233 | /* |
234 | * The zone_locks_grp allows for collecting lock statistics. | |
235 | * All locks are associated to this group in zinit. | |
236 | * Look at tools/lockstat for debugging lock contention. | |
237 | */ | |
f427ee49 A |
238 | LCK_GRP_DECLARE(zone_locks_grp, "zone_locks"); |
239 | LCK_MTX_EARLY_DECLARE(zone_metadata_region_lck, &zone_locks_grp); | |
240 | ||
241 | /* | |
242 | * Exclude more than one concurrent garbage collection | |
243 | */ | |
244 | LCK_GRP_DECLARE(zone_gc_lck_grp, "zone_gc"); | |
245 | LCK_MTX_EARLY_DECLARE(zone_gc_lock, &zone_gc_lck_grp); | |
0a7de745 | 246 | |
f427ee49 A |
247 | boolean_t panic_include_zprint = FALSE; |
248 | mach_memory_info_t *panic_kext_memory_info = NULL; | |
249 | vm_size_t panic_kext_memory_size = 0; | |
0a7de745 | 250 | |
39236c6e | 251 | /* |
f427ee49 A |
252 | * Protects zone_array, num_zones, num_zones_in_use, and |
253 | * zone_destroyed_bitmap | |
39236c6e | 254 | */ |
f427ee49 A |
255 | static SIMPLE_LOCK_DECLARE(all_zones_lock, 0); |
256 | static unsigned int num_zones_in_use; | |
257 | unsigned int _Atomic num_zones; | |
258 | SECURITY_READ_ONLY_LATE(unsigned int) zone_view_count; | |
39236c6e | 259 | |
f427ee49 A |
260 | #if KASAN_ZALLOC |
261 | #define MAX_ZONES 566 | |
262 | #else /* !KASAN_ZALLOC */ | |
263 | #define MAX_ZONES 402 | |
264 | #endif/* !KASAN_ZALLOC */ | |
265 | struct zone zone_array[MAX_ZONES]; | |
266 | ||
267 | /* Initialized in zone_bootstrap(), how many "copies" the per-cpu system does */ | |
268 | static SECURITY_READ_ONLY_LATE(unsigned) zpercpu_early_count; | |
269 | ||
270 | /* Used to keep track of destroyed slots in the zone_array */ | |
271 | static bitmap_t zone_destroyed_bitmap[BITMAP_LEN(MAX_ZONES)]; | |
272 | ||
273 | /* number of pages used by all zones */ | |
274 | static long _Atomic zones_phys_page_count; | |
275 | ||
276 | /* number of zone mapped pages used by all zones */ | |
277 | static long _Atomic zones_phys_page_mapped_count; | |
278 | ||
f427ee49 A |
279 | /* |
280 | * Turn ZSECURITY_OPTIONS_STRICT_IOKIT_FREE off on x86 so as not | |
281 | * not break third party kexts that haven't yet been recompiled | |
282 | * to use the new iokit macros. | |
283 | */ | |
284 | #if XNU_TARGET_OS_OSX && __x86_64__ | |
285 | #define ZSECURITY_OPTIONS_STRICT_IOKIT_FREE_DEFAULT 0 | |
286 | #else | |
287 | #define ZSECURITY_OPTIONS_STRICT_IOKIT_FREE_DEFAULT \ | |
288 | ZSECURITY_OPTIONS_STRICT_IOKIT_FREE | |
289 | #endif | |
290 | ||
291 | #define ZSECURITY_DEFAULT ( \ | |
2a1bd2d3 | 292 | ZSECURITY_OPTIONS_SEQUESTER | \ |
f427ee49 A |
293 | ZSECURITY_OPTIONS_SUBMAP_USER_DATA | \ |
294 | ZSECURITY_OPTIONS_SEQUESTER_KEXT_KALLOC | \ | |
295 | ZSECURITY_OPTIONS_STRICT_IOKIT_FREE_DEFAULT | \ | |
296 | 0) | |
297 | TUNABLE(zone_security_options_t, zsecurity_options, "zs", ZSECURITY_DEFAULT); | |
298 | ||
299 | #if VM_MAX_TAG_ZONES | |
300 | /* enable tags for zones that ask for it */ | |
301 | TUNABLE(bool, zone_tagging_on, "-zt", false); | |
302 | #endif /* VM_MAX_TAG_ZONES */ | |
303 | ||
304 | #if DEBUG || DEVELOPMENT | |
305 | TUNABLE(bool, zalloc_disable_copyio_check, "-no-copyio-zalloc-check", false); | |
306 | __options_decl(zalloc_debug_t, uint32_t, { | |
307 | ZALLOC_DEBUG_ZONEGC = 0x00000001, | |
308 | ZALLOC_DEBUG_ZCRAM = 0x00000002, | |
309 | }); | |
310 | ||
311 | TUNABLE(zalloc_debug_t, zalloc_debug, "zalloc_debug", 0); | |
312 | #endif /* DEBUG || DEVELOPMENT */ | |
313 | #if CONFIG_ZLEAKS | |
314 | /* Making pointer scanning leaks detection possible for all zones */ | |
315 | TUNABLE(bool, zone_leaks_scan_enable, "-zl", false); | |
316 | #else | |
317 | #define zone_leaks_scan_enable false | |
318 | #endif | |
319 | ||
320 | /* | |
321 | * Async allocation of zones | |
322 | * This mechanism allows for bootstrapping an empty zone which is setup with | |
323 | * non-blocking flags. The first call to zalloc_noblock() will kick off a thread_call | |
324 | * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free. | |
325 | * This will prime the zone for the next use. | |
326 | * | |
327 | * Currently the thread_callout function (zalloc_async) will loop through all zones | |
328 | * looking for any zone with async_pending set and do the work for it. | |
329 | * | |
330 | * NOTE: If the calling thread for zalloc_noblock is lower priority than thread_call, | |
331 | * then zalloc_noblock to an empty zone may succeed. | |
332 | */ | |
333 | static void zalloc_async(thread_call_param_t p0, thread_call_param_t p1); | |
334 | static thread_call_data_t call_async_alloc; | |
335 | static void zcram_and_lock(zone_t zone, vm_offset_t newmem, vm_size_t size); | |
39236c6e A |
336 | |
337 | /* | |
c910b4d9 A |
338 | * Zone Corruption Debugging |
339 | * | |
f427ee49 | 340 | * We use four techniques to detect modification of a zone element |
39236c6e | 341 | * after it's been freed. |
316670eb | 342 | * |
39236c6e A |
343 | * (1) Check the freelist next pointer for sanity. |
344 | * (2) Store a backup of the next pointer at the end of the element, | |
345 | * and compare it to the primary next pointer when the element is allocated | |
346 | * to detect corruption of the freelist due to use-after-free bugs. | |
347 | * The backup pointer is also XORed with a per-boot random cookie. | |
348 | * (3) Poison the freed element by overwriting it with 0xdeadbeef, | |
349 | * and check for that value when the element is being reused to make sure | |
350 | * no part of the element has been modified while it was on the freelist. | |
351 | * This will also help catch read-after-frees, as code will now dereference | |
352 | * 0xdeadbeef instead of a valid but freed pointer. | |
f427ee49 A |
353 | * (4) If the zfree_clear_mem flag is set clear the element on free and |
354 | * assert that it is still clear when alloc-ed. | |
316670eb | 355 | * |
39236c6e A |
356 | * (1) and (2) occur for every allocation and free to a zone. |
357 | * This is done to make it slightly more difficult for an attacker to | |
358 | * manipulate the freelist to behave in a specific way. | |
c910b4d9 | 359 | * |
f427ee49 A |
360 | * Poisoning (3) occurs periodically for every N frees (counted per-zone). |
361 | * If -zp is passed as a boot arg, poisoning occurs for every free. | |
362 | * | |
363 | * Zeroing (4) is done for those zones that pass the ZC_ZFREE_CLEARMEM | |
364 | * flag on creation or if the element size is less than one cacheline. | |
c910b4d9 | 365 | * |
39236c6e A |
366 | * Performance slowdown is inversely proportional to the frequency of poisoning, |
367 | * with a 4-5% hit around N=1, down to ~0.3% at N=16 and just "noise" at N=32 | |
368 | * and higher. You can expect to find a 100% reproducible bug in an average of | |
369 | * N tries, with a standard deviation of about N, but you will want to set | |
370 | * "-zp" to always poison every free if you are attempting to reproduce | |
371 | * a known bug. | |
316670eb | 372 | * |
39236c6e A |
373 | * For a more heavyweight, but finer-grained method of detecting misuse |
374 | * of zone memory, look up the "Guard mode" zone allocator in gzalloc.c. | |
375 | * | |
376 | * Zone Corruption Logging | |
377 | * | |
378 | * You can also track where corruptions come from by using the boot-arguments | |
379 | * "zlog=<zone name to log> -zc". Search for "Zone corruption logging" later | |
380 | * in this document for more implementation and usage information. | |
381 | * | |
382 | * Zone Leak Detection | |
383 | * | |
384 | * To debug leaks of zone memory, use the zone leak detection tool 'zleaks' | |
385 | * found later in this file via the showtopztrace and showz* macros in kgmacros, | |
386 | * or use zlog without the -zc argument. | |
316670eb | 387 | * |
316670eb A |
388 | */ |
389 | ||
f427ee49 A |
390 | #define ZP_DEFAULT_SAMPLING_FACTOR 16 |
391 | #define ZP_DEFAULT_SCALE_FACTOR 4 | |
fe8ab488 | 392 | |
f427ee49 A |
393 | /* |
394 | * set by zp-factor=N boot arg | |
395 | * | |
396 | * A zp_factor of 0 indicates zone poisoning is disabled and can also be set by | |
397 | * passing the -no-zp boot-arg. | |
398 | * | |
399 | * A zp_factor of 1 indicates zone poisoning is on for all elements and can be | |
400 | * set by passing the -zp boot-arg. | |
401 | */ | |
402 | static TUNABLE(uint32_t, zp_factor, "zp-factor", ZP_DEFAULT_SAMPLING_FACTOR); | |
fe8ab488 | 403 | |
f427ee49 A |
404 | /* set by zp-scale=N boot arg, scales zp_factor by zone size */ |
405 | static TUNABLE(uint32_t, zp_scale, "zp-scale", ZP_DEFAULT_SCALE_FACTOR); | |
fe8ab488 | 406 | |
f427ee49 A |
407 | /* initialized to a per-boot random value in zp_bootstrap */ |
408 | static SECURITY_READ_ONLY_LATE(uintptr_t) zp_poisoned_cookie; | |
409 | static SECURITY_READ_ONLY_LATE(uintptr_t) zp_nopoison_cookie; | |
410 | static SECURITY_READ_ONLY_LATE(uintptr_t) zp_min_size; | |
411 | static SECURITY_READ_ONLY_LATE(uint64_t) zone_phys_mapped_max; | |
316670eb | 412 | |
f427ee49 A |
413 | static SECURITY_READ_ONLY_LATE(vm_map_t) zone_submaps[Z_SUBMAP_IDX_COUNT]; |
414 | static SECURITY_READ_ONLY_LATE(uint32_t) zone_last_submap_idx; | |
316670eb | 415 | |
f427ee49 A |
416 | static struct bool_gen zone_bool_gen; |
417 | static zone_t zone_find_largest(void); | |
418 | static void zone_drop_free_elements(zone_t z); | |
d9a64523 | 419 | |
f427ee49 A |
420 | #define submap_for_zone(z) zone_submaps[(z)->submap_idx] |
421 | #define MAX_SUBMAP_NAME 16 | |
316670eb | 422 | |
f427ee49 A |
423 | /* Globals for random boolean generator for elements in free list */ |
424 | #define MAX_ENTROPY_PER_ZCRAM 4 | |
425 | ||
426 | #if CONFIG_ZCACHE | |
39236c6e | 427 | /* |
f427ee49 A |
428 | * Specifies a single zone to enable CPU caching for. |
429 | * Can be set using boot-args: zcc_enable_for_zone_name=<zone> | |
316670eb | 430 | */ |
f427ee49 A |
431 | static char cache_zone_name[MAX_ZONE_NAME]; |
432 | static TUNABLE(bool, zcc_kalloc, "zcc_kalloc", false); | |
39236c6e | 433 | |
f427ee49 A |
434 | __header_always_inline bool |
435 | zone_caching_enabled(zone_t z) | |
436 | { | |
437 | return z->zcache.zcc_depot != NULL; | |
438 | } | |
d9a64523 | 439 | #else |
f427ee49 A |
440 | __header_always_inline bool |
441 | zone_caching_enabled(zone_t z __unused) | |
442 | { | |
443 | return false; | |
444 | } | |
445 | #endif /* CONFIG_ZCACHE */ | |
39236c6e | 446 | |
f427ee49 | 447 | #pragma mark Zone metadata |
fe8ab488 | 448 | |
f427ee49 A |
449 | __enum_closed_decl(zone_addr_kind_t, bool, { |
450 | ZONE_ADDR_NATIVE, | |
451 | ZONE_ADDR_FOREIGN, | |
452 | }); | |
39236c6e | 453 | |
f427ee49 A |
454 | static inline zone_id_t |
455 | zone_index(zone_t z) | |
456 | { | |
457 | return (zone_id_t)(z - zone_array); | |
458 | } | |
39236c6e | 459 | |
f427ee49 A |
460 | static inline bool |
461 | zone_has_index(zone_t z, zone_id_t zid) | |
462 | { | |
463 | return zone_array + zid == z; | |
464 | } | |
316670eb | 465 | |
f427ee49 A |
466 | static inline vm_size_t |
467 | zone_elem_count(zone_t zone, vm_size_t alloc_size, zone_addr_kind_t kind) | |
468 | { | |
469 | if (kind == ZONE_ADDR_NATIVE) { | |
470 | if (zone->percpu) { | |
471 | return PAGE_SIZE / zone_elem_size(zone); | |
472 | } | |
473 | return alloc_size / zone_elem_size(zone); | |
474 | } else { | |
475 | assert(alloc_size == PAGE_SIZE); | |
476 | return (PAGE_SIZE - ZONE_PAGE_FIRST_OFFSET(kind)) / zone_elem_size(zone); | |
477 | } | |
478 | } | |
5c9f4661 | 479 | |
f427ee49 A |
480 | __abortlike |
481 | static void | |
482 | zone_metadata_corruption(zone_t zone, struct zone_page_metadata *meta, | |
483 | const char *kind) | |
39236c6e | 484 | { |
f427ee49 A |
485 | panic("zone metadata corruption: %s (meta %p, zone %s%s)", |
486 | kind, meta, zone_heap_name(zone), zone->z_name); | |
487 | } | |
39236c6e | 488 | |
f427ee49 A |
489 | __abortlike |
490 | static void | |
491 | zone_invalid_element_addr_panic(zone_t zone, vm_offset_t addr) | |
492 | { | |
493 | panic("zone element pointer validation failed (addr: %p, zone %s%s)", | |
494 | (void *)addr, zone_heap_name(zone), zone->z_name); | |
495 | } | |
39236c6e | 496 | |
f427ee49 A |
497 | __abortlike |
498 | static void | |
499 | zone_page_metadata_index_confusion_panic(zone_t zone, vm_offset_t addr, | |
500 | struct zone_page_metadata *meta) | |
501 | { | |
502 | panic("%p not in the expected zone %s%s (%d != %d)", | |
503 | (void *)addr, zone_heap_name(zone), zone->z_name, | |
504 | meta->zm_index, zone_index(zone)); | |
505 | } | |
39236c6e | 506 | |
f427ee49 A |
507 | __abortlike |
508 | static void | |
509 | zone_page_metadata_native_queue_corruption(zone_t zone, zone_pva_t *queue) | |
510 | { | |
511 | panic("foreign metadata index %d enqueued in native head %p from zone %s%s", | |
512 | queue->packed_address, queue, zone_heap_name(zone), | |
513 | zone->z_name); | |
514 | } | |
39236c6e | 515 | |
f427ee49 A |
516 | __abortlike |
517 | static void | |
518 | zone_page_metadata_list_corruption(zone_t zone, struct zone_page_metadata *meta) | |
519 | { | |
520 | panic("metadata list corruption through element %p detected in zone %s%s", | |
521 | meta, zone_heap_name(zone), zone->z_name); | |
522 | } | |
39236c6e | 523 | |
f427ee49 A |
524 | __abortlike |
525 | static void | |
526 | zone_page_metadata_foreign_queue_corruption(zone_t zone, zone_pva_t *queue) | |
527 | { | |
528 | panic("native metadata index %d enqueued in foreign head %p from zone %s%s", | |
529 | queue->packed_address, queue, zone_heap_name(zone), zone->z_name); | |
530 | } | |
39236c6e | 531 | |
f427ee49 A |
532 | __abortlike |
533 | static void | |
534 | zone_page_metadata_foreign_confusion_panic(zone_t zone, vm_offset_t addr) | |
535 | { | |
536 | panic("manipulating foreign address %p in a native-only zone %s%s", | |
537 | (void *)addr, zone_heap_name(zone), zone->z_name); | |
538 | } | |
39236c6e | 539 | |
f427ee49 A |
540 | __abortlike __unused |
541 | static void | |
542 | zone_invalid_foreign_addr_panic(zone_t zone, vm_offset_t addr) | |
543 | { | |
544 | panic("addr %p being freed to foreign zone %s%s not from foreign range", | |
545 | (void *)addr, zone_heap_name(zone), zone->z_name); | |
546 | } | |
39236c6e | 547 | |
f427ee49 A |
548 | __abortlike |
549 | static void | |
550 | zone_page_meta_accounting_panic(zone_t zone, struct zone_page_metadata *meta, | |
551 | const char *kind) | |
552 | { | |
553 | panic("accounting mismatch (%s) for zone %s%s, meta %p", kind, | |
554 | zone_heap_name(zone), zone->z_name, meta); | |
555 | } | |
39236c6e | 556 | |
f427ee49 A |
557 | __abortlike |
558 | static void | |
559 | zone_accounting_panic(zone_t zone, const char *kind) | |
560 | { | |
561 | panic("accounting mismatch (%s) for zone %s%s", kind, | |
562 | zone_heap_name(zone), zone->z_name); | |
563 | } | |
fe8ab488 | 564 | |
f427ee49 A |
565 | __abortlike |
566 | static void | |
567 | zone_nofail_panic(zone_t zone) | |
568 | { | |
569 | panic("zalloc(Z_NOFAIL) can't be satisfied for zone %s%s (potential leak)", | |
570 | zone_heap_name(zone), zone->z_name); | |
571 | } | |
39236c6e | 572 | |
f427ee49 A |
573 | #if __arm64__ |
574 | // <rdar://problem/48304934> arm64 doesn't use ldp when I'd expect it to | |
575 | #define zone_range_load(r, rmin, rmax) \ | |
576 | asm("ldp %[rmin], %[rmax], [%[range]]" \ | |
577 | : [rmin] "=r"(rmin), [rmax] "=r"(rmax) \ | |
578 | : [range] "r"(r)) | |
579 | #else | |
580 | #define zone_range_load(r, rmin, rmax) \ | |
581 | ({ rmin = (r)->min_address; rmax = (r)->max_address; }) | |
39236c6e A |
582 | #endif |
583 | ||
f427ee49 A |
584 | __header_always_inline bool |
585 | zone_range_contains(const struct zone_map_range *r, vm_offset_t addr, vm_offset_t size) | |
586 | { | |
587 | vm_offset_t rmin, rmax; | |
39236c6e | 588 | |
39236c6e | 589 | /* |
f427ee49 A |
590 | * The `&` is not a typo: we really expect the check to pass, |
591 | * so encourage the compiler to eagerly load and test without branches | |
39236c6e | 592 | */ |
f427ee49 A |
593 | zone_range_load(r, rmin, rmax); |
594 | return (addr >= rmin) & (addr + size >= rmin) & (addr + size <= rmax); | |
595 | } | |
39236c6e | 596 | |
f427ee49 A |
597 | __header_always_inline vm_size_t |
598 | zone_range_size(const struct zone_map_range *r) | |
599 | { | |
600 | vm_offset_t rmin, rmax; | |
39236c6e | 601 | |
f427ee49 A |
602 | zone_range_load(r, rmin, rmax); |
603 | return rmax - rmin; | |
39236c6e A |
604 | } |
605 | ||
f427ee49 A |
606 | #define from_zone_map(addr, size) \ |
607 | zone_range_contains(&zone_info.zi_map_range, (vm_offset_t)(addr), size) | |
39236c6e | 608 | |
f427ee49 A |
609 | #define from_general_submap(addr, size) \ |
610 | zone_range_contains(&zone_info.zi_general_range, (vm_offset_t)(addr), size) | |
39236c6e | 611 | |
f427ee49 A |
612 | #define from_foreign_range(addr, size) \ |
613 | zone_range_contains(&zone_info.zi_foreign_range, (vm_offset_t)(addr), size) | |
39037602 | 614 | |
f427ee49 A |
615 | #define from_native_meta_map(addr) \ |
616 | zone_range_contains(&zone_info.zi_meta_range, (vm_offset_t)(addr), \ | |
617 | sizeof(struct zone_page_metadata)) | |
39236c6e | 618 | |
f427ee49 A |
619 | #define zone_addr_kind(addr, size) \ |
620 | (from_zone_map(addr, size) ? ZONE_ADDR_NATIVE : ZONE_ADDR_FOREIGN) | |
39236c6e | 621 | |
f427ee49 A |
622 | __header_always_inline bool |
623 | zone_pva_is_null(zone_pva_t page) | |
d9a64523 | 624 | { |
f427ee49 | 625 | return page.packed_address == 0; |
d9a64523 A |
626 | } |
627 | ||
f427ee49 A |
628 | __header_always_inline bool |
629 | zone_pva_is_queue(zone_pva_t page) | |
630 | { | |
631 | // actual kernel pages have the top bit set | |
632 | return (int32_t)page.packed_address > 0; | |
633 | } | |
39037602 | 634 | |
f427ee49 A |
635 | __header_always_inline bool |
636 | zone_pva_is_equal(zone_pva_t pva1, zone_pva_t pva2) | |
637 | { | |
638 | return pva1.packed_address == pva2.packed_address; | |
639 | } | |
39236c6e | 640 | |
f427ee49 A |
641 | __header_always_inline void |
642 | zone_queue_set_head(zone_t z, zone_pva_t queue, zone_pva_t oldv, | |
643 | struct zone_page_metadata *meta) | |
644 | { | |
645 | zone_pva_t *queue_head = &((zone_pva_t *)zone_array)[queue.packed_address]; | |
39037602 | 646 | |
f427ee49 A |
647 | if (!zone_pva_is_equal(*queue_head, oldv)) { |
648 | zone_page_metadata_list_corruption(z, meta); | |
649 | } | |
650 | *queue_head = meta->zm_page_next; | |
651 | } | |
39037602 | 652 | |
f427ee49 A |
653 | __header_always_inline zone_pva_t |
654 | zone_queue_encode(zone_pva_t *headp) | |
655 | { | |
656 | return (zone_pva_t){ (uint32_t)(headp - (zone_pva_t *)zone_array) }; | |
657 | } | |
39037602 | 658 | |
f427ee49 A |
659 | __header_always_inline zone_pva_t |
660 | zone_pva_from_addr(vm_address_t addr) | |
661 | { | |
662 | // cannot use atop() because we want to maintain the sign bit | |
663 | return (zone_pva_t){ (uint32_t)((intptr_t)addr >> PAGE_SHIFT) }; | |
664 | } | |
39037602 | 665 | |
f427ee49 A |
666 | __header_always_inline vm_address_t |
667 | zone_pva_to_addr(zone_pva_t page) | |
668 | { | |
669 | // cause sign extension so that we end up with the right address | |
670 | return (vm_offset_t)(int32_t)page.packed_address << PAGE_SHIFT; | |
671 | } | |
39037602 | 672 | |
f427ee49 A |
673 | __header_always_inline struct zone_page_metadata * |
674 | zone_pva_to_meta(zone_pva_t page, zone_addr_kind_t kind) | |
675 | { | |
676 | if (kind == ZONE_ADDR_NATIVE) { | |
677 | return &zone_info.zi_array_base[page.packed_address]; | |
678 | } else { | |
679 | return (struct zone_page_metadata *)zone_pva_to_addr(page); | |
680 | } | |
681 | } | |
39037602 | 682 | |
f427ee49 A |
683 | __header_always_inline zone_pva_t |
684 | zone_pva_from_meta(struct zone_page_metadata *meta, zone_addr_kind_t kind) | |
685 | { | |
686 | if (kind == ZONE_ADDR_NATIVE) { | |
687 | uint32_t index = (uint32_t)(meta - zone_info.zi_array_base); | |
688 | return (zone_pva_t){ index }; | |
689 | } else { | |
690 | return zone_pva_from_addr((vm_address_t)meta); | |
691 | } | |
692 | } | |
5ba3f43e | 693 | |
f427ee49 A |
694 | __header_always_inline struct zone_page_metadata * |
695 | zone_meta_from_addr(vm_offset_t addr, zone_addr_kind_t kind) | |
39037602 | 696 | { |
f427ee49 A |
697 | if (kind == ZONE_ADDR_NATIVE) { |
698 | return zone_pva_to_meta(zone_pva_from_addr(addr), kind); | |
0a7de745 | 699 | } else { |
f427ee49 | 700 | return (struct zone_page_metadata *)trunc_page(addr); |
39037602 A |
701 | } |
702 | } | |
703 | ||
f427ee49 A |
704 | #define zone_native_meta_from_addr(addr) \ |
705 | zone_meta_from_addr((vm_offset_t)(addr), ZONE_ADDR_NATIVE) | |
706 | ||
707 | __header_always_inline vm_offset_t | |
708 | zone_meta_to_addr(struct zone_page_metadata *meta, zone_addr_kind_t kind) | |
39037602 | 709 | { |
f427ee49 A |
710 | if (kind == ZONE_ADDR_NATIVE) { |
711 | return ptoa((int)(meta - zone_info.zi_array_base)); | |
0a7de745 | 712 | } else { |
f427ee49 | 713 | return (vm_offset_t)meta; |
39037602 A |
714 | } |
715 | } | |
716 | ||
f427ee49 A |
717 | __header_always_inline void |
718 | zone_meta_queue_push(zone_t z, zone_pva_t *headp, | |
719 | struct zone_page_metadata *meta, zone_addr_kind_t kind) | |
39037602 | 720 | { |
f427ee49 A |
721 | zone_pva_t head = *headp; |
722 | zone_pva_t queue_pva = zone_queue_encode(headp); | |
723 | struct zone_page_metadata *tmp; | |
724 | ||
725 | meta->zm_page_next = head; | |
726 | if (!zone_pva_is_null(head)) { | |
727 | tmp = zone_pva_to_meta(head, kind); | |
728 | if (!zone_pva_is_equal(tmp->zm_page_prev, queue_pva)) { | |
729 | zone_page_metadata_list_corruption(z, meta); | |
730 | } | |
731 | tmp->zm_page_prev = zone_pva_from_meta(meta, kind); | |
732 | } | |
733 | meta->zm_page_prev = queue_pva; | |
734 | *headp = zone_pva_from_meta(meta, kind); | |
39037602 A |
735 | } |
736 | ||
f427ee49 A |
737 | __header_always_inline struct zone_page_metadata * |
738 | zone_meta_queue_pop(zone_t z, zone_pva_t *headp, zone_addr_kind_t kind, | |
739 | vm_offset_t *page_addrp) | |
39037602 | 740 | { |
f427ee49 A |
741 | zone_pva_t head = *headp; |
742 | struct zone_page_metadata *meta = zone_pva_to_meta(head, kind); | |
743 | vm_offset_t page_addr = zone_pva_to_addr(head); | |
744 | struct zone_page_metadata *tmp; | |
745 | ||
746 | if (kind == ZONE_ADDR_NATIVE && !from_native_meta_map(meta)) { | |
747 | zone_page_metadata_native_queue_corruption(z, headp); | |
748 | } | |
749 | if (kind == ZONE_ADDR_FOREIGN && from_zone_map(meta, sizeof(*meta))) { | |
750 | zone_page_metadata_foreign_queue_corruption(z, headp); | |
751 | } | |
752 | ||
753 | if (!zone_pva_is_null(meta->zm_page_next)) { | |
754 | tmp = zone_pva_to_meta(meta->zm_page_next, kind); | |
755 | if (!zone_pva_is_equal(tmp->zm_page_prev, head)) { | |
756 | zone_page_metadata_list_corruption(z, meta); | |
757 | } | |
758 | tmp->zm_page_prev = meta->zm_page_prev; | |
759 | } | |
760 | *headp = meta->zm_page_next; | |
761 | ||
762 | *page_addrp = page_addr; | |
763 | return meta; | |
39037602 A |
764 | } |
765 | ||
f427ee49 A |
766 | __header_always_inline void |
767 | zone_meta_requeue(zone_t z, zone_pva_t *headp, | |
768 | struct zone_page_metadata *meta, zone_addr_kind_t kind) | |
39236c6e | 769 | { |
f427ee49 A |
770 | zone_pva_t meta_pva = zone_pva_from_meta(meta, kind); |
771 | struct zone_page_metadata *tmp; | |
772 | ||
773 | if (!zone_pva_is_null(meta->zm_page_next)) { | |
774 | tmp = zone_pva_to_meta(meta->zm_page_next, kind); | |
775 | if (!zone_pva_is_equal(tmp->zm_page_prev, meta_pva)) { | |
776 | zone_page_metadata_list_corruption(z, meta); | |
777 | } | |
778 | tmp->zm_page_prev = meta->zm_page_prev; | |
779 | } | |
780 | if (zone_pva_is_queue(meta->zm_page_prev)) { | |
781 | zone_queue_set_head(z, meta->zm_page_prev, meta_pva, meta); | |
782 | } else { | |
783 | tmp = zone_pva_to_meta(meta->zm_page_prev, kind); | |
784 | if (!zone_pva_is_equal(tmp->zm_page_next, meta_pva)) { | |
785 | zone_page_metadata_list_corruption(z, meta); | |
786 | } | |
787 | tmp->zm_page_next = meta->zm_page_next; | |
788 | } | |
789 | ||
790 | zone_meta_queue_push(z, headp, meta, kind); | |
39236c6e A |
791 | } |
792 | ||
0a7de745 | 793 | /* |
39037602 | 794 | * Routine to populate a page backing metadata in the zone_metadata_region. |
0a7de745 | 795 | * Must be called without the zone lock held as it might potentially block. |
39037602 | 796 | */ |
f427ee49 A |
797 | static void |
798 | zone_meta_populate(struct zone_page_metadata *from, struct zone_page_metadata *to) | |
39037602 | 799 | { |
f427ee49 | 800 | vm_offset_t page_addr = trunc_page(from); |
d9a64523 | 801 | |
f427ee49 A |
802 | for (; page_addr < (vm_offset_t)to; page_addr += PAGE_SIZE) { |
803 | #if !KASAN_ZALLOC | |
d9a64523 A |
804 | /* |
805 | * This can race with another thread doing a populate on the same metadata | |
806 | * page, where we see an updated pmap but unmapped KASan shadow, causing a | |
807 | * fault in the shadow when we first access the metadata page. Avoid this | |
808 | * by always synchronizing on the zone_metadata_region lock with KASan. | |
809 | */ | |
f427ee49 | 810 | if (pmap_find_phys(kernel_pmap, page_addr)) { |
39037602 | 811 | continue; |
0a7de745 | 812 | } |
d9a64523 | 813 | #endif |
f427ee49 A |
814 | |
815 | for (;;) { | |
816 | kern_return_t ret = KERN_SUCCESS; | |
817 | ||
818 | /* All updates to the zone_metadata_region are done under the zone_metadata_region_lck */ | |
819 | lck_mtx_lock(&zone_metadata_region_lck); | |
820 | if (0 == pmap_find_phys(kernel_pmap, page_addr)) { | |
821 | ret = kernel_memory_populate(kernel_map, page_addr, | |
822 | PAGE_SIZE, KMA_NOPAGEWAIT | KMA_KOBJECT | KMA_ZERO, | |
823 | VM_KERN_MEMORY_OSFMK); | |
824 | } | |
825 | lck_mtx_unlock(&zone_metadata_region_lck); | |
826 | ||
827 | if (ret == KERN_SUCCESS) { | |
828 | break; | |
829 | } | |
830 | ||
831 | /* | |
832 | * We can't pass KMA_NOPAGEWAIT under a global lock as it leads | |
833 | * to bad system deadlocks, so if the allocation failed, | |
834 | * we need to do the VM_PAGE_WAIT() outside of the lock. | |
835 | */ | |
836 | VM_PAGE_WAIT(); | |
39037602 | 837 | } |
39037602 | 838 | } |
39037602 A |
839 | } |
840 | ||
f427ee49 A |
841 | static inline bool |
842 | zone_allocated_element_offset_is_valid(zone_t zone, vm_offset_t addr, | |
843 | vm_offset_t page, zone_addr_kind_t kind) | |
39037602 | 844 | { |
f427ee49 A |
845 | vm_offset_t offs = addr - page - ZONE_PAGE_FIRST_OFFSET(kind); |
846 | vm_offset_t esize = zone_elem_size(zone); | |
847 | ||
848 | if (esize & (esize - 1)) { /* not a power of 2 */ | |
849 | return (offs % esize) == 0; | |
850 | } else { | |
851 | return (offs & (esize - 1)) == 0; | |
852 | } | |
39037602 A |
853 | } |
854 | ||
f427ee49 A |
855 | __attribute__((always_inline)) |
856 | static struct zone_page_metadata * | |
857 | zone_allocated_element_resolve(zone_t zone, vm_offset_t addr, | |
858 | vm_offset_t *pagep, zone_addr_kind_t *kindp) | |
39037602 | 859 | { |
f427ee49 A |
860 | struct zone_page_metadata *meta; |
861 | zone_addr_kind_t kind; | |
862 | vm_offset_t page; | |
863 | vm_offset_t esize = zone_elem_size(zone); | |
864 | ||
865 | kind = zone_addr_kind(addr, esize); | |
866 | page = trunc_page(addr); | |
867 | meta = zone_meta_from_addr(addr, kind); | |
39037602 | 868 | |
f427ee49 A |
869 | if (kind == ZONE_ADDR_NATIVE) { |
870 | if (meta->zm_secondary_page) { | |
871 | if (meta->zm_percpu) { | |
872 | zone_invalid_element_addr_panic(zone, addr); | |
873 | } | |
874 | page -= ptoa(meta->zm_page_count); | |
875 | meta -= meta->zm_page_count; | |
0a7de745 | 876 | } |
f427ee49 A |
877 | } else if (!zone->allows_foreign) { |
878 | zone_page_metadata_foreign_confusion_panic(zone, addr); | |
879 | #if __LP64__ | |
880 | } else if (!from_foreign_range(addr, esize)) { | |
881 | zone_invalid_foreign_addr_panic(zone, addr); | |
882 | #else | |
883 | } else if (!pmap_kernel_va(addr)) { | |
884 | zone_invalid_element_addr_panic(zone, addr); | |
885 | #endif | |
886 | } | |
887 | ||
888 | if (!zone_allocated_element_offset_is_valid(zone, addr, page, kind)) { | |
889 | zone_invalid_element_addr_panic(zone, addr); | |
890 | } | |
891 | ||
892 | if (!zone_has_index(zone, meta->zm_index)) { | |
893 | zone_page_metadata_index_confusion_panic(zone, addr, meta); | |
894 | } | |
895 | ||
896 | if (kindp) { | |
897 | *kindp = kind; | |
898 | } | |
899 | if (pagep) { | |
900 | *pagep = page; | |
901 | } | |
902 | return meta; | |
903 | } | |
904 | ||
905 | __attribute__((always_inline)) | |
906 | void | |
907 | zone_allocated_element_validate(zone_t zone, vm_offset_t addr) | |
908 | { | |
909 | zone_allocated_element_resolve(zone, addr, NULL, NULL); | |
910 | } | |
911 | ||
912 | __header_always_inline vm_offset_t | |
913 | zone_page_meta_get_freelist(zone_t zone, struct zone_page_metadata *meta, | |
914 | vm_offset_t page) | |
915 | { | |
916 | assert(!meta->zm_secondary_page); | |
917 | if (meta->zm_freelist_offs == PAGE_METADATA_EMPTY_FREELIST) { | |
918 | return 0; | |
919 | } | |
920 | ||
921 | vm_size_t size = ptoa(meta->zm_percpu ? 1 : meta->zm_page_count); | |
922 | if (meta->zm_freelist_offs + zone_elem_size(zone) > size) { | |
923 | zone_metadata_corruption(zone, meta, "freelist corruption"); | |
924 | } | |
925 | ||
926 | return page + meta->zm_freelist_offs; | |
927 | } | |
928 | ||
929 | __header_always_inline void | |
930 | zone_page_meta_set_freelist(struct zone_page_metadata *meta, | |
931 | vm_offset_t page, vm_offset_t addr) | |
932 | { | |
933 | assert(!meta->zm_secondary_page); | |
934 | if (addr) { | |
935 | meta->zm_freelist_offs = (uint16_t)(addr - page); | |
39037602 | 936 | } else { |
f427ee49 | 937 | meta->zm_freelist_offs = PAGE_METADATA_EMPTY_FREELIST; |
39037602 | 938 | } |
f427ee49 A |
939 | } |
940 | ||
941 | static bool | |
942 | zone_page_meta_is_sane_element(zone_t zone, struct zone_page_metadata *meta, | |
943 | vm_offset_t page, vm_offset_t element, zone_addr_kind_t kind) | |
944 | { | |
945 | if (element == 0) { | |
946 | /* ends of the freelist are NULL */ | |
947 | return true; | |
d9a64523 | 948 | } |
f427ee49 A |
949 | if (element < page + ZONE_PAGE_FIRST_OFFSET(kind)) { |
950 | return false; | |
951 | } | |
952 | vm_size_t size = ptoa(meta->zm_percpu ? 1 : meta->zm_page_count); | |
953 | if (element > page + size - zone_elem_size(zone)) { | |
954 | return false; | |
955 | } | |
956 | return true; | |
39037602 A |
957 | } |
958 | ||
f427ee49 A |
959 | /* Routine to get the size of a zone allocated address. |
960 | * If the address doesnt belong to the zone maps, returns 0. | |
961 | */ | |
962 | vm_size_t | |
963 | zone_element_size(void *addr, zone_t *z) | |
964 | { | |
965 | struct zone_page_metadata *meta; | |
966 | struct zone *src_zone; | |
967 | ||
968 | if (from_zone_map(addr, sizeof(void *))) { | |
969 | meta = zone_native_meta_from_addr(addr); | |
970 | src_zone = &zone_array[meta->zm_index]; | |
971 | if (z) { | |
972 | *z = src_zone; | |
973 | } | |
974 | return zone_elem_size(src_zone); | |
975 | } | |
976 | #if CONFIG_GZALLOC | |
977 | if (__improbable(gzalloc_enabled())) { | |
978 | vm_size_t gzsize; | |
979 | if (gzalloc_element_size(addr, z, &gzsize)) { | |
980 | return gzsize; | |
981 | } | |
982 | } | |
983 | #endif /* CONFIG_GZALLOC */ | |
984 | ||
985 | return 0; | |
986 | } | |
987 | ||
988 | /* This function just formats the reason for the panics by redoing the checks */ | |
989 | __abortlike | |
990 | static void | |
991 | zone_require_panic(zone_t zone, void *addr) | |
39236c6e | 992 | { |
f427ee49 A |
993 | uint32_t zindex; |
994 | zone_t other; | |
995 | ||
996 | if (!from_zone_map(addr, zone_elem_size(zone))) { | |
997 | panic("zone_require failed: address not in a zone (addr: %p)", addr); | |
998 | } | |
999 | ||
1000 | zindex = zone_native_meta_from_addr(addr)->zm_index; | |
1001 | other = &zone_array[zindex]; | |
1002 | if (zindex >= os_atomic_load(&num_zones, relaxed) || !other->z_self) { | |
1003 | panic("zone_require failed: invalid zone index %d " | |
1004 | "(addr: %p, expected: %s%s)", zindex, | |
1005 | addr, zone_heap_name(zone), zone->z_name); | |
0a7de745 | 1006 | } else { |
f427ee49 A |
1007 | panic("zone_require failed: address in unexpected zone id %d (%s%s) " |
1008 | "(addr: %p, expected: %s%s)", | |
1009 | zindex, zone_heap_name(other), other->z_name, | |
1010 | addr, zone_heap_name(zone), zone->z_name); | |
0a7de745 | 1011 | } |
39037602 A |
1012 | } |
1013 | ||
f427ee49 A |
1014 | __abortlike |
1015 | static void | |
1016 | zone_id_require_panic(zone_id_t zid, void *addr) | |
1017 | { | |
1018 | zone_require_panic(&zone_array[zid], addr); | |
1019 | } | |
1020 | ||
cb323159 | 1021 | /* |
f427ee49 | 1022 | * Routines to panic if a pointer is not mapped to an expected zone. |
cb323159 A |
1023 | * This can be used as a means of pinning an object to the zone it is expected |
1024 | * to be a part of. Causes a panic if the address does not belong to any | |
1025 | * specified zone, does not belong to any zone, has been freed and therefore | |
1026 | * unmapped from the zone, or the pointer contains an uninitialized value that | |
1027 | * does not belong to any zone. | |
f427ee49 A |
1028 | * |
1029 | * Note that this can only work with collectable zones without foreign pages. | |
cb323159 | 1030 | */ |
cb323159 | 1031 | void |
f427ee49 | 1032 | zone_require(zone_t zone, void *addr) |
cb323159 | 1033 | { |
f427ee49 A |
1034 | if (__probable(from_general_submap(addr, zone_elem_size(zone)) && |
1035 | (zone_has_index(zone, zone_native_meta_from_addr(addr)->zm_index)))) { | |
1036 | return; | |
1037 | } | |
1038 | #if CONFIG_GZALLOC | |
1039 | if (__probable(gzalloc_enabled())) { | |
1040 | return; | |
cb323159 | 1041 | } |
f427ee49 A |
1042 | #endif |
1043 | zone_require_panic(zone, addr); | |
1044 | } | |
cb323159 | 1045 | |
f427ee49 A |
1046 | void |
1047 | zone_id_require(zone_id_t zid, vm_size_t esize, void *addr) | |
1048 | { | |
1049 | if (__probable(from_general_submap(addr, esize) && | |
1050 | (zid == zone_native_meta_from_addr(addr)->zm_index))) { | |
1051 | return; | |
eb6b6ca3 | 1052 | } |
f427ee49 A |
1053 | #if CONFIG_GZALLOC |
1054 | if (__probable(gzalloc_enabled())) { | |
1055 | return; | |
cb323159 | 1056 | } |
f427ee49 A |
1057 | #endif |
1058 | zone_id_require_panic(zid, addr); | |
cb323159 A |
1059 | } |
1060 | ||
f427ee49 A |
1061 | bool |
1062 | zone_owns(zone_t zone, void *addr) | |
1063 | { | |
1064 | if (__probable(from_general_submap(addr, zone_elem_size(zone)) && | |
1065 | (zone_has_index(zone, zone_native_meta_from_addr(addr)->zm_index)))) { | |
1066 | return true; | |
1067 | } | |
1068 | #if CONFIG_GZALLOC | |
1069 | if (__probable(gzalloc_enabled())) { | |
1070 | return true; | |
1071 | } | |
1072 | #endif | |
1073 | return false; | |
1074 | } | |
5ba3f43e | 1075 | |
f427ee49 | 1076 | #pragma mark ZTAGS |
5ba3f43e A |
1077 | #if VM_MAX_TAG_ZONES |
1078 | ||
1079 | // for zones with tagging enabled: | |
1080 | ||
1081 | // calculate a pointer to the tag base entry, | |
1082 | // holding either a uint32_t the first tag offset for a page in the zone map, | |
1083 | // or two uint16_t tags if the page can only hold one or two elements | |
1084 | ||
1085 | #define ZTAGBASE(zone, element) \ | |
f427ee49 | 1086 | (&((uint32_t *)zone_tagbase_min)[atop((element) - zone_info.zi_map_range.min_address)]) |
5ba3f43e A |
1087 | |
1088 | // pointer to the tag for an element | |
1089 | #define ZTAG(zone, element) \ | |
1090 | ({ \ | |
0a7de745 A |
1091 | vm_tag_t * result; \ |
1092 | if ((zone)->tags_inline) { \ | |
1093 | result = (vm_tag_t *) ZTAGBASE((zone), (element)); \ | |
f427ee49 | 1094 | if ((page_mask & element) >= zone_elem_size(zone)) result++; \ |
0a7de745 | 1095 | } else { \ |
f427ee49 | 1096 | result = &((vm_tag_t *)zone_tags_min)[ZTAGBASE((zone), (element))[0] + ((element) & page_mask) / zone_elem_size((zone))]; \ |
0a7de745 A |
1097 | } \ |
1098 | result; \ | |
5ba3f43e A |
1099 | }) |
1100 | ||
1101 | ||
1102 | static vm_offset_t zone_tagbase_min; | |
1103 | static vm_offset_t zone_tagbase_max; | |
1104 | static vm_offset_t zone_tagbase_map_size; | |
1105 | static vm_map_t zone_tagbase_map; | |
1106 | ||
1107 | static vm_offset_t zone_tags_min; | |
1108 | static vm_offset_t zone_tags_max; | |
1109 | static vm_offset_t zone_tags_map_size; | |
1110 | static vm_map_t zone_tags_map; | |
1111 | ||
1112 | // simple heap allocator for allocating the tags for new memory | |
1113 | ||
f427ee49 A |
1114 | LCK_MTX_EARLY_DECLARE(ztLock, &zone_locks_grp); /* heap lock */ |
1115 | ||
0a7de745 A |
1116 | enum{ |
1117 | ztFreeIndexCount = 8, | |
1118 | ztFreeIndexMax = (ztFreeIndexCount - 1), | |
1119 | ztTagsPerBlock = 4 | |
5ba3f43e A |
1120 | }; |
1121 | ||
0a7de745 | 1122 | struct ztBlock { |
5ba3f43e | 1123 | #if __LITTLE_ENDIAN__ |
0a7de745 A |
1124 | uint64_t free:1, |
1125 | next:21, | |
1126 | prev:21, | |
1127 | size:21; | |
5ba3f43e A |
1128 | #else |
1129 | // ztBlock needs free bit least significant | |
1130 | #error !__LITTLE_ENDIAN__ | |
1131 | #endif | |
1132 | }; | |
1133 | typedef struct ztBlock ztBlock; | |
1134 | ||
1135 | static ztBlock * ztBlocks; | |
1136 | static uint32_t ztBlocksCount; | |
1137 | static uint32_t ztBlocksFree; | |
1138 | ||
1139 | static uint32_t | |
1140 | ztLog2up(uint32_t size) | |
1141 | { | |
0a7de745 A |
1142 | if (1 == size) { |
1143 | size = 0; | |
1144 | } else { | |
1145 | size = 32 - __builtin_clz(size - 1); | |
1146 | } | |
1147 | return size; | |
5ba3f43e A |
1148 | } |
1149 | ||
1150 | static uint32_t | |
1151 | ztLog2down(uint32_t size) | |
1152 | { | |
0a7de745 A |
1153 | size = 31 - __builtin_clz(size); |
1154 | return size; | |
5ba3f43e A |
1155 | } |
1156 | ||
1157 | static void | |
1158 | ztFault(vm_map_t map, const void * address, size_t size, uint32_t flags) | |
1159 | { | |
0a7de745 A |
1160 | vm_map_offset_t addr = (vm_map_offset_t) address; |
1161 | vm_map_offset_t page, end; | |
1162 | ||
1163 | page = trunc_page(addr); | |
1164 | end = round_page(addr + size); | |
1165 | ||
1166 | for (; page < end; page += page_size) { | |
1167 | if (!pmap_find_phys(kernel_pmap, page)) { | |
1168 | kern_return_t __unused | |
1169 | ret = kernel_memory_populate(map, page, PAGE_SIZE, | |
1170 | KMA_KOBJECT | flags, VM_KERN_MEMORY_DIAG); | |
1171 | assert(ret == KERN_SUCCESS); | |
1172 | } | |
1173 | } | |
5ba3f43e A |
1174 | } |
1175 | ||
1176 | static boolean_t | |
1177 | ztPresent(const void * address, size_t size) | |
1178 | { | |
0a7de745 A |
1179 | vm_map_offset_t addr = (vm_map_offset_t) address; |
1180 | vm_map_offset_t page, end; | |
1181 | boolean_t result; | |
1182 | ||
1183 | page = trunc_page(addr); | |
1184 | end = round_page(addr + size); | |
1185 | for (result = TRUE; (page < end); page += page_size) { | |
1186 | result = pmap_find_phys(kernel_pmap, page); | |
1187 | if (!result) { | |
1188 | break; | |
1189 | } | |
1190 | } | |
1191 | return result; | |
5ba3f43e A |
1192 | } |
1193 | ||
1194 | ||
1195 | void __unused | |
1196 | ztDump(boolean_t sanity); | |
1197 | void __unused | |
1198 | ztDump(boolean_t sanity) | |
1199 | { | |
0a7de745 A |
1200 | uint32_t q, cq, p; |
1201 | ||
1202 | for (q = 0; q <= ztFreeIndexMax; q++) { | |
1203 | p = q; | |
1204 | do{ | |
1205 | if (sanity) { | |
1206 | cq = ztLog2down(ztBlocks[p].size); | |
1207 | if (cq > ztFreeIndexMax) { | |
1208 | cq = ztFreeIndexMax; | |
1209 | } | |
1210 | if (!ztBlocks[p].free | |
1211 | || ((p != q) && (q != cq)) | |
1212 | || (ztBlocks[ztBlocks[p].next].prev != p) | |
1213 | || (ztBlocks[ztBlocks[p].prev].next != p)) { | |
1214 | kprintf("zterror at %d", p); | |
1215 | ztDump(FALSE); | |
1216 | kprintf("zterror at %d", p); | |
1217 | assert(FALSE); | |
1218 | } | |
1219 | continue; | |
1220 | } | |
1221 | kprintf("zt[%03d]%c %d, %d, %d\n", | |
1222 | p, ztBlocks[p].free ? 'F' : 'A', | |
1223 | ztBlocks[p].next, ztBlocks[p].prev, | |
1224 | ztBlocks[p].size); | |
1225 | p = ztBlocks[p].next; | |
1226 | if (p == q) { | |
1227 | break; | |
1228 | } | |
1229 | }while (p != q); | |
1230 | if (!sanity) { | |
1231 | printf("\n"); | |
1232 | } | |
1233 | } | |
1234 | if (!sanity) { | |
1235 | printf("-----------------------\n"); | |
1236 | } | |
5ba3f43e A |
1237 | } |
1238 | ||
1239 | ||
1240 | ||
1241 | #define ZTBDEQ(idx) \ | |
1242 | ztBlocks[ztBlocks[(idx)].prev].next = ztBlocks[(idx)].next; \ | |
1243 | ztBlocks[ztBlocks[(idx)].next].prev = ztBlocks[(idx)].prev; | |
1244 | ||
1245 | static void | |
1246 | ztFree(zone_t zone __unused, uint32_t index, uint32_t count) | |
1247 | { | |
0a7de745 A |
1248 | uint32_t q, w, p, size, merge; |
1249 | ||
1250 | assert(count); | |
1251 | ztBlocksFree += count; | |
1252 | ||
1253 | // merge with preceding | |
1254 | merge = (index + count); | |
1255 | if ((merge < ztBlocksCount) | |
1256 | && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge])) | |
1257 | && ztBlocks[merge].free) { | |
1258 | ZTBDEQ(merge); | |
1259 | count += ztBlocks[merge].size; | |
1260 | } | |
1261 | ||
1262 | // merge with following | |
1263 | merge = (index - 1); | |
1264 | if ((merge > ztFreeIndexMax) | |
1265 | && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge])) | |
1266 | && ztBlocks[merge].free) { | |
1267 | size = ztBlocks[merge].size; | |
1268 | count += size; | |
1269 | index -= size; | |
1270 | ZTBDEQ(index); | |
1271 | } | |
1272 | ||
1273 | q = ztLog2down(count); | |
1274 | if (q > ztFreeIndexMax) { | |
1275 | q = ztFreeIndexMax; | |
1276 | } | |
1277 | w = q; | |
1278 | // queue in order of size | |
1279 | while (TRUE) { | |
1280 | p = ztBlocks[w].next; | |
1281 | if (p == q) { | |
1282 | break; | |
1283 | } | |
1284 | if (ztBlocks[p].size >= count) { | |
1285 | break; | |
1286 | } | |
1287 | w = p; | |
1288 | } | |
1289 | ztBlocks[p].prev = index; | |
1290 | ztBlocks[w].next = index; | |
1291 | ||
1292 | // fault in first | |
1293 | ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0); | |
1294 | ||
1295 | // mark first & last with free flag and size | |
1296 | ztBlocks[index].free = TRUE; | |
1297 | ztBlocks[index].size = count; | |
1298 | ztBlocks[index].prev = w; | |
1299 | ztBlocks[index].next = p; | |
1300 | if (count > 1) { | |
1301 | index += (count - 1); | |
1302 | // fault in last | |
1303 | ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0); | |
1304 | ztBlocks[index].free = TRUE; | |
1305 | ztBlocks[index].size = count; | |
1306 | } | |
5ba3f43e A |
1307 | } |
1308 | ||
1309 | static uint32_t | |
1310 | ztAlloc(zone_t zone, uint32_t count) | |
1311 | { | |
0a7de745 A |
1312 | uint32_t q, w, p, leftover; |
1313 | ||
1314 | assert(count); | |
1315 | ||
1316 | q = ztLog2up(count); | |
1317 | if (q > ztFreeIndexMax) { | |
1318 | q = ztFreeIndexMax; | |
1319 | } | |
1320 | do{ | |
1321 | w = q; | |
1322 | while (TRUE) { | |
1323 | p = ztBlocks[w].next; | |
1324 | if (p == q) { | |
1325 | break; | |
1326 | } | |
1327 | if (ztBlocks[p].size >= count) { | |
1328 | // dequeue, mark both ends allocated | |
1329 | ztBlocks[w].next = ztBlocks[p].next; | |
1330 | ztBlocks[ztBlocks[p].next].prev = w; | |
1331 | ztBlocks[p].free = FALSE; | |
1332 | ztBlocksFree -= ztBlocks[p].size; | |
1333 | if (ztBlocks[p].size > 1) { | |
1334 | ztBlocks[p + ztBlocks[p].size - 1].free = FALSE; | |
1335 | } | |
1336 | ||
1337 | // fault all the allocation | |
1338 | ztFault(zone_tags_map, &ztBlocks[p], count * sizeof(ztBlocks[p]), 0); | |
1339 | // mark last as allocated | |
1340 | if (count > 1) { | |
1341 | ztBlocks[p + count - 1].free = FALSE; | |
1342 | } | |
1343 | // free remainder | |
1344 | leftover = ztBlocks[p].size - count; | |
1345 | if (leftover) { | |
1346 | ztFree(zone, p + ztBlocks[p].size - leftover, leftover); | |
1347 | } | |
1348 | ||
1349 | return p; | |
1350 | } | |
1351 | w = p; | |
1352 | } | |
1353 | q++; | |
1354 | }while (q <= ztFreeIndexMax); | |
1355 | ||
1356 | return -1U; | |
5ba3f43e A |
1357 | } |
1358 | ||
f427ee49 | 1359 | __startup_func |
5ba3f43e | 1360 | static void |
f427ee49 | 1361 | zone_tagging_init(vm_size_t max_zonemap_size) |
5ba3f43e | 1362 | { |
0a7de745 A |
1363 | kern_return_t ret; |
1364 | vm_map_kernel_flags_t vmk_flags; | |
1365 | uint32_t idx; | |
1366 | ||
0a7de745 A |
1367 | // allocate submaps VM_KERN_MEMORY_DIAG |
1368 | ||
1369 | zone_tagbase_map_size = atop(max_zonemap_size) * sizeof(uint32_t); | |
1370 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; | |
1371 | vmk_flags.vmkf_permanent = TRUE; | |
1372 | ret = kmem_suballoc(kernel_map, &zone_tagbase_min, zone_tagbase_map_size, | |
1373 | FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG, | |
1374 | &zone_tagbase_map); | |
1375 | ||
1376 | if (ret != KERN_SUCCESS) { | |
1377 | panic("zone_init: kmem_suballoc failed"); | |
1378 | } | |
1379 | zone_tagbase_max = zone_tagbase_min + round_page(zone_tagbase_map_size); | |
1380 | ||
1381 | zone_tags_map_size = 2048 * 1024 * sizeof(vm_tag_t); | |
1382 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; | |
1383 | vmk_flags.vmkf_permanent = TRUE; | |
1384 | ret = kmem_suballoc(kernel_map, &zone_tags_min, zone_tags_map_size, | |
1385 | FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG, | |
1386 | &zone_tags_map); | |
1387 | ||
1388 | if (ret != KERN_SUCCESS) { | |
1389 | panic("zone_init: kmem_suballoc failed"); | |
1390 | } | |
1391 | zone_tags_max = zone_tags_min + round_page(zone_tags_map_size); | |
1392 | ||
1393 | ztBlocks = (ztBlock *) zone_tags_min; | |
1394 | ztBlocksCount = (uint32_t)(zone_tags_map_size / sizeof(ztBlock)); | |
1395 | ||
1396 | // initialize the qheads | |
1397 | lck_mtx_lock(&ztLock); | |
1398 | ||
1399 | ztFault(zone_tags_map, &ztBlocks[0], sizeof(ztBlocks[0]), 0); | |
1400 | for (idx = 0; idx < ztFreeIndexCount; idx++) { | |
1401 | ztBlocks[idx].free = TRUE; | |
1402 | ztBlocks[idx].next = idx; | |
1403 | ztBlocks[idx].prev = idx; | |
1404 | ztBlocks[idx].size = 0; | |
1405 | } | |
1406 | // free remaining space | |
1407 | ztFree(NULL, ztFreeIndexCount, ztBlocksCount - ztFreeIndexCount); | |
1408 | ||
1409 | lck_mtx_unlock(&ztLock); | |
5ba3f43e A |
1410 | } |
1411 | ||
1412 | static void | |
1413 | ztMemoryAdd(zone_t zone, vm_offset_t mem, vm_size_t size) | |
1414 | { | |
0a7de745 A |
1415 | uint32_t * tagbase; |
1416 | uint32_t count, block, blocks, idx; | |
1417 | size_t pages; | |
1418 | ||
1419 | pages = atop(size); | |
1420 | tagbase = ZTAGBASE(zone, mem); | |
1421 | ||
1422 | lck_mtx_lock(&ztLock); | |
1423 | ||
1424 | // fault tagbase | |
1425 | ztFault(zone_tagbase_map, tagbase, pages * sizeof(uint32_t), 0); | |
1426 | ||
1427 | if (!zone->tags_inline) { | |
1428 | // allocate tags | |
f427ee49 | 1429 | count = (uint32_t)(size / zone_elem_size(zone)); |
0a7de745 A |
1430 | blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock); |
1431 | block = ztAlloc(zone, blocks); | |
1432 | if (-1U == block) { | |
1433 | ztDump(false); | |
1434 | } | |
1435 | assert(-1U != block); | |
1436 | } | |
1437 | ||
1438 | lck_mtx_unlock(&ztLock); | |
1439 | ||
1440 | if (!zone->tags_inline) { | |
1441 | // set tag base for each page | |
1442 | block *= ztTagsPerBlock; | |
1443 | for (idx = 0; idx < pages; idx++) { | |
f427ee49 A |
1444 | vm_offset_t esize = zone_elem_size(zone); |
1445 | tagbase[idx] = block + (uint32_t)((ptoa(idx) + esize - 1) / esize); | |
0a7de745 A |
1446 | } |
1447 | } | |
5ba3f43e A |
1448 | } |
1449 | ||
1450 | static void | |
1451 | ztMemoryRemove(zone_t zone, vm_offset_t mem, vm_size_t size) | |
1452 | { | |
0a7de745 A |
1453 | uint32_t * tagbase; |
1454 | uint32_t count, block, blocks, idx; | |
1455 | size_t pages; | |
1456 | ||
1457 | // set tag base for each page | |
1458 | pages = atop(size); | |
1459 | tagbase = ZTAGBASE(zone, mem); | |
1460 | block = tagbase[0]; | |
1461 | for (idx = 0; idx < pages; idx++) { | |
1462 | tagbase[idx] = 0xFFFFFFFF; | |
1463 | } | |
1464 | ||
1465 | lck_mtx_lock(&ztLock); | |
1466 | if (!zone->tags_inline) { | |
f427ee49 | 1467 | count = (uint32_t)(size / zone_elem_size(zone)); |
0a7de745 A |
1468 | blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock); |
1469 | assert(block != 0xFFFFFFFF); | |
1470 | block /= ztTagsPerBlock; | |
1471 | ztFree(NULL /* zone is unlocked */, block, blocks); | |
1472 | } | |
1473 | ||
1474 | lck_mtx_unlock(&ztLock); | |
5ba3f43e A |
1475 | } |
1476 | ||
1477 | uint32_t | |
1478 | zone_index_from_tag_index(uint32_t tag_zone_index, vm_size_t * elem_size) | |
1479 | { | |
0a7de745 | 1480 | simple_lock(&all_zones_lock, &zone_locks_grp); |
5ba3f43e | 1481 | |
f427ee49 A |
1482 | zone_index_foreach(idx) { |
1483 | zone_t z = &zone_array[idx]; | |
0a7de745 A |
1484 | if (!z->tags) { |
1485 | continue; | |
1486 | } | |
1487 | if (tag_zone_index != z->tag_zone_index) { | |
1488 | continue; | |
1489 | } | |
f427ee49 A |
1490 | |
1491 | *elem_size = zone_elem_size(z); | |
1492 | simple_unlock(&all_zones_lock); | |
1493 | return idx; | |
0a7de745 | 1494 | } |
5ba3f43e | 1495 | |
0a7de745 | 1496 | simple_unlock(&all_zones_lock); |
5ba3f43e | 1497 | |
f427ee49 | 1498 | return -1U; |
5ba3f43e A |
1499 | } |
1500 | ||
1501 | #endif /* VM_MAX_TAG_ZONES */ | |
f427ee49 | 1502 | #pragma mark zalloc helpers |
5ba3f43e | 1503 | |
f427ee49 A |
1504 | const char * |
1505 | zone_name(zone_t z) | |
39037602 | 1506 | { |
f427ee49 A |
1507 | return z->z_name; |
1508 | } | |
39037602 | 1509 | |
f427ee49 A |
1510 | const char * |
1511 | zone_heap_name(zone_t z) | |
1512 | { | |
1513 | if (__probable(z->kalloc_heap < KHEAP_ID_COUNT)) { | |
1514 | return kalloc_heap_names[z->kalloc_heap]; | |
39037602 | 1515 | } |
f427ee49 | 1516 | return "invalid"; |
39236c6e A |
1517 | } |
1518 | ||
f427ee49 A |
1519 | static inline vm_size_t |
1520 | zone_submaps_approx_size(void) | |
5ba3f43e | 1521 | { |
f427ee49 | 1522 | vm_size_t size = 0; |
5ba3f43e | 1523 | |
f427ee49 A |
1524 | for (unsigned idx = 0; idx <= zone_last_submap_idx; idx++) { |
1525 | size += zone_submaps[idx]->size; | |
5ba3f43e | 1526 | } |
f427ee49 | 1527 | |
5ba3f43e A |
1528 | return size; |
1529 | } | |
1530 | ||
f427ee49 A |
1531 | bool |
1532 | zone_maps_owned(vm_address_t addr, vm_size_t size) | |
1533 | { | |
1534 | return from_zone_map(addr, size); | |
1535 | } | |
5ba3f43e | 1536 | |
f427ee49 A |
1537 | void |
1538 | zone_map_sizes( | |
1539 | vm_map_size_t *psize, | |
1540 | vm_map_size_t *pfree, | |
1541 | vm_map_size_t *plargest_free) | |
39236c6e | 1542 | { |
f427ee49 A |
1543 | vm_map_sizes(zone_submaps[Z_SUBMAP_IDX_GENERAL_MAP], psize, pfree, plargest_free); |
1544 | } | |
39236c6e | 1545 | |
f427ee49 A |
1546 | vm_map_t |
1547 | zone_submap(zone_t zone) | |
1548 | { | |
1549 | return submap_for_zone(zone); | |
1550 | } | |
39236c6e | 1551 | |
f427ee49 A |
1552 | unsigned |
1553 | zpercpu_count(void) | |
1554 | { | |
1555 | return zpercpu_early_count; | |
1556 | } | |
1557 | ||
1558 | int | |
1559 | track_this_zone(const char *zonename, const char *logname) | |
1560 | { | |
1561 | unsigned int len; | |
1562 | const char *zc = zonename; | |
1563 | const char *lc = logname; | |
1564 | ||
1565 | /* | |
1566 | * Compare the strings. We bound the compare by MAX_ZONE_NAME. | |
39236c6e | 1567 | */ |
f427ee49 A |
1568 | |
1569 | for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) { | |
1570 | /* | |
1571 | * If the current characters don't match, check for a space in | |
1572 | * in the zone name and a corresponding period in the log name. | |
1573 | * If that's not there, then the strings don't match. | |
1574 | */ | |
1575 | ||
1576 | if (*zc != *lc && !(*zc == ' ' && *lc == '.')) { | |
1577 | break; | |
0a7de745 | 1578 | } |
39236c6e | 1579 | |
f427ee49 A |
1580 | /* |
1581 | * The strings are equal so far. If we're at the end, then it's a match. | |
1582 | */ | |
1583 | ||
1584 | if (*zc == '\0') { | |
1585 | return TRUE; | |
1586 | } | |
39236c6e A |
1587 | } |
1588 | ||
f427ee49 | 1589 | return FALSE; |
39236c6e A |
1590 | } |
1591 | ||
f427ee49 | 1592 | #if DEBUG || DEVELOPMENT |
39236c6e | 1593 | |
f427ee49 A |
1594 | vm_size_t |
1595 | zone_element_info(void *addr, vm_tag_t * ptag) | |
39236c6e | 1596 | { |
f427ee49 A |
1597 | vm_size_t size = 0; |
1598 | vm_tag_t tag = VM_KERN_MEMORY_NONE; | |
1599 | struct zone_page_metadata *meta; | |
1600 | struct zone *src_zone; | |
1601 | ||
1602 | if (from_zone_map(addr, sizeof(void *))) { | |
1603 | meta = zone_native_meta_from_addr(addr); | |
1604 | src_zone = &zone_array[meta->zm_index]; | |
1605 | #if VM_MAX_TAG_ZONES | |
1606 | if (__improbable(src_zone->tags)) { | |
1607 | tag = (ZTAG(src_zone, (vm_offset_t) addr)[0] >> 1); | |
1608 | } | |
1609 | #endif /* VM_MAX_TAG_ZONES */ | |
1610 | size = zone_elem_size(src_zone); | |
1611 | } else { | |
1612 | #if CONFIG_GZALLOC | |
1613 | gzalloc_element_size(addr, NULL, &size); | |
1614 | #endif /* CONFIG_GZALLOC */ | |
0a7de745 | 1615 | } |
f427ee49 A |
1616 | *ptag = tag; |
1617 | return size; | |
39236c6e | 1618 | } |
0a7de745 | 1619 | |
f427ee49 A |
1620 | #endif /* DEBUG || DEVELOPMENT */ |
1621 | ||
39236c6e | 1622 | /* Someone wrote to freed memory. */ |
f427ee49 A |
1623 | __abortlike |
1624 | static void | |
1625 | zone_element_was_modified_panic( | |
1626 | zone_t zone, | |
1627 | vm_offset_t element, | |
1628 | vm_offset_t found, | |
1629 | vm_offset_t expected, | |
1630 | vm_offset_t offset) | |
1631 | { | |
1632 | panic("a freed zone element has been modified in zone %s%s: " | |
1633 | "expected %p but found %p, bits changed %p, " | |
1634 | "at offset %d of %d in element %p, cookies %p %p", | |
1635 | zone_heap_name(zone), | |
1636 | zone->z_name, | |
0a7de745 A |
1637 | (void *) expected, |
1638 | (void *) found, | |
1639 | (void *) (expected ^ found), | |
1640 | (uint32_t) offset, | |
f427ee49 | 1641 | (uint32_t) zone_elem_size(zone), |
0a7de745 A |
1642 | (void *) element, |
1643 | (void *) zp_nopoison_cookie, | |
1644 | (void *) zp_poisoned_cookie); | |
39236c6e A |
1645 | } |
1646 | ||
f427ee49 A |
1647 | /* The backup pointer is stored in the last pointer-sized location in an element. */ |
1648 | __header_always_inline vm_offset_t * | |
1649 | get_backup_ptr(vm_size_t elem_size, vm_offset_t *element) | |
1650 | { | |
1651 | return (vm_offset_t *)((vm_offset_t)element + elem_size - sizeof(vm_offset_t)); | |
1652 | } | |
1653 | ||
39236c6e A |
1654 | /* |
1655 | * The primary and backup pointers don't match. | |
1656 | * Determine which one was likely the corrupted pointer, find out what it | |
1657 | * probably should have been, and panic. | |
39236c6e | 1658 | */ |
f427ee49 | 1659 | __abortlike |
0a7de745 | 1660 | static void |
f427ee49 A |
1661 | backup_ptr_mismatch_panic( |
1662 | zone_t zone, | |
1663 | struct zone_page_metadata *page_meta, | |
1664 | vm_offset_t page, | |
1665 | vm_offset_t element) | |
39236c6e | 1666 | { |
f427ee49 A |
1667 | vm_offset_t primary = *(vm_offset_t *)element; |
1668 | vm_offset_t backup = *get_backup_ptr(zone_elem_size(zone), &element); | |
39236c6e | 1669 | vm_offset_t likely_backup; |
39037602 | 1670 | vm_offset_t likely_primary; |
f427ee49 | 1671 | zone_addr_kind_t kind = zone_addr_kind(page, zone_elem_size(zone)); |
39236c6e | 1672 | |
39037602 | 1673 | likely_primary = primary ^ zp_nopoison_cookie; |
39236c6e | 1674 | boolean_t sane_backup; |
f427ee49 A |
1675 | boolean_t sane_primary = zone_page_meta_is_sane_element(zone, page_meta, |
1676 | page, likely_primary, kind); | |
1677 | boolean_t element_was_poisoned = (backup & 0x1); | |
39236c6e | 1678 | |
fe8ab488 A |
1679 | #if defined(__LP64__) |
1680 | /* We can inspect the tag in the upper bits for additional confirmation */ | |
0a7de745 | 1681 | if ((backup & 0xFFFFFF0000000000) == 0xFACADE0000000000) { |
fe8ab488 | 1682 | element_was_poisoned = TRUE; |
0a7de745 | 1683 | } else if ((backup & 0xFFFFFF0000000000) == 0xC0FFEE0000000000) { |
fe8ab488 | 1684 | element_was_poisoned = FALSE; |
0a7de745 | 1685 | } |
fe8ab488 A |
1686 | #endif |
1687 | ||
39236c6e A |
1688 | if (element_was_poisoned) { |
1689 | likely_backup = backup ^ zp_poisoned_cookie; | |
316670eb | 1690 | } else { |
39236c6e | 1691 | likely_backup = backup ^ zp_nopoison_cookie; |
316670eb | 1692 | } |
f427ee49 A |
1693 | sane_backup = zone_page_meta_is_sane_element(zone, page_meta, |
1694 | page, likely_backup, kind); | |
39236c6e A |
1695 | |
1696 | /* The primary is definitely the corrupted one */ | |
0a7de745 | 1697 | if (!sane_primary && sane_backup) { |
39037602 | 1698 | zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0); |
0a7de745 | 1699 | } |
39236c6e A |
1700 | |
1701 | /* The backup is definitely the corrupted one */ | |
0a7de745 | 1702 | if (sane_primary && !sane_backup) { |
fe8ab488 | 1703 | zone_element_was_modified_panic(zone, element, backup, |
0a7de745 | 1704 | (likely_primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)), |
f427ee49 | 1705 | zone_elem_size(zone) - sizeof(vm_offset_t)); |
0a7de745 | 1706 | } |
39236c6e A |
1707 | |
1708 | /* | |
1709 | * Not sure which is the corrupted one. | |
1710 | * It's less likely that the backup pointer was overwritten with | |
1711 | * ( (sane address) ^ (valid cookie) ), so we'll guess that the | |
1712 | * primary pointer has been overwritten with a sane but incorrect address. | |
1713 | */ | |
0a7de745 | 1714 | if (sane_primary && sane_backup) { |
5ba3f43e | 1715 | zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0); |
0a7de745 | 1716 | } |
39236c6e A |
1717 | |
1718 | /* Neither are sane, so just guess. */ | |
5ba3f43e | 1719 | zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0); |
316670eb A |
1720 | } |
1721 | ||
39236c6e | 1722 | /* |
f427ee49 A |
1723 | * zone_sequestered_page_get |
1724 | * z is locked | |
39236c6e | 1725 | */ |
f427ee49 A |
1726 | static struct zone_page_metadata * |
1727 | zone_sequestered_page_get(zone_t z, vm_offset_t *page) | |
39236c6e | 1728 | { |
f427ee49 | 1729 | const zone_addr_kind_t kind = ZONE_ADDR_NATIVE; |
39236c6e | 1730 | |
f427ee49 A |
1731 | if (!zone_pva_is_null(z->pages_sequester)) { |
1732 | if (os_sub_overflow(z->sequester_page_count, z->alloc_pages, | |
1733 | &z->sequester_page_count)) { | |
1734 | zone_accounting_panic(z, "sequester_page_count wrap-around"); | |
1735 | } | |
1736 | return zone_meta_queue_pop(z, &z->pages_sequester, kind, page); | |
0a7de745 | 1737 | } |
39236c6e | 1738 | |
f427ee49 A |
1739 | return NULL; |
1740 | } | |
39236c6e | 1741 | |
f427ee49 A |
1742 | /* |
1743 | * zone_sequestered_page_populate | |
1744 | * z is unlocked | |
1745 | * page_meta is invalid on failure | |
1746 | */ | |
1747 | static kern_return_t | |
1748 | zone_sequestered_page_populate(zone_t z, struct zone_page_metadata *page_meta, | |
1749 | vm_offset_t space, vm_size_t alloc_size, int zflags) | |
1750 | { | |
1751 | kern_return_t retval; | |
39236c6e | 1752 | |
f427ee49 A |
1753 | assert(alloc_size == ptoa(z->alloc_pages)); |
1754 | retval = kernel_memory_populate(submap_for_zone(z), space, alloc_size, | |
1755 | zflags, VM_KERN_MEMORY_ZONE); | |
1756 | if (retval != KERN_SUCCESS) { | |
1757 | lock_zone(z); | |
1758 | zone_meta_queue_push(z, &z->pages_sequester, page_meta, ZONE_ADDR_NATIVE); | |
1759 | z->sequester_page_count += z->alloc_pages; | |
1760 | unlock_zone(z); | |
39236c6e | 1761 | } |
f427ee49 | 1762 | return retval; |
39236c6e A |
1763 | } |
1764 | ||
f427ee49 | 1765 | #pragma mark Zone poisoning/zeroing |
39236c6e A |
1766 | |
1767 | /* | |
f427ee49 A |
1768 | * Initialize zone poisoning |
1769 | * called from zone_bootstrap before any allocations are made from zalloc | |
39236c6e | 1770 | */ |
f427ee49 A |
1771 | __startup_func |
1772 | static void | |
1773 | zp_bootstrap(void) | |
39236c6e | 1774 | { |
f427ee49 | 1775 | char temp_buf[16]; |
39236c6e | 1776 | |
f427ee49 A |
1777 | /* |
1778 | * Initialize backup pointer random cookie for poisoned elements | |
1779 | * Try not to call early_random() back to back, it may return | |
1780 | * the same value if mach_absolute_time doesn't have sufficient time | |
1781 | * to tick over between calls. <rdar://problem/11597395> | |
1782 | * (This is only a problem on embedded devices) | |
1783 | */ | |
1784 | zp_poisoned_cookie = (uintptr_t) early_random(); | |
fe8ab488 | 1785 | |
f427ee49 A |
1786 | /* -zp: enable poisoning for every alloc and free */ |
1787 | if (PE_parse_boot_argn("-zp", temp_buf, sizeof(temp_buf))) { | |
1788 | zp_factor = 1; | |
39236c6e | 1789 | } |
f427ee49 A |
1790 | |
1791 | /* -no-zp: disable poisoning */ | |
1792 | if (PE_parse_boot_argn("-no-zp", temp_buf, sizeof(temp_buf))) { | |
1793 | zp_factor = 0; | |
1794 | printf("Zone poisoning disabled\n"); | |
0a7de745 | 1795 | } |
39236c6e | 1796 | |
f427ee49 A |
1797 | /* Initialize backup pointer random cookie for unpoisoned elements */ |
1798 | zp_nopoison_cookie = (uintptr_t) early_random(); | |
1799 | ||
1800 | #if MACH_ASSERT | |
1801 | if (zp_poisoned_cookie == zp_nopoison_cookie) { | |
1802 | panic("early_random() is broken: %p and %p are not random\n", | |
1803 | (void *) zp_poisoned_cookie, (void *) zp_nopoison_cookie); | |
0a7de745 | 1804 | } |
f427ee49 | 1805 | #endif |
39236c6e | 1806 | |
f427ee49 A |
1807 | /* |
1808 | * Use the last bit in the backup pointer to hint poisoning state | |
1809 | * to backup_ptr_mismatch_panic. Valid zone pointers are aligned, so | |
1810 | * the low bits are zero. | |
1811 | */ | |
1812 | zp_poisoned_cookie |= (uintptr_t)0x1ULL; | |
1813 | zp_nopoison_cookie &= ~((uintptr_t)0x1ULL); | |
39236c6e | 1814 | |
f427ee49 | 1815 | #if defined(__LP64__) |
0a7de745 | 1816 | /* |
f427ee49 A |
1817 | * Make backup pointers more obvious in GDB for 64 bit |
1818 | * by making OxFFFFFF... ^ cookie = 0xFACADE... | |
1819 | * (0xFACADE = 0xFFFFFF ^ 0x053521) | |
1820 | * (0xC0FFEE = 0xFFFFFF ^ 0x3f0011) | |
1821 | * The high 3 bytes of a zone pointer are always 0xFFFFFF, and are checked | |
1822 | * by the sanity check, so it's OK for that part of the cookie to be predictable. | |
1823 | * | |
1824 | * TODO: Use #defines, xors, and shifts | |
39037602 | 1825 | */ |
f427ee49 A |
1826 | |
1827 | zp_poisoned_cookie &= 0x000000FFFFFFFFFF; | |
1828 | zp_poisoned_cookie |= 0x0535210000000000; /* 0xFACADE */ | |
1829 | ||
1830 | zp_nopoison_cookie &= 0x000000FFFFFFFFFF; | |
1831 | zp_nopoison_cookie |= 0x3f00110000000000; /* 0xC0FFEE */ | |
1832 | #endif | |
39236c6e A |
1833 | |
1834 | /* | |
f427ee49 A |
1835 | * Initialize zp_min_size to two cachelines. Elements smaller than this will |
1836 | * be zero-ed. | |
39236c6e | 1837 | */ |
f427ee49 A |
1838 | ml_cpu_info_t cpu_info; |
1839 | ml_cpu_get_info(&cpu_info); | |
1840 | zp_min_size = 2 * cpu_info.cache_line_size; | |
1841 | } | |
39236c6e | 1842 | |
f427ee49 A |
1843 | inline uint32_t |
1844 | zone_poison_count_init(zone_t zone) | |
1845 | { | |
1846 | return zp_factor + (((uint32_t)zone_elem_size(zone)) >> zp_scale) ^ | |
1847 | (mach_absolute_time() & 0x7); | |
1848 | } | |
1849 | ||
1850 | #if ZALLOC_ENABLE_POISONING | |
1851 | static bool | |
1852 | zfree_poison_element(zone_t zone, uint32_t *zp_count, vm_offset_t elem) | |
1853 | { | |
1854 | bool poison = false; | |
1855 | uint32_t zp_count_local; | |
39236c6e | 1856 | |
f427ee49 A |
1857 | assert(!zone->percpu); |
1858 | if (zp_factor != 0) { | |
39236c6e | 1859 | /* |
f427ee49 A |
1860 | * Poison the memory of every zp_count-th element before it ends up |
1861 | * on the freelist to catch use-after-free and use of uninitialized | |
1862 | * memory. | |
1863 | * | |
1864 | * Every element is poisoned when zp_factor is set to 1. | |
1865 | * | |
39236c6e | 1866 | */ |
f427ee49 A |
1867 | zp_count_local = os_atomic_load(zp_count, relaxed); |
1868 | if (__improbable(zp_count_local == 0 || zp_factor == 1)) { | |
1869 | poison = true; | |
39037602 | 1870 | |
f427ee49 | 1871 | os_atomic_store(zp_count, zone_poison_count_init(zone), relaxed); |
39236c6e | 1872 | |
f427ee49 A |
1873 | /* memset_pattern{4|8} could help make this faster: <rdar://problem/4662004> */ |
1874 | vm_offset_t *element_cursor = ((vm_offset_t *) elem); | |
1875 | vm_offset_t *end_cursor = (vm_offset_t *)(elem + zone_elem_size(zone)); | |
39236c6e | 1876 | |
f427ee49 A |
1877 | for (; element_cursor < end_cursor; element_cursor++) { |
1878 | *element_cursor = ZONE_POISON; | |
316670eb | 1879 | } |
f427ee49 A |
1880 | } else { |
1881 | os_atomic_store(zp_count, zp_count_local - 1, relaxed); | |
1882 | /* | |
1883 | * Zero first zp_min_size bytes of elements that aren't being poisoned. | |
1884 | * Element size is larger than zp_min_size in this path as elements | |
1885 | * that are smaller will always be zero-ed. | |
1886 | */ | |
1887 | bzero((void *) elem, zp_min_size); | |
316670eb | 1888 | } |
316670eb | 1889 | } |
f427ee49 A |
1890 | return poison; |
1891 | } | |
1892 | #else | |
1893 | static bool | |
1894 | zfree_poison_element(zone_t zone, uint32_t *zp_count, vm_offset_t elem) | |
1895 | { | |
1896 | #pragma unused(zone, zp_count, elem) | |
1897 | assert(!zone->percpu); | |
1898 | return false; | |
1899 | } | |
1900 | #endif | |
39236c6e | 1901 | |
f427ee49 A |
1902 | __attribute__((always_inline)) |
1903 | static bool | |
1904 | zfree_clear(zone_t zone, vm_offset_t addr, vm_size_t elem_size) | |
1905 | { | |
1906 | assert(zone->zfree_clear_mem); | |
1907 | if (zone->percpu) { | |
1908 | zpercpu_foreach_cpu(i) { | |
1909 | bzero((void *)(addr + ptoa(i)), elem_size); | |
1910 | } | |
1911 | } else { | |
1912 | bzero((void *)addr, elem_size); | |
0a7de745 | 1913 | } |
5ba3f43e | 1914 | |
f427ee49 | 1915 | return true; |
316670eb | 1916 | } |
1c79356b | 1917 | |
39236c6e | 1918 | /* |
f427ee49 A |
1919 | * Zero the element if zone has zfree_clear_mem flag set else poison |
1920 | * the element if zp_count hits 0. | |
6d2010ae | 1921 | */ |
f427ee49 A |
1922 | __attribute__((always_inline)) |
1923 | bool | |
1924 | zfree_clear_or_poison(zone_t zone, uint32_t *zp_count, vm_offset_t addr) | |
1925 | { | |
1926 | vm_size_t elem_size = zone_elem_size(zone); | |
39236c6e | 1927 | |
f427ee49 A |
1928 | if (zone->zfree_clear_mem) { |
1929 | return zfree_clear(zone, addr, elem_size); | |
1930 | } | |
0b4e3aa0 | 1931 | |
f427ee49 A |
1932 | return zfree_poison_element(zone, zp_count, (vm_offset_t)addr); |
1933 | } | |
0b4e3aa0 | 1934 | |
3e170ce0 | 1935 | /* |
f427ee49 A |
1936 | * Clear out the old next pointer and backup to avoid leaking the zone |
1937 | * poisoning cookie and so that only values on the freelist have a valid | |
1938 | * cookie. | |
3e170ce0 | 1939 | */ |
f427ee49 A |
1940 | void |
1941 | zone_clear_freelist_pointers(zone_t zone, vm_offset_t addr) | |
1942 | { | |
1943 | vm_offset_t perm_value = 0; | |
1c79356b | 1944 | |
f427ee49 A |
1945 | if (!zone->zfree_clear_mem) { |
1946 | perm_value = ZONE_POISON; | |
1947 | } | |
2d21ac55 | 1948 | |
f427ee49 A |
1949 | vm_offset_t *primary = (vm_offset_t *) addr; |
1950 | vm_offset_t *backup = get_backup_ptr(zone_elem_size(zone), primary); | |
9bccf70c | 1951 | |
f427ee49 A |
1952 | *primary = perm_value; |
1953 | *backup = perm_value; | |
1954 | } | |
1c79356b | 1955 | |
f427ee49 A |
1956 | #if ZALLOC_ENABLE_POISONING |
1957 | __abortlike | |
1958 | static void | |
1959 | zone_element_not_clear_panic(zone_t zone, void *addr) | |
1960 | { | |
1961 | panic("Zone element %p was modified after free for zone %s%s: " | |
1962 | "Expected element to be cleared", addr, zone_heap_name(zone), | |
1963 | zone->z_name); | |
1964 | } | |
1c79356b | 1965 | |
1c79356b | 1966 | /* |
f427ee49 A |
1967 | * Validate that the element was not tampered with while it was in the |
1968 | * freelist. | |
1c79356b | 1969 | */ |
f427ee49 A |
1970 | void |
1971 | zalloc_validate_element(zone_t zone, vm_offset_t addr, vm_size_t size, bool validate) | |
1972 | { | |
1973 | if (zone->percpu) { | |
1974 | assert(zone->zfree_clear_mem); | |
1975 | zpercpu_foreach_cpu(i) { | |
1976 | if (memcmp_zero_ptr_aligned((void *)(addr + ptoa(i)), size)) { | |
1977 | zone_element_not_clear_panic(zone, (void *)(addr + ptoa(i))); | |
1978 | } | |
1979 | } | |
1980 | } else if (zone->zfree_clear_mem) { | |
1981 | if (memcmp_zero_ptr_aligned((void *)addr, size)) { | |
1982 | zone_element_not_clear_panic(zone, (void *)addr); | |
1983 | } | |
1984 | } else if (__improbable(validate)) { | |
1985 | const vm_offset_t *p = (vm_offset_t *)addr; | |
1986 | const vm_offset_t *end = (vm_offset_t *)(addr + size); | |
1987 | ||
1988 | for (; p < end; p++) { | |
1989 | if (*p != ZONE_POISON) { | |
1990 | zone_element_was_modified_panic(zone, addr, | |
1991 | *p, ZONE_POISON, (vm_offset_t)p - addr); | |
1992 | } | |
1993 | } | |
1994 | } else { | |
1995 | /* | |
1996 | * If element wasn't poisoned or entirely cleared, validate that the | |
1997 | * minimum bytes that were cleared on free haven't been corrupted. | |
1998 | * addr is advanced by ptr size as we have already validated and cleared | |
1999 | * the freelist pointer/zcache canary. | |
2000 | */ | |
2001 | if (memcmp_zero_ptr_aligned((void *) (addr + sizeof(vm_offset_t)), | |
2002 | zp_min_size - sizeof(vm_offset_t))) { | |
2003 | zone_element_not_clear_panic(zone, (void *)addr); | |
2004 | } | |
2005 | } | |
2006 | } | |
2007 | #endif /* ZALLOC_ENABLE_POISONING */ | |
2008 | ||
2009 | #pragma mark Zone Leak Detection | |
39236c6e | 2010 | |
c910b4d9 A |
2011 | /* |
2012 | * Zone leak debugging code | |
2013 | * | |
2014 | * When enabled, this code keeps a log to track allocations to a particular zone that have not | |
2015 | * yet been freed. Examining this log will reveal the source of a zone leak. The log is allocated | |
2016 | * only when logging is enabled, so there is no effect on the system when it's turned off. Logging is | |
2017 | * off by default. | |
2018 | * | |
2019 | * Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone> | |
0a7de745 | 2020 | * is the name of the zone you wish to log. |
c910b4d9 A |
2021 | * |
2022 | * This code only tracks one zone, so you need to identify which one is leaking first. | |
2023 | * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone | |
2024 | * garbage collector. Note that the zone name printed in the panic message is not necessarily the one | |
2025 | * containing the leak. So do a zprint from gdb and locate the zone with the bloated size. This | |
2026 | * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test. The | |
2027 | * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs. | |
2028 | * See the help in the kgmacros for usage info. | |
2029 | * | |
2030 | * | |
2031 | * Zone corruption logging | |
2032 | * | |
2033 | * Logging can also be used to help identify the source of a zone corruption. First, identify the zone | |
2034 | * that is being corrupted, then add "-zc zlog=<zone name>" to the boot-args. When -zc is used in conjunction | |
2035 | * with zlog, it changes the logging style to track both allocations and frees to the zone. So when the | |
2036 | * corruption is detected, examining the log will show you the stack traces of the callers who last allocated | |
2037 | * and freed any particular element in the zone. Use the findelem kgmacro with the address of the element that's been | |
2038 | * corrupted to examine its history. This should lead to the source of the corruption. | |
2039 | */ | |
2040 | ||
f427ee49 A |
2041 | /* Returns TRUE if we rolled over the counter at factor */ |
2042 | __header_always_inline bool | |
2043 | sample_counter(volatile uint32_t *count_p, uint32_t factor) | |
2044 | { | |
2045 | uint32_t old_count, new_count = 0; | |
2046 | if (count_p != NULL) { | |
2047 | os_atomic_rmw_loop(count_p, old_count, new_count, relaxed, { | |
2048 | new_count = old_count + 1; | |
2049 | if (new_count >= factor) { | |
2050 | new_count = 0; | |
2051 | } | |
2052 | }); | |
2053 | } | |
39037602 | 2054 | |
f427ee49 A |
2055 | return new_count == 0; |
2056 | } | |
c910b4d9 | 2057 | |
f427ee49 | 2058 | #if ZONE_ENABLE_LOGGING |
39236c6e | 2059 | /* Log allocations and frees to help debug a zone element corruption */ |
f427ee49 | 2060 | TUNABLE(bool, corruption_debug_flag, "-zc", false); |
39037602 | 2061 | |
f427ee49 | 2062 | #define MAX_NUM_ZONES_ALLOWED_LOGGING 10 /* Maximum 10 zones can be logged at once */ |
39037602 | 2063 | |
f427ee49 A |
2064 | static int max_num_zones_to_log = MAX_NUM_ZONES_ALLOWED_LOGGING; |
2065 | static int num_zones_logged = 0; | |
39236c6e | 2066 | |
c910b4d9 | 2067 | /* |
0a7de745 | 2068 | * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to |
39037602 A |
2069 | * the number of records you want in the log. For example, "zrecs=10" sets it to 10 records. Since this |
2070 | * is the number of stacks suspected of leaking, we don't need many records. | |
c910b4d9 | 2071 | */ |
316670eb | 2072 | |
f427ee49 | 2073 | #if defined(__LP64__) |
0a7de745 | 2074 | #define ZRECORDS_MAX 2560 /* Max records allowed in the log */ |
6d2010ae | 2075 | #else |
0a7de745 | 2076 | #define ZRECORDS_MAX 1536 /* Max records allowed in the log */ |
6d2010ae | 2077 | #endif |
0a7de745 | 2078 | #define ZRECORDS_DEFAULT 1024 /* default records in log if zrecs is not specificed in boot-args */ |
0b4e3aa0 | 2079 | |
f427ee49 | 2080 | static TUNABLE(uint32_t, log_records, "zrecs", ZRECORDS_DEFAULT); |
c910b4d9 | 2081 | |
f427ee49 A |
2082 | static void |
2083 | zone_enable_logging(zone_t z) | |
2084 | { | |
2085 | z->zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, | |
2086 | (corruption_debug_flag == FALSE) /* caller_will_remove_entries_for_element? */); | |
c910b4d9 | 2087 | |
f427ee49 A |
2088 | if (z->zlog_btlog) { |
2089 | printf("zone: logging started for zone %s%s\n", | |
2090 | zone_heap_name(z), z->z_name); | |
2091 | } else { | |
2092 | printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n"); | |
2093 | z->zone_logging = false; | |
2094 | } | |
2095 | } | |
c910b4d9 | 2096 | |
f427ee49 A |
2097 | /** |
2098 | * @function zone_setup_logging | |
2099 | * | |
2100 | * @abstract | |
2101 | * Optionally sets up a zone for logging. | |
2102 | * | |
2103 | * @discussion | |
2104 | * We recognized two boot-args: | |
2105 | * | |
2106 | * zlog=<zone_to_log> | |
2107 | * zrecs=<num_records_in_log> | |
2108 | * | |
2109 | * The zlog arg is used to specify the zone name that should be logged, | |
2110 | * and zrecs is used to control the size of the log. | |
2111 | * | |
2112 | * If zrecs is not specified, a default value is used. | |
2113 | */ | |
2114 | static void | |
2115 | zone_setup_logging(zone_t z) | |
c910b4d9 | 2116 | { |
f427ee49 A |
2117 | char zone_name[MAX_ZONE_NAME]; /* Temp. buffer for the zone name */ |
2118 | char zlog_name[MAX_ZONE_NAME]; /* Temp. buffer to create the strings zlog1, zlog2 etc... */ | |
2119 | char zlog_val[MAX_ZONE_NAME]; /* the zone name we're logging, if any */ | |
c910b4d9 A |
2120 | |
2121 | /* | |
f427ee49 A |
2122 | * Don't allow more than ZRECORDS_MAX records even if the user asked for more. |
2123 | * | |
2124 | * This prevents accidentally hogging too much kernel memory | |
2125 | * and making the system unusable. | |
c910b4d9 | 2126 | */ |
f427ee49 A |
2127 | if (log_records > ZRECORDS_MAX) { |
2128 | log_records = ZRECORDS_MAX; | |
2129 | } | |
c910b4d9 | 2130 | |
f427ee49 A |
2131 | /* |
2132 | * Append kalloc heap name to zone name (if zone is used by kalloc) | |
2133 | */ | |
2134 | snprintf(zone_name, MAX_ZONE_NAME, "%s%s", zone_heap_name(z), z->z_name); | |
c910b4d9 | 2135 | |
f427ee49 A |
2136 | /* zlog0 isn't allowed. */ |
2137 | for (int i = 1; i <= max_num_zones_to_log; i++) { | |
2138 | snprintf(zlog_name, MAX_ZONE_NAME, "zlog%d", i); | |
2139 | ||
2140 | if (PE_parse_boot_argn(zlog_name, zlog_val, sizeof(zlog_val)) && | |
2141 | track_this_zone(zone_name, zlog_val)) { | |
2142 | z->zone_logging = true; | |
2143 | num_zones_logged++; | |
c910b4d9 | 2144 | break; |
0a7de745 | 2145 | } |
f427ee49 | 2146 | } |
c910b4d9 | 2147 | |
f427ee49 A |
2148 | /* |
2149 | * Backwards compat. with the old boot-arg used to specify single zone | |
2150 | * logging i.e. zlog Needs to happen after the newer zlogn checks | |
2151 | * because the prefix will match all the zlogn | |
2152 | * boot-args. | |
2153 | */ | |
2154 | if (!z->zone_logging && | |
2155 | PE_parse_boot_argn("zlog", zlog_val, sizeof(zlog_val)) && | |
2156 | track_this_zone(zone_name, zlog_val)) { | |
2157 | z->zone_logging = true; | |
2158 | num_zones_logged++; | |
c910b4d9 A |
2159 | } |
2160 | ||
f427ee49 A |
2161 | |
2162 | /* | |
2163 | * If we want to log a zone, see if we need to allocate buffer space for | |
2164 | * the log. | |
2165 | * | |
2166 | * Some vm related zones are zinit'ed before we can do a kmem_alloc, so | |
2167 | * we have to defer allocation in that case. | |
2168 | * | |
2169 | * zone_init() will finish the job. | |
2170 | * | |
2171 | * If we want to log one of the VM related zones that's set up early on, | |
2172 | * we will skip allocation of the log until zinit is called again later | |
2173 | * on some other zone. | |
2174 | */ | |
2175 | if (z->zone_logging && startup_phase >= STARTUP_SUB_KMEM_ALLOC) { | |
2176 | zone_enable_logging(z); | |
2177 | } | |
c910b4d9 A |
2178 | } |
2179 | ||
f427ee49 A |
2180 | /* |
2181 | * Each record in the log contains a pointer to the zone element it refers to, | |
2182 | * and a small array to hold the pc's from the stack trace. A | |
2183 | * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging, | |
2184 | * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees. | |
2185 | * If the log fills, old records are replaced as if it were a circular buffer. | |
2186 | */ | |
2187 | ||
2188 | ||
2189 | /* | |
2190 | * Decide if we want to log this zone by doing a string compare between a zone name and the name | |
2191 | * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not | |
2192 | * possible to include spaces in strings passed in via the boot-args, a period in the logname will | |
2193 | * match a space in the zone name. | |
2194 | */ | |
c910b4d9 A |
2195 | |
2196 | /* | |
2197 | * Test if we want to log this zalloc/zfree event. We log if this is the zone we're interested in and | |
2198 | * the buffer for the records has been allocated. | |
2199 | */ | |
2200 | ||
f427ee49 A |
2201 | #define DO_LOGGING(z) (z->zlog_btlog != NULL) |
2202 | #else /* !ZONE_ENABLE_LOGGING */ | |
2203 | #define DO_LOGGING(z) 0 | |
2204 | #endif /* !ZONE_ENABLE_LOGGING */ | |
c910b4d9 | 2205 | |
6d2010ae | 2206 | #if CONFIG_ZLEAKS |
6d2010ae | 2207 | |
0a7de745 | 2208 | /* |
6d2010ae | 2209 | * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding |
316670eb | 2210 | * allocations made by the zone allocator. Every zleak_sample_factor allocations in each zone, we capture a |
0a7de745 | 2211 | * backtrace. Every free, we examine the table and determine if the allocation was being tracked, |
6d2010ae A |
2212 | * and stop tracking it if it was being tracked. |
2213 | * | |
0a7de745 | 2214 | * We track the allocations in the zallocations hash table, which stores the address that was returned from |
6d2010ae A |
2215 | * the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which |
2216 | * stores the backtrace associated with that allocation. This provides uniquing for the relatively large | |
2217 | * backtraces - we don't store them more than once. | |
2218 | * | |
2219 | * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up | |
2220 | * a large amount of virtual space. | |
2221 | */ | |
0a7de745 A |
2222 | #define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */ |
2223 | #define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */ | |
2224 | #define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */ | |
2225 | #define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */ | |
2226 | uint32_t zleak_state = 0; /* State of collection, as above */ | |
6d2010ae | 2227 | |
0a7de745 A |
2228 | boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */ |
2229 | vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */ | |
2230 | vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */ | |
2231 | unsigned int zleak_sample_factor = 1000; /* Allocations per sample attempt */ | |
6d2010ae A |
2232 | |
2233 | /* | |
2234 | * Counters for allocation statistics. | |
0a7de745 | 2235 | */ |
6d2010ae A |
2236 | |
2237 | /* Times two active records want to occupy the same spot */ | |
2238 | unsigned int z_alloc_collisions = 0; | |
2239 | unsigned int z_trace_collisions = 0; | |
2240 | ||
2241 | /* Times a new record lands on a spot previously occupied by a freed allocation */ | |
2242 | unsigned int z_alloc_overwrites = 0; | |
2243 | unsigned int z_trace_overwrites = 0; | |
2244 | ||
2245 | /* Times a new alloc or trace is put into the hash table */ | |
0a7de745 A |
2246 | unsigned int z_alloc_recorded = 0; |
2247 | unsigned int z_trace_recorded = 0; | |
6d2010ae A |
2248 | |
2249 | /* Times zleak_log returned false due to not being able to acquire the lock */ | |
0a7de745 | 2250 | unsigned int z_total_conflicts = 0; |
6d2010ae | 2251 | |
6d2010ae A |
2252 | /* |
2253 | * Structure for keeping track of an allocation | |
2254 | * An allocation bucket is in use if its element is not NULL | |
2255 | */ | |
2256 | struct zallocation { | |
0a7de745 A |
2257 | uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */ |
2258 | vm_size_t za_size; /* how much memory did this allocation take up? */ | |
2259 | uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */ | |
6d2010ae | 2260 | /* TODO: #if this out */ |
0a7de745 | 2261 | uint32_t za_hit_count; /* for determining effectiveness of hash function */ |
6d2010ae A |
2262 | }; |
2263 | ||
2264 | /* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */ | |
316670eb A |
2265 | uint32_t zleak_alloc_buckets = CONFIG_ZLEAK_ALLOCATION_MAP_NUM; |
2266 | uint32_t zleak_trace_buckets = CONFIG_ZLEAK_TRACE_MAP_NUM; | |
6d2010ae A |
2267 | |
2268 | vm_size_t zleak_max_zonemap_size; | |
2269 | ||
2270 | /* Hashmaps of allocations and their corresponding traces */ | |
0a7de745 A |
2271 | static struct zallocation* zallocations; |
2272 | static struct ztrace* ztraces; | |
6d2010ae A |
2273 | |
2274 | /* not static so that panic can see this, see kern/debug.c */ | |
0a7de745 | 2275 | struct ztrace* top_ztrace; |
6d2010ae A |
2276 | |
2277 | /* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */ | |
f427ee49 A |
2278 | LCK_GRP_DECLARE(zleak_lock_grp, "zleak_lock"); |
2279 | LCK_SPIN_DECLARE(zleak_lock, &zleak_lock_grp); | |
6d2010ae A |
2280 | |
2281 | /* | |
2282 | * Initializes the zone leak monitor. Called from zone_init() | |
2283 | */ | |
f427ee49 | 2284 | __startup_func |
0a7de745 A |
2285 | static void |
2286 | zleak_init(vm_size_t max_zonemap_size) | |
6d2010ae | 2287 | { |
0a7de745 A |
2288 | char scratch_buf[16]; |
2289 | boolean_t zleak_enable_flag = FALSE; | |
6d2010ae A |
2290 | |
2291 | zleak_max_zonemap_size = max_zonemap_size; | |
0a7de745 | 2292 | zleak_global_tracking_threshold = max_zonemap_size / 2; |
6d2010ae A |
2293 | zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8; |
2294 | ||
5ba3f43e A |
2295 | #if CONFIG_EMBEDDED |
2296 | if (PE_parse_boot_argn("-zleakon", scratch_buf, sizeof(scratch_buf))) { | |
2297 | zleak_enable_flag = TRUE; | |
2298 | printf("zone leak detection enabled\n"); | |
2299 | } else { | |
2300 | zleak_enable_flag = FALSE; | |
2301 | printf("zone leak detection disabled\n"); | |
2302 | } | |
2303 | #else /* CONFIG_EMBEDDED */ | |
6d2010ae A |
2304 | /* -zleakoff (flag to disable zone leak monitor) */ |
2305 | if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) { | |
2306 | zleak_enable_flag = FALSE; | |
2307 | printf("zone leak detection disabled\n"); | |
2308 | } else { | |
2309 | zleak_enable_flag = TRUE; | |
2310 | printf("zone leak detection enabled\n"); | |
2311 | } | |
5ba3f43e | 2312 | #endif /* CONFIG_EMBEDDED */ |
0a7de745 | 2313 | |
6d2010ae | 2314 | /* zfactor=XXXX (override how often to sample the zone allocator) */ |
316670eb | 2315 | if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) { |
39236c6e | 2316 | printf("Zone leak factor override: %u\n", zleak_sample_factor); |
6d2010ae | 2317 | } |
316670eb | 2318 | |
6d2010ae A |
2319 | /* zleak-allocs=XXXX (override number of buckets in zallocations) */ |
2320 | if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets, sizeof(zleak_alloc_buckets))) { | |
39236c6e | 2321 | printf("Zone leak alloc buckets override: %u\n", zleak_alloc_buckets); |
6d2010ae | 2322 | /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ |
0a7de745 | 2323 | if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets - 1))) { |
39236c6e | 2324 | printf("Override isn't a power of two, bad things might happen!\n"); |
6d2010ae A |
2325 | } |
2326 | } | |
0a7de745 | 2327 | |
6d2010ae A |
2328 | /* zleak-traces=XXXX (override number of buckets in ztraces) */ |
2329 | if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets, sizeof(zleak_trace_buckets))) { | |
39236c6e | 2330 | printf("Zone leak trace buckets override: %u\n", zleak_trace_buckets); |
6d2010ae | 2331 | /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */ |
0a7de745 | 2332 | if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets - 1))) { |
39236c6e | 2333 | printf("Override isn't a power of two, bad things might happen!\n"); |
6d2010ae A |
2334 | } |
2335 | } | |
0a7de745 | 2336 | |
6d2010ae A |
2337 | if (zleak_enable_flag) { |
2338 | zleak_state = ZLEAK_STATE_ENABLED; | |
2339 | } | |
2340 | } | |
2341 | ||
6d2010ae A |
2342 | /* |
2343 | * Support for kern.zleak.active sysctl - a simplified | |
316670eb | 2344 | * version of the zleak_state variable. |
6d2010ae A |
2345 | */ |
2346 | int | |
2347 | get_zleak_state(void) | |
2348 | { | |
0a7de745 A |
2349 | if (zleak_state & ZLEAK_STATE_FAILED) { |
2350 | return -1; | |
2351 | } | |
2352 | if (zleak_state & ZLEAK_STATE_ACTIVE) { | |
2353 | return 1; | |
2354 | } | |
2355 | return 0; | |
6d2010ae A |
2356 | } |
2357 | ||
6d2010ae A |
2358 | kern_return_t |
2359 | zleak_activate(void) | |
2360 | { | |
2361 | kern_return_t retval; | |
2362 | vm_size_t z_alloc_size = zleak_alloc_buckets * sizeof(struct zallocation); | |
2363 | vm_size_t z_trace_size = zleak_trace_buckets * sizeof(struct ztrace); | |
2364 | void *allocations_ptr = NULL; | |
2365 | void *traces_ptr = NULL; | |
2366 | ||
2367 | /* Only one thread attempts to activate at a time */ | |
2368 | if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) { | |
2369 | return KERN_SUCCESS; | |
2370 | } | |
2371 | ||
2372 | /* Indicate that we're doing the setup */ | |
316670eb | 2373 | lck_spin_lock(&zleak_lock); |
6d2010ae | 2374 | if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) { |
316670eb | 2375 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
2376 | return KERN_SUCCESS; |
2377 | } | |
2378 | ||
2379 | zleak_state |= ZLEAK_STATE_ACTIVATING; | |
316670eb | 2380 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
2381 | |
2382 | /* Allocate and zero tables */ | |
3e170ce0 | 2383 | retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&allocations_ptr, z_alloc_size, VM_KERN_MEMORY_OSFMK); |
6d2010ae A |
2384 | if (retval != KERN_SUCCESS) { |
2385 | goto fail; | |
2386 | } | |
2387 | ||
3e170ce0 | 2388 | retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&traces_ptr, z_trace_size, VM_KERN_MEMORY_OSFMK); |
6d2010ae A |
2389 | if (retval != KERN_SUCCESS) { |
2390 | goto fail; | |
2391 | } | |
2392 | ||
2393 | bzero(allocations_ptr, z_alloc_size); | |
2394 | bzero(traces_ptr, z_trace_size); | |
2395 | ||
2396 | /* Everything's set. Install tables, mark active. */ | |
2397 | zallocations = allocations_ptr; | |
2398 | ztraces = traces_ptr; | |
2399 | ||
2400 | /* | |
0a7de745 | 2401 | * Initialize the top_ztrace to the first entry in ztraces, |
6d2010ae A |
2402 | * so we don't have to check for null in zleak_log |
2403 | */ | |
2404 | top_ztrace = &ztraces[0]; | |
2405 | ||
2406 | /* | |
2407 | * Note that we do need a barrier between installing | |
2408 | * the tables and setting the active flag, because the zfree() | |
2409 | * path accesses the table without a lock if we're active. | |
2410 | */ | |
316670eb | 2411 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
2412 | zleak_state |= ZLEAK_STATE_ACTIVE; |
2413 | zleak_state &= ~ZLEAK_STATE_ACTIVATING; | |
316670eb | 2414 | lck_spin_unlock(&zleak_lock); |
0a7de745 | 2415 | |
6d2010ae A |
2416 | return 0; |
2417 | ||
0a7de745 | 2418 | fail: |
6d2010ae A |
2419 | /* |
2420 | * If we fail to allocate memory, don't further tax | |
2421 | * the system by trying again. | |
2422 | */ | |
316670eb | 2423 | lck_spin_lock(&zleak_lock); |
6d2010ae A |
2424 | zleak_state |= ZLEAK_STATE_FAILED; |
2425 | zleak_state &= ~ZLEAK_STATE_ACTIVATING; | |
316670eb | 2426 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
2427 | |
2428 | if (allocations_ptr != NULL) { | |
2429 | kmem_free(kernel_map, (vm_offset_t)allocations_ptr, z_alloc_size); | |
2430 | } | |
2431 | ||
2432 | if (traces_ptr != NULL) { | |
2433 | kmem_free(kernel_map, (vm_offset_t)traces_ptr, z_trace_size); | |
2434 | } | |
2435 | ||
2436 | return retval; | |
2437 | } | |
2438 | ||
2439 | /* | |
0a7de745 | 2440 | * TODO: What about allocations that never get deallocated, |
6d2010ae | 2441 | * especially ones with unique backtraces? Should we wait to record |
0a7de745 | 2442 | * until after boot has completed? |
6d2010ae A |
2443 | * (How many persistent zallocs are there?) |
2444 | */ | |
2445 | ||
2446 | /* | |
0a7de745 A |
2447 | * This function records the allocation in the allocations table, |
2448 | * and stores the associated backtrace in the traces table | |
6d2010ae A |
2449 | * (or just increments the refcount if the trace is already recorded) |
2450 | * If the allocation slot is in use, the old allocation is replaced with the new allocation, and | |
2451 | * the associated trace's refcount is decremented. | |
2452 | * If the trace slot is in use, it returns. | |
2453 | * The refcount is incremented by the amount of memory the allocation consumes. | |
2454 | * The return value indicates whether to try again next time. | |
2455 | */ | |
2456 | static boolean_t | |
2457 | zleak_log(uintptr_t* bt, | |
0a7de745 A |
2458 | uintptr_t addr, |
2459 | uint32_t depth, | |
2460 | vm_size_t allocation_size) | |
6d2010ae A |
2461 | { |
2462 | /* Quit if there's someone else modifying the hash tables */ | |
316670eb | 2463 | if (!lck_spin_try_lock(&zleak_lock)) { |
6d2010ae A |
2464 | z_total_conflicts++; |
2465 | return FALSE; | |
2466 | } | |
0a7de745 A |
2467 | |
2468 | struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; | |
2469 | ||
6d2010ae A |
2470 | uint32_t trace_index = hashbacktrace(bt, depth, zleak_trace_buckets); |
2471 | struct ztrace* trace = &ztraces[trace_index]; | |
0a7de745 | 2472 | |
6d2010ae A |
2473 | allocation->za_hit_count++; |
2474 | trace->zt_hit_count++; | |
0a7de745 A |
2475 | |
2476 | /* | |
6d2010ae | 2477 | * If the allocation bucket we want to be in is occupied, and if the occupier |
0a7de745 | 2478 | * has the same trace as us, just bail. |
6d2010ae A |
2479 | */ |
2480 | if (allocation->za_element != (uintptr_t) 0 && trace_index == allocation->za_trace_index) { | |
2481 | z_alloc_collisions++; | |
0a7de745 | 2482 | |
316670eb | 2483 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
2484 | return TRUE; |
2485 | } | |
0a7de745 | 2486 | |
6d2010ae A |
2487 | /* STEP 1: Store the backtrace in the traces array. */ |
2488 | /* A size of zero indicates that the trace bucket is free. */ | |
0a7de745 A |
2489 | |
2490 | if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0) { | |
2491 | /* | |
6d2010ae A |
2492 | * Different unique trace with same hash! |
2493 | * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated | |
2494 | * and get out of the way for later chances | |
2495 | */ | |
2496 | trace->zt_collisions++; | |
2497 | z_trace_collisions++; | |
0a7de745 | 2498 | |
316670eb | 2499 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
2500 | return TRUE; |
2501 | } else if (trace->zt_size > 0) { | |
2502 | /* Same trace, already added, so increment refcount */ | |
2503 | trace->zt_size += allocation_size; | |
2504 | } else { | |
2505 | /* Found an unused trace bucket, record the trace here! */ | |
0a7de745 | 2506 | if (trace->zt_depth != 0) { /* if this slot was previously used but not currently in use */ |
6d2010ae | 2507 | z_trace_overwrites++; |
0a7de745 A |
2508 | } |
2509 | ||
6d2010ae | 2510 | z_trace_recorded++; |
0a7de745 A |
2511 | trace->zt_size = allocation_size; |
2512 | memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t))); | |
2513 | ||
2514 | trace->zt_depth = depth; | |
2515 | trace->zt_collisions = 0; | |
6d2010ae | 2516 | } |
0a7de745 | 2517 | |
6d2010ae | 2518 | /* STEP 2: Store the allocation record in the allocations array. */ |
0a7de745 | 2519 | |
6d2010ae | 2520 | if (allocation->za_element != (uintptr_t) 0) { |
0a7de745 | 2521 | /* |
6d2010ae | 2522 | * Straight up replace any allocation record that was there. We don't want to do the work |
0a7de745 | 2523 | * to preserve the allocation entries that were there, because we only record a subset of the |
6d2010ae A |
2524 | * allocations anyways. |
2525 | */ | |
0a7de745 | 2526 | |
6d2010ae | 2527 | z_alloc_collisions++; |
0a7de745 | 2528 | |
6d2010ae A |
2529 | struct ztrace* associated_trace = &ztraces[allocation->za_trace_index]; |
2530 | /* Knock off old allocation's size, not the new allocation */ | |
2531 | associated_trace->zt_size -= allocation->za_size; | |
2532 | } else if (allocation->za_trace_index != 0) { | |
2533 | /* Slot previously used but not currently in use */ | |
2534 | z_alloc_overwrites++; | |
2535 | } | |
2536 | ||
0a7de745 A |
2537 | allocation->za_element = addr; |
2538 | allocation->za_trace_index = trace_index; | |
2539 | allocation->za_size = allocation_size; | |
2540 | ||
6d2010ae | 2541 | z_alloc_recorded++; |
0a7de745 A |
2542 | |
2543 | if (top_ztrace->zt_size < trace->zt_size) { | |
6d2010ae | 2544 | top_ztrace = trace; |
0a7de745 A |
2545 | } |
2546 | ||
316670eb | 2547 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
2548 | return TRUE; |
2549 | } | |
2550 | ||
2551 | /* | |
2552 | * Free the allocation record and release the stacktrace. | |
2553 | * This should be as fast as possible because it will be called for every free. | |
2554 | */ | |
f427ee49 | 2555 | __attribute__((noinline)) |
6d2010ae A |
2556 | static void |
2557 | zleak_free(uintptr_t addr, | |
0a7de745 | 2558 | vm_size_t allocation_size) |
6d2010ae | 2559 | { |
0a7de745 | 2560 | if (addr == (uintptr_t) 0) { |
6d2010ae | 2561 | return; |
0a7de745 A |
2562 | } |
2563 | ||
6d2010ae | 2564 | struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)]; |
0a7de745 | 2565 | |
6d2010ae A |
2566 | /* Double-checked locking: check to find out if we're interested, lock, check to make |
2567 | * sure it hasn't changed, then modify it, and release the lock. | |
2568 | */ | |
0a7de745 | 2569 | |
6d2010ae A |
2570 | if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { |
2571 | /* if the allocation was the one, grab the lock, check again, then delete it */ | |
316670eb | 2572 | lck_spin_lock(&zleak_lock); |
0a7de745 | 2573 | |
6d2010ae A |
2574 | if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) { |
2575 | struct ztrace *trace; | |
2576 | ||
2577 | /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */ | |
2578 | if (allocation->za_size != allocation_size) { | |
0a7de745 A |
2579 | panic("Freeing as size %lu memory that was allocated with size %lu\n", |
2580 | (uintptr_t)allocation_size, (uintptr_t)allocation->za_size); | |
6d2010ae | 2581 | } |
0a7de745 | 2582 | |
6d2010ae | 2583 | trace = &ztraces[allocation->za_trace_index]; |
0a7de745 | 2584 | |
6d2010ae A |
2585 | /* size of 0 indicates trace bucket is unused */ |
2586 | if (trace->zt_size > 0) { | |
2587 | trace->zt_size -= allocation_size; | |
2588 | } | |
0a7de745 | 2589 | |
6d2010ae A |
2590 | /* A NULL element means the allocation bucket is unused */ |
2591 | allocation->za_element = 0; | |
2592 | } | |
316670eb | 2593 | lck_spin_unlock(&zleak_lock); |
6d2010ae A |
2594 | } |
2595 | } | |
2596 | ||
2597 | #endif /* CONFIG_ZLEAKS */ | |
2598 | ||
2599 | /* These functions outside of CONFIG_ZLEAKS because they are also used in | |
2600 | * mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix. | |
2601 | */ | |
2602 | ||
6d2010ae A |
2603 | /* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */ |
2604 | uintptr_t | |
2605 | hash_mix(uintptr_t x) | |
2606 | { | |
2607 | #ifndef __LP64__ | |
2608 | x += ~(x << 15); | |
2609 | x ^= (x >> 10); | |
0a7de745 A |
2610 | x += (x << 3); |
2611 | x ^= (x >> 6); | |
6d2010ae A |
2612 | x += ~(x << 11); |
2613 | x ^= (x >> 16); | |
2614 | #else | |
2615 | x += ~(x << 32); | |
2616 | x ^= (x >> 22); | |
2617 | x += ~(x << 13); | |
0a7de745 A |
2618 | x ^= (x >> 8); |
2619 | x += (x << 3); | |
6d2010ae A |
2620 | x ^= (x >> 15); |
2621 | x += ~(x << 27); | |
2622 | x ^= (x >> 31); | |
2623 | #endif | |
2624 | return x; | |
2625 | } | |
2626 | ||
2627 | uint32_t | |
2628 | hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size) | |
2629 | { | |
6d2010ae A |
2630 | uintptr_t hash = 0; |
2631 | uintptr_t mask = max_size - 1; | |
2632 | ||
316670eb A |
2633 | while (depth) { |
2634 | hash += bt[--depth]; | |
6d2010ae A |
2635 | } |
2636 | ||
2637 | hash = hash_mix(hash) & mask; | |
2638 | ||
2639 | assert(hash < max_size); | |
2640 | ||
2641 | return (uint32_t) hash; | |
2642 | } | |
2643 | ||
2644 | /* | |
2645 | * TODO: Determine how well distributed this is | |
2646 | * max_size must be a power of 2. i.e 0x10000 because 0x10000-1 is 0x0FFFF which is a great bitmask | |
2647 | */ | |
2648 | uint32_t | |
2649 | hashaddr(uintptr_t pt, uint32_t max_size) | |
2650 | { | |
2651 | uintptr_t hash = 0; | |
2652 | uintptr_t mask = max_size - 1; | |
2653 | ||
2654 | hash = hash_mix(pt) & mask; | |
2655 | ||
2656 | assert(hash < max_size); | |
2657 | ||
2658 | return (uint32_t) hash; | |
2659 | } | |
2660 | ||
2661 | /* End of all leak-detection code */ | |
f427ee49 | 2662 | #pragma mark zone creation, configuration, destruction |
39037602 | 2663 | |
f427ee49 A |
2664 | static zone_t |
2665 | zone_init_defaults(zone_id_t zid) | |
5ba3f43e | 2666 | { |
f427ee49 | 2667 | zone_t z = &zone_array[zid]; |
5ba3f43e | 2668 | |
f427ee49 A |
2669 | z->page_count_max = ~0u; |
2670 | z->collectable = true; | |
2671 | z->expandable = true; | |
2672 | z->submap_idx = Z_SUBMAP_IDX_GENERAL_MAP; | |
5ba3f43e | 2673 | |
f427ee49 | 2674 | simple_lock_init(&z->lock, 0); |
5ba3f43e | 2675 | |
f427ee49 | 2676 | return z; |
5ba3f43e A |
2677 | } |
2678 | ||
f427ee49 A |
2679 | static bool |
2680 | zone_is_initializing(zone_t z) | |
2681 | { | |
2682 | return !z->z_self && !z->destroyed; | |
2683 | } | |
d9a64523 | 2684 | |
d9a64523 | 2685 | static void |
f427ee49 A |
2686 | zone_set_max(zone_t z, vm_size_t max) |
2687 | { | |
2688 | #if KASAN_ZALLOC | |
2689 | if (z->kasan_redzone) { | |
2690 | /* | |
2691 | * Adjust the max memory for the kasan redzones | |
2692 | */ | |
2693 | max += (max / z->pcpu_elem_size) * z->kasan_redzone * 2; | |
2694 | } | |
2695 | #endif | |
2696 | if (max < z->percpu ? 1 : z->alloc_pages) { | |
2697 | max = z->percpu ? 1 : z->alloc_pages; | |
d9a64523 | 2698 | } else { |
f427ee49 | 2699 | max = atop(round_page(max)); |
d9a64523 | 2700 | } |
f427ee49 | 2701 | z->page_count_max = max; |
d9a64523 A |
2702 | } |
2703 | ||
f427ee49 A |
2704 | void |
2705 | zone_set_submap_idx(zone_t zone, unsigned int sub_map_idx) | |
d9a64523 | 2706 | { |
f427ee49 A |
2707 | if (!zone_is_initializing(zone)) { |
2708 | panic("%s: called after zone_create()", __func__); | |
d9a64523 | 2709 | } |
f427ee49 A |
2710 | if (sub_map_idx > zone_last_submap_idx) { |
2711 | panic("zone_set_submap_idx(%d) > %d", sub_map_idx, zone_last_submap_idx); | |
2712 | } | |
2713 | zone->submap_idx = sub_map_idx; | |
d9a64523 A |
2714 | } |
2715 | ||
f427ee49 A |
2716 | void |
2717 | zone_set_noexpand( | |
2718 | zone_t zone, | |
2719 | vm_size_t max) | |
d9a64523 | 2720 | { |
f427ee49 A |
2721 | if (!zone_is_initializing(zone)) { |
2722 | panic("%s: called after zone_create()", __func__); | |
d9a64523 | 2723 | } |
f427ee49 A |
2724 | zone->expandable = false; |
2725 | zone_set_max(zone, max); | |
d9a64523 A |
2726 | } |
2727 | ||
f427ee49 A |
2728 | void |
2729 | zone_set_exhaustible( | |
2730 | zone_t zone, | |
2731 | vm_size_t max) | |
2732 | { | |
2733 | if (!zone_is_initializing(zone)) { | |
2734 | panic("%s: called after zone_create()", __func__); | |
2735 | } | |
2736 | zone->expandable = false; | |
2737 | zone->exhaustible = true; | |
2738 | zone_set_max(zone, max); | |
2739 | } | |
d9a64523 | 2740 | |
f427ee49 A |
2741 | /** |
2742 | * @function zone_create_find | |
2743 | * | |
2744 | * @abstract | |
2745 | * Finds an unused zone for the given name and element size. | |
2746 | * | |
2747 | * @param name the zone name | |
2748 | * @param size the element size (including redzones, ...) | |
2749 | * @param flags the flags passed to @c zone_create* | |
2750 | * @param zid the desired zone ID or ZONE_ID_ANY | |
2751 | * | |
2752 | * @returns a zone to initialize further. | |
1c79356b | 2753 | */ |
f427ee49 A |
2754 | static zone_t |
2755 | zone_create_find( | |
2756 | const char *name, | |
2757 | vm_size_t size, | |
2758 | zone_create_flags_t flags, | |
2759 | zone_id_t zid) | |
1c79356b | 2760 | { |
f427ee49 A |
2761 | zone_id_t nzones; |
2762 | zone_t z; | |
7ddcb079 | 2763 | |
0a7de745 | 2764 | simple_lock(&all_zones_lock, &zone_locks_grp); |
5ba3f43e | 2765 | |
f427ee49 A |
2766 | nzones = (zone_id_t)os_atomic_load(&num_zones, relaxed); |
2767 | assert(num_zones_in_use <= nzones && nzones < MAX_ZONES); | |
5ba3f43e | 2768 | |
f427ee49 | 2769 | if (__improbable(nzones < ZONE_ID__FIRST_DYNAMIC)) { |
5ba3f43e | 2770 | /* |
f427ee49 A |
2771 | * The first time around, make sure the reserved zone IDs |
2772 | * have an initialized lock as zone_index_foreach() will | |
2773 | * enumerate them. | |
5ba3f43e | 2774 | */ |
f427ee49 A |
2775 | while (nzones < ZONE_ID__FIRST_DYNAMIC) { |
2776 | zone_init_defaults(nzones++); | |
5ba3f43e | 2777 | } |
5ba3f43e | 2778 | |
f427ee49 A |
2779 | os_atomic_store(&num_zones, nzones, release); |
2780 | } | |
5ba3f43e | 2781 | |
f427ee49 A |
2782 | if (zid != ZONE_ID_ANY) { |
2783 | if (zid >= ZONE_ID__FIRST_DYNAMIC) { | |
2784 | panic("zone_create: invalid desired zone ID %d for %s", | |
2785 | zid, name); | |
2786 | } | |
2787 | if (flags & ZC_DESTRUCTIBLE) { | |
2788 | panic("zone_create: ID %d (%s) must be permanent", zid, name); | |
2789 | } | |
2790 | if (zone_array[zid].z_self) { | |
2791 | panic("zone_create: creating zone ID %d (%s) twice", zid, name); | |
2792 | } | |
2793 | z = &zone_array[zid]; | |
2794 | } else { | |
2795 | if (flags & ZC_DESTRUCTIBLE) { | |
2796 | /* | |
2797 | * If possible, find a previously zdestroy'ed zone in the | |
2798 | * zone_array that we can reuse. | |
2799 | */ | |
2800 | for (int i = bitmap_first(zone_destroyed_bitmap, MAX_ZONES); | |
2801 | i >= 0; i = bitmap_next(zone_destroyed_bitmap, i)) { | |
2802 | z = &zone_array[i]; | |
5ba3f43e | 2803 | |
f427ee49 A |
2804 | /* |
2805 | * If the zone name and the element size are the | |
2806 | * same, we can just reuse the old zone struct. | |
2807 | */ | |
2808 | if (strcmp(z->z_name, name) || zone_elem_size(z) != size) { | |
2809 | continue; | |
2810 | } | |
2811 | bitmap_clear(zone_destroyed_bitmap, i); | |
2812 | z->destroyed = false; | |
2813 | z->z_self = z; | |
2814 | zid = (zone_id_t)i; | |
2815 | goto out; | |
2816 | } | |
2817 | } | |
1c79356b | 2818 | |
f427ee49 A |
2819 | zid = nzones++; |
2820 | z = zone_init_defaults(zid); | |
39236c6e | 2821 | |
f427ee49 A |
2822 | /* |
2823 | * The release barrier pairs with the acquire in | |
2824 | * zone_index_foreach() and makes sure that enumeration loops | |
2825 | * always see an initialized zone lock. | |
2826 | */ | |
2827 | os_atomic_store(&num_zones, nzones, release); | |
2828 | } | |
5ba3f43e | 2829 | |
f427ee49 A |
2830 | out: |
2831 | num_zones_in_use++; | |
5ba3f43e | 2832 | simple_unlock(&all_zones_lock); |
39236c6e | 2833 | |
f427ee49 A |
2834 | return z; |
2835 | } | |
5ba3f43e | 2836 | |
f427ee49 A |
2837 | __abortlike |
2838 | static void | |
2839 | zone_create_panic(const char *name, const char *f1, const char *f2) | |
2840 | { | |
2841 | panic("zone_create: creating zone %s: flag %s and %s are incompatible", | |
2842 | name, f1, f2); | |
2843 | } | |
2844 | #define zone_create_assert_not_both(name, flags, current_flag, forbidden_flag) \ | |
2845 | if ((flags) & forbidden_flag) { \ | |
2846 | zone_create_panic(name, #current_flag, #forbidden_flag); \ | |
1c79356b | 2847 | } |
5ba3f43e | 2848 | |
f427ee49 A |
2849 | /* |
2850 | * Adjusts the size of the element based on minimum size, alignment | |
2851 | * and kasan redzones | |
2852 | */ | |
2853 | static vm_size_t | |
2854 | zone_elem_adjust_size( | |
2855 | const char *name __unused, | |
2856 | vm_size_t elem_size, | |
2857 | zone_create_flags_t flags, | |
2858 | vm_size_t *redzone __unused) | |
2859 | { | |
2860 | vm_size_t size; | |
5ba3f43e | 2861 | /* |
f427ee49 | 2862 | * Adjust element size for minimum size and pointer alignment |
5ba3f43e | 2863 | */ |
f427ee49 A |
2864 | size = (elem_size + sizeof(vm_offset_t) - 1) & -sizeof(vm_offset_t); |
2865 | if (((flags & ZC_PERCPU) == 0) && size < ZONE_MIN_ELEM_SIZE) { | |
2866 | size = ZONE_MIN_ELEM_SIZE; | |
5ba3f43e | 2867 | } |
1c79356b | 2868 | |
f427ee49 | 2869 | #if KASAN_ZALLOC |
c910b4d9 | 2870 | /* |
f427ee49 | 2871 | * Expand the zone allocation size to include the redzones. |
39037602 | 2872 | * |
f427ee49 A |
2873 | * For page-multiple zones add a full guard page because they |
2874 | * likely require alignment. | |
c910b4d9 | 2875 | */ |
f427ee49 A |
2876 | vm_size_t redzone_tmp; |
2877 | if (flags & (ZC_KASAN_NOREDZONE | ZC_PERCPU)) { | |
2878 | redzone_tmp = 0; | |
2879 | } else if ((size & PAGE_MASK) == 0) { | |
2880 | if (size != PAGE_SIZE && (flags & ZC_ALIGNMENT_REQUIRED)) { | |
2881 | panic("zone_create: zone %s can't provide more than PAGE_SIZE" | |
2882 | "alignment", name); | |
39037602 | 2883 | } |
f427ee49 A |
2884 | redzone_tmp = PAGE_SIZE; |
2885 | } else if (flags & ZC_ALIGNMENT_REQUIRED) { | |
2886 | redzone_tmp = 0; | |
2887 | } else { | |
2888 | redzone_tmp = KASAN_GUARD_SIZE; | |
2889 | } | |
2890 | size += redzone_tmp * 2; | |
2891 | if (redzone) { | |
2892 | *redzone = redzone_tmp; | |
2893 | } | |
2894 | #endif | |
2895 | return size; | |
2896 | } | |
2897 | ||
2898 | /* | |
2899 | * Returns the allocation chunk size that has least framentation | |
2900 | */ | |
2901 | static vm_size_t | |
2902 | zone_get_min_alloc_granule( | |
2903 | vm_size_t elem_size, | |
2904 | zone_create_flags_t flags) | |
2905 | { | |
2906 | vm_size_t alloc_granule = PAGE_SIZE; | |
2907 | if (flags & ZC_PERCPU) { | |
2908 | alloc_granule = PAGE_SIZE * zpercpu_count(); | |
2909 | if (PAGE_SIZE % elem_size > 256) { | |
2910 | panic("zone_create: per-cpu zone has too much fragmentation"); | |
2911 | } | |
2912 | } else if ((elem_size & PAGE_MASK) == 0) { | |
2913 | /* zero fragmentation by definition */ | |
2914 | alloc_granule = elem_size; | |
2915 | } else if (alloc_granule % elem_size == 0) { | |
2916 | /* zero fragmentation by definition */ | |
2917 | } else { | |
2918 | vm_size_t frag = (alloc_granule % elem_size) * 100 / alloc_granule; | |
2919 | vm_size_t alloc_tmp = PAGE_SIZE; | |
2920 | while ((alloc_tmp += PAGE_SIZE) <= ZONE_MAX_ALLOC_SIZE) { | |
2921 | vm_size_t frag_tmp = (alloc_tmp % elem_size) * 100 / alloc_tmp; | |
2922 | if (frag_tmp < frag) { | |
2923 | frag = frag_tmp; | |
2924 | alloc_granule = alloc_tmp; | |
39037602 A |
2925 | } |
2926 | } | |
f427ee49 A |
2927 | } |
2928 | return alloc_granule; | |
2929 | } | |
39037602 | 2930 | |
f427ee49 A |
2931 | vm_size_t |
2932 | zone_get_foreign_alloc_size( | |
2933 | const char *name __unused, | |
2934 | vm_size_t elem_size, | |
2935 | zone_create_flags_t flags, | |
2936 | uint16_t min_pages) | |
2937 | { | |
2938 | vm_size_t adjusted_size = zone_elem_adjust_size(name, elem_size, flags, | |
2939 | NULL); | |
2940 | vm_size_t alloc_granule = zone_get_min_alloc_granule(adjusted_size, | |
2941 | flags); | |
2942 | vm_size_t min_size = min_pages * PAGE_SIZE; | |
2943 | /* | |
2944 | * Round up min_size to a multiple of alloc_granule | |
2945 | */ | |
2946 | return ((min_size + alloc_granule - 1) / alloc_granule) | |
2947 | * alloc_granule; | |
2948 | } | |
39037602 | 2949 | |
f427ee49 A |
2950 | zone_t |
2951 | zone_create_ext( | |
2952 | const char *name, | |
2953 | vm_size_t size, | |
2954 | zone_create_flags_t flags, | |
2955 | zone_id_t desired_zid, | |
2956 | void (^extra_setup)(zone_t)) | |
2957 | { | |
2958 | vm_size_t alloc; | |
2959 | vm_size_t redzone; | |
2960 | zone_t z; | |
2961 | ||
2962 | if (size > ZONE_MAX_ALLOC_SIZE) { | |
2963 | panic("zone_create: element size too large: %zd", (size_t)size); | |
2964 | } | |
2965 | ||
2966 | size = zone_elem_adjust_size(name, size, flags, &redzone); | |
2967 | /* | |
2968 | * Allocate the zone slot, return early if we found an older match. | |
2969 | */ | |
2970 | z = zone_create_find(name, size, flags, desired_zid); | |
2971 | if (__improbable(z->z_self)) { | |
2972 | /* We found a zone to reuse */ | |
2973 | return z; | |
2974 | } | |
2975 | ||
2976 | /* | |
2977 | * Initialize the zone properly. | |
2978 | */ | |
2979 | ||
2980 | /* | |
2981 | * If the kernel is post lockdown, copy the zone name passed in. | |
2982 | * Else simply maintain a pointer to the name string as it can only | |
2983 | * be a core XNU zone (no unloadable kext exists before lockdown). | |
2984 | */ | |
2985 | if (startup_phase >= STARTUP_SUB_LOCKDOWN) { | |
2986 | size_t nsz = MIN(strlen(name) + 1, MACH_ZONE_NAME_MAX_LEN); | |
2987 | char *buf = zalloc_permanent(nsz, ZALIGN_NONE); | |
2988 | strlcpy(buf, name, nsz); | |
2989 | z->z_name = buf; | |
2990 | } else { | |
2991 | z->z_name = name; | |
2992 | } | |
2993 | /* | |
2994 | * If zone_init() hasn't run yet, the permanent zones do not exist. | |
2995 | * We can limp along without properly initialized stats for a while, | |
2996 | * zone_init() will rebuild the missing stats when it runs. | |
2997 | */ | |
2998 | if (__probable(zone_array[ZONE_ID_PERCPU_PERMANENT].z_self)) { | |
2999 | z->z_stats = zalloc_percpu_permanent_type(struct zone_stats); | |
3000 | } | |
3001 | ||
3002 | alloc = zone_get_min_alloc_granule(size, flags); | |
3003 | ||
3004 | if (flags & ZC_KALLOC_HEAP) { | |
3005 | size_t rem = (alloc % size) / (alloc / size); | |
39037602 A |
3006 | |
3007 | /* | |
f427ee49 A |
3008 | * Try to grow the elements size and spread them more if the remaining |
3009 | * space is large enough. | |
39037602 | 3010 | */ |
f427ee49 A |
3011 | size += rem & ~(KALLOC_MINALIGN - 1); |
3012 | } | |
39037602 | 3013 | |
f427ee49 A |
3014 | z->pcpu_elem_size = z->z_elem_size = (uint16_t)size; |
3015 | z->alloc_pages = (uint16_t)atop(alloc); | |
3016 | #if KASAN_ZALLOC | |
3017 | z->kasan_redzone = redzone; | |
3018 | if (strncmp(name, "fakestack.", sizeof("fakestack.") - 1) == 0) { | |
3019 | z->kasan_fakestacks = true; | |
3020 | } | |
3021 | #endif | |
39037602 | 3022 | |
f427ee49 A |
3023 | /* |
3024 | * Handle KPI flags | |
3025 | */ | |
3026 | #if __LP64__ | |
3027 | if (flags & ZC_SEQUESTER) { | |
3028 | z->va_sequester = true; | |
3029 | } | |
3030 | #endif | |
3031 | /* ZC_CACHING applied after all configuration is done */ | |
39037602 | 3032 | |
f427ee49 A |
3033 | if (flags & ZC_PERCPU) { |
3034 | /* | |
3035 | * ZC_CACHING is disallowed because it uses per-cpu zones for its | |
3036 | * implementation and it would be circular. These allocations are | |
3037 | * also quite expensive, so caching feels dangerous memory wise too. | |
3038 | * | |
3039 | * ZC_ZFREE_CLEARMEM is forced because per-cpu zones allow for | |
3040 | * pointer-sized allocations which poisoning doesn't support. | |
3041 | */ | |
3042 | zone_create_assert_not_both(name, flags, ZC_PERCPU, ZC_CACHING); | |
3043 | zone_create_assert_not_both(name, flags, ZC_PERCPU, ZC_ALLOW_FOREIGN); | |
3044 | z->percpu = true; | |
3045 | z->gzalloc_exempt = true; | |
3046 | z->zfree_clear_mem = true; | |
3047 | z->pcpu_elem_size *= zpercpu_count(); | |
3048 | } | |
3049 | if (flags & ZC_ZFREE_CLEARMEM) { | |
3050 | z->zfree_clear_mem = true; | |
3051 | } | |
3052 | if (flags & ZC_NOGC) { | |
3053 | z->collectable = false; | |
3054 | } | |
3055 | if (flags & ZC_NOENCRYPT) { | |
3056 | z->noencrypt = true; | |
3057 | } | |
3058 | if (flags & ZC_ALIGNMENT_REQUIRED) { | |
3059 | z->alignment_required = true; | |
3060 | } | |
3061 | if (flags & ZC_NOGZALLOC) { | |
3062 | z->gzalloc_exempt = true; | |
3063 | } | |
3064 | if (flags & ZC_NOCALLOUT) { | |
3065 | z->no_callout = true; | |
3066 | } | |
3067 | if (flags & ZC_DESTRUCTIBLE) { | |
3068 | zone_create_assert_not_both(name, flags, ZC_DESTRUCTIBLE, ZC_CACHING); | |
3069 | zone_create_assert_not_both(name, flags, ZC_DESTRUCTIBLE, ZC_ALLOW_FOREIGN); | |
3070 | z->destructible = true; | |
3071 | } | |
5ba3f43e | 3072 | |
f427ee49 A |
3073 | /* |
3074 | * Handle Internal flags | |
3075 | */ | |
3076 | if (flags & ZC_ALLOW_FOREIGN) { | |
3077 | z->allows_foreign = true; | |
3078 | } | |
3079 | if ((ZSECURITY_OPTIONS_SUBMAP_USER_DATA & zsecurity_options) && | |
3080 | (flags & ZC_DATA_BUFFERS)) { | |
3081 | z->submap_idx = Z_SUBMAP_IDX_BAG_OF_BYTES_MAP; | |
3082 | } | |
3083 | if (flags & ZC_KASAN_NOQUARANTINE) { | |
3084 | z->kasan_noquarantine = true; | |
3085 | } | |
3086 | /* ZC_KASAN_NOREDZONE already handled */ | |
3087 | ||
3088 | /* | |
3089 | * Then if there's extra tuning, do it | |
3090 | */ | |
3091 | if (extra_setup) { | |
3092 | extra_setup(z); | |
39037602 A |
3093 | } |
3094 | ||
f427ee49 A |
3095 | /* |
3096 | * Configure debugging features | |
3097 | */ | |
3098 | #if CONFIG_GZALLOC | |
3099 | gzalloc_zone_init(z); /* might set z->gzalloc_tracked */ | |
3100 | #endif | |
3101 | #if ZONE_ENABLE_LOGGING | |
3102 | if (!z->gzalloc_tracked && num_zones_logged < max_num_zones_to_log) { | |
3103 | /* | |
3104 | * Check for and set up zone leak detection if requested via boot-args. | |
3105 | * might set z->zone_logging | |
3106 | */ | |
3107 | zone_setup_logging(z); | |
3108 | } | |
3109 | #endif /* ZONE_ENABLE_LOGGING */ | |
3110 | #if VM_MAX_TAG_ZONES | |
3111 | if (!z->gzalloc_tracked && z->kalloc_heap && zone_tagging_on) { | |
3112 | static int tag_zone_index; | |
3113 | vm_offset_t esize = zone_elem_size(z); | |
3114 | z->tags = true; | |
3115 | z->tags_inline = (((page_size + esize - 1) / esize) <= | |
3116 | (sizeof(uint32_t) / sizeof(uint16_t))); | |
3117 | z->tag_zone_index = os_atomic_inc_orig(&tag_zone_index, relaxed); | |
3118 | assert(z->tag_zone_index < VM_MAX_TAG_ZONES); | |
3119 | } | |
39037602 | 3120 | #endif |
5ba3f43e | 3121 | |
f427ee49 A |
3122 | /* |
3123 | * Finally, fixup properties based on security policies, boot-args, ... | |
3124 | */ | |
3125 | if ((ZSECURITY_OPTIONS_SUBMAP_USER_DATA & zsecurity_options) && | |
3126 | z->kalloc_heap == KHEAP_ID_DATA_BUFFERS) { | |
3127 | z->submap_idx = Z_SUBMAP_IDX_BAG_OF_BYTES_MAP; | |
3128 | } | |
3129 | #if __LP64__ | |
3130 | if ((ZSECURITY_OPTIONS_SEQUESTER & zsecurity_options) && | |
3131 | (flags & ZC_NOSEQUESTER) == 0 && | |
3132 | z->submap_idx == Z_SUBMAP_IDX_GENERAL_MAP) { | |
3133 | z->va_sequester = true; | |
d9a64523 A |
3134 | } |
3135 | #endif | |
f427ee49 A |
3136 | /* |
3137 | * Always clear zone elements smaller than a cacheline, | |
3138 | * because it's pretty close to free. | |
3139 | */ | |
3140 | if (size <= zp_min_size) { | |
3141 | z->zfree_clear_mem = true; | |
3142 | } | |
3143 | if (zp_factor != 0 && !z->zfree_clear_mem) { | |
3144 | z->zp_count = zone_poison_count_init(z); | |
3145 | } | |
3146 | ||
3147 | #if CONFIG_ZCACHE | |
3148 | if ((flags & ZC_NOCACHING) == 0) { | |
3149 | /* | |
3150 | * Append kalloc heap name to zone name (if zone is used by kalloc) | |
3151 | */ | |
3152 | char temp_zone_name[MAX_ZONE_NAME] = ""; | |
3153 | snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s", zone_heap_name(z), z->z_name); | |
3154 | ||
3155 | /* Check if boot-arg specified it should have a cache */ | |
3156 | if (track_this_zone(temp_zone_name, cache_zone_name)) { | |
3157 | flags |= ZC_CACHING; | |
3158 | } else if (zcc_kalloc && z->kalloc_heap) { | |
3159 | flags |= ZC_CACHING; | |
3160 | } | |
3161 | } | |
3162 | if ((flags & ZC_CACHING) && | |
3163 | !z->tags && !z->zone_logging && !z->gzalloc_tracked) { | |
3164 | zcache_init(z); | |
3165 | } | |
3166 | #endif /* CONFIG_ZCACHE */ | |
3167 | ||
3168 | lock_zone(z); | |
3169 | z->z_self = z; | |
3170 | unlock_zone(z); | |
3171 | ||
3172 | return z; | |
3173 | } | |
3174 | ||
3175 | __startup_func | |
3176 | void | |
3177 | zone_create_startup(struct zone_create_startup_spec *spec) | |
3178 | { | |
3179 | *spec->z_var = zone_create_ext(spec->z_name, spec->z_size, | |
3180 | spec->z_flags, spec->z_zid, spec->z_setup); | |
3181 | } | |
3182 | ||
3183 | /* | |
3184 | * The 4 first field of a zone_view and a zone alias, so that the zone_or_view_t | |
3185 | * union works. trust but verify. | |
3186 | */ | |
3187 | #define zalloc_check_zov_alias(f1, f2) \ | |
3188 | static_assert(offsetof(struct zone, f1) == offsetof(struct zone_view, f2)) | |
3189 | zalloc_check_zov_alias(z_self, zv_zone); | |
3190 | zalloc_check_zov_alias(z_stats, zv_stats); | |
3191 | zalloc_check_zov_alias(z_name, zv_name); | |
3192 | zalloc_check_zov_alias(z_views, zv_next); | |
3193 | #undef zalloc_check_zov_alias | |
3194 | ||
3195 | __startup_func | |
3196 | void | |
3197 | zone_view_startup_init(struct zone_view_startup_spec *spec) | |
3198 | { | |
3199 | struct kalloc_heap *heap = NULL; | |
3200 | zone_view_t zv = spec->zv_view; | |
3201 | zone_t z; | |
3202 | ||
3203 | switch (spec->zv_heapid) { | |
3204 | case KHEAP_ID_DEFAULT: | |
3205 | heap = KHEAP_DEFAULT; | |
3206 | break; | |
3207 | case KHEAP_ID_DATA_BUFFERS: | |
3208 | heap = KHEAP_DATA_BUFFERS; | |
3209 | break; | |
3210 | case KHEAP_ID_KEXT: | |
3211 | heap = KHEAP_KEXT; | |
3212 | break; | |
3213 | default: | |
3214 | heap = NULL; | |
3215 | } | |
3216 | ||
3217 | if (heap) { | |
3218 | z = kalloc_heap_zone_for_size(heap, spec->zv_size); | |
3219 | assert(z); | |
3220 | } else { | |
3221 | z = spec->zv_zone; | |
3222 | assert(spec->zv_size <= zone_elem_size(z)); | |
3223 | } | |
3224 | ||
3225 | zv->zv_zone = z; | |
3226 | zv->zv_stats = zalloc_percpu_permanent_type(struct zone_stats); | |
3227 | zv->zv_next = z->z_views; | |
3228 | if (z->z_views == NULL && z->kalloc_heap == KHEAP_ID_NONE) { | |
3229 | /* | |
3230 | * count the raw view for zones not in a heap, | |
3231 | * kalloc_heap_init() already counts it for its members. | |
3232 | */ | |
3233 | zone_view_count += 2; | |
3234 | } else { | |
3235 | zone_view_count += 1; | |
3236 | } | |
3237 | z->z_views = zv; | |
3238 | } | |
3239 | ||
3240 | zone_t | |
3241 | zone_create( | |
3242 | const char *name, | |
3243 | vm_size_t size, | |
3244 | zone_create_flags_t flags) | |
3245 | { | |
3246 | return zone_create_ext(name, size, flags, ZONE_ID_ANY, NULL); | |
3247 | } | |
d9a64523 | 3248 | |
f427ee49 A |
3249 | zone_t |
3250 | zinit( | |
3251 | vm_size_t size, /* the size of an element */ | |
3252 | vm_size_t max, /* maximum memory to use */ | |
3253 | vm_size_t alloc __unused, /* allocation size */ | |
3254 | const char *name) /* a name for the zone */ | |
3255 | { | |
3256 | zone_t z = zone_create(name, size, ZC_DESTRUCTIBLE); | |
3257 | zone_set_max(z, max); | |
0a7de745 | 3258 | return z; |
39037602 | 3259 | } |
eb6b6ca3 | 3260 | |
f427ee49 A |
3261 | void |
3262 | zdestroy(zone_t z) | |
3263 | { | |
3264 | unsigned int zindex = zone_index(z); | |
3265 | ||
3266 | lock_zone(z); | |
3267 | ||
3268 | if (!z->destructible || zone_caching_enabled(z) || z->allows_foreign) { | |
3269 | panic("zdestroy: Zone %s%s isn't destructible", | |
3270 | zone_heap_name(z), z->z_name); | |
3271 | } | |
3272 | ||
3273 | if (!z->z_self || z->expanding_no_vm_priv || z->expanding_vm_priv || | |
3274 | z->async_pending || z->waiting) { | |
3275 | panic("zdestroy: Zone %s%s in an invalid state for destruction", | |
3276 | zone_heap_name(z), z->z_name); | |
3277 | } | |
3278 | ||
3279 | #if !KASAN_ZALLOC | |
3280 | /* | |
3281 | * Unset the valid bit. We'll hit an assert failure on further operations | |
3282 | * on this zone, until zinit() is called again. | |
3283 | * | |
3284 | * Leave the zone valid for KASan as we will see zfree's on quarantined free | |
3285 | * elements even after the zone is destroyed. | |
3286 | */ | |
3287 | z->z_self = NULL; | |
3288 | #endif | |
3289 | z->destroyed = true; | |
3290 | unlock_zone(z); | |
3291 | ||
3292 | /* Dump all the free elements */ | |
3293 | zone_drop_free_elements(z); | |
3294 | ||
3295 | #if CONFIG_GZALLOC | |
3296 | if (__improbable(z->gzalloc_tracked)) { | |
3297 | /* If the zone is gzalloc managed dump all the elements in the free cache */ | |
3298 | gzalloc_empty_free_cache(z); | |
3299 | } | |
3300 | #endif | |
3301 | ||
3302 | lock_zone(z); | |
3303 | ||
3304 | while (!zone_pva_is_null(z->pages_sequester)) { | |
3305 | struct zone_page_metadata *page_meta; | |
3306 | vm_offset_t free_addr; | |
3307 | ||
3308 | page_meta = zone_sequestered_page_get(z, &free_addr); | |
3309 | unlock_zone(z); | |
3310 | kmem_free(submap_for_zone(z), free_addr, ptoa(z->alloc_pages)); | |
3311 | lock_zone(z); | |
3312 | } | |
3313 | ||
3314 | #if !KASAN_ZALLOC | |
3315 | /* Assert that all counts are zero */ | |
3316 | if (z->countavail || z->countfree || zone_size_wired(z) || | |
3317 | z->allfree_page_count || z->sequester_page_count) { | |
3318 | panic("zdestroy: Zone %s%s isn't empty at zdestroy() time", | |
3319 | zone_heap_name(z), z->z_name); | |
3320 | } | |
3321 | ||
3322 | /* consistency check: make sure everything is indeed empty */ | |
3323 | assert(zone_pva_is_null(z->pages_any_free_foreign)); | |
3324 | assert(zone_pva_is_null(z->pages_all_used_foreign)); | |
3325 | assert(zone_pva_is_null(z->pages_all_free)); | |
3326 | assert(zone_pva_is_null(z->pages_intermediate)); | |
3327 | assert(zone_pva_is_null(z->pages_all_used)); | |
3328 | assert(zone_pva_is_null(z->pages_sequester)); | |
3329 | #endif | |
3330 | ||
3331 | unlock_zone(z); | |
3332 | ||
3333 | simple_lock(&all_zones_lock, &zone_locks_grp); | |
3334 | ||
3335 | assert(!bitmap_test(zone_destroyed_bitmap, zindex)); | |
3336 | /* Mark the zone as empty in the bitmap */ | |
3337 | bitmap_set(zone_destroyed_bitmap, zindex); | |
3338 | num_zones_in_use--; | |
3339 | assert(num_zones_in_use > 0); | |
3340 | ||
3341 | simple_unlock(&all_zones_lock); | |
3342 | } | |
3343 | ||
3344 | #pragma mark zone (re)fill, jetsam | |
3345 | ||
eb6b6ca3 A |
3346 | /* |
3347 | * Dealing with zone allocations from the mach VM code. | |
3348 | * | |
3349 | * The implementation of the mach VM itself uses the zone allocator | |
3350 | * for things like the vm_map_entry data structure. In order to prevent | |
3351 | * an infinite recursion problem when adding more pages to a zone, zalloc | |
3352 | * uses a replenish thread to refill the VM layer's zones before they have | |
3353 | * too few remaining free entries. The reserved remaining free entries | |
3354 | * guarantee that the VM routines can get entries from already mapped pages. | |
3355 | * | |
3356 | * In order for that to work, the amount of allocations in the nested | |
3357 | * case have to be bounded. There are currently 2 replenish zones, and | |
3358 | * if each needs 1 element of each zone to add a new page to itself, that | |
3359 | * gives us a minumum reserve of 2 elements. | |
3360 | * | |
3361 | * There is also a deadlock issue with the zone garbage collection thread, | |
3362 | * or any thread that is trying to free zone pages. While holding | |
3363 | * the kernel's map lock they may need to allocate new VM map entries, hence | |
3364 | * we need enough reserve to allow them to get past the point of holding the | |
3365 | * map lock. After freeing that page, the GC thread will wait in drop_free_elements() | |
3366 | * until the replenish threads can finish. Since there's only 1 GC thread at a time, | |
3367 | * that adds a minimum of 1 to the reserve size. | |
3368 | * | |
3369 | * Since the minumum amount you can add to a zone is 1 page, we'll use 16K (from ARM) | |
3370 | * as the refill size on all platforms. | |
3371 | * | |
3372 | * When a refill zone drops to half that available, i.e. REFILL_SIZE / 2, | |
f427ee49 | 3373 | * zalloc_ext() will wake the replenish thread. The replenish thread runs |
eb6b6ca3 A |
3374 | * until at least REFILL_SIZE worth of free elements exist, before sleeping again. |
3375 | * In the meantime threads may continue to use the reserve until there are only REFILL_SIZE / 4 | |
3376 | * elements left. Below that point only the replenish threads themselves and the GC | |
3377 | * thread may continue to use from the reserve. | |
3378 | */ | |
3379 | static unsigned zone_replenish_loops; | |
3380 | static unsigned zone_replenish_wakeups; | |
3381 | static unsigned zone_replenish_wakeups_initiated; | |
3382 | static unsigned zone_replenish_throttle_count; | |
3383 | ||
3384 | #define ZONE_REPLENISH_TARGET (16 * 1024) | |
f427ee49 A |
3385 | static unsigned zone_replenish_active = 0; /* count of zones currently replenishing */ |
3386 | static unsigned zone_replenish_max_threads = 0; | |
39037602 | 3387 | |
f427ee49 A |
3388 | LCK_GRP_DECLARE(zone_replenish_lock_grp, "zone_replenish_lock"); |
3389 | LCK_SPIN_DECLARE(zone_replenish_lock, &zone_replenish_lock_grp); | |
39037602 | 3390 | |
f427ee49 | 3391 | __abortlike |
39037602 | 3392 | static void |
f427ee49 | 3393 | zone_replenish_panic(zone_t zone, kern_return_t kr) |
39037602 | 3394 | { |
f427ee49 A |
3395 | panic_include_zprint = TRUE; |
3396 | #if CONFIG_ZLEAKS | |
3397 | if ((zleak_state & ZLEAK_STATE_ACTIVE)) { | |
3398 | panic_include_ztrace = TRUE; | |
3399 | } | |
3400 | #endif /* CONFIG_ZLEAKS */ | |
3401 | if (kr == KERN_NO_SPACE) { | |
3402 | zone_t zone_largest = zone_find_largest(); | |
3403 | panic("zalloc: zone map exhausted while allocating from zone %s%s, " | |
3404 | "likely due to memory leak in zone %s%s " | |
3405 | "(%lu total bytes, %d elements allocated)", | |
3406 | zone_heap_name(zone), zone->z_name, | |
3407 | zone_heap_name(zone_largest), zone_largest->z_name, | |
3408 | (unsigned long)zone_size_wired(zone_largest), | |
3409 | zone_count_allocated(zone_largest)); | |
3410 | } | |
3411 | panic("zalloc: %s%s (%d elements) retry fail %d", | |
3412 | zone_heap_name(zone), zone->z_name, | |
3413 | zone_count_allocated(zone), kr); | |
3414 | } | |
3415 | ||
3416 | static void | |
3417 | zone_replenish_locked(zone_t z, zalloc_flags_t flags, bool asynchronously) | |
3418 | { | |
3419 | int kmaflags = KMA_KOBJECT | KMA_ZERO; | |
3420 | vm_offset_t space, alloc_size; | |
3421 | uint32_t retry = 0; | |
3422 | kern_return_t kr; | |
3423 | ||
3424 | if (z->noencrypt) { | |
3425 | kmaflags |= KMA_NOENCRYPT; | |
3426 | } | |
3427 | if (flags & Z_NOPAGEWAIT) { | |
3428 | kmaflags |= KMA_NOPAGEWAIT; | |
3429 | } | |
3430 | if (z->permanent) { | |
3431 | kmaflags |= KMA_PERMANENT; | |
3432 | } | |
39037602 A |
3433 | |
3434 | for (;;) { | |
f427ee49 | 3435 | struct zone_page_metadata *page_meta = NULL; |
7ddcb079 | 3436 | |
f427ee49 A |
3437 | /* |
3438 | * Try to allocate our regular chunk of pages, | |
3439 | * unless the system is under massive pressure | |
3440 | * and we're looking for more than 2 pages. | |
3441 | */ | |
3442 | if (!z->percpu && z->alloc_pages > 2 && (vm_pool_low() || retry > 0)) { | |
3443 | alloc_size = round_page(zone_elem_size(z)); | |
3444 | } else { | |
3445 | alloc_size = ptoa(z->alloc_pages); | |
3446 | page_meta = zone_sequestered_page_get(z, &space); | |
3447 | } | |
0a7de745 | 3448 | |
f427ee49 | 3449 | unlock_zone(z); |
0a7de745 | 3450 | |
f427ee49 A |
3451 | #if CONFIG_ZLEAKS |
3452 | /* | |
3453 | * Do the zone leak activation here because zleak_activate() | |
3454 | * may block, and can't be done on the way out. | |
3455 | */ | |
3456 | if (__improbable(zleak_state & ZLEAK_STATE_ENABLED)) { | |
3457 | if (!(zleak_state & ZLEAK_STATE_ACTIVE) && | |
3458 | zone_submaps_approx_size() >= zleak_global_tracking_threshold) { | |
3459 | kr = zleak_activate(); | |
3460 | if (kr != KERN_SUCCESS) { | |
3461 | printf("Failed to activate live zone leak debugging (%d).\n", kr); | |
3462 | } | |
0a7de745 | 3463 | } |
f427ee49 A |
3464 | } |
3465 | #endif /* CONFIG_ZLEAKS */ | |
0a7de745 | 3466 | |
f427ee49 A |
3467 | /* |
3468 | * Trigger jetsams via the vm_pageout_garbage_collect thread if | |
3469 | * we're running out of zone memory | |
3470 | */ | |
3471 | if (is_zone_map_nearing_exhaustion()) { | |
3472 | thread_wakeup((event_t) &vm_pageout_garbage_collect); | |
3473 | } | |
cb323159 | 3474 | |
f427ee49 A |
3475 | if (page_meta) { |
3476 | kr = zone_sequestered_page_populate(z, page_meta, space, | |
3477 | alloc_size, kmaflags); | |
3478 | } else { | |
3479 | if (z->submap_idx == Z_SUBMAP_IDX_GENERAL_MAP && z->kalloc_heap != KHEAP_ID_NONE) { | |
3480 | kmaflags |= KMA_KHEAP; | |
5ba3f43e | 3481 | } |
f427ee49 A |
3482 | kr = kernel_memory_allocate(submap_for_zone(z), |
3483 | &space, alloc_size, 0, kmaflags, VM_KERN_MEMORY_ZONE); | |
3484 | } | |
5ba3f43e | 3485 | |
f427ee49 A |
3486 | #if !__LP64__ |
3487 | if (kr == KERN_NO_SPACE && z->allows_foreign) { | |
3488 | /* | |
3489 | * For zones allowing foreign pages, fallback to the kernel map | |
3490 | */ | |
3491 | kr = kernel_memory_allocate(kernel_map, &space, | |
3492 | alloc_size, 0, kmaflags, VM_KERN_MEMORY_ZONE); | |
3493 | } | |
3494 | #endif | |
3495 | ||
3496 | if (kr == KERN_SUCCESS) { | |
3497 | break; | |
3498 | } | |
7ddcb079 | 3499 | |
f427ee49 | 3500 | if (flags & Z_NOPAGEWAIT) { |
7ddcb079 | 3501 | lock_zone(z); |
f427ee49 | 3502 | return; |
7ddcb079 A |
3503 | } |
3504 | ||
f427ee49 A |
3505 | if (asynchronously) { |
3506 | assert_wait_timeout(&z->prio_refill_count, | |
3507 | THREAD_UNINT, 1, 100 * NSEC_PER_USEC); | |
3508 | thread_block(THREAD_CONTINUE_NULL); | |
3509 | } else if (++retry == 3) { | |
3510 | zone_replenish_panic(z, kr); | |
3511 | } | |
39236c6e | 3512 | |
f427ee49 A |
3513 | lock_zone(z); |
3514 | } | |
eb6b6ca3 | 3515 | |
f427ee49 A |
3516 | zcram_and_lock(z, space, alloc_size); |
3517 | ||
3518 | #if CONFIG_ZLEAKS | |
3519 | if (__improbable(zleak_state & ZLEAK_STATE_ACTIVE)) { | |
3520 | if (!z->zleak_on && | |
3521 | zone_size_wired(z) >= zleak_per_zone_tracking_threshold) { | |
3522 | z->zleak_on = true; | |
3523 | } | |
3524 | } | |
3525 | #endif /* CONFIG_ZLEAKS */ | |
3526 | } | |
3527 | ||
3528 | /* | |
3529 | * High priority VM privileged thread used to asynchronously refill a given zone. | |
3530 | * These are needed for data structures used by the lower level VM itself. The | |
3531 | * replenish thread maintains a reserve of elements, so that the VM will never | |
3532 | * block in the zone allocator. | |
3533 | */ | |
3534 | __dead2 | |
3535 | static void | |
3536 | zone_replenish_thread(void *_z, wait_result_t __unused wr) | |
3537 | { | |
3538 | zone_t z = _z; | |
3539 | ||
3540 | current_thread()->options |= (TH_OPT_VMPRIV | TH_OPT_ZONE_PRIV); | |
3541 | ||
3542 | for (;;) { | |
3543 | lock_zone(z); | |
3544 | assert(z->z_self == z); | |
3545 | assert(z->zone_replenishing); | |
3546 | assert(z->prio_refill_count != 0); | |
3547 | ||
3548 | while (z->countfree < z->prio_refill_count) { | |
3549 | assert(!z->expanding_no_vm_priv); | |
3550 | assert(!z->expanding_vm_priv); | |
3551 | ||
3552 | zone_replenish_locked(z, Z_WAITOK, true); | |
3553 | ||
3554 | assert(z->z_self == z); | |
3555 | zone_replenish_loops++; | |
3556 | } | |
3557 | ||
3558 | /* Wakeup any potentially throttled allocations. */ | |
3559 | thread_wakeup(z); | |
3560 | ||
3561 | assert_wait(&z->prio_refill_count, THREAD_UNINT); | |
3562 | ||
3563 | /* | |
3564 | * We finished refilling the zone, so decrement the active count | |
3565 | * and wake up any waiting GC threads. | |
3566 | */ | |
3567 | lck_spin_lock(&zone_replenish_lock); | |
eb6b6ca3 A |
3568 | assert(zone_replenish_active > 0); |
3569 | if (--zone_replenish_active == 0) { | |
3570 | thread_wakeup((event_t)&zone_replenish_active); | |
3571 | } | |
3572 | lck_spin_unlock(&zone_replenish_lock); | |
3573 | ||
f427ee49 | 3574 | z->zone_replenishing = false; |
39037602 | 3575 | unlock_zone(z); |
f427ee49 | 3576 | |
7ddcb079 A |
3577 | thread_block(THREAD_CONTINUE_NULL); |
3578 | zone_replenish_wakeups++; | |
3579 | } | |
3580 | } | |
3581 | ||
3582 | void | |
eb6b6ca3 | 3583 | zone_prio_refill_configure(zone_t z) |
0a7de745 | 3584 | { |
f427ee49 A |
3585 | thread_t th; |
3586 | kern_return_t tres; | |
3587 | ||
3588 | lock_zone(z); | |
3589 | assert(!z->prio_refill_count && !z->destructible); | |
3590 | z->prio_refill_count = (uint16_t)(ZONE_REPLENISH_TARGET / zone_elem_size(z)); | |
3591 | z->zone_replenishing = true; | |
3592 | unlock_zone(z); | |
7ddcb079 | 3593 | |
eb6b6ca3 A |
3594 | lck_spin_lock(&zone_replenish_lock); |
3595 | ++zone_replenish_max_threads; | |
3596 | ++zone_replenish_active; | |
3597 | lck_spin_unlock(&zone_replenish_lock); | |
7ddcb079 | 3598 | OSMemoryBarrier(); |
7ddcb079 | 3599 | |
f427ee49 A |
3600 | tres = kernel_thread_start_priority(zone_replenish_thread, z, |
3601 | MAXPRI_KERNEL, &th); | |
7ddcb079 A |
3602 | if (tres != KERN_SUCCESS) { |
3603 | panic("zone_prio_refill_configure, thread create: 0x%x", tres); | |
3604 | } | |
3605 | ||
f427ee49 | 3606 | thread_deallocate(th); |
5ba3f43e A |
3607 | } |
3608 | ||
f427ee49 A |
3609 | static void |
3610 | zone_randomize_freelist(zone_t zone, struct zone_page_metadata *meta, | |
3611 | vm_offset_t size, zone_addr_kind_t kind, unsigned int *entropy_buffer) | |
5ba3f43e | 3612 | { |
f427ee49 A |
3613 | const vm_size_t elem_size = zone_elem_size(zone); |
3614 | vm_offset_t left, right, head, base; | |
3615 | vm_offset_t element; | |
3616 | ||
3617 | left = ZONE_PAGE_FIRST_OFFSET(kind); | |
3618 | right = size - ((size - left) % elem_size); | |
3619 | head = 0; | |
3620 | base = zone_meta_to_addr(meta, kind); | |
3621 | ||
3622 | while (left < right) { | |
3623 | if (zone_leaks_scan_enable || __improbable(zone->tags) || | |
3624 | random_bool_gen_bits(&zone_bool_gen, entropy_buffer, MAX_ENTROPY_PER_ZCRAM, 1)) { | |
3625 | element = base + left; | |
3626 | left += elem_size; | |
3627 | } else { | |
3628 | right -= elem_size; | |
3629 | element = base + right; | |
3630 | } | |
5ba3f43e | 3631 | |
f427ee49 A |
3632 | vm_offset_t *primary = (vm_offset_t *)element; |
3633 | vm_offset_t *backup = get_backup_ptr(elem_size, primary); | |
5ba3f43e | 3634 | |
f427ee49 A |
3635 | *primary = *backup = head ^ zp_nopoison_cookie; |
3636 | head = element; | |
39037602 | 3637 | } |
39037602 | 3638 | |
f427ee49 | 3639 | meta->zm_freelist_offs = (uint16_t)(head - base); |
4bd07ac2 A |
3640 | } |
3641 | ||
1c79356b | 3642 | /* |
3e170ce0 | 3643 | * Cram the given memory into the specified zone. Update the zone page count accordingly. |
1c79356b | 3644 | */ |
f427ee49 A |
3645 | static void |
3646 | zcram_and_lock(zone_t zone, vm_offset_t newmem, vm_size_t size) | |
1c79356b | 3647 | { |
5c9f4661 | 3648 | unsigned int entropy_buffer[MAX_ENTROPY_PER_ZCRAM] = { 0 }; |
f427ee49 A |
3649 | struct zone_page_metadata *meta; |
3650 | zone_addr_kind_t kind; | |
3651 | uint32_t pg_count = (uint32_t)atop(size); | |
3652 | uint32_t zindex = zone_index(zone); | |
3653 | uint32_t free_count; | |
3654 | uint16_t empty_freelist_offs = PAGE_METADATA_EMPTY_FREELIST; | |
1c79356b A |
3655 | |
3656 | /* Basic sanity checks */ | |
3657 | assert(zone != ZONE_NULL && newmem != (vm_offset_t)0); | |
f427ee49 A |
3658 | assert((newmem & PAGE_MASK) == 0); |
3659 | assert((size & PAGE_MASK) == 0); | |
7ddcb079 | 3660 | |
f427ee49 A |
3661 | KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, |
3662 | zindex, size); | |
39037602 | 3663 | |
f427ee49 | 3664 | kind = zone_addr_kind(newmem, size); |
cb323159 | 3665 | #if DEBUG || DEVELOPMENT |
0a7de745 | 3666 | if (zalloc_debug & ZALLOC_DEBUG_ZCRAM) { |
f427ee49 A |
3667 | kprintf("zcram(%p[%s%s], 0x%lx%s, 0x%lx)\n", zone, |
3668 | zone_heap_name(zone), zone->z_name, (uintptr_t)newmem, | |
3669 | kind == ZONE_ADDR_FOREIGN ? "[F]" : "", (uintptr_t)size); | |
0a7de745 | 3670 | } |
cb323159 | 3671 | #endif /* DEBUG || DEVELOPMENT */ |
39236c6e | 3672 | |
5c9f4661 A |
3673 | /* |
3674 | * Initialize the metadata for all pages. We dont need the zone lock | |
39037602 | 3675 | * here because we are not manipulating any zone related state yet. |
f427ee49 A |
3676 | * |
3677 | * This includes randomizing the freelists as the metadata isn't | |
3678 | * published yet. | |
39037602 | 3679 | */ |
39236c6e | 3680 | |
f427ee49 A |
3681 | if (kind == ZONE_ADDR_NATIVE) { |
3682 | /* | |
3683 | * We're being called by zfill, | |
3684 | * zone_replenish_thread or vm_page_more_fictitious, | |
3685 | * | |
3686 | * which will only either allocate a single page, or `alloc_pages` | |
3687 | * worth. | |
3688 | */ | |
3689 | assert(pg_count <= zone->alloc_pages); | |
39236c6e | 3690 | |
f427ee49 A |
3691 | /* |
3692 | * Make sure the range of metadata entries we're about to init | |
3693 | * have proper physical backing, then initialize them. | |
3694 | */ | |
3695 | meta = zone_meta_from_addr(newmem, kind); | |
3696 | zone_meta_populate(meta, meta + pg_count); | |
3697 | ||
3698 | if (zone->permanent) { | |
3699 | empty_freelist_offs = 0; | |
3700 | } | |
3701 | ||
3702 | meta[0] = (struct zone_page_metadata){ | |
3703 | .zm_index = zindex, | |
3704 | .zm_page_count = pg_count, | |
3705 | .zm_percpu = zone->percpu, | |
3706 | .zm_freelist_offs = empty_freelist_offs, | |
3707 | }; | |
3708 | ||
3709 | for (uint32_t i = 1; i < pg_count; i++) { | |
3710 | meta[i] = (struct zone_page_metadata){ | |
3711 | .zm_index = zindex, | |
3712 | .zm_page_count = i, | |
3713 | .zm_percpu = zone->percpu, | |
3714 | .zm_secondary_page = true, | |
3715 | .zm_freelist_offs = empty_freelist_offs, | |
3716 | }; | |
3717 | } | |
39236c6e | 3718 | |
f427ee49 A |
3719 | if (!zone->permanent) { |
3720 | zone_randomize_freelist(zone, meta, | |
3721 | zone->percpu ? PAGE_SIZE : size, kind, entropy_buffer); | |
3722 | } | |
3723 | } else { | |
3724 | if (!zone->allows_foreign || !from_foreign_range(newmem, size)) { | |
3725 | panic("zcram_and_lock: foreign memory [%lx] being crammed is " | |
3726 | "outside of foreign range", (uintptr_t)newmem); | |
3727 | } | |
39236c6e | 3728 | |
f427ee49 A |
3729 | /* |
3730 | * We cannot support elements larger than page size for foreign | |
3731 | * memory because we put metadata on the page itself for each | |
3732 | * page of foreign memory. | |
3733 | * | |
3734 | * We need to do this in order to be able to reach the metadata | |
3735 | * when any element is freed. | |
3736 | */ | |
3737 | assert(!zone->percpu && !zone->permanent); | |
3738 | assert(zone_elem_size(zone) <= PAGE_SIZE - sizeof(struct zone_page_metadata)); | |
3739 | ||
3740 | bzero((void *)newmem, size); | |
3741 | ||
3742 | for (vm_offset_t offs = 0; offs < size; offs += PAGE_SIZE) { | |
3743 | meta = (struct zone_page_metadata *)(newmem + offs); | |
3744 | *meta = (struct zone_page_metadata){ | |
3745 | .zm_index = zindex, | |
3746 | .zm_page_count = 1, | |
3747 | .zm_freelist_offs = empty_freelist_offs, | |
3748 | }; | |
3749 | meta->zm_foreign_cookie[0] = ZONE_FOREIGN_COOKIE; | |
3750 | zone_randomize_freelist(zone, meta, PAGE_SIZE, kind, | |
3751 | entropy_buffer); | |
3752 | } | |
3753 | } | |
39236c6e | 3754 | |
5ba3f43e | 3755 | #if VM_MAX_TAG_ZONES |
0a7de745 | 3756 | if (__improbable(zone->tags)) { |
f427ee49 | 3757 | assert(kind == ZONE_ADDR_NATIVE && !zone->percpu); |
0a7de745 A |
3758 | ztMemoryAdd(zone, newmem, size); |
3759 | } | |
5ba3f43e A |
3760 | #endif /* VM_MAX_TAG_ZONES */ |
3761 | ||
f427ee49 A |
3762 | /* |
3763 | * Insert the initialized pages / metadatas into the right lists. | |
3764 | */ | |
3765 | ||
39037602 | 3766 | lock_zone(zone); |
f427ee49 | 3767 | assert(zone->z_self == zone); |
39037602 | 3768 | |
f427ee49 A |
3769 | zone->page_count += pg_count; |
3770 | if (zone->page_count_hwm < zone->page_count) { | |
3771 | zone->page_count_hwm = zone->page_count; | |
3772 | } | |
3773 | os_atomic_add(&zones_phys_page_count, pg_count, relaxed); | |
39037602 | 3774 | |
f427ee49 A |
3775 | if (kind == ZONE_ADDR_NATIVE) { |
3776 | os_atomic_add(&zones_phys_page_mapped_count, pg_count, relaxed); | |
3777 | if (zone->permanent) { | |
3778 | zone_meta_queue_push(zone, &zone->pages_intermediate, meta, kind); | |
3779 | } else { | |
3780 | zone_meta_queue_push(zone, &zone->pages_all_free, meta, kind); | |
3781 | zone->allfree_page_count += meta->zm_page_count; | |
39236c6e | 3782 | } |
f427ee49 A |
3783 | free_count = zone_elem_count(zone, size, kind); |
3784 | zone->countfree += free_count; | |
3785 | zone->countavail += free_count; | |
39037602 | 3786 | } else { |
f427ee49 A |
3787 | free_count = zone_elem_count(zone, PAGE_SIZE, kind); |
3788 | for (vm_offset_t offs = 0; offs < size; offs += PAGE_SIZE) { | |
3789 | meta = (struct zone_page_metadata *)(newmem + offs); | |
3790 | zone_meta_queue_push(zone, &zone->pages_any_free_foreign, meta, kind); | |
3791 | zone->countfree += free_count; | |
3792 | zone->countavail += free_count; | |
3793 | } | |
1c79356b | 3794 | } |
4bd07ac2 | 3795 | |
f427ee49 A |
3796 | KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, zindex); |
3797 | } | |
3798 | ||
3799 | void | |
3800 | zcram(zone_t zone, vm_offset_t newmem, vm_size_t size) | |
3801 | { | |
3802 | zcram_and_lock(zone, newmem, size); | |
3803 | unlock_zone(zone); | |
1c79356b A |
3804 | } |
3805 | ||
1c79356b A |
3806 | /* |
3807 | * Fill a zone with enough memory to contain at least nelem elements. | |
1c79356b A |
3808 | * Return the number of elements actually put into the zone, which may |
3809 | * be more than the caller asked for since the memory allocation is | |
5ba3f43e | 3810 | * rounded up to the next zone allocation size. |
1c79356b A |
3811 | */ |
3812 | int | |
3813 | zfill( | |
0a7de745 A |
3814 | zone_t zone, |
3815 | int nelem) | |
1c79356b | 3816 | { |
5ba3f43e | 3817 | kern_return_t kr; |
f427ee49 | 3818 | vm_offset_t memory; |
1c79356b | 3819 | |
f427ee49 A |
3820 | vm_size_t alloc_size = ptoa(zone->alloc_pages); |
3821 | vm_size_t nalloc_inc = zone_elem_count(zone, alloc_size, ZONE_ADDR_NATIVE); | |
3822 | vm_size_t nalloc = 0, goal = MAX(0, nelem); | |
3823 | int kmaflags = KMA_KOBJECT | KMA_ZERO; | |
cb323159 | 3824 | |
f427ee49 A |
3825 | if (zone->noencrypt) { |
3826 | kmaflags |= KMA_NOENCRYPT; | |
cb323159 | 3827 | } |
5ba3f43e | 3828 | |
f427ee49 | 3829 | assert(!zone->allows_foreign && !zone->permanent); |
5ba3f43e | 3830 | |
f427ee49 A |
3831 | /* |
3832 | * Trigger jetsams via the vm_pageout_garbage_collect thread if we're | |
3833 | * running out of zone memory | |
3834 | */ | |
5ba3f43e A |
3835 | if (is_zone_map_nearing_exhaustion()) { |
3836 | thread_wakeup((event_t) &vm_pageout_garbage_collect); | |
3837 | } | |
3838 | ||
f427ee49 A |
3839 | if (zone->va_sequester) { |
3840 | lock_zone(zone); | |
316670eb | 3841 | |
f427ee49 A |
3842 | do { |
3843 | struct zone_page_metadata *page_meta; | |
3844 | page_meta = zone_sequestered_page_get(zone, &memory); | |
3845 | if (NULL == page_meta) { | |
3846 | break; | |
3847 | } | |
3848 | unlock_zone(zone); | |
c910b4d9 | 3849 | |
f427ee49 A |
3850 | kr = zone_sequestered_page_populate(zone, page_meta, |
3851 | memory, alloc_size, kmaflags); | |
3852 | if (KERN_SUCCESS != kr) { | |
3853 | goto out_nolock; | |
3854 | } | |
4bd07ac2 | 3855 | |
f427ee49 A |
3856 | zcram_and_lock(zone, memory, alloc_size); |
3857 | nalloc += nalloc_inc; | |
3858 | } while (nalloc < goal); | |
6d2010ae | 3859 | |
f427ee49 | 3860 | unlock_zone(zone); |
2d21ac55 | 3861 | } |
1c79356b | 3862 | |
f427ee49 A |
3863 | out_nolock: |
3864 | while (nalloc < goal) { | |
3865 | kr = kernel_memory_allocate(submap_for_zone(zone), &memory, | |
3866 | alloc_size, 0, kmaflags, VM_KERN_MEMORY_ZONE); | |
3867 | if (kr != KERN_SUCCESS) { | |
3868 | printf("%s: kernel_memory_allocate() of %lu bytes failed\n", | |
3869 | __func__, (unsigned long)(nalloc * alloc_size)); | |
3870 | break; | |
3871 | } | |
eb6b6ca3 | 3872 | |
f427ee49 A |
3873 | zcram(zone, memory, alloc_size); |
3874 | nalloc += nalloc_inc; | |
d9a64523 A |
3875 | } |
3876 | ||
f427ee49 | 3877 | return (int)nalloc; |
1c79356b A |
3878 | } |
3879 | ||
5ba3f43e A |
3880 | /* |
3881 | * We're being very conservative here and picking a value of 95%. We might need to lower this if | |
3882 | * we find that we're not catching the problem and are still hitting zone map exhaustion panics. | |
3883 | */ | |
3884 | #define ZONE_MAP_JETSAM_LIMIT_DEFAULT 95 | |
3885 | ||
3886 | /* | |
3887 | * Trigger zone-map-exhaustion jetsams if the zone map is X% full, where X=zone_map_jetsam_limit. | |
3888 | * Can be set via boot-arg "zone_map_jetsam_limit". Set to 95% by default. | |
3889 | */ | |
f427ee49 A |
3890 | TUNABLE_WRITEABLE(unsigned int, zone_map_jetsam_limit, "zone_map_jetsam_limit", |
3891 | ZONE_MAP_JETSAM_LIMIT_DEFAULT); | |
5ba3f43e | 3892 | |
0a7de745 A |
3893 | void |
3894 | get_zone_map_size(uint64_t *current_size, uint64_t *capacity) | |
5ba3f43e | 3895 | { |
f427ee49 A |
3896 | vm_offset_t phys_pages = os_atomic_load(&zones_phys_page_mapped_count, relaxed); |
3897 | *current_size = ptoa_64(phys_pages); | |
3898 | *capacity = zone_phys_mapped_max; | |
5ba3f43e A |
3899 | } |
3900 | ||
0a7de745 A |
3901 | void |
3902 | get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size) | |
5ba3f43e A |
3903 | { |
3904 | zone_t largest_zone = zone_find_largest(); | |
f427ee49 A |
3905 | |
3906 | /* | |
3907 | * Append kalloc heap name to zone name (if zone is used by kalloc) | |
3908 | */ | |
3909 | snprintf(zone_name, zone_name_len, "%s%s", | |
3910 | zone_heap_name(largest_zone), largest_zone->z_name); | |
3911 | ||
3912 | *zone_size = zone_size_wired(largest_zone); | |
5ba3f43e A |
3913 | } |
3914 | ||
0a7de745 A |
3915 | boolean_t |
3916 | is_zone_map_nearing_exhaustion(void) | |
5ba3f43e | 3917 | { |
f427ee49 A |
3918 | vm_offset_t phys_pages = os_atomic_load(&zones_phys_page_mapped_count, relaxed); |
3919 | return ptoa_64(phys_pages) > (zone_phys_mapped_max * zone_map_jetsam_limit) / 100; | |
5ba3f43e A |
3920 | } |
3921 | ||
5ba3f43e A |
3922 | |
3923 | #define VMENTRY_TO_VMOBJECT_COMPARISON_RATIO 98 | |
3924 | ||
3925 | /* | |
3926 | * Tries to kill a single process if it can attribute one to the largest zone. If not, wakes up the memorystatus thread | |
3927 | * to walk through the jetsam priority bands and kill processes. | |
3928 | */ | |
0a7de745 A |
3929 | static void |
3930 | kill_process_in_largest_zone(void) | |
5ba3f43e A |
3931 | { |
3932 | pid_t pid = -1; | |
3933 | zone_t largest_zone = zone_find_largest(); | |
3934 | ||
f427ee49 A |
3935 | printf("zone_map_exhaustion: Zone mapped %lld of %lld, used %lld, map size %lld, capacity %lld [jetsam limit %d%%]\n", |
3936 | ptoa_64(os_atomic_load(&zones_phys_page_mapped_count, relaxed)), ptoa_64(zone_phys_mapped_max), | |
3937 | ptoa_64(os_atomic_load(&zones_phys_page_count, relaxed)), | |
3938 | (uint64_t)zone_submaps_approx_size(), | |
3939 | (uint64_t)zone_range_size(&zone_info.zi_map_range), | |
3940 | zone_map_jetsam_limit); | |
3941 | printf("zone_map_exhaustion: Largest zone %s%s, size %lu\n", zone_heap_name(largest_zone), | |
3942 | largest_zone->z_name, (uintptr_t)zone_size_wired(largest_zone)); | |
5ba3f43e A |
3943 | |
3944 | /* | |
f427ee49 A |
3945 | * We want to make sure we don't call this function from userspace. |
3946 | * Or we could end up trying to synchronously kill the process | |
5ba3f43e A |
3947 | * whose context we're in, causing the system to hang. |
3948 | */ | |
3949 | assert(current_task() == kernel_task); | |
3950 | ||
3951 | /* | |
f427ee49 A |
3952 | * If vm_object_zone is the largest, check to see if the number of |
3953 | * elements in vm_map_entry_zone is comparable. | |
3954 | * | |
3955 | * If so, consider vm_map_entry_zone as the largest. This lets us target | |
3956 | * a specific process to jetsam to quickly recover from the zone map | |
3957 | * bloat. | |
5ba3f43e A |
3958 | */ |
3959 | if (largest_zone == vm_object_zone) { | |
f427ee49 A |
3960 | unsigned int vm_object_zone_count = zone_count_allocated(vm_object_zone); |
3961 | unsigned int vm_map_entry_zone_count = zone_count_allocated(vm_map_entry_zone); | |
5ba3f43e A |
3962 | /* Is the VM map entries zone count >= 98% of the VM objects zone count? */ |
3963 | if (vm_map_entry_zone_count >= ((vm_object_zone_count * VMENTRY_TO_VMOBJECT_COMPARISON_RATIO) / 100)) { | |
3964 | largest_zone = vm_map_entry_zone; | |
f427ee49 A |
3965 | printf("zone_map_exhaustion: Picking VM map entries as the zone to target, size %lu\n", |
3966 | (uintptr_t)zone_size_wired(largest_zone)); | |
5ba3f43e A |
3967 | } |
3968 | } | |
3969 | ||
3970 | /* TODO: Extend this to check for the largest process in other zones as well. */ | |
3971 | if (largest_zone == vm_map_entry_zone) { | |
3972 | pid = find_largest_process_vm_map_entries(); | |
3973 | } else { | |
f427ee49 A |
3974 | printf("zone_map_exhaustion: Nothing to do for the largest zone [%s%s]. " |
3975 | "Waking up memorystatus thread.\n", zone_heap_name(largest_zone), | |
3976 | largest_zone->z_name); | |
5ba3f43e A |
3977 | } |
3978 | if (!memorystatus_kill_on_zone_map_exhaustion(pid)) { | |
3979 | printf("zone_map_exhaustion: Call to memorystatus failed, victim pid: %d\n", pid); | |
3980 | } | |
3981 | } | |
3982 | ||
f427ee49 A |
3983 | #pragma mark zalloc module init |
3984 | ||
3985 | /* | |
3986 | * Initialize the "zone of zones" which uses fixed memory allocated | |
3987 | * earlier in memory initialization. zone_bootstrap is called | |
3988 | * before zone_init. | |
39236c6e | 3989 | */ |
f427ee49 | 3990 | __startup_func |
1c79356b | 3991 | void |
f427ee49 A |
3992 | zone_bootstrap(void) |
3993 | { | |
3994 | /* Validate struct zone_page_metadata expectations */ | |
3995 | if ((1U << ZONE_PAGECOUNT_BITS) < | |
3996 | atop(ZONE_MAX_ALLOC_SIZE) * sizeof(struct zone_page_metadata)) { | |
3997 | panic("ZONE_PAGECOUNT_BITS is not large enough to hold page counts"); | |
3998 | } | |
5ba3f43e | 3999 | |
f427ee49 A |
4000 | /* Validate struct zone_packed_virtual_address expectations */ |
4001 | static_assert((intptr_t)VM_MIN_KERNEL_ADDRESS < 0, "the top bit must be 1"); | |
4002 | if (VM_KERNEL_POINTER_SIGNIFICANT_BITS - PAGE_SHIFT > 31) { | |
4003 | panic("zone_pva_t can't pack a kernel page address in 31 bits"); | |
0a7de745 | 4004 | } |
1c79356b | 4005 | |
f427ee49 | 4006 | zpercpu_early_count = ml_early_cpu_max_number() + 1; |
91447636 | 4007 | |
f427ee49 A |
4008 | /* Set up zone element poisoning */ |
4009 | zp_bootstrap(); | |
0a7de745 | 4010 | |
f427ee49 | 4011 | random_bool_init(&zone_bool_gen); |
d9a64523 | 4012 | |
1c79356b | 4013 | /* |
f427ee49 A |
4014 | * the KASAN quarantine for kalloc doesn't understand heaps |
4015 | * and trips the heap confusion panics. At the end of the day, | |
4016 | * all these security measures are double duty with KASAN. | |
4017 | * | |
4018 | * On 32bit kernels, these protections are just too expensive. | |
1c79356b | 4019 | */ |
f427ee49 A |
4020 | #if !defined(__LP64__) || KASAN_ZALLOC |
4021 | zsecurity_options &= ~ZSECURITY_OPTIONS_SEQUESTER; | |
4022 | zsecurity_options &= ~ZSECURITY_OPTIONS_SUBMAP_USER_DATA; | |
4023 | zsecurity_options &= ~ZSECURITY_OPTIONS_SEQUESTER_KEXT_KALLOC; | |
4024 | #endif | |
7ddcb079 | 4025 | |
f427ee49 | 4026 | thread_call_setup(&call_async_alloc, zalloc_async, NULL); |
39037602 | 4027 | |
f427ee49 A |
4028 | #if CONFIG_ZCACHE |
4029 | /* zcc_enable_for_zone_name=<zone>: enable per-cpu zone caching for <zone>. */ | |
4030 | if (PE_parse_boot_arg_str("zcc_enable_for_zone_name", cache_zone_name, sizeof(cache_zone_name))) { | |
4031 | printf("zcache: caching enabled for zone %s\n", cache_zone_name); | |
0a7de745 | 4032 | } |
f427ee49 A |
4033 | #endif /* CONFIG_ZCACHE */ |
4034 | } | |
fe8ab488 | 4035 | |
f427ee49 A |
4036 | #if __LP64__ |
4037 | #if CONFIG_EMBEDDED | |
4038 | #define ZONE_MAP_VIRTUAL_SIZE_LP64 (32ULL * 1024ULL * 1024 * 1024) | |
4039 | #else | |
4040 | #define ZONE_MAP_VIRTUAL_SIZE_LP64 (128ULL * 1024ULL * 1024 * 1024) | |
fe8ab488 | 4041 | #endif |
f427ee49 | 4042 | #endif /* __LP64__ */ |
fe8ab488 | 4043 | |
f427ee49 A |
4044 | #define SINGLE_GUARD 16384 |
4045 | #define MULTI_GUARD (3 * SINGLE_GUARD) | |
0a7de745 | 4046 | |
f427ee49 A |
4047 | #if __LP64__ |
4048 | static inline vm_offset_t | |
4049 | zone_restricted_va_max(void) | |
4050 | { | |
4051 | vm_offset_t compressor_max = VM_PACKING_MAX_PACKABLE(C_SLOT_PACKED_PTR); | |
4052 | vm_offset_t vm_page_max = VM_PACKING_MAX_PACKABLE(VM_PAGE_PACKED_PTR); | |
5ba3f43e | 4053 | |
f427ee49 A |
4054 | return trunc_page(MIN(compressor_max, vm_page_max)); |
4055 | } | |
5ba3f43e A |
4056 | #endif |
4057 | ||
f427ee49 A |
4058 | __startup_func |
4059 | static void | |
4060 | zone_tunables_fixup(void) | |
4061 | { | |
4062 | if (zone_map_jetsam_limit == 0 || zone_map_jetsam_limit > 100) { | |
4063 | zone_map_jetsam_limit = ZONE_MAP_JETSAM_LIMIT_DEFAULT; | |
0a7de745 | 4064 | } |
1c79356b | 4065 | } |
f427ee49 | 4066 | STARTUP(TUNABLES, STARTUP_RANK_MIDDLE, zone_tunables_fixup); |
1c79356b | 4067 | |
f427ee49 A |
4068 | __startup_func |
4069 | static vm_size_t | |
4070 | zone_phys_size_max(void) | |
4071 | { | |
4072 | mach_vm_size_t zsize; | |
4073 | vm_size_t zsizearg; | |
6d2010ae | 4074 | |
f427ee49 A |
4075 | if (PE_parse_boot_argn("zsize", &zsizearg, sizeof(zsizearg))) { |
4076 | zsize = zsizearg * (1024ULL * 1024); | |
4077 | } else { | |
4078 | zsize = sane_size >> 2; /* Set target zone size as 1/4 of physical memory */ | |
4079 | #if defined(__LP64__) | |
4080 | zsize += zsize >> 1; | |
4081 | #endif /* __LP64__ */ | |
4082 | } | |
5ba3f43e | 4083 | |
f427ee49 A |
4084 | if (zsize < CONFIG_ZONE_MAP_MIN) { |
4085 | zsize = CONFIG_ZONE_MAP_MIN; /* Clamp to min */ | |
4086 | } | |
4087 | if (zsize > sane_size >> 1) { | |
4088 | zsize = sane_size >> 1; /* Clamp to half of RAM max */ | |
4089 | } | |
4090 | if (zsizearg == 0 && zsize > ZONE_MAP_MAX) { | |
4091 | /* if zsize boot-arg not present and zsize exceeds platform maximum, clip zsize */ | |
4092 | vm_size_t orig_zsize = zsize; | |
4093 | zsize = ZONE_MAP_MAX; | |
4094 | printf("NOTE: zonemap size reduced from 0x%lx to 0x%lx\n", | |
4095 | (uintptr_t)orig_zsize, (uintptr_t)zsize); | |
d9a64523 A |
4096 | } |
4097 | ||
f427ee49 A |
4098 | assert((vm_size_t) zsize == zsize); |
4099 | return (vm_size_t)trunc_page(zsize); | |
4100 | } | |
4101 | ||
4102 | __startup_func | |
4103 | static struct zone_map_range | |
4104 | zone_init_allocate_va(vm_offset_t *submap_min, vm_size_t size, bool guard) | |
4105 | { | |
4106 | struct zone_map_range r; | |
4107 | kern_return_t kr; | |
d9a64523 | 4108 | |
f427ee49 A |
4109 | if (guard) { |
4110 | vm_map_offset_t addr = *submap_min; | |
4111 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; | |
d9a64523 | 4112 | |
f427ee49 A |
4113 | vmk_flags.vmkf_permanent = TRUE; |
4114 | kr = vm_map_enter(kernel_map, &addr, size, 0, | |
4115 | VM_FLAGS_FIXED, vmk_flags, VM_KERN_MEMORY_ZONE, kernel_object, | |
4116 | 0, FALSE, VM_PROT_NONE, VM_PROT_NONE, VM_INHERIT_DEFAULT); | |
4117 | *submap_min = (vm_offset_t)addr; | |
4118 | } else { | |
4119 | kr = kernel_memory_allocate(kernel_map, submap_min, size, | |
4120 | 0, KMA_KOBJECT | KMA_PAGEABLE | KMA_VAONLY, VM_KERN_MEMORY_ZONE); | |
d9a64523 | 4121 | } |
f427ee49 A |
4122 | if (kr != KERN_SUCCESS) { |
4123 | panic("zone_init_allocate_va(0x%lx:0x%zx) failed: %d", | |
4124 | (uintptr_t)*submap_min, (size_t)size, kr); | |
4125 | } | |
4126 | ||
4127 | r.min_address = *submap_min; | |
4128 | *submap_min += size; | |
4129 | r.max_address = *submap_min; | |
4130 | ||
4131 | return r; | |
d9a64523 A |
4132 | } |
4133 | ||
f427ee49 A |
4134 | __startup_func |
4135 | static void | |
4136 | zone_submap_init( | |
4137 | vm_offset_t *submap_min, | |
4138 | unsigned idx, | |
4139 | uint64_t zone_sub_map_numer, | |
4140 | uint64_t *remaining_denom, | |
4141 | vm_offset_t *remaining_size, | |
4142 | vm_size_t guard_size) | |
4143 | { | |
4144 | vm_offset_t submap_start, submap_end; | |
4145 | vm_size_t submap_size; | |
4146 | vm_map_t submap; | |
4147 | kern_return_t kr; | |
4148 | ||
4149 | submap_size = trunc_page(zone_sub_map_numer * *remaining_size / | |
4150 | *remaining_denom); | |
4151 | submap_start = *submap_min; | |
4152 | submap_end = submap_start + submap_size; | |
4153 | ||
4154 | #if defined(__LP64__) | |
4155 | if (idx == Z_SUBMAP_IDX_VA_RESTRICTED_MAP) { | |
4156 | vm_offset_t restricted_va_max = zone_restricted_va_max(); | |
4157 | if (submap_end > restricted_va_max) { | |
4158 | #if DEBUG || DEVELOPMENT | |
4159 | printf("zone_init: submap[%d] clipped to %zdM of %zdM\n", idx, | |
4160 | (size_t)(restricted_va_max - submap_start) >> 20, | |
4161 | (size_t)submap_size >> 20); | |
4162 | #endif /* DEBUG || DEVELOPMENT */ | |
4163 | guard_size += submap_end - restricted_va_max; | |
4164 | *remaining_size -= submap_end - restricted_va_max; | |
4165 | submap_end = restricted_va_max; | |
4166 | submap_size = restricted_va_max - submap_start; | |
4167 | } | |
4168 | ||
4169 | vm_packing_verify_range("vm_compressor", | |
4170 | submap_start, submap_end, VM_PACKING_PARAMS(C_SLOT_PACKED_PTR)); | |
4171 | vm_packing_verify_range("vm_page", | |
4172 | submap_start, submap_end, VM_PACKING_PARAMS(VM_PAGE_PACKED_PTR)); | |
4173 | } | |
4174 | #endif /* defined(__LP64__) */ | |
4175 | ||
4176 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; | |
4177 | vmk_flags.vmkf_permanent = TRUE; | |
4178 | kr = kmem_suballoc(kernel_map, submap_min, submap_size, | |
4179 | FALSE, VM_FLAGS_FIXED, vmk_flags, | |
4180 | VM_KERN_MEMORY_ZONE, &submap); | |
4181 | if (kr != KERN_SUCCESS) { | |
4182 | panic("kmem_suballoc(kernel_map[%d] %p:%p) failed: %d", | |
4183 | idx, (void *)submap_start, (void *)submap_end, kr); | |
4184 | } | |
4185 | ||
4186 | #if DEBUG || DEVELOPMENT | |
4187 | printf("zone_init: submap[%d] %p:%p (%zuM)\n", | |
4188 | idx, (void *)submap_start, (void *)submap_end, | |
4189 | (size_t)submap_size >> 20); | |
4190 | #endif /* DEBUG || DEVELOPMENT */ | |
4191 | ||
4192 | zone_submaps[idx] = submap; | |
4193 | *submap_min = submap_end; | |
4194 | *remaining_size -= submap_size; | |
4195 | *remaining_denom -= zone_sub_map_numer; | |
4196 | ||
4197 | zone_init_allocate_va(submap_min, guard_size, true); | |
4198 | } | |
4199 | ||
4200 | /* Global initialization of Zone Allocator. | |
4201 | * Runs after zone_bootstrap. | |
1c79356b | 4202 | */ |
f427ee49 A |
4203 | __startup_func |
4204 | static void | |
4205 | zone_init(void) | |
1c79356b | 4206 | { |
f427ee49 A |
4207 | vm_size_t zone_meta_size; |
4208 | vm_size_t zone_map_size; | |
4209 | vm_size_t remaining_size; | |
4210 | vm_offset_t submap_min = 0; | |
6d2010ae | 4211 | |
f427ee49 A |
4212 | if (ZSECURITY_OPTIONS_SUBMAP_USER_DATA & zsecurity_options) { |
4213 | zone_last_submap_idx = Z_SUBMAP_IDX_BAG_OF_BYTES_MAP; | |
4214 | } else { | |
4215 | zone_last_submap_idx = Z_SUBMAP_IDX_GENERAL_MAP; | |
4216 | } | |
4217 | zone_phys_mapped_max = zone_phys_size_max(); | |
4218 | ||
4219 | #if __LP64__ | |
4220 | zone_map_size = ZONE_MAP_VIRTUAL_SIZE_LP64; | |
4221 | #else | |
4222 | zone_map_size = zone_phys_mapped_max; | |
4223 | #endif | |
4224 | zone_meta_size = round_page(atop(zone_map_size) * | |
4225 | sizeof(struct zone_page_metadata)); | |
1c79356b | 4226 | |
5ba3f43e | 4227 | /* |
f427ee49 A |
4228 | * Zone "map" setup: |
4229 | * | |
4230 | * [ VA_RESTRICTED ] <-- LP64 only | |
4231 | * [ SINGLE_GUARD ] <-- LP64 only | |
4232 | * [ meta ] | |
4233 | * [ SINGLE_GUARD ] | |
4234 | * [ map<i> ] \ for each extra map | |
4235 | * [ MULTI_GUARD ] / | |
5ba3f43e | 4236 | */ |
f427ee49 A |
4237 | remaining_size = zone_map_size; |
4238 | #if defined(__LP64__) | |
4239 | remaining_size -= SINGLE_GUARD; | |
5ba3f43e | 4240 | #endif |
f427ee49 A |
4241 | remaining_size -= zone_meta_size + SINGLE_GUARD; |
4242 | remaining_size -= MULTI_GUARD * (zone_last_submap_idx - | |
4243 | Z_SUBMAP_IDX_GENERAL_MAP + 1); | |
5ba3f43e | 4244 | |
f427ee49 A |
4245 | #if VM_MAX_TAG_ZONES |
4246 | if (zone_tagging_on) { | |
4247 | zone_tagging_init(zone_map_size); | |
4248 | } | |
4249 | #endif | |
316670eb | 4250 | |
f427ee49 A |
4251 | uint64_t remaining_denom = 0; |
4252 | uint64_t zone_sub_map_numer[Z_SUBMAP_IDX_COUNT] = { | |
4253 | #ifdef __LP64__ | |
4254 | [Z_SUBMAP_IDX_VA_RESTRICTED_MAP] = 20, | |
4255 | #endif /* defined(__LP64__) */ | |
4256 | [Z_SUBMAP_IDX_GENERAL_MAP] = 40, | |
4257 | [Z_SUBMAP_IDX_BAG_OF_BYTES_MAP] = 40, | |
4258 | }; | |
4259 | ||
4260 | for (unsigned idx = 0; idx <= zone_last_submap_idx; idx++) { | |
4261 | #if DEBUG || DEVELOPMENT | |
4262 | char submap_name[MAX_SUBMAP_NAME]; | |
4263 | snprintf(submap_name, MAX_SUBMAP_NAME, "submap%d", idx); | |
4264 | PE_parse_boot_argn(submap_name, &zone_sub_map_numer[idx], sizeof(uint64_t)); | |
316670eb | 4265 | #endif |
f427ee49 A |
4266 | remaining_denom += zone_sub_map_numer[idx]; |
4267 | } | |
4268 | ||
c910b4d9 | 4269 | /* |
f427ee49 A |
4270 | * And now allocate the various pieces of VA and submaps. |
4271 | * | |
4272 | * Make a first allocation of contiguous VA, that we'll deallocate, | |
4273 | * and we'll carve-out memory in that range again linearly. | |
4274 | * The kernel is stil single threaded at this stage. | |
c910b4d9 | 4275 | */ |
39236c6e | 4276 | |
f427ee49 A |
4277 | struct zone_map_range *map_range = &zone_info.zi_map_range; |
4278 | ||
4279 | *map_range = zone_init_allocate_va(&submap_min, zone_map_size, false); | |
4280 | submap_min = map_range->min_address; | |
4281 | kmem_free(kernel_map, submap_min, zone_map_size); | |
4282 | ||
4283 | #if defined(__LP64__) | |
fe8ab488 | 4284 | /* |
f427ee49 A |
4285 | * Allocate `Z_SUBMAP_IDX_VA_RESTRICTED_MAP` first because its VA range |
4286 | * can't go beyond RESTRICTED_VA_MAX for the vm_page_t packing to work. | |
6d2010ae | 4287 | */ |
f427ee49 A |
4288 | zone_submap_init(&submap_min, Z_SUBMAP_IDX_VA_RESTRICTED_MAP, |
4289 | zone_sub_map_numer[Z_SUBMAP_IDX_VA_RESTRICTED_MAP], &remaining_denom, | |
4290 | &remaining_size, SINGLE_GUARD); | |
4291 | #endif /* defined(__LP64__) */ | |
1c79356b | 4292 | |
f427ee49 A |
4293 | /* |
4294 | * Allocate metadata array | |
4295 | */ | |
4296 | zone_info.zi_meta_range = | |
4297 | zone_init_allocate_va(&submap_min, zone_meta_size, true); | |
4298 | zone_init_allocate_va(&submap_min, SINGLE_GUARD, true); | |
4299 | ||
4300 | zone_info.zi_array_base = | |
4301 | (struct zone_page_metadata *)zone_info.zi_meta_range.min_address - | |
4302 | zone_pva_from_addr(map_range->min_address).packed_address; | |
4303 | ||
4304 | /* | |
4305 | * Allocate other submaps | |
4306 | */ | |
4307 | for (unsigned idx = Z_SUBMAP_IDX_GENERAL_MAP; idx <= zone_last_submap_idx; idx++) { | |
4308 | zone_submap_init(&submap_min, idx, zone_sub_map_numer[idx], | |
4309 | &remaining_denom, &remaining_size, MULTI_GUARD); | |
0a7de745 | 4310 | } |
5ba3f43e | 4311 | |
f427ee49 A |
4312 | vm_map_t general_map = zone_submaps[Z_SUBMAP_IDX_GENERAL_MAP]; |
4313 | zone_info.zi_general_range.min_address = vm_map_min(general_map); | |
4314 | zone_info.zi_general_range.max_address = vm_map_max(general_map); | |
4315 | ||
4316 | assert(submap_min == map_range->max_address); | |
4317 | ||
4318 | #if CONFIG_GZALLOC | |
4319 | gzalloc_init(zone_map_size); | |
d9a64523 | 4320 | #endif |
f427ee49 A |
4321 | |
4322 | zone_create_flags_t kma_flags = ZC_NOCACHING | | |
4323 | ZC_NOGC | ZC_NOENCRYPT | ZC_NOGZALLOC | ZC_NOCALLOUT | | |
4324 | ZC_KASAN_NOQUARANTINE | ZC_KASAN_NOREDZONE; | |
4325 | ||
4326 | (void)zone_create_ext("vm.permanent", 1, kma_flags, | |
4327 | ZONE_ID_PERMANENT, ^(zone_t z){ | |
4328 | z->permanent = true; | |
4329 | z->z_elem_size = 1; | |
4330 | z->pcpu_elem_size = 1; | |
4331 | #if defined(__LP64__) | |
4332 | z->submap_idx = Z_SUBMAP_IDX_VA_RESTRICTED_MAP; | |
4333 | #endif | |
4334 | }); | |
4335 | (void)zone_create_ext("vm.permanent.percpu", 1, kma_flags | ZC_PERCPU, | |
4336 | ZONE_ID_PERCPU_PERMANENT, ^(zone_t z){ | |
4337 | z->permanent = true; | |
4338 | z->z_elem_size = 1; | |
4339 | z->pcpu_elem_size = zpercpu_count(); | |
4340 | #if defined(__LP64__) | |
4341 | z->submap_idx = Z_SUBMAP_IDX_VA_RESTRICTED_MAP; | |
4342 | #endif | |
4343 | }); | |
4344 | ||
4345 | /* | |
4346 | * Now fix the zones that are missing their zone stats | |
4347 | * we don't really know if zfree()s happened so our stats | |
4348 | * are slightly off for early boot. ¯\_(ツ)_/¯ | |
4349 | */ | |
4350 | zone_index_foreach(idx) { | |
4351 | zone_t tz = &zone_array[idx]; | |
4352 | ||
4353 | if (tz->z_self) { | |
4354 | zone_stats_t zs = zalloc_percpu_permanent_type(struct zone_stats); | |
4355 | ||
4356 | zpercpu_get_cpu(zs, 0)->zs_mem_allocated += | |
4357 | (tz->countavail - tz->countfree) * | |
4358 | zone_elem_size(tz); | |
4359 | assert(tz->z_stats == NULL); | |
4360 | tz->z_stats = zs; | |
4361 | #if ZONE_ENABLE_LOGGING | |
4362 | if (tz->zone_logging && !tz->zlog_btlog) { | |
4363 | zone_enable_logging(tz); | |
d9a64523 | 4364 | } |
f427ee49 | 4365 | #endif |
d9a64523 A |
4366 | } |
4367 | } | |
fe8ab488 | 4368 | |
f427ee49 | 4369 | #if CONFIG_ZLEAKS |
cb323159 | 4370 | /* |
f427ee49 | 4371 | * Initialize the zone leak monitor |
cb323159 | 4372 | */ |
f427ee49 A |
4373 | zleak_init(zone_map_size); |
4374 | #endif /* CONFIG_ZLEAKS */ | |
5ba3f43e | 4375 | |
f427ee49 A |
4376 | #if VM_MAX_TAG_ZONES |
4377 | if (zone_tagging_on) { | |
4378 | vm_allocation_zones_init(); | |
4379 | } | |
4380 | #endif | |
4381 | } | |
4382 | STARTUP(ZALLOC, STARTUP_RANK_FIRST, zone_init); | |
cb323159 | 4383 | |
f427ee49 A |
4384 | __startup_func |
4385 | static void | |
4386 | zone_set_foreign_range( | |
4387 | vm_offset_t range_min, | |
4388 | vm_offset_t range_max) | |
4389 | { | |
4390 | zone_info.zi_foreign_range.min_address = range_min; | |
4391 | zone_info.zi_foreign_range.max_address = range_max; | |
4392 | } | |
cb323159 | 4393 | |
f427ee49 A |
4394 | __startup_func |
4395 | vm_offset_t | |
4396 | zone_foreign_mem_init(vm_size_t size) | |
4397 | { | |
4398 | vm_offset_t mem = (vm_offset_t) pmap_steal_memory(size); | |
4399 | zone_set_foreign_range(mem, mem + size); | |
4400 | return mem; | |
4401 | } | |
eb6b6ca3 | 4402 | |
f427ee49 | 4403 | #pragma mark zalloc |
0a7de745 | 4404 | |
f427ee49 A |
4405 | #if KASAN_ZALLOC |
4406 | /* | |
4407 | * Called from zfree() to add the element being freed to the KASan quarantine. | |
4408 | * | |
4409 | * Returns true if the newly-freed element made it into the quarantine without | |
4410 | * displacing another, false otherwise. In the latter case, addrp points to the | |
4411 | * address of the displaced element, which will be freed by the zone. | |
4412 | */ | |
4413 | static bool | |
4414 | kasan_quarantine_freed_element( | |
4415 | zone_t *zonep, /* the zone the element is being freed to */ | |
4416 | void **addrp) /* address of the element being freed */ | |
4417 | { | |
4418 | zone_t zone = *zonep; | |
4419 | void *addr = *addrp; | |
4420 | ||
4421 | /* | |
4422 | * Resize back to the real allocation size and hand off to the KASan | |
4423 | * quarantine. `addr` may then point to a different allocation, if the | |
4424 | * current element replaced another in the quarantine. The zone then | |
4425 | * takes ownership of the swapped out free element. | |
4426 | */ | |
4427 | vm_size_t usersz = zone_elem_size(zone) - 2 * zone->kasan_redzone; | |
4428 | vm_size_t sz = usersz; | |
4429 | ||
4430 | if (addr && zone->kasan_redzone) { | |
4431 | kasan_check_free((vm_address_t)addr, usersz, KASAN_HEAP_ZALLOC); | |
4432 | addr = (void *)kasan_dealloc((vm_address_t)addr, &sz); | |
4433 | assert(sz == zone_elem_size(zone)); | |
4434 | } | |
4435 | if (addr && !zone->kasan_noquarantine) { | |
4436 | kasan_free(&addr, &sz, KASAN_HEAP_ZALLOC, zonep, usersz, true); | |
4437 | if (!addr) { | |
4438 | return TRUE; | |
cb323159 | 4439 | } |
0a7de745 | 4440 | } |
f427ee49 A |
4441 | if (addr && zone->kasan_noquarantine) { |
4442 | kasan_unpoison(addr, zone_elem_size(zone)); | |
0a7de745 | 4443 | } |
f427ee49 A |
4444 | *addrp = addr; |
4445 | return FALSE; | |
4446 | } | |
0b4e3aa0 | 4447 | |
f427ee49 A |
4448 | #endif /* KASAN_ZALLOC */ |
4449 | ||
4450 | static inline bool | |
4451 | zone_needs_async_refill(zone_t zone) | |
4452 | { | |
4453 | if (zone->countfree != 0 || zone->async_pending || zone->no_callout) { | |
4454 | return false; | |
0a7de745 | 4455 | } |
a3d08fcd | 4456 | |
f427ee49 A |
4457 | return zone->expandable || zone->page_count < zone->page_count_max; |
4458 | } | |
4459 | ||
4460 | __attribute__((noinline)) | |
4461 | static void | |
4462 | zone_refill_synchronously_locked( | |
4463 | zone_t zone, | |
4464 | zalloc_flags_t flags) | |
4465 | { | |
4466 | thread_t thr = current_thread(); | |
4467 | bool set_expanding_vm_priv = false; | |
4468 | zone_pva_t orig = zone->pages_intermediate; | |
4469 | ||
4470 | while ((flags & Z_NOWAIT) == 0 && (zone->permanent | |
4471 | ? zone_pva_is_equal(zone->pages_intermediate, orig) | |
4472 | : zone->countfree == 0)) { | |
1c79356b | 4473 | /* |
0a7de745 A |
4474 | * zone is empty, try to expand it |
4475 | * | |
f427ee49 A |
4476 | * Note that we now allow up to 2 threads (1 vm_privliged and |
4477 | * 1 non-vm_privliged) to expand the zone concurrently... | |
4478 | * | |
4479 | * this is necessary to avoid stalling vm_privileged threads | |
4480 | * running critical code necessary to continue | |
4481 | * compressing/swapping pages (i.e. making new free pages) from | |
4482 | * stalling behind non-vm_privileged threads waiting to acquire | |
4483 | * free pages when the vm_page_free_count is below the | |
3e170ce0 | 4484 | * vm_page_free_reserved limit. |
1c79356b | 4485 | */ |
f427ee49 A |
4486 | if ((zone->expanding_no_vm_priv || zone->expanding_vm_priv) && |
4487 | (((thr->options & TH_OPT_VMPRIV) == 0) || zone->expanding_vm_priv)) { | |
1c79356b | 4488 | /* |
3e170ce0 A |
4489 | * This is a non-vm_privileged thread and a non-vm_privileged or |
4490 | * a vm_privileged thread is already expanding the zone... | |
4491 | * OR | |
4492 | * this is a vm_privileged thread and a vm_privileged thread is | |
4493 | * already expanding the zone... | |
4494 | * | |
4495 | * In either case wait for a thread to finish, then try again. | |
1c79356b | 4496 | */ |
f427ee49 A |
4497 | zone->waiting = true; |
4498 | assert_wait(zone, THREAD_UNINT); | |
4499 | unlock_zone(zone); | |
4500 | thread_block(THREAD_CONTINUE_NULL); | |
4501 | lock_zone(zone); | |
4502 | continue; | |
4503 | } | |
4504 | ||
4505 | if (zone->page_count >= zone->page_count_max) { | |
4506 | if (zone->exhaustible) { | |
4507 | break; | |
4508 | } | |
4509 | if (zone->expandable) { | |
4510 | /* | |
4511 | * If we're expandable, just don't go through this again. | |
4512 | */ | |
4513 | zone->page_count_max = ~0u; | |
4514 | } else { | |
4515 | unlock_zone(zone); | |
4516 | ||
4517 | panic_include_zprint = true; | |
316670eb | 4518 | #if CONFIG_ZLEAKS |
f427ee49 A |
4519 | if (zleak_state & ZLEAK_STATE_ACTIVE) { |
4520 | panic_include_ztrace = true; | |
1c79356b | 4521 | } |
f427ee49 A |
4522 | #endif /* CONFIG_ZLEAKS */ |
4523 | panic("zalloc: zone \"%s\" empty.", zone->z_name); | |
1c79356b | 4524 | } |
f427ee49 A |
4525 | } |
4526 | ||
4527 | /* | |
4528 | * It is possible that a BG thread is refilling/expanding the zone | |
4529 | * and gets pre-empted during that operation. That blocks all other | |
4530 | * threads from making progress leading to a watchdog timeout. To | |
4531 | * avoid that, boost the thread priority using the rwlock boost | |
4532 | */ | |
4533 | set_thread_rwlock_boost(); | |
4534 | ||
4535 | if ((thr->options & TH_OPT_VMPRIV)) { | |
4536 | zone->expanding_vm_priv = true; | |
4537 | set_expanding_vm_priv = true; | |
4538 | } else { | |
4539 | zone->expanding_no_vm_priv = true; | |
4540 | } | |
4541 | ||
4542 | zone_replenish_locked(zone, flags, false); | |
4543 | ||
4544 | if (set_expanding_vm_priv == true) { | |
4545 | zone->expanding_vm_priv = false; | |
4546 | } else { | |
4547 | zone->expanding_no_vm_priv = false; | |
4548 | } | |
4549 | ||
4550 | if (zone->waiting) { | |
4551 | zone->waiting = false; | |
4552 | thread_wakeup(zone); | |
4553 | } | |
4554 | clear_thread_rwlock_boost(); | |
4555 | ||
4556 | if (zone->countfree == 0) { | |
4557 | assert(flags & Z_NOPAGEWAIT); | |
4558 | break; | |
4559 | } | |
4560 | } | |
4561 | ||
4562 | if ((flags & (Z_NOWAIT | Z_NOPAGEWAIT)) && | |
4563 | zone_needs_async_refill(zone) && !vm_pool_low()) { | |
4564 | zone->async_pending = true; | |
4565 | unlock_zone(zone); | |
4566 | thread_call_enter(&call_async_alloc); | |
4567 | lock_zone(zone); | |
4568 | assert(zone->z_self == zone); | |
4569 | } | |
4570 | } | |
4571 | ||
4572 | __attribute__((noinline)) | |
4573 | static void | |
4574 | zone_refill_asynchronously_locked(zone_t zone) | |
4575 | { | |
4576 | uint32_t min_free = zone->prio_refill_count / 2; | |
4577 | uint32_t resv_free = zone->prio_refill_count / 4; | |
4578 | thread_t thr = current_thread(); | |
4579 | ||
4580 | /* | |
4581 | * Nothing to do if there are plenty of elements. | |
4582 | */ | |
4583 | while (zone->countfree <= min_free) { | |
4584 | /* | |
4585 | * Wakeup the replenish thread if not running. | |
4586 | */ | |
4587 | if (!zone->zone_replenishing) { | |
4588 | lck_spin_lock(&zone_replenish_lock); | |
4589 | assert(zone_replenish_active < zone_replenish_max_threads); | |
4590 | ++zone_replenish_active; | |
4591 | lck_spin_unlock(&zone_replenish_lock); | |
4592 | zone->zone_replenishing = true; | |
4593 | zone_replenish_wakeups_initiated++; | |
4594 | thread_wakeup(&zone->prio_refill_count); | |
4595 | } | |
4596 | ||
4597 | /* | |
4598 | * We'll let VM_PRIV threads to continue to allocate until the | |
4599 | * reserve drops to 25%. After that only TH_OPT_ZONE_PRIV threads | |
4600 | * may continue. | |
4601 | * | |
4602 | * TH_OPT_ZONE_PRIV threads are the GC thread and a replenish thread itself. | |
4603 | * Replenish threads *need* to use the reserve. GC threads need to | |
4604 | * get through the current allocation, but then will wait at a higher | |
4605 | * level after they've dropped any locks which would deadlock the | |
4606 | * replenish thread. | |
4607 | */ | |
4608 | if ((zone->countfree > resv_free && (thr->options & TH_OPT_VMPRIV)) || | |
4609 | (thr->options & TH_OPT_ZONE_PRIV)) { | |
4610 | break; | |
4611 | } | |
4612 | ||
4613 | /* | |
4614 | * Wait for the replenish threads to add more elements for us to allocate from. | |
4615 | */ | |
4616 | zone_replenish_throttle_count++; | |
4617 | unlock_zone(zone); | |
4618 | assert_wait_timeout(zone, THREAD_UNINT, 1, NSEC_PER_MSEC); | |
4619 | thread_block(THREAD_CONTINUE_NULL); | |
4620 | lock_zone(zone); | |
4621 | ||
4622 | assert(zone->z_self == zone); | |
4623 | } | |
4624 | ||
4625 | /* | |
4626 | * If we're here because of zone_gc(), we didn't wait for | |
4627 | * zone_replenish_thread to finish. So we need to ensure that | |
4628 | * we will successfully grab an element. | |
4629 | * | |
4630 | * zones that have a replenish thread configured. | |
4631 | * The value of (refill_level / 2) in the previous bit of code should have | |
4632 | * given us headroom even though this thread didn't wait. | |
4633 | */ | |
4634 | if (thr->options & TH_OPT_ZONE_PRIV) { | |
4635 | assert(zone->countfree != 0); | |
4636 | } | |
4637 | } | |
4638 | ||
4639 | #if ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS | |
4640 | __attribute__((noinline)) | |
4641 | static void | |
4642 | zalloc_log_or_trace_leaks(zone_t zone, vm_offset_t addr) | |
4643 | { | |
4644 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */ | |
4645 | unsigned int numsaved = 0; | |
4646 | ||
4647 | #if ZONE_ENABLE_LOGGING | |
4648 | if (DO_LOGGING(zone)) { | |
2a1bd2d3 A |
4649 | numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, |
4650 | __builtin_frame_address(0), NULL); | |
f427ee49 A |
4651 | btlog_add_entry(zone->zlog_btlog, (void *)addr, |
4652 | ZOP_ALLOC, (void **)zbt, numsaved); | |
4653 | } | |
4654 | #endif | |
4655 | ||
4656 | #if CONFIG_ZLEAKS | |
4657 | /* | |
4658 | * Zone leak detection: capture a backtrace every zleak_sample_factor | |
4659 | * allocations in this zone. | |
4660 | */ | |
4661 | if (__improbable(zone->zleak_on)) { | |
4662 | if (sample_counter(&zone->zleak_capture, zleak_sample_factor)) { | |
4663 | /* Avoid backtracing twice if zone logging is on */ | |
4664 | if (numsaved == 0) { | |
2a1bd2d3 A |
4665 | numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, |
4666 | __builtin_frame_address(1), NULL); | |
f427ee49 A |
4667 | } |
4668 | /* Sampling can fail if another sample is happening at the same time in a different zone. */ | |
4669 | if (!zleak_log(zbt, addr, numsaved, zone_elem_size(zone))) { | |
4670 | /* If it failed, roll back the counter so we sample the next allocation instead. */ | |
4671 | zone->zleak_capture = zleak_sample_factor; | |
4672 | } | |
4673 | } | |
4674 | } | |
4675 | ||
4676 | if (__improbable(zone_leaks_scan_enable && | |
4677 | !(zone_elem_size(zone) & (sizeof(uintptr_t) - 1)))) { | |
4678 | unsigned int count, idx; | |
4679 | /* Fill element, from tail, with backtrace in reverse order */ | |
4680 | if (numsaved == 0) { | |
2a1bd2d3 A |
4681 | numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, |
4682 | __builtin_frame_address(1), NULL); | |
f427ee49 A |
4683 | } |
4684 | count = (unsigned int)(zone_elem_size(zone) / sizeof(uintptr_t)); | |
4685 | if (count >= numsaved) { | |
4686 | count = numsaved - 1; | |
4687 | } | |
4688 | for (idx = 0; idx < count; idx++) { | |
4689 | ((uintptr_t *)addr)[count - 1 - idx] = zbt[idx + 1]; | |
4690 | } | |
4691 | } | |
4692 | #endif /* CONFIG_ZLEAKS */ | |
4693 | } | |
4694 | ||
4695 | static inline bool | |
4696 | zalloc_should_log_or_trace_leaks(zone_t zone, vm_size_t elem_size) | |
4697 | { | |
4698 | #if ZONE_ENABLE_LOGGING | |
4699 | if (DO_LOGGING(zone)) { | |
4700 | return true; | |
4701 | } | |
4702 | #endif | |
4703 | #if CONFIG_ZLEAKS | |
4704 | /* | |
4705 | * Zone leak detection: capture a backtrace every zleak_sample_factor | |
4706 | * allocations in this zone. | |
4707 | */ | |
4708 | if (zone->zleak_on) { | |
4709 | return true; | |
4710 | } | |
4711 | if (zone_leaks_scan_enable && !(elem_size & (sizeof(uintptr_t) - 1))) { | |
4712 | return true; | |
4713 | } | |
4714 | #endif /* CONFIG_ZLEAKS */ | |
4715 | return false; | |
4716 | } | |
4717 | #endif /* ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS */ | |
4718 | #if ZONE_ENABLE_LOGGING | |
4719 | ||
4720 | __attribute__((noinline)) | |
4721 | static void | |
4722 | zfree_log_trace(zone_t zone, vm_offset_t addr) | |
4723 | { | |
4724 | /* | |
4725 | * See if we're doing logging on this zone. | |
4726 | * | |
4727 | * There are two styles of logging used depending on | |
4728 | * whether we're trying to catch a leak or corruption. | |
4729 | */ | |
4730 | if (__improbable(DO_LOGGING(zone))) { | |
4731 | if (corruption_debug_flag) { | |
4732 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; | |
4733 | unsigned int numsaved; | |
0a7de745 | 4734 | /* |
f427ee49 A |
4735 | * We're logging to catch a corruption. |
4736 | * | |
4737 | * Add a record of this zfree operation to log. | |
4738 | */ | |
2a1bd2d3 A |
4739 | numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, |
4740 | __builtin_frame_address(1), NULL); | |
f427ee49 A |
4741 | btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_FREE, |
4742 | (void **)zbt, numsaved); | |
4743 | } else { | |
4744 | /* | |
4745 | * We're logging to catch a leak. | |
4746 | * | |
4747 | * Remove any record we might have for this element | |
4748 | * since it's being freed. Note that we may not find it | |
4749 | * if the buffer overflowed and that's OK. | |
4750 | * | |
4751 | * Since the log is of a limited size, old records get | |
4752 | * overwritten if there are more zallocs than zfrees. | |
39037602 | 4753 | */ |
f427ee49 A |
4754 | btlog_remove_entries_for_element(zone->zlog_btlog, (void *)addr); |
4755 | } | |
4756 | } | |
4757 | } | |
4758 | #endif /* ZONE_ENABLE_LOGGING */ | |
0a7de745 | 4759 | |
f427ee49 A |
4760 | /* |
4761 | * Removes an element from the zone's free list, returning 0 if the free list is empty. | |
4762 | * Verifies that the next-pointer and backup next-pointer are intact, | |
4763 | * and verifies that a poisoned element hasn't been modified. | |
4764 | */ | |
4765 | vm_offset_t | |
4766 | zalloc_direct_locked( | |
4767 | zone_t zone, | |
4768 | zalloc_flags_t flags __unused, | |
4769 | vm_size_t waste __unused) | |
4770 | { | |
4771 | struct zone_page_metadata *page_meta; | |
4772 | zone_addr_kind_t kind = ZONE_ADDR_NATIVE; | |
4773 | vm_offset_t element, page, validate_bit = 0; | |
1c79356b | 4774 | |
f427ee49 A |
4775 | /* if zone is empty, bail */ |
4776 | if (!zone_pva_is_null(zone->pages_any_free_foreign)) { | |
4777 | kind = ZONE_ADDR_FOREIGN; | |
4778 | page_meta = zone_pva_to_meta(zone->pages_any_free_foreign, kind); | |
4779 | page = (vm_offset_t)page_meta; | |
4780 | } else if (!zone_pva_is_null(zone->pages_intermediate)) { | |
4781 | page_meta = zone_pva_to_meta(zone->pages_intermediate, kind); | |
4782 | page = zone_pva_to_addr(zone->pages_intermediate); | |
4783 | } else if (!zone_pva_is_null(zone->pages_all_free)) { | |
4784 | page_meta = zone_pva_to_meta(zone->pages_all_free, kind); | |
4785 | page = zone_pva_to_addr(zone->pages_all_free); | |
4786 | if (os_sub_overflow(zone->allfree_page_count, | |
4787 | page_meta->zm_page_count, &zone->allfree_page_count)) { | |
4788 | zone_accounting_panic(zone, "allfree_page_count wrap-around"); | |
4789 | } | |
4790 | } else { | |
4791 | zone_accounting_panic(zone, "countfree corruption"); | |
4792 | } | |
fe8ab488 | 4793 | |
f427ee49 A |
4794 | if (!zone_has_index(zone, page_meta->zm_index)) { |
4795 | zone_page_metadata_index_confusion_panic(zone, page, page_meta); | |
4796 | } | |
0a7de745 | 4797 | |
f427ee49 | 4798 | element = zone_page_meta_get_freelist(zone, page_meta, page); |
0a7de745 | 4799 | |
f427ee49 A |
4800 | vm_offset_t *primary = (vm_offset_t *) element; |
4801 | vm_offset_t *backup = get_backup_ptr(zone_elem_size(zone), primary); | |
cb323159 | 4802 | |
f427ee49 A |
4803 | /* |
4804 | * since the primary next pointer is xor'ed with zp_nopoison_cookie | |
4805 | * for obfuscation, retrieve the original value back | |
4806 | */ | |
4807 | vm_offset_t next_element = *primary ^ zp_nopoison_cookie; | |
4808 | vm_offset_t next_element_primary = *primary; | |
4809 | vm_offset_t next_element_backup = *backup; | |
5ba3f43e | 4810 | |
f427ee49 A |
4811 | /* |
4812 | * backup_ptr_mismatch_panic will determine what next_element | |
4813 | * should have been, and print it appropriately | |
4814 | */ | |
4815 | if (!zone_page_meta_is_sane_element(zone, page_meta, page, next_element, kind)) { | |
4816 | backup_ptr_mismatch_panic(zone, page_meta, page, element); | |
4817 | } | |
0a7de745 | 4818 | |
f427ee49 A |
4819 | /* Check the backup pointer for the regular cookie */ |
4820 | if (__improbable(next_element_primary != next_element_backup)) { | |
4821 | /* Check for the poisoned cookie instead */ | |
4822 | if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie))) { | |
4823 | /* Neither cookie is valid, corruption has occurred */ | |
4824 | backup_ptr_mismatch_panic(zone, page_meta, page, element); | |
4825 | } | |
0a7de745 | 4826 | |
f427ee49 A |
4827 | /* |
4828 | * Element was marked as poisoned, so check its integrity before using it. | |
4829 | */ | |
4830 | validate_bit = ZALLOC_ELEMENT_NEEDS_VALIDATION; | |
4831 | } else if (zone->zfree_clear_mem) { | |
4832 | validate_bit = ZALLOC_ELEMENT_NEEDS_VALIDATION; | |
4833 | } | |
3e170ce0 | 4834 | |
f427ee49 A |
4835 | /* Remove this element from the free list */ |
4836 | zone_page_meta_set_freelist(page_meta, page, next_element); | |
0a7de745 | 4837 | |
f427ee49 A |
4838 | if (kind == ZONE_ADDR_FOREIGN) { |
4839 | if (next_element == 0) { | |
4840 | /* last foreign element allocated on page, move to all_used_foreign */ | |
4841 | zone_meta_requeue(zone, &zone->pages_all_used_foreign, page_meta, kind); | |
4842 | } | |
4843 | } else if (next_element == 0) { | |
4844 | zone_meta_requeue(zone, &zone->pages_all_used, page_meta, kind); | |
4845 | } else if (page_meta->zm_alloc_count == 0) { | |
4846 | /* remove from free, move to intermediate */ | |
4847 | zone_meta_requeue(zone, &zone->pages_intermediate, page_meta, kind); | |
4848 | } | |
39037602 | 4849 | |
f427ee49 A |
4850 | if (os_add_overflow(page_meta->zm_alloc_count, 1, |
4851 | &page_meta->zm_alloc_count)) { | |
4852 | /* | |
4853 | * This will not catch a lot of errors, the proper check | |
4854 | * would be against the number of elements this run should | |
4855 | * have which is expensive to count. | |
4856 | * | |
4857 | * But zm_alloc_count is a 16 bit number which could | |
4858 | * theoretically be valuable to cause to wrap around, | |
4859 | * so catch this. | |
4860 | */ | |
4861 | zone_page_meta_accounting_panic(zone, page_meta, | |
4862 | "zm_alloc_count overflow"); | |
4863 | } | |
4864 | if (os_sub_overflow(zone->countfree, 1, &zone->countfree)) { | |
4865 | zone_accounting_panic(zone, "countfree wrap-around"); | |
4866 | } | |
fe8ab488 | 4867 | |
f427ee49 A |
4868 | #if VM_MAX_TAG_ZONES |
4869 | if (__improbable(zone->tags)) { | |
4870 | vm_tag_t tag = zalloc_flags_get_tag(flags); | |
4871 | // set the tag with b0 clear so the block remains inuse | |
4872 | ZTAG(zone, element)[0] = (vm_tag_t)(tag << 1); | |
4873 | vm_tag_update_zone_size(tag, zone->tag_zone_index, | |
4874 | zone_elem_size(zone), waste); | |
4875 | } | |
4876 | #endif /* VM_MAX_TAG_ZONES */ | |
4877 | #if KASAN_ZALLOC | |
4878 | if (zone->percpu) { | |
4879 | zpercpu_foreach_cpu(i) { | |
4880 | kasan_poison_range(element + ptoa(i), | |
4881 | zone_elem_size(zone), ASAN_VALID); | |
0a7de745 | 4882 | } |
f427ee49 A |
4883 | } else { |
4884 | kasan_poison_range(element, zone_elem_size(zone), ASAN_VALID); | |
4885 | } | |
4886 | #endif | |
4887 | ||
4888 | return element | validate_bit; | |
4889 | } | |
4890 | ||
4891 | /* | |
4892 | * zalloc returns an element from the specified zone. | |
2a1bd2d3 A |
4893 | * |
4894 | * The function is noinline when zlog can be used so that the backtracing can | |
4895 | * reliably skip the zalloc_ext() and zalloc_log_or_trace_leaks() | |
4896 | * boring frames. | |
f427ee49 | 4897 | */ |
2a1bd2d3 A |
4898 | #if ZONE_ENABLE_LOGGING |
4899 | __attribute__((noinline)) | |
4900 | #endif | |
f427ee49 A |
4901 | void * |
4902 | zalloc_ext( | |
4903 | zone_t zone, | |
4904 | zone_stats_t zstats, | |
4905 | zalloc_flags_t flags, | |
4906 | vm_size_t waste) | |
4907 | { | |
4908 | vm_offset_t addr = 0; | |
4909 | vm_size_t elem_size = zone_elem_size(zone); | |
4910 | ||
4911 | /* | |
4912 | * KASan uses zalloc() for fakestack, which can be called anywhere. | |
4913 | * However, we make sure these calls can never block. | |
4914 | */ | |
4915 | assert(zone->kasan_fakestacks || | |
4916 | ml_get_interrupts_enabled() || | |
4917 | ml_is_quiescing() || | |
4918 | debug_mode_active() || | |
4919 | startup_phase < STARTUP_SUB_EARLY_BOOT); | |
4920 | ||
4921 | /* | |
4922 | * Make sure Z_NOFAIL was not obviously misused | |
4923 | */ | |
4924 | if ((flags & Z_NOFAIL) && !zone->prio_refill_count) { | |
4925 | assert(!zone->exhaustible && (flags & (Z_NOWAIT | Z_NOPAGEWAIT)) == 0); | |
1c79356b A |
4926 | } |
4927 | ||
f427ee49 A |
4928 | #if CONFIG_ZCACHE |
4929 | /* | |
4930 | * Note: if zone caching is on, gzalloc and tags aren't used | |
4931 | * so we can always check this first | |
6d2010ae | 4932 | */ |
f427ee49 A |
4933 | if (zone_caching_enabled(zone)) { |
4934 | addr = zcache_alloc_from_cpu_cache(zone, zstats, waste); | |
4935 | if (__probable(addr)) { | |
4936 | goto allocated_from_cache; | |
6d2010ae A |
4937 | } |
4938 | } | |
f427ee49 | 4939 | #endif /* CONFIG_ZCACHE */ |
0a7de745 | 4940 | |
f427ee49 A |
4941 | #if CONFIG_GZALLOC |
4942 | if (__improbable(zone->gzalloc_tracked)) { | |
4943 | addr = gzalloc_alloc(zone, zstats, flags); | |
4944 | goto allocated_from_gzalloc; | |
39236c6e | 4945 | } |
f427ee49 | 4946 | #endif /* CONFIG_GZALLOC */ |
5ba3f43e | 4947 | #if VM_MAX_TAG_ZONES |
f427ee49 A |
4948 | if (__improbable(zone->tags)) { |
4949 | vm_tag_t tag = zalloc_flags_get_tag(flags); | |
4950 | if (tag == VM_KERN_MEMORY_NONE) { | |
4951 | /* | |
4952 | * zone views into heaps can lead to a site-less call | |
4953 | * and we fallback to KALLOC as a tag for those. | |
4954 | */ | |
4955 | tag = VM_KERN_MEMORY_KALLOC; | |
4956 | flags |= Z_VM_TAG(tag); | |
0a7de745 | 4957 | } |
f427ee49 | 4958 | vm_tag_will_update_zone(tag, zone->tag_zone_index); |
0a7de745 | 4959 | } |
5ba3f43e | 4960 | #endif /* VM_MAX_TAG_ZONES */ |
1c79356b | 4961 | |
f427ee49 A |
4962 | lock_zone(zone); |
4963 | assert(zone->z_self == zone); | |
0b4e3aa0 | 4964 | |
f427ee49 A |
4965 | /* |
4966 | * Check if we need another thread to replenish the zone or | |
4967 | * if we have to wait for a replenish thread to finish. | |
4968 | * This is used for elements, like vm_map_entry, which are | |
4969 | * needed themselves to implement zalloc(). | |
4970 | */ | |
4971 | if (__improbable(zone->prio_refill_count && | |
4972 | zone->countfree <= zone->prio_refill_count / 2)) { | |
4973 | zone_refill_asynchronously_locked(zone); | |
4974 | } else if (__improbable(zone->countfree == 0)) { | |
4975 | zone_refill_synchronously_locked(zone, flags); | |
4976 | if (__improbable(zone->countfree == 0)) { | |
4977 | unlock_zone(zone); | |
4978 | if (__improbable(flags & Z_NOFAIL)) { | |
4979 | zone_nofail_panic(zone); | |
4980 | } | |
4981 | goto out_nomem; | |
4982 | } | |
39037602 A |
4983 | } |
4984 | ||
f427ee49 A |
4985 | addr = zalloc_direct_locked(zone, flags, waste); |
4986 | if (__probable(zstats != NULL)) { | |
4987 | /* | |
4988 | * The few vm zones used before zone_init() runs do not have | |
4989 | * per-cpu stats yet | |
4990 | */ | |
4991 | int cpu = cpu_number(); | |
4992 | zpercpu_get_cpu(zstats, cpu)->zs_mem_allocated += elem_size; | |
4993 | #if ZALLOC_DETAILED_STATS | |
4994 | if (waste) { | |
4995 | zpercpu_get_cpu(zstats, cpu)->zs_mem_wasted += waste; | |
39037602 | 4996 | } |
f427ee49 | 4997 | #endif /* ZALLOC_DETAILED_STATS */ |
fe8ab488 A |
4998 | } |
4999 | ||
f427ee49 A |
5000 | unlock_zone(zone); |
5001 | ||
5002 | #if ZALLOC_ENABLE_POISONING | |
5003 | bool validate = addr & ZALLOC_ELEMENT_NEEDS_VALIDATION; | |
5004 | #endif | |
5005 | addr &= ~ZALLOC_ELEMENT_NEEDS_VALIDATION; | |
5006 | zone_clear_freelist_pointers(zone, addr); | |
5007 | #if ZALLOC_ENABLE_POISONING | |
5008 | /* | |
5009 | * Note: percpu zones do not respect ZONE_MIN_ELEM_SIZE, | |
5010 | * so we will check the first word even if we just | |
5011 | * cleared it. | |
5012 | */ | |
5013 | zalloc_validate_element(zone, addr, elem_size - sizeof(vm_offset_t), | |
5014 | validate); | |
5015 | #endif /* ZALLOC_ENABLE_POISONING */ | |
5ba3f43e | 5016 | |
f427ee49 A |
5017 | allocated_from_cache: |
5018 | #if ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS | |
5019 | if (__improbable(zalloc_should_log_or_trace_leaks(zone, elem_size))) { | |
5020 | zalloc_log_or_trace_leaks(zone, addr); | |
5021 | } | |
5022 | #endif /* ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS */ | |
d9a64523 | 5023 | |
f427ee49 A |
5024 | #if CONFIG_GZALLOC |
5025 | allocated_from_gzalloc: | |
5ba3f43e | 5026 | #endif |
f427ee49 A |
5027 | #if KASAN_ZALLOC |
5028 | if (zone->kasan_redzone) { | |
5029 | addr = kasan_alloc(addr, elem_size, | |
5030 | elem_size - 2 * zone->kasan_redzone, zone->kasan_redzone); | |
5031 | elem_size -= 2 * zone->kasan_redzone; | |
5032 | } | |
5033 | /* | |
5034 | * Initialize buffer with unique pattern only if memory | |
5035 | * wasn't expected to be zeroed. | |
5036 | */ | |
5037 | if (!zone->zfree_clear_mem && !(flags & Z_ZERO)) { | |
5038 | kasan_leak_init(addr, elem_size); | |
5039 | } | |
5040 | #endif /* KASAN_ZALLOC */ | |
5041 | if ((flags & Z_ZERO) && !zone->zfree_clear_mem) { | |
5042 | bzero((void *)addr, elem_size); | |
5043 | } | |
5ba3f43e | 5044 | |
f427ee49 | 5045 | TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, elem_size, addr); |
a39ff7e2 | 5046 | |
f427ee49 A |
5047 | out_nomem: |
5048 | DTRACE_VM2(zalloc, zone_t, zone, void*, addr); | |
0a7de745 | 5049 | return (void *)addr; |
1c79356b A |
5050 | } |
5051 | ||
91447636 | 5052 | void * |
f427ee49 | 5053 | zalloc(union zone_or_view zov) |
fe8ab488 | 5054 | { |
f427ee49 | 5055 | return zalloc_flags(zov, Z_WAITOK); |
fe8ab488 A |
5056 | } |
5057 | ||
5058 | void * | |
f427ee49 | 5059 | zalloc_noblock(union zone_or_view zov) |
fe8ab488 | 5060 | { |
f427ee49 | 5061 | return zalloc_flags(zov, Z_NOWAIT); |
fe8ab488 A |
5062 | } |
5063 | ||
5064 | void * | |
f427ee49 | 5065 | zalloc_flags(union zone_or_view zov, zalloc_flags_t flags) |
1c79356b | 5066 | { |
f427ee49 A |
5067 | zone_t zone = zov.zov_view->zv_zone; |
5068 | zone_stats_t zstats = zov.zov_view->zv_stats; | |
5069 | assert(!zone->percpu); | |
5070 | return zalloc_ext(zone, zstats, flags, 0); | |
5ba3f43e A |
5071 | } |
5072 | ||
5073 | void * | |
f427ee49 | 5074 | zalloc_percpu(union zone_or_view zov, zalloc_flags_t flags) |
5ba3f43e | 5075 | { |
f427ee49 A |
5076 | zone_t zone = zov.zov_view->zv_zone; |
5077 | zone_stats_t zstats = zov.zov_view->zv_stats; | |
5078 | assert(zone->percpu); | |
5079 | return (void *)__zpcpu_mangle(zalloc_ext(zone, zstats, flags, 0)); | |
1c79356b A |
5080 | } |
5081 | ||
f427ee49 A |
5082 | static void * |
5083 | _zalloc_permanent(zone_t zone, vm_size_t size, vm_offset_t mask) | |
1c79356b | 5084 | { |
f427ee49 A |
5085 | const zone_addr_kind_t kind = ZONE_ADDR_NATIVE; |
5086 | struct zone_page_metadata *page_meta; | |
5087 | vm_offset_t offs, addr; | |
5088 | zone_pva_t pva; | |
5089 | ||
5090 | assert(ml_get_interrupts_enabled() || | |
5091 | ml_is_quiescing() || | |
5092 | debug_mode_active() || | |
5093 | startup_phase < STARTUP_SUB_EARLY_BOOT); | |
5094 | ||
5095 | size = (size + mask) & ~mask; | |
5096 | assert(size <= PAGE_SIZE); | |
5097 | ||
5098 | lock_zone(zone); | |
5099 | assert(zone->z_self == zone); | |
5100 | ||
5101 | for (;;) { | |
5102 | pva = zone->pages_intermediate; | |
5103 | while (!zone_pva_is_null(pva)) { | |
5104 | page_meta = zone_pva_to_meta(pva, kind); | |
5105 | if (page_meta->zm_freelist_offs + size <= PAGE_SIZE) { | |
5106 | goto found; | |
5107 | } | |
5108 | pva = page_meta->zm_page_next; | |
5109 | } | |
5110 | ||
5111 | zone_refill_synchronously_locked(zone, Z_WAITOK); | |
5112 | } | |
5113 | ||
5114 | found: | |
5115 | offs = (page_meta->zm_freelist_offs + mask) & ~mask; | |
5116 | page_meta->zm_freelist_offs = offs + size; | |
5117 | page_meta->zm_alloc_count += size; | |
5118 | zone->countfree -= size; | |
5119 | if (__probable(zone->z_stats)) { | |
5120 | zpercpu_get(zone->z_stats)->zs_mem_allocated += size; | |
5121 | } | |
5122 | ||
5123 | if (page_meta->zm_alloc_count >= PAGE_SIZE - sizeof(vm_offset_t)) { | |
5124 | zone_meta_requeue(zone, &zone->pages_all_used, page_meta, kind); | |
5125 | } | |
5126 | ||
5127 | unlock_zone(zone); | |
5128 | ||
5129 | addr = offs + zone_pva_to_addr(pva); | |
5130 | ||
5131 | DTRACE_VM2(zalloc, zone_t, zone, void*, addr); | |
5132 | return (void *)addr; | |
1c79356b A |
5133 | } |
5134 | ||
f427ee49 A |
5135 | static void * |
5136 | _zalloc_permanent_large(size_t size, vm_offset_t mask) | |
d9a64523 | 5137 | { |
f427ee49 A |
5138 | kern_return_t kr; |
5139 | vm_offset_t addr; | |
5140 | ||
5141 | kr = kernel_memory_allocate(kernel_map, &addr, size, mask, | |
5142 | KMA_KOBJECT | KMA_PERMANENT | KMA_ZERO, | |
5143 | VM_KERN_MEMORY_KALLOC); | |
5144 | if (kr != 0) { | |
5145 | panic("zalloc_permanent: unable to allocate %zd bytes (%d)", | |
5146 | size, kr); | |
5147 | } | |
d9a64523 A |
5148 | return (void *)addr; |
5149 | } | |
5150 | ||
f427ee49 A |
5151 | void * |
5152 | zalloc_permanent(vm_size_t size, vm_offset_t mask) | |
d9a64523 | 5153 | { |
f427ee49 A |
5154 | if (size <= PAGE_SIZE) { |
5155 | zone_t zone = &zone_array[ZONE_ID_PERMANENT]; | |
5156 | return _zalloc_permanent(zone, size, mask); | |
5157 | } | |
5158 | return _zalloc_permanent_large(size, mask); | |
d9a64523 A |
5159 | } |
5160 | ||
f427ee49 A |
5161 | void * |
5162 | zalloc_percpu_permanent(vm_size_t size, vm_offset_t mask) | |
5163 | { | |
5164 | zone_t zone = &zone_array[ZONE_ID_PERCPU_PERMANENT]; | |
5165 | return (void *)__zpcpu_mangle(_zalloc_permanent(zone, size, mask)); | |
5166 | } | |
fe8ab488 | 5167 | |
0b4e3aa0 | 5168 | void |
f427ee49 | 5169 | zalloc_async(__unused thread_call_param_t p0, __unused thread_call_param_t p1) |
0b4e3aa0 | 5170 | { |
f427ee49 A |
5171 | zone_index_foreach(i) { |
5172 | zone_t z = &zone_array[i]; | |
5ba3f43e | 5173 | |
f427ee49 | 5174 | if (z->no_callout) { |
5ba3f43e A |
5175 | /* async_pending will never be set */ |
5176 | continue; | |
5177 | } | |
5178 | ||
f427ee49 A |
5179 | lock_zone(z); |
5180 | if (z->z_self && z->async_pending) { | |
5181 | z->async_pending = false; | |
5182 | zone_refill_synchronously_locked(z, Z_WAITOK); | |
39236c6e | 5183 | } |
f427ee49 | 5184 | unlock_zone(z); |
39236c6e | 5185 | } |
0b4e3aa0 A |
5186 | } |
5187 | ||
1c79356b | 5188 | /* |
f427ee49 A |
5189 | * Adds the element to the head of the zone's free list |
5190 | * Keeps a backup next-pointer at the end of the element | |
1c79356b | 5191 | */ |
f427ee49 A |
5192 | void |
5193 | zfree_direct_locked(zone_t zone, vm_offset_t element, bool poison) | |
d9a64523 | 5194 | { |
f427ee49 A |
5195 | struct zone_page_metadata *page_meta; |
5196 | vm_offset_t page, old_head; | |
5197 | zone_addr_kind_t kind; | |
5198 | vm_size_t elem_size = zone_elem_size(zone); | |
d9a64523 | 5199 | |
f427ee49 A |
5200 | vm_offset_t *primary = (vm_offset_t *) element; |
5201 | vm_offset_t *backup = get_backup_ptr(elem_size, primary); | |
d9a64523 | 5202 | |
f427ee49 A |
5203 | page_meta = zone_allocated_element_resolve(zone, element, &page, &kind); |
5204 | old_head = zone_page_meta_get_freelist(zone, page_meta, page); | |
d9a64523 | 5205 | |
f427ee49 A |
5206 | if (__improbable(old_head == element)) { |
5207 | panic("zfree: double free of %p to zone %s%s\n", | |
5208 | (void *) element, zone_heap_name(zone), zone->z_name); | |
d9a64523 | 5209 | } |
c910b4d9 | 5210 | |
f427ee49 A |
5211 | #if ZALLOC_ENABLE_POISONING |
5212 | if (poison && elem_size < ZONE_MIN_ELEM_SIZE) { | |
5213 | assert(zone->percpu); | |
5214 | poison = false; | |
5ba3f43e | 5215 | } |
f427ee49 A |
5216 | #else |
5217 | poison = false; | |
5ba3f43e A |
5218 | #endif |
5219 | ||
c910b4d9 | 5220 | /* |
f427ee49 A |
5221 | * Always write a redundant next pointer |
5222 | * So that it is more difficult to forge, xor it with a random cookie | |
5223 | * A poisoned element is indicated by using zp_poisoned_cookie | |
5224 | * instead of zp_nopoison_cookie | |
5225 | */ | |
5226 | ||
5227 | *backup = old_head ^ (poison ? zp_poisoned_cookie : zp_nopoison_cookie); | |
5228 | ||
5229 | /* | |
5230 | * Insert this element at the head of the free list. We also xor the | |
5231 | * primary pointer with the zp_nopoison_cookie to make sure a free | |
5232 | * element does not provide the location of the next free element directly. | |
c910b4d9 | 5233 | */ |
f427ee49 | 5234 | *primary = old_head ^ zp_nopoison_cookie; |
c910b4d9 | 5235 | |
f427ee49 A |
5236 | #if VM_MAX_TAG_ZONES |
5237 | if (__improbable(zone->tags)) { | |
5238 | vm_tag_t tag = (ZTAG(zone, element)[0] >> 1); | |
5239 | // set the tag with b0 clear so the block remains inuse | |
5240 | ZTAG(zone, element)[0] = 0xFFFE; | |
5241 | vm_tag_update_zone_size(tag, zone->tag_zone_index, | |
5242 | -((int64_t)elem_size), 0); | |
0a7de745 | 5243 | } |
f427ee49 | 5244 | #endif /* VM_MAX_TAG_ZONES */ |
1c79356b | 5245 | |
f427ee49 A |
5246 | zone_page_meta_set_freelist(page_meta, page, element); |
5247 | if (os_sub_overflow(page_meta->zm_alloc_count, 1, | |
5248 | &page_meta->zm_alloc_count)) { | |
5249 | zone_page_meta_accounting_panic(zone, page_meta, | |
5250 | "alloc_count wrap-around"); | |
0a7de745 | 5251 | } |
f427ee49 | 5252 | zone->countfree++; |
55e303ae | 5253 | |
f427ee49 A |
5254 | if (kind == ZONE_ADDR_FOREIGN) { |
5255 | if (old_head == 0) { | |
5256 | /* first foreign element freed on page, move from all_used_foreign */ | |
5257 | zone_meta_requeue(zone, &zone->pages_any_free_foreign, page_meta, kind); | |
5258 | } | |
5259 | } else if (page_meta->zm_alloc_count == 0) { | |
5260 | /* whether the page was on the intermediate or all_used, queue, move it to free */ | |
5261 | zone_meta_requeue(zone, &zone->pages_all_free, page_meta, kind); | |
5262 | zone->allfree_page_count += page_meta->zm_page_count; | |
5263 | } else if (old_head == 0) { | |
5264 | /* first free element on page, move from all_used */ | |
5265 | zone_meta_requeue(zone, &zone->pages_intermediate, page_meta, kind); | |
5266 | } | |
316670eb | 5267 | |
f427ee49 A |
5268 | #if KASAN_ZALLOC |
5269 | if (zone->percpu) { | |
5270 | zpercpu_foreach_cpu(i) { | |
5271 | kasan_poison_range(element + ptoa(i), elem_size, | |
5272 | ASAN_HEAP_FREED); | |
39037602 | 5273 | } |
f427ee49 A |
5274 | } else { |
5275 | kasan_poison_range(element, elem_size, ASAN_HEAP_FREED); | |
39037602 | 5276 | } |
f427ee49 A |
5277 | #endif |
5278 | } | |
39037602 | 5279 | |
2a1bd2d3 A |
5280 | /* |
5281 | * The function is noinline when zlog can be used so that the backtracing can | |
5282 | * reliably skip the zfree_ext() and zfree_log_trace() | |
5283 | * boring frames. | |
5284 | */ | |
5285 | #if ZONE_ENABLE_LOGGING | |
5286 | __attribute__((noinline)) | |
5287 | #endif | |
f427ee49 A |
5288 | void |
5289 | zfree_ext(zone_t zone, zone_stats_t zstats, void *addr) | |
5290 | { | |
5291 | vm_offset_t elem = (vm_offset_t)addr; | |
5292 | vm_size_t elem_size = zone_elem_size(zone); | |
5293 | bool poison = false; | |
2d21ac55 | 5294 | |
f427ee49 A |
5295 | DTRACE_VM2(zfree, zone_t, zone, void*, addr); |
5296 | TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, elem_size, elem); | |
1c79356b | 5297 | |
f427ee49 A |
5298 | #if KASAN_ZALLOC |
5299 | if (kasan_quarantine_freed_element(&zone, &addr)) { | |
5300 | return; | |
fe8ab488 | 5301 | } |
c910b4d9 | 5302 | /* |
f427ee49 A |
5303 | * kasan_quarantine_freed_element() might return a different |
5304 | * {zone, addr} than the one being freed for kalloc heaps. | |
5305 | * | |
5306 | * Make sure we reload everything. | |
c910b4d9 | 5307 | */ |
f427ee49 A |
5308 | elem = (vm_offset_t)addr; |
5309 | elem_size = zone_elem_size(zone); | |
5310 | #endif | |
c910b4d9 | 5311 | |
f427ee49 A |
5312 | #if CONFIG_ZLEAKS |
5313 | /* | |
5314 | * Zone leak detection: un-track the allocation | |
5315 | */ | |
5316 | if (__improbable(zone->zleak_on)) { | |
5317 | zleak_free(elem, elem_size); | |
c910b4d9 | 5318 | } |
f427ee49 | 5319 | #endif /* CONFIG_ZLEAKS */ |
c910b4d9 | 5320 | |
d9a64523 | 5321 | #if CONFIG_ZCACHE |
f427ee49 A |
5322 | /* |
5323 | * Note: if zone caching is on, gzalloc and tags aren't used | |
5324 | * so we can always check this first | |
5325 | */ | |
0a7de745 | 5326 | if (zone_caching_enabled(zone)) { |
f427ee49 | 5327 | return zcache_free_to_cpu_cache(zone, zstats, (vm_offset_t)addr); |
0a7de745 | 5328 | } |
d9a64523 A |
5329 | #endif /* CONFIG_ZCACHE */ |
5330 | ||
f427ee49 A |
5331 | #if CONFIG_GZALLOC |
5332 | if (__improbable(zone->gzalloc_tracked)) { | |
5333 | return gzalloc_free(zone, zstats, addr); | |
1c79356b | 5334 | } |
f427ee49 | 5335 | #endif /* CONFIG_GZALLOC */ |
316670eb | 5336 | |
f427ee49 A |
5337 | #if ZONE_ENABLE_LOGGING |
5338 | if (__improbable(DO_LOGGING(zone))) { | |
5339 | zfree_log_trace(zone, elem); | |
5ba3f43e | 5340 | } |
f427ee49 | 5341 | #endif /* ZONE_ENABLE_LOGGING */ |
316670eb | 5342 | |
f427ee49 A |
5343 | if (zone->zfree_clear_mem) { |
5344 | poison = zfree_clear(zone, elem, elem_size); | |
d9a64523 | 5345 | } |
0b4e3aa0 | 5346 | |
f427ee49 A |
5347 | lock_zone(zone); |
5348 | assert(zone->z_self == zone); | |
5349 | ||
5350 | if (!poison) { | |
5351 | poison = zfree_poison_element(zone, &zone->zp_count, elem); | |
6d2010ae | 5352 | } |
0a7de745 | 5353 | |
f427ee49 A |
5354 | if (__probable(zstats != NULL)) { |
5355 | /* | |
5356 | * The few vm zones used before zone_init() runs do not have | |
5357 | * per-cpu stats yet | |
5358 | */ | |
5359 | zpercpu_get(zstats)->zs_mem_freed += elem_size; | |
5ba3f43e | 5360 | } |
f427ee49 A |
5361 | |
5362 | zfree_direct_locked(zone, elem, poison); | |
5ba3f43e | 5363 | |
1c79356b A |
5364 | unlock_zone(zone); |
5365 | } | |
5366 | ||
1c79356b | 5367 | void |
f427ee49 | 5368 | (zfree)(union zone_or_view zov, void *addr) |
1c79356b | 5369 | { |
f427ee49 A |
5370 | zone_t zone = zov.zov_view->zv_zone; |
5371 | zone_stats_t zstats = zov.zov_view->zv_stats; | |
5372 | assert(!zone->percpu); | |
5373 | zfree_ext(zone, zstats, addr); | |
1c79356b A |
5374 | } |
5375 | ||
f427ee49 A |
5376 | void |
5377 | zfree_percpu(union zone_or_view zov, void *addr) | |
1c79356b | 5378 | { |
f427ee49 A |
5379 | zone_t zone = zov.zov_view->zv_zone; |
5380 | zone_stats_t zstats = zov.zov_view->zv_stats; | |
5381 | assert(zone->percpu); | |
5382 | zfree_ext(zone, zstats, (void *)__zpcpu_demangle(addr)); | |
1c79356b A |
5383 | } |
5384 | ||
f427ee49 A |
5385 | #pragma mark vm integration, MIG routines |
5386 | ||
cb323159 A |
5387 | /* |
5388 | * Drops (i.e. frees) the elements in the all free pages queue of a zone. | |
5389 | * Called by zone_gc() on each zone and when a zone is zdestroy()ed. | |
5390 | */ | |
f427ee49 A |
5391 | static void |
5392 | zone_drop_free_elements(zone_t z) | |
5ba3f43e | 5393 | { |
f427ee49 | 5394 | const zone_addr_kind_t kind = ZONE_ADDR_NATIVE; |
cb323159 | 5395 | unsigned int total_freed_pages = 0; |
f427ee49 A |
5396 | struct zone_page_metadata *page_meta, *seq_meta; |
5397 | vm_address_t page_addr; | |
cb323159 | 5398 | vm_size_t size_to_free; |
f427ee49 A |
5399 | vm_size_t free_count; |
5400 | uint32_t page_count; | |
5ba3f43e | 5401 | |
eb6b6ca3 | 5402 | current_thread()->options |= TH_OPT_ZONE_PRIV; |
5ba3f43e | 5403 | lock_zone(z); |
5ba3f43e | 5404 | |
f427ee49 | 5405 | while (!zone_pva_is_null(z->pages_all_free)) { |
eb6b6ca3 | 5406 | /* |
f427ee49 A |
5407 | * If any replenishment threads are running, defer to them, |
5408 | * so that we don't deplete reserved zones. | |
5409 | * | |
5410 | * The timing of the check isn't super important, as there are | |
5411 | * enough reserves to allow freeing an extra page_meta. | |
5412 | * | |
5413 | * Hence, we can check without grabbing the lock every time | |
5414 | * through the loop. We do need the lock however to avoid | |
5415 | * missing a wakeup when we decide to block. | |
eb6b6ca3 A |
5416 | */ |
5417 | if (zone_replenish_active > 0) { | |
5418 | lck_spin_lock(&zone_replenish_lock); | |
5419 | if (zone_replenish_active > 0) { | |
5420 | assert_wait(&zone_replenish_active, THREAD_UNINT); | |
5421 | lck_spin_unlock(&zone_replenish_lock); | |
5422 | unlock_zone(z); | |
5423 | thread_block(THREAD_CONTINUE_NULL); | |
5424 | lock_zone(z); | |
5425 | continue; | |
5426 | } | |
5427 | lck_spin_unlock(&zone_replenish_lock); | |
5428 | } | |
f427ee49 A |
5429 | |
5430 | page_meta = zone_pva_to_meta(z->pages_all_free, kind); | |
5431 | page_count = page_meta->zm_page_count; | |
5432 | free_count = zone_elem_count(z, ptoa(page_count), kind); | |
5433 | ||
cb323159 | 5434 | /* |
f427ee49 A |
5435 | * Don't drain zones with async refill to below the refill |
5436 | * threshold, as they need some reserve to function properly. | |
cb323159 | 5437 | */ |
f427ee49 A |
5438 | if (!z->destroyed && z->prio_refill_count && |
5439 | (vm_size_t)(z->countfree - free_count) < z->prio_refill_count) { | |
cb323159 A |
5440 | break; |
5441 | } | |
5ba3f43e | 5442 | |
f427ee49 | 5443 | zone_meta_queue_pop(z, &z->pages_all_free, kind, &page_addr); |
cb323159 | 5444 | |
f427ee49 A |
5445 | if (os_sub_overflow(z->countfree, free_count, &z->countfree)) { |
5446 | zone_accounting_panic(z, "countfree wrap-around"); | |
5447 | } | |
5448 | if (os_sub_overflow(z->countavail, free_count, &z->countavail)) { | |
5449 | zone_accounting_panic(z, "countavail wrap-around"); | |
5450 | } | |
5451 | if (os_sub_overflow(z->allfree_page_count, page_count, | |
5452 | &z->allfree_page_count)) { | |
5453 | zone_accounting_panic(z, "allfree_page_count wrap-around"); | |
5454 | } | |
5455 | if (os_sub_overflow(z->page_count, page_count, &z->page_count)) { | |
5456 | zone_accounting_panic(z, "page_count wrap-around"); | |
5457 | } | |
cb323159 | 5458 | |
f427ee49 A |
5459 | os_atomic_sub(&zones_phys_page_count, page_count, relaxed); |
5460 | os_atomic_sub(&zones_phys_page_mapped_count, page_count, relaxed); | |
cb323159 | 5461 | |
f427ee49 A |
5462 | bzero(page_meta, sizeof(*page_meta) * page_count); |
5463 | seq_meta = page_meta; | |
5464 | page_meta = NULL; /* page_meta fields are zeroed, prevent reuse */ | |
cb323159 | 5465 | |
cb323159 | 5466 | unlock_zone(z); |
5ba3f43e | 5467 | |
5ba3f43e | 5468 | /* Free the pages for metadata and account for them */ |
f427ee49 A |
5469 | total_freed_pages += page_count; |
5470 | size_to_free = ptoa(page_count); | |
5ba3f43e | 5471 | #if KASAN_ZALLOC |
f427ee49 | 5472 | kasan_poison_range(page_addr, size_to_free, ASAN_VALID); |
5ba3f43e A |
5473 | #endif |
5474 | #if VM_MAX_TAG_ZONES | |
0a7de745 | 5475 | if (z->tags) { |
f427ee49 | 5476 | ztMemoryRemove(z, page_addr, size_to_free); |
0a7de745 | 5477 | } |
5ba3f43e | 5478 | #endif /* VM_MAX_TAG_ZONES */ |
f427ee49 A |
5479 | |
5480 | if (z->va_sequester && z->alloc_pages == page_count) { | |
5481 | kernel_memory_depopulate(submap_for_zone(z), page_addr, | |
5482 | size_to_free, KMA_KOBJECT, VM_KERN_MEMORY_ZONE); | |
5483 | } else { | |
5484 | kmem_free(submap_for_zone(z), page_addr, size_to_free); | |
5485 | seq_meta = NULL; | |
5486 | } | |
eb6b6ca3 | 5487 | thread_yield_to_preemption(); |
f427ee49 | 5488 | |
cb323159 | 5489 | lock_zone(z); |
f427ee49 A |
5490 | |
5491 | if (seq_meta) { | |
5492 | zone_meta_queue_push(z, &z->pages_sequester, seq_meta, kind); | |
5493 | z->sequester_page_count += page_count; | |
5494 | } | |
cb323159 | 5495 | } |
f427ee49 A |
5496 | if (z->destroyed) { |
5497 | assert(zone_pva_is_null(z->pages_all_free)); | |
5498 | assert(z->allfree_page_count == 0); | |
5ba3f43e | 5499 | } |
cb323159 | 5500 | unlock_zone(z); |
eb6b6ca3 | 5501 | current_thread()->options &= ~TH_OPT_ZONE_PRIV; |
5ba3f43e | 5502 | |
cb323159 | 5503 | #if DEBUG || DEVELOPMENT |
0a7de745 | 5504 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) { |
f427ee49 A |
5505 | kprintf("zone_gc() of zone %s%s freed %lu elements, %d pages\n", |
5506 | zone_heap_name(z), z->z_name, | |
5507 | (unsigned long)(ptoa(total_freed_pages) / z->pcpu_elem_size), | |
5508 | total_freed_pages); | |
0a7de745 | 5509 | } |
cb323159 | 5510 | #endif /* DEBUG || DEVELOPMENT */ |
5ba3f43e A |
5511 | } |
5512 | ||
1c79356b A |
5513 | /* Zone garbage collection |
5514 | * | |
5515 | * zone_gc will walk through all the free elements in all the | |
5516 | * zones that are marked collectable looking for reclaimable | |
5517 | * pages. zone_gc is called by consider_zone_gc when the system | |
5518 | * begins to run out of memory. | |
5ba3f43e A |
5519 | * |
5520 | * We should ensure that zone_gc never blocks. | |
1c79356b A |
5521 | */ |
5522 | void | |
5ba3f43e | 5523 | zone_gc(boolean_t consider_jetsams) |
1c79356b | 5524 | { |
5ba3f43e A |
5525 | if (consider_jetsams) { |
5526 | kill_process_in_largest_zone(); | |
5527 | /* | |
5528 | * If we do end up jetsamming something, we need to do a zone_gc so that | |
5529 | * we can reclaim free zone elements and update the zone map size. | |
5530 | * Fall through. | |
5531 | */ | |
5532 | } | |
1c79356b | 5533 | |
b0d623f7 | 5534 | lck_mtx_lock(&zone_gc_lock); |
1c79356b | 5535 | |
cb323159 | 5536 | #if DEBUG || DEVELOPMENT |
0a7de745 | 5537 | if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) { |
39037602 | 5538 | kprintf("zone_gc() starting...\n"); |
0a7de745 | 5539 | } |
cb323159 | 5540 | #endif /* DEBUG || DEVELOPMENT */ |
1c79356b | 5541 | |
f427ee49 A |
5542 | zone_index_foreach(i) { |
5543 | zone_t z = &zone_array[i]; | |
1c79356b | 5544 | |
5ba3f43e | 5545 | if (!z->collectable) { |
316670eb | 5546 | continue; |
39037602 | 5547 | } |
d9a64523 A |
5548 | #if CONFIG_ZCACHE |
5549 | if (zone_caching_enabled(z)) { | |
5550 | zcache_drain_depot(z); | |
5551 | } | |
5552 | #endif /* CONFIG_ZCACHE */ | |
f427ee49 | 5553 | if (zone_pva_is_null(z->pages_all_free)) { |
1c79356b A |
5554 | continue; |
5555 | } | |
0a7de745 | 5556 | |
f427ee49 | 5557 | zone_drop_free_elements(z); |
39037602 | 5558 | } |
316670eb | 5559 | |
39037602 A |
5560 | lck_mtx_unlock(&zone_gc_lock); |
5561 | } | |
316670eb | 5562 | |
39037602 A |
5563 | /* |
5564 | * consider_zone_gc: | |
5565 | * | |
5566 | * Called by the pageout daemon when the system needs more free pages. | |
5567 | */ | |
1c79356b A |
5568 | |
5569 | void | |
5ba3f43e | 5570 | consider_zone_gc(boolean_t consider_jetsams) |
1c79356b | 5571 | { |
f427ee49 A |
5572 | /* |
5573 | * One-time reclaim of kernel_map resources we allocated in | |
5574 | * early boot. | |
5575 | * | |
5576 | * Use atomic exchange in case multiple threads race into here. | |
5577 | */ | |
5578 | vm_offset_t deallocate_kaddr; | |
5579 | if (kmapoff_kaddr != 0 && | |
5580 | (deallocate_kaddr = os_atomic_xchg(&kmapoff_kaddr, 0, relaxed)) != 0) { | |
5581 | vm_deallocate(kernel_map, deallocate_kaddr, ptoa_64(kmapoff_pgcnt)); | |
316670eb | 5582 | } |
1c79356b | 5583 | |
f427ee49 | 5584 | zone_gc(consider_jetsams); |
6d2010ae | 5585 | } |
2d21ac55 | 5586 | |
d9a64523 A |
5587 | /* |
5588 | * Creates a vm_map_copy_t to return to the caller of mach_* MIG calls | |
5589 | * requesting zone information. | |
5590 | * Frees unused pages towards the end of the region, and zero'es out unused | |
5591 | * space on the last page. | |
5592 | */ | |
f427ee49 | 5593 | static vm_map_copy_t |
d9a64523 | 5594 | create_vm_map_copy( |
0a7de745 A |
5595 | vm_offset_t start_addr, |
5596 | vm_size_t total_size, | |
5597 | vm_size_t used_size) | |
d9a64523 | 5598 | { |
0a7de745 A |
5599 | kern_return_t kr; |
5600 | vm_offset_t end_addr; | |
5601 | vm_size_t free_size; | |
5602 | vm_map_copy_t copy; | |
d9a64523 A |
5603 | |
5604 | if (used_size != total_size) { | |
5605 | end_addr = start_addr + used_size; | |
5606 | free_size = total_size - (round_page(end_addr) - start_addr); | |
5607 | ||
5608 | if (free_size >= PAGE_SIZE) { | |
5609 | kmem_free(ipc_kernel_map, | |
0a7de745 | 5610 | round_page(end_addr), free_size); |
d9a64523 A |
5611 | } |
5612 | bzero((char *) end_addr, round_page(end_addr) - end_addr); | |
5613 | } | |
5614 | ||
5615 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)start_addr, | |
0a7de745 | 5616 | (vm_map_size_t)used_size, TRUE, ©); |
d9a64523 A |
5617 | assert(kr == KERN_SUCCESS); |
5618 | ||
5619 | return copy; | |
5620 | } | |
a39ff7e2 | 5621 | |
f427ee49 | 5622 | static boolean_t |
a39ff7e2 | 5623 | get_zone_info( |
f427ee49 | 5624 | zone_t z, |
0a7de745 A |
5625 | mach_zone_name_t *zn, |
5626 | mach_zone_info_t *zi) | |
a39ff7e2 A |
5627 | { |
5628 | struct zone zcopy; | |
5629 | ||
5630 | assert(z != ZONE_NULL); | |
5631 | lock_zone(z); | |
f427ee49 | 5632 | if (!z->z_self) { |
a39ff7e2 A |
5633 | unlock_zone(z); |
5634 | return FALSE; | |
5635 | } | |
5636 | zcopy = *z; | |
5637 | unlock_zone(z); | |
5638 | ||
5639 | if (zn != NULL) { | |
f427ee49 A |
5640 | /* |
5641 | * Append kalloc heap name to zone name (if zone is used by kalloc) | |
5642 | */ | |
5643 | char temp_zone_name[MAX_ZONE_NAME] = ""; | |
5644 | snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s", | |
5645 | zone_heap_name(z), z->z_name); | |
5646 | ||
a39ff7e2 | 5647 | /* assuming here the name data is static */ |
f427ee49 A |
5648 | (void) __nosan_strlcpy(zn->mzn_name, temp_zone_name, |
5649 | strlen(temp_zone_name) + 1); | |
a39ff7e2 A |
5650 | } |
5651 | ||
5652 | if (zi != NULL) { | |
f427ee49 A |
5653 | *zi = (mach_zone_info_t) { |
5654 | .mzi_count = zone_count_allocated(&zcopy), | |
5655 | .mzi_cur_size = ptoa_64(zcopy.page_count), | |
5656 | // max_size for zprint is now high-watermark of pages used | |
5657 | .mzi_max_size = ptoa_64(zcopy.page_count_hwm), | |
5658 | .mzi_elem_size = zcopy.pcpu_elem_size, | |
5659 | .mzi_alloc_size = ptoa_64(zcopy.alloc_pages), | |
5660 | .mzi_exhaustible = (uint64_t)zcopy.exhaustible, | |
5661 | }; | |
5662 | zpercpu_foreach(zs, zcopy.z_stats) { | |
5663 | zi->mzi_sum_size += zs->zs_mem_allocated; | |
5664 | } | |
a39ff7e2 | 5665 | if (zcopy.collectable) { |
f427ee49 A |
5666 | SET_MZI_COLLECTABLE_BYTES(zi->mzi_collectable, |
5667 | ptoa_64(zcopy.allfree_page_count)); | |
a39ff7e2 A |
5668 | SET_MZI_COLLECTABLE_FLAG(zi->mzi_collectable, TRUE); |
5669 | } | |
5670 | } | |
5671 | ||
5672 | return TRUE; | |
5673 | } | |
5674 | ||
6d2010ae A |
5675 | kern_return_t |
5676 | task_zone_info( | |
0a7de745 A |
5677 | __unused task_t task, |
5678 | __unused mach_zone_name_array_t *namesp, | |
316670eb | 5679 | __unused mach_msg_type_number_t *namesCntp, |
0a7de745 | 5680 | __unused task_zone_info_array_t *infop, |
316670eb A |
5681 | __unused mach_msg_type_number_t *infoCntp) |
5682 | { | |
5683 | return KERN_FAILURE; | |
5684 | } | |
5685 | ||
6d2010ae A |
5686 | kern_return_t |
5687 | mach_zone_info( | |
0a7de745 A |
5688 | host_priv_t host, |
5689 | mach_zone_name_array_t *namesp, | |
6d2010ae | 5690 | mach_msg_type_number_t *namesCntp, |
0a7de745 | 5691 | mach_zone_info_array_t *infop, |
6d2010ae | 5692 | mach_msg_type_number_t *infoCntp) |
3e170ce0 | 5693 | { |
0a7de745 | 5694 | return mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL); |
3e170ce0 A |
5695 | } |
5696 | ||
39037602 | 5697 | |
3e170ce0 A |
5698 | kern_return_t |
5699 | mach_memory_info( | |
0a7de745 A |
5700 | host_priv_t host, |
5701 | mach_zone_name_array_t *namesp, | |
3e170ce0 | 5702 | mach_msg_type_number_t *namesCntp, |
0a7de745 | 5703 | mach_zone_info_array_t *infop, |
3e170ce0 A |
5704 | mach_msg_type_number_t *infoCntp, |
5705 | mach_memory_info_array_t *memoryInfop, | |
5706 | mach_msg_type_number_t *memoryInfoCntp) | |
6d2010ae | 5707 | { |
0a7de745 A |
5708 | mach_zone_name_t *names; |
5709 | vm_offset_t names_addr; | |
5710 | vm_size_t names_size; | |
5711 | ||
5712 | mach_zone_info_t *info; | |
5713 | vm_offset_t info_addr; | |
5714 | vm_size_t info_size; | |
5715 | ||
5716 | mach_memory_info_t *memory_info; | |
5717 | vm_offset_t memory_info_addr; | |
5718 | vm_size_t memory_info_size; | |
5719 | vm_size_t memory_info_vmsize; | |
5720 | unsigned int num_info; | |
5721 | ||
5722 | unsigned int max_zones, used_zones, i; | |
5723 | mach_zone_name_t *zn; | |
5724 | mach_zone_info_t *zi; | |
5725 | kern_return_t kr; | |
5726 | ||
5727 | uint64_t zones_collectable_bytes = 0; | |
5728 | ||
5729 | if (host == HOST_NULL) { | |
6d2010ae | 5730 | return KERN_INVALID_HOST; |
0a7de745 | 5731 | } |
316670eb | 5732 | #if CONFIG_DEBUGGER_FOR_ZONE_INFO |
0a7de745 | 5733 | if (!PE_i_can_has_debugger(NULL)) { |
316670eb | 5734 | return KERN_INVALID_HOST; |
0a7de745 | 5735 | } |
316670eb | 5736 | #endif |
6d2010ae A |
5737 | |
5738 | /* | |
5739 | * We assume that zones aren't freed once allocated. | |
5740 | * We won't pick up any zones that are allocated later. | |
5741 | */ | |
5742 | ||
f427ee49 | 5743 | max_zones = os_atomic_load(&num_zones, relaxed); |
6d2010ae A |
5744 | |
5745 | names_size = round_page(max_zones * sizeof *names); | |
5746 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
0a7de745 A |
5747 | &names_addr, names_size, VM_KERN_MEMORY_IPC); |
5748 | if (kr != KERN_SUCCESS) { | |
6d2010ae | 5749 | return kr; |
0a7de745 | 5750 | } |
6d2010ae A |
5751 | names = (mach_zone_name_t *) names_addr; |
5752 | ||
5753 | info_size = round_page(max_zones * sizeof *info); | |
5754 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
0a7de745 | 5755 | &info_addr, info_size, VM_KERN_MEMORY_IPC); |
6d2010ae A |
5756 | if (kr != KERN_SUCCESS) { |
5757 | kmem_free(ipc_kernel_map, | |
0a7de745 | 5758 | names_addr, names_size); |
6d2010ae A |
5759 | return kr; |
5760 | } | |
6d2010ae A |
5761 | info = (mach_zone_info_t *) info_addr; |
5762 | ||
5763 | zn = &names[0]; | |
5764 | zi = &info[0]; | |
5765 | ||
5ba3f43e | 5766 | used_zones = max_zones; |
39037602 | 5767 | for (i = 0; i < max_zones; i++) { |
a39ff7e2 | 5768 | if (!get_zone_info(&(zone_array[i]), zn, zi)) { |
5ba3f43e A |
5769 | used_zones--; |
5770 | continue; | |
5771 | } | |
a39ff7e2 | 5772 | zones_collectable_bytes += GET_MZI_COLLECTABLE_BYTES(zi->mzi_collectable); |
6d2010ae A |
5773 | zn++; |
5774 | zi++; | |
5775 | } | |
5776 | ||
d9a64523 | 5777 | *namesp = (mach_zone_name_t *) create_vm_map_copy(names_addr, names_size, used_zones * sizeof *names); |
5ba3f43e | 5778 | *namesCntp = used_zones; |
6d2010ae | 5779 | |
d9a64523 | 5780 | *infop = (mach_zone_info_t *) create_vm_map_copy(info_addr, info_size, used_zones * sizeof *info); |
5ba3f43e | 5781 | *infoCntp = used_zones; |
0a7de745 | 5782 | |
5ba3f43e | 5783 | num_info = 0; |
39037602 | 5784 | memory_info_addr = 0; |
6d2010ae | 5785 | |
0a7de745 A |
5786 | if (memoryInfop && memoryInfoCntp) { |
5787 | vm_map_copy_t copy; | |
5ba3f43e A |
5788 | num_info = vm_page_diagnose_estimate(); |
5789 | memory_info_size = num_info * sizeof(*memory_info); | |
39037602 A |
5790 | memory_info_vmsize = round_page(memory_info_size); |
5791 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
0a7de745 | 5792 | &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC); |
39037602 | 5793 | if (kr != KERN_SUCCESS) { |
39037602 A |
5794 | return kr; |
5795 | } | |
5796 | ||
5ba3f43e | 5797 | kr = vm_map_wire_kernel(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, |
0a7de745 | 5798 | VM_PROT_READ | VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE); |
39037602 A |
5799 | assert(kr == KERN_SUCCESS); |
5800 | ||
5801 | memory_info = (mach_memory_info_t *) memory_info_addr; | |
5ba3f43e | 5802 | vm_page_diagnose(memory_info, num_info, zones_collectable_bytes); |
39037602 A |
5803 | |
5804 | kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE); | |
5805 | assert(kr == KERN_SUCCESS); | |
0a7de745 | 5806 | |
3e170ce0 | 5807 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr, |
0a7de745 | 5808 | (vm_map_size_t)memory_info_size, TRUE, ©); |
3e170ce0 A |
5809 | assert(kr == KERN_SUCCESS); |
5810 | ||
5811 | *memoryInfop = (mach_memory_info_t *) copy; | |
5ba3f43e | 5812 | *memoryInfoCntp = num_info; |
3e170ce0 A |
5813 | } |
5814 | ||
6d2010ae A |
5815 | return KERN_SUCCESS; |
5816 | } | |
5817 | ||
a39ff7e2 A |
5818 | kern_return_t |
5819 | mach_zone_info_for_zone( | |
0a7de745 A |
5820 | host_priv_t host, |
5821 | mach_zone_name_t name, | |
5822 | mach_zone_info_t *infop) | |
a39ff7e2 | 5823 | { |
a39ff7e2 A |
5824 | zone_t zone_ptr; |
5825 | ||
0a7de745 | 5826 | if (host == HOST_NULL) { |
a39ff7e2 | 5827 | return KERN_INVALID_HOST; |
0a7de745 | 5828 | } |
a39ff7e2 | 5829 | #if CONFIG_DEBUGGER_FOR_ZONE_INFO |
0a7de745 | 5830 | if (!PE_i_can_has_debugger(NULL)) { |
a39ff7e2 | 5831 | return KERN_INVALID_HOST; |
0a7de745 | 5832 | } |
a39ff7e2 A |
5833 | #endif |
5834 | ||
5835 | if (infop == NULL) { | |
5836 | return KERN_INVALID_ARGUMENT; | |
5837 | } | |
5838 | ||
a39ff7e2 | 5839 | zone_ptr = ZONE_NULL; |
f427ee49 | 5840 | zone_index_foreach(i) { |
a39ff7e2 A |
5841 | zone_t z = &(zone_array[i]); |
5842 | assert(z != ZONE_NULL); | |
5843 | ||
f427ee49 A |
5844 | /* |
5845 | * Append kalloc heap name to zone name (if zone is used by kalloc) | |
5846 | */ | |
5847 | char temp_zone_name[MAX_ZONE_NAME] = ""; | |
5848 | snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s", | |
5849 | zone_heap_name(z), z->z_name); | |
5850 | ||
a39ff7e2 | 5851 | /* Find the requested zone by name */ |
f427ee49 | 5852 | if (track_this_zone(temp_zone_name, name.mzn_name)) { |
a39ff7e2 A |
5853 | zone_ptr = z; |
5854 | break; | |
5855 | } | |
5856 | } | |
5857 | ||
5858 | /* No zones found with the requested zone name */ | |
5859 | if (zone_ptr == ZONE_NULL) { | |
5860 | return KERN_INVALID_ARGUMENT; | |
5861 | } | |
5862 | ||
5863 | if (get_zone_info(zone_ptr, NULL, infop)) { | |
5864 | return KERN_SUCCESS; | |
5865 | } | |
5866 | return KERN_FAILURE; | |
5867 | } | |
5868 | ||
5869 | kern_return_t | |
5870 | mach_zone_info_for_largest_zone( | |
0a7de745 A |
5871 | host_priv_t host, |
5872 | mach_zone_name_t *namep, | |
5873 | mach_zone_info_t *infop) | |
a39ff7e2 | 5874 | { |
0a7de745 | 5875 | if (host == HOST_NULL) { |
a39ff7e2 | 5876 | return KERN_INVALID_HOST; |
0a7de745 | 5877 | } |
a39ff7e2 | 5878 | #if CONFIG_DEBUGGER_FOR_ZONE_INFO |
0a7de745 | 5879 | if (!PE_i_can_has_debugger(NULL)) { |
a39ff7e2 | 5880 | return KERN_INVALID_HOST; |
0a7de745 | 5881 | } |
a39ff7e2 A |
5882 | #endif |
5883 | ||
5884 | if (namep == NULL || infop == NULL) { | |
5885 | return KERN_INVALID_ARGUMENT; | |
5886 | } | |
5887 | ||
5888 | if (get_zone_info(zone_find_largest(), namep, infop)) { | |
5889 | return KERN_SUCCESS; | |
5890 | } | |
5891 | return KERN_FAILURE; | |
5892 | } | |
5893 | ||
5ba3f43e A |
5894 | uint64_t |
5895 | get_zones_collectable_bytes(void) | |
5896 | { | |
5ba3f43e | 5897 | uint64_t zones_collectable_bytes = 0; |
a39ff7e2 | 5898 | mach_zone_info_t zi; |
5ba3f43e | 5899 | |
f427ee49 A |
5900 | zone_index_foreach(i) { |
5901 | if (get_zone_info(&zone_array[i], NULL, &zi)) { | |
5902 | zones_collectable_bytes += | |
5903 | GET_MZI_COLLECTABLE_BYTES(zi.mzi_collectable); | |
a39ff7e2 | 5904 | } |
5ba3f43e A |
5905 | } |
5906 | ||
5907 | return zones_collectable_bytes; | |
5908 | } | |
5909 | ||
d9a64523 A |
5910 | kern_return_t |
5911 | mach_zone_get_zlog_zones( | |
0a7de745 A |
5912 | host_priv_t host, |
5913 | mach_zone_name_array_t *namesp, | |
d9a64523 A |
5914 | mach_msg_type_number_t *namesCntp) |
5915 | { | |
f427ee49 | 5916 | #if ZONE_ENABLE_LOGGING |
d9a64523 A |
5917 | unsigned int max_zones, logged_zones, i; |
5918 | kern_return_t kr; | |
5919 | zone_t zone_ptr; | |
5920 | mach_zone_name_t *names; | |
5921 | vm_offset_t names_addr; | |
5922 | vm_size_t names_size; | |
5923 | ||
0a7de745 | 5924 | if (host == HOST_NULL) { |
d9a64523 | 5925 | return KERN_INVALID_HOST; |
0a7de745 | 5926 | } |
d9a64523 | 5927 | |
0a7de745 | 5928 | if (namesp == NULL || namesCntp == NULL) { |
d9a64523 | 5929 | return KERN_INVALID_ARGUMENT; |
0a7de745 | 5930 | } |
d9a64523 | 5931 | |
f427ee49 | 5932 | max_zones = os_atomic_load(&num_zones, relaxed); |
d9a64523 A |
5933 | |
5934 | names_size = round_page(max_zones * sizeof *names); | |
5935 | kr = kmem_alloc_pageable(ipc_kernel_map, | |
0a7de745 A |
5936 | &names_addr, names_size, VM_KERN_MEMORY_IPC); |
5937 | if (kr != KERN_SUCCESS) { | |
d9a64523 | 5938 | return kr; |
0a7de745 | 5939 | } |
d9a64523 A |
5940 | names = (mach_zone_name_t *) names_addr; |
5941 | ||
5942 | zone_ptr = ZONE_NULL; | |
5943 | logged_zones = 0; | |
5944 | for (i = 0; i < max_zones; i++) { | |
5945 | zone_t z = &(zone_array[i]); | |
5946 | assert(z != ZONE_NULL); | |
5947 | ||
5948 | /* Copy out the zone name if zone logging is enabled */ | |
0a7de745 | 5949 | if (z->zlog_btlog) { |
d9a64523 A |
5950 | get_zone_info(z, &names[logged_zones], NULL); |
5951 | logged_zones++; | |
5952 | } | |
5953 | } | |
5954 | ||
5955 | *namesp = (mach_zone_name_t *) create_vm_map_copy(names_addr, names_size, logged_zones * sizeof *names); | |
5956 | *namesCntp = logged_zones; | |
5957 | ||
5958 | return KERN_SUCCESS; | |
5959 | ||
f427ee49 | 5960 | #else /* ZONE_ENABLE_LOGGING */ |
d9a64523 A |
5961 | #pragma unused(host, namesp, namesCntp) |
5962 | return KERN_FAILURE; | |
f427ee49 | 5963 | #endif /* ZONE_ENABLE_LOGGING */ |
d9a64523 A |
5964 | } |
5965 | ||
5966 | kern_return_t | |
5967 | mach_zone_get_btlog_records( | |
0a7de745 A |
5968 | host_priv_t host, |
5969 | mach_zone_name_t name, | |
5970 | zone_btrecord_array_t *recsp, | |
5971 | mach_msg_type_number_t *recsCntp) | |
d9a64523 A |
5972 | { |
5973 | #if DEBUG || DEVELOPMENT | |
f427ee49 | 5974 | unsigned int numrecs = 0; |
d9a64523 A |
5975 | zone_btrecord_t *recs; |
5976 | kern_return_t kr; | |
5977 | zone_t zone_ptr; | |
5978 | vm_offset_t recs_addr; | |
5979 | vm_size_t recs_size; | |
5980 | ||
0a7de745 | 5981 | if (host == HOST_NULL) { |
d9a64523 | 5982 | return KERN_INVALID_HOST; |
0a7de745 | 5983 | } |
d9a64523 | 5984 | |
0a7de745 | 5985 | if (recsp == NULL || recsCntp == NULL) { |
d9a64523 | 5986 | return KERN_INVALID_ARGUMENT; |
0a7de745 | 5987 | } |
d9a64523 | 5988 | |
d9a64523 | 5989 | zone_ptr = ZONE_NULL; |
f427ee49 A |
5990 | zone_index_foreach(i) { |
5991 | zone_t z = &zone_array[i]; | |
5992 | ||
5993 | /* | |
5994 | * Append kalloc heap name to zone name (if zone is used by kalloc) | |
5995 | */ | |
5996 | char temp_zone_name[MAX_ZONE_NAME] = ""; | |
5997 | snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s", | |
5998 | zone_heap_name(z), z->z_name); | |
d9a64523 A |
5999 | |
6000 | /* Find the requested zone by name */ | |
f427ee49 | 6001 | if (track_this_zone(temp_zone_name, name.mzn_name)) { |
d9a64523 A |
6002 | zone_ptr = z; |
6003 | break; | |
6004 | } | |
6005 | } | |
6006 | ||
6007 | /* No zones found with the requested zone name */ | |
6008 | if (zone_ptr == ZONE_NULL) { | |
6009 | return KERN_INVALID_ARGUMENT; | |
6010 | } | |
6011 | ||
6012 | /* Logging not turned on for the requested zone */ | |
6013 | if (!DO_LOGGING(zone_ptr)) { | |
6014 | return KERN_FAILURE; | |
6015 | } | |
6016 | ||
6017 | /* Allocate memory for btlog records */ | |
6018 | numrecs = (unsigned int)(get_btlog_records_count(zone_ptr->zlog_btlog)); | |
6019 | recs_size = round_page(numrecs * sizeof *recs); | |
6020 | ||
6021 | kr = kmem_alloc_pageable(ipc_kernel_map, &recs_addr, recs_size, VM_KERN_MEMORY_IPC); | |
6022 | if (kr != KERN_SUCCESS) { | |
6023 | return kr; | |
6024 | } | |
6025 | ||
6026 | /* | |
6027 | * We will call get_btlog_records() below which populates this region while holding a spinlock | |
6028 | * (the btlog lock). So these pages need to be wired. | |
6029 | */ | |
6030 | kr = vm_map_wire_kernel(ipc_kernel_map, recs_addr, recs_addr + recs_size, | |
0a7de745 | 6031 | VM_PROT_READ | VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE); |
d9a64523 A |
6032 | assert(kr == KERN_SUCCESS); |
6033 | ||
6034 | recs = (zone_btrecord_t *)recs_addr; | |
6035 | get_btlog_records(zone_ptr->zlog_btlog, recs, &numrecs); | |
6036 | ||
6037 | kr = vm_map_unwire(ipc_kernel_map, recs_addr, recs_addr + recs_size, FALSE); | |
6038 | assert(kr == KERN_SUCCESS); | |
6039 | ||
6040 | *recsp = (zone_btrecord_t *) create_vm_map_copy(recs_addr, recs_size, numrecs * sizeof *recs); | |
6041 | *recsCntp = numrecs; | |
6042 | ||
6043 | return KERN_SUCCESS; | |
6044 | ||
6045 | #else /* DEBUG || DEVELOPMENT */ | |
6046 | #pragma unused(host, name, recsp, recsCntp) | |
6047 | return KERN_FAILURE; | |
6048 | #endif /* DEBUG || DEVELOPMENT */ | |
6049 | } | |
6050 | ||
6051 | ||
5ba3f43e A |
6052 | #if DEBUG || DEVELOPMENT |
6053 | ||
6054 | kern_return_t | |
6055 | mach_memory_info_check(void) | |
6056 | { | |
0a7de745 A |
6057 | mach_memory_info_t * memory_info; |
6058 | mach_memory_info_t * info; | |
f427ee49 A |
6059 | unsigned int num_info; |
6060 | vm_offset_t memory_info_addr; | |
5ba3f43e | 6061 | kern_return_t kr; |
0a7de745 | 6062 | size_t memory_info_size, memory_info_vmsize; |
5ba3f43e A |
6063 | uint64_t top_wired, zonestotal, total; |
6064 | ||
6065 | num_info = vm_page_diagnose_estimate(); | |
6066 | memory_info_size = num_info * sizeof(*memory_info); | |
6067 | memory_info_vmsize = round_page(memory_info_size); | |
6068 | kr = kmem_alloc(kernel_map, &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_DIAG); | |
0a7de745 | 6069 | assert(kr == KERN_SUCCESS); |
5ba3f43e A |
6070 | |
6071 | memory_info = (mach_memory_info_t *) memory_info_addr; | |
6072 | vm_page_diagnose(memory_info, num_info, 0); | |
6073 | ||
0a7de745 | 6074 | top_wired = total = zonestotal = 0; |
f427ee49 A |
6075 | zone_index_foreach(idx) { |
6076 | zonestotal += zone_size_wired(&zone_array[idx]); | |
5ba3f43e | 6077 | } |
f427ee49 A |
6078 | |
6079 | for (uint32_t idx = 0; idx < num_info; idx++) { | |
5ba3f43e | 6080 | info = &memory_info[idx]; |
0a7de745 A |
6081 | if (!info->size) { |
6082 | continue; | |
6083 | } | |
6084 | if (VM_KERN_COUNT_WIRED == info->site) { | |
6085 | top_wired = info->size; | |
6086 | } | |
6087 | if (VM_KERN_SITE_HIDE & info->flags) { | |
6088 | continue; | |
6089 | } | |
6090 | if (!(VM_KERN_SITE_WIRED & info->flags)) { | |
6091 | continue; | |
6092 | } | |
5ba3f43e | 6093 | total += info->size; |
0a7de745 | 6094 | } |
5ba3f43e A |
6095 | total += zonestotal; |
6096 | ||
f427ee49 A |
6097 | printf("vm_page_diagnose_check %qd of %qd, zones %qd, short 0x%qx\n", |
6098 | total, top_wired, zonestotal, top_wired - total); | |
5ba3f43e | 6099 | |
0a7de745 | 6100 | kmem_free(kernel_map, memory_info_addr, memory_info_vmsize); |
5ba3f43e | 6101 | |
0a7de745 | 6102 | return kr; |
5ba3f43e A |
6103 | } |
6104 | ||
0a7de745 | 6105 | extern boolean_t(*volatile consider_buffer_cache_collect)(int); |
d9a64523 | 6106 | |
5ba3f43e A |
6107 | #endif /* DEBUG || DEVELOPMENT */ |
6108 | ||
316670eb A |
6109 | kern_return_t |
6110 | mach_zone_force_gc( | |
6111 | host_t host) | |
6112 | { | |
0a7de745 | 6113 | if (host == HOST_NULL) { |
316670eb | 6114 | return KERN_INVALID_HOST; |
0a7de745 | 6115 | } |
316670eb | 6116 | |
5ba3f43e | 6117 | #if DEBUG || DEVELOPMENT |
d9a64523 A |
6118 | /* Callout to buffer cache GC to drop elements in the apfs zones */ |
6119 | if (consider_buffer_cache_collect != NULL) { | |
6120 | (void)(*consider_buffer_cache_collect)(0); | |
6121 | } | |
5ba3f43e A |
6122 | consider_zone_gc(FALSE); |
6123 | #endif /* DEBUG || DEVELOPMENT */ | |
0a7de745 | 6124 | return KERN_SUCCESS; |
316670eb A |
6125 | } |
6126 | ||
39236c6e A |
6127 | zone_t |
6128 | zone_find_largest(void) | |
6129 | { | |
f427ee49 A |
6130 | uint32_t largest_idx = 0; |
6131 | vm_offset_t largest_size = zone_size_wired(&zone_array[0]); | |
6132 | ||
6133 | zone_index_foreach(i) { | |
6134 | vm_offset_t size = zone_size_wired(&zone_array[i]); | |
6135 | if (size > largest_size) { | |
6136 | largest_idx = i; | |
6137 | largest_size = size; | |
39236c6e | 6138 | } |
39236c6e | 6139 | } |
39236c6e | 6140 | |
f427ee49 A |
6141 | return &zone_array[largest_idx]; |
6142 | } | |
1c79356b | 6143 | |
f427ee49 A |
6144 | #pragma mark - tests |
6145 | #if DEBUG || DEVELOPMENT | |
1c79356b | 6146 | |
f427ee49 A |
6147 | /* |
6148 | * Used for sysctl kern.run_zone_test which is not thread-safe. Ensure only one | |
6149 | * thread goes through at a time. Or we can end up with multiple test zones (if | |
6150 | * a second zinit() comes through before zdestroy()), which could lead us to | |
6151 | * run out of zones. | |
6152 | */ | |
6153 | SIMPLE_LOCK_DECLARE(zone_test_lock, 0); | |
6154 | static boolean_t zone_test_running = FALSE; | |
6155 | static zone_t test_zone_ptr = NULL; | |
1c79356b | 6156 | |
f427ee49 A |
6157 | static uintptr_t * |
6158 | zone_copy_allocations(zone_t z, uintptr_t *elems, bitmap_t *bits, | |
6159 | zone_pva_t page_index, zone_addr_kind_t kind) | |
6160 | { | |
6161 | vm_offset_t free, first, end, page; | |
6162 | struct zone_page_metadata *meta; | |
39037602 | 6163 | |
f427ee49 A |
6164 | while (!zone_pva_is_null(page_index)) { |
6165 | page = zone_pva_to_addr(page_index); | |
6166 | meta = zone_pva_to_meta(page_index, kind); | |
6167 | end = page + ptoa(meta->zm_percpu ? 1 : meta->zm_page_count); | |
6168 | first = page + ZONE_PAGE_FIRST_OFFSET(kind); | |
39037602 | 6169 | |
f427ee49 | 6170 | bitmap_clear(bits, (uint32_t)((end - first) / zone_elem_size(z))); |
39037602 | 6171 | |
f427ee49 A |
6172 | // construct bitmap of all freed elements |
6173 | free = zone_page_meta_get_freelist(z, meta, page); | |
6174 | while (free) { | |
6175 | bitmap_set(bits, (uint32_t)((free - first) / zone_elem_size(z))); | |
39037602 | 6176 | |
f427ee49 A |
6177 | // next free element |
6178 | free = *(vm_offset_t *)free ^ zp_nopoison_cookie; | |
6179 | } | |
39037602 | 6180 | |
f427ee49 A |
6181 | for (unsigned i = 0; first < end; i++, first += zone_elem_size(z)) { |
6182 | if (!bitmap_test(bits, i)) { | |
6183 | *elems++ = INSTANCE_PUT(first); | |
0a7de745 | 6184 | } |
0a7de745 | 6185 | } |
0a7de745 | 6186 | |
f427ee49 A |
6187 | page_index = meta->zm_page_next; |
6188 | } | |
0a7de745 | 6189 | return elems; |
39037602 A |
6190 | } |
6191 | ||
6192 | kern_return_t | |
6193 | zone_leaks(const char * zoneName, uint32_t nameLen, leak_site_proc proc, void * refCon) | |
6194 | { | |
f427ee49 A |
6195 | uintptr_t zbt[MAX_ZTRACE_DEPTH]; |
6196 | zone_t zone = NULL; | |
0a7de745 A |
6197 | uintptr_t * array; |
6198 | uintptr_t * next; | |
6199 | uintptr_t element, bt; | |
6200 | uint32_t idx, count, found; | |
6201 | uint32_t btidx, btcount, nobtcount, btfound; | |
6202 | uint32_t elemSize; | |
6203 | uint64_t maxElems; | |
5ba3f43e | 6204 | kern_return_t kr; |
f427ee49 | 6205 | bitmap_t *bits; |
39037602 | 6206 | |
f427ee49 A |
6207 | zone_index_foreach(i) { |
6208 | if (!strncmp(zoneName, zone_array[i].z_name, nameLen)) { | |
6209 | zone = &zone_array[i]; | |
0a7de745 A |
6210 | break; |
6211 | } | |
6212 | } | |
f427ee49 | 6213 | if (zone == NULL) { |
0a7de745 A |
6214 | return KERN_INVALID_NAME; |
6215 | } | |
0a7de745 | 6216 | |
f427ee49 A |
6217 | elemSize = zone_elem_size(zone); |
6218 | maxElems = (zone->countavail + 1) & ~1ul; | |
0a7de745 | 6219 | |
f427ee49 A |
6220 | if ((ptoa(zone->percpu ? 1 : zone->alloc_pages) % elemSize) && |
6221 | !zone_leaks_scan_enable) { | |
0a7de745 A |
6222 | return KERN_INVALID_CAPABILITY; |
6223 | } | |
6224 | ||
6225 | kr = kmem_alloc_kobject(kernel_map, (vm_offset_t *) &array, | |
f427ee49 A |
6226 | maxElems * sizeof(uintptr_t) + BITMAP_LEN(ZONE_CHUNK_MAXELEMENTS), |
6227 | VM_KERN_MEMORY_DIAG); | |
0a7de745 A |
6228 | if (KERN_SUCCESS != kr) { |
6229 | return kr; | |
6230 | } | |
6231 | ||
f427ee49 A |
6232 | /* maxElems is a 2-multiple so we're always aligned */ |
6233 | bits = CAST_DOWN_EXPLICIT(bitmap_t *, array + maxElems); | |
6234 | ||
0a7de745 A |
6235 | lock_zone(zone); |
6236 | ||
6237 | next = array; | |
f427ee49 A |
6238 | next = zone_copy_allocations(zone, next, bits, |
6239 | zone->pages_any_free_foreign, ZONE_ADDR_FOREIGN); | |
6240 | next = zone_copy_allocations(zone, next, bits, | |
6241 | zone->pages_all_used_foreign, ZONE_ADDR_FOREIGN); | |
6242 | next = zone_copy_allocations(zone, next, bits, | |
6243 | zone->pages_intermediate, ZONE_ADDR_NATIVE); | |
6244 | next = zone_copy_allocations(zone, next, bits, | |
6245 | zone->pages_all_used, ZONE_ADDR_NATIVE); | |
0a7de745 A |
6246 | count = (uint32_t)(next - array); |
6247 | ||
6248 | unlock_zone(zone); | |
6249 | ||
f427ee49 | 6250 | zone_leaks_scan(array, count, zone_elem_size(zone), &found); |
0a7de745 A |
6251 | assert(found <= count); |
6252 | ||
6253 | for (idx = 0; idx < count; idx++) { | |
6254 | element = array[idx]; | |
6255 | if (kInstanceFlagReferenced & element) { | |
6256 | continue; | |
6257 | } | |
6258 | element = INSTANCE_PUT(element) & ~kInstanceFlags; | |
6259 | } | |
6260 | ||
f427ee49 | 6261 | #if ZONE_ENABLE_LOGGING |
0a7de745 A |
6262 | if (zone->zlog_btlog && !corruption_debug_flag) { |
6263 | // btlog_copy_backtraces_for_elements will set kInstanceFlagReferenced on elements it found | |
6264 | btlog_copy_backtraces_for_elements(zone->zlog_btlog, array, &count, elemSize, proc, refCon); | |
6265 | } | |
f427ee49 | 6266 | #endif /* ZONE_ENABLE_LOGGING */ |
0a7de745 A |
6267 | |
6268 | for (nobtcount = idx = 0; idx < count; idx++) { | |
6269 | element = array[idx]; | |
6270 | if (!element) { | |
6271 | continue; | |
6272 | } | |
6273 | if (kInstanceFlagReferenced & element) { | |
6274 | continue; | |
6275 | } | |
6276 | element = INSTANCE_PUT(element) & ~kInstanceFlags; | |
6277 | ||
6278 | // see if we can find any backtrace left in the element | |
f427ee49 | 6279 | btcount = (typeof(btcount))(zone_elem_size(zone) / sizeof(uintptr_t)); |
0a7de745 A |
6280 | if (btcount >= MAX_ZTRACE_DEPTH) { |
6281 | btcount = MAX_ZTRACE_DEPTH - 1; | |
6282 | } | |
6283 | for (btfound = btidx = 0; btidx < btcount; btidx++) { | |
6284 | bt = ((uintptr_t *)element)[btcount - 1 - btidx]; | |
6285 | if (!VM_KERNEL_IS_SLID(bt)) { | |
6286 | break; | |
6287 | } | |
6288 | zbt[btfound++] = bt; | |
6289 | } | |
6290 | if (btfound) { | |
6291 | (*proc)(refCon, 1, elemSize, &zbt[0], btfound); | |
6292 | } else { | |
6293 | nobtcount++; | |
6294 | } | |
6295 | } | |
6296 | if (nobtcount) { | |
6297 | // fake backtrace when we found nothing | |
6298 | zbt[0] = (uintptr_t) &zalloc; | |
6299 | (*proc)(refCon, nobtcount, elemSize, &zbt[0], 1); | |
6300 | } | |
6301 | ||
6302 | kmem_free(kernel_map, (vm_offset_t) array, maxElems * sizeof(uintptr_t)); | |
6303 | ||
6304 | return KERN_SUCCESS; | |
1c79356b A |
6305 | } |
6306 | ||
5ba3f43e A |
6307 | boolean_t |
6308 | run_zone_test(void) | |
6309 | { | |
d9a64523 | 6310 | unsigned int i = 0, max_iter = 5; |
5ba3f43e A |
6311 | void * test_ptr; |
6312 | zone_t test_zone; | |
b0d623f7 | 6313 | |
0a7de745 | 6314 | simple_lock(&zone_test_lock, &zone_locks_grp); |
5ba3f43e A |
6315 | if (!zone_test_running) { |
6316 | zone_test_running = TRUE; | |
6317 | } else { | |
6318 | simple_unlock(&zone_test_lock); | |
6319 | printf("run_zone_test: Test already running.\n"); | |
6320 | return FALSE; | |
6321 | } | |
6322 | simple_unlock(&zone_test_lock); | |
39037602 | 6323 | |
5ba3f43e | 6324 | printf("run_zone_test: Testing zinit(), zalloc(), zfree() and zdestroy() on zone \"test_zone_sysctl\"\n"); |
39037602 | 6325 | |
5ba3f43e A |
6326 | /* zinit() and zdestroy() a zone with the same name a bunch of times, verify that we get back the same zone each time */ |
6327 | do { | |
6328 | test_zone = zinit(sizeof(uint64_t), 100 * sizeof(uint64_t), sizeof(uint64_t), "test_zone_sysctl"); | |
6329 | if (test_zone == NULL) { | |
6330 | printf("run_zone_test: zinit() failed\n"); | |
6331 | return FALSE; | |
6332 | } | |
39037602 | 6333 | |
5ba3f43e | 6334 | #if KASAN_ZALLOC |
f427ee49 | 6335 | if (test_zone_ptr == NULL && test_zone->countfree != 0) { |
5ba3f43e | 6336 | #else |
f427ee49 | 6337 | if (test_zone->countfree != 0) { |
5ba3f43e A |
6338 | #endif |
6339 | printf("run_zone_test: free count is not zero\n"); | |
6340 | return FALSE; | |
6341 | } | |
6342 | ||
6343 | if (test_zone_ptr == NULL) { | |
6344 | /* Stash the zone pointer returned on the fist zinit */ | |
6345 | printf("run_zone_test: zone created for the first time\n"); | |
6346 | test_zone_ptr = test_zone; | |
6347 | } else if (test_zone != test_zone_ptr) { | |
6348 | printf("run_zone_test: old zone pointer and new zone pointer don't match\n"); | |
6349 | return FALSE; | |
6350 | } | |
6351 | ||
6352 | test_ptr = zalloc(test_zone); | |
6353 | if (test_ptr == NULL) { | |
6354 | printf("run_zone_test: zalloc() failed\n"); | |
6355 | return FALSE; | |
6356 | } | |
6357 | zfree(test_zone, test_ptr); | |
6358 | ||
6359 | zdestroy(test_zone); | |
6360 | i++; | |
6361 | ||
6362 | printf("run_zone_test: Iteration %d successful\n", i); | |
6363 | } while (i < max_iter); | |
6364 | ||
f427ee49 A |
6365 | /* test Z_VA_SEQUESTER */ |
6366 | if (zsecurity_options & ZSECURITY_OPTIONS_SEQUESTER) { | |
6367 | int idx, num_allocs = 8; | |
6368 | vm_size_t elem_size = 2 * PAGE_SIZE / num_allocs; | |
6369 | void *allocs[num_allocs]; | |
6370 | vm_offset_t phys_pages = os_atomic_load(&zones_phys_page_count, relaxed); | |
6371 | vm_size_t zone_map_size = zone_range_size(&zone_info.zi_map_range); | |
6372 | ||
6373 | test_zone = zone_create("test_zone_sysctl", elem_size, | |
6374 | ZC_DESTRUCTIBLE | ZC_SEQUESTER); | |
6375 | if (test_zone == NULL) { | |
6376 | printf("run_zone_test: zinit() failed\n"); | |
6377 | return FALSE; | |
6378 | } | |
6379 | ||
6380 | for (idx = 0; idx < num_allocs; idx++) { | |
6381 | allocs[idx] = zalloc(test_zone); | |
6382 | assert(NULL != allocs[idx]); | |
6383 | printf("alloc[%d] %p\n", idx, allocs[idx]); | |
6384 | } | |
6385 | for (idx = 0; idx < num_allocs; idx++) { | |
6386 | zfree(test_zone, allocs[idx]); | |
6387 | } | |
6388 | assert(!zone_pva_is_null(test_zone->pages_all_free)); | |
6389 | ||
6390 | printf("vm_page_wire_count %d, vm_page_free_count %d, p to v %qd%%\n", | |
6391 | vm_page_wire_count, vm_page_free_count, | |
6392 | (100ULL * ptoa_64(phys_pages)) / zone_map_size); | |
6393 | zone_gc(FALSE); | |
6394 | printf("vm_page_wire_count %d, vm_page_free_count %d, p to v %qd%%\n", | |
6395 | vm_page_wire_count, vm_page_free_count, | |
6396 | (100ULL * ptoa_64(phys_pages)) / zone_map_size); | |
6397 | unsigned int allva = 0; | |
6398 | zone_index_foreach(zidx) { | |
6399 | zone_t z = &zone_array[zidx]; | |
6400 | lock_zone(z); | |
6401 | allva += z->page_count; | |
6402 | if (!z->sequester_page_count) { | |
6403 | unlock_zone(z); | |
6404 | continue; | |
6405 | } | |
6406 | unsigned count = 0; | |
6407 | uint64_t size; | |
6408 | zone_pva_t pg = z->pages_sequester; | |
6409 | struct zone_page_metadata *page_meta; | |
6410 | while (pg.packed_address) { | |
6411 | page_meta = zone_pva_to_meta(pg, ZONE_ADDR_NATIVE); | |
6412 | count += z->alloc_pages; | |
6413 | pg = page_meta->zm_page_next; | |
6414 | } | |
6415 | assert(count == z->sequester_page_count); | |
6416 | size = zone_size_wired(z); | |
6417 | if (!size) { | |
6418 | size = 1; | |
6419 | } | |
6420 | printf("%s%s: seq %d, res %d, %qd %%\n", | |
6421 | zone_heap_name(z), z->z_name, z->sequester_page_count, | |
6422 | z->page_count, zone_size_allocated(z) * 100ULL / size); | |
6423 | unlock_zone(z); | |
6424 | } | |
6425 | ||
6426 | printf("total va: %d\n", allva); | |
6427 | ||
6428 | assert(zone_pva_is_null(test_zone->pages_all_free)); | |
6429 | assert(!zone_pva_is_null(test_zone->pages_sequester)); | |
6430 | assert(2 == test_zone->sequester_page_count); | |
6431 | for (idx = 0; idx < num_allocs; idx++) { | |
6432 | assert(0 == pmap_find_phys(kernel_pmap, (addr64_t)(uintptr_t) allocs[idx])); | |
6433 | } | |
6434 | for (idx = 0; idx < num_allocs; idx++) { | |
6435 | allocs[idx] = zalloc(test_zone); | |
6436 | assert(allocs[idx]); | |
6437 | printf("alloc[%d] %p\n", idx, allocs[idx]); | |
6438 | } | |
6439 | assert(zone_pva_is_null(test_zone->pages_sequester)); | |
6440 | assert(0 == test_zone->sequester_page_count); | |
6441 | for (idx = 0; idx < num_allocs; idx++) { | |
6442 | zfree(test_zone, allocs[idx]); | |
6443 | } | |
6444 | zdestroy(test_zone); | |
6445 | } else { | |
6446 | printf("run_zone_test: skipping sequester test (not enabled)\n"); | |
6447 | } | |
6448 | ||
5ba3f43e A |
6449 | printf("run_zone_test: Test passed\n"); |
6450 | ||
0a7de745 | 6451 | simple_lock(&zone_test_lock, &zone_locks_grp); |
5ba3f43e A |
6452 | zone_test_running = FALSE; |
6453 | simple_unlock(&zone_test_lock); | |
6454 | ||
6455 | return TRUE; | |
813fb2f6 A |
6456 | } |
6457 | ||
f427ee49 A |
6458 | /* |
6459 | * Routines to test that zone garbage collection and zone replenish threads | |
6460 | * running at the same time don't cause problems. | |
6461 | */ | |
6462 | ||
6463 | void | |
6464 | zone_gc_replenish_test(void) | |
6465 | { | |
6466 | zone_gc(FALSE); | |
6467 | } | |
6468 | ||
6469 | ||
6470 | void | |
6471 | zone_alloc_replenish_test(void) | |
6472 | { | |
6473 | zone_t z = NULL; | |
6474 | struct data { struct data *next; } *node, *list = NULL; | |
6475 | ||
6476 | /* | |
6477 | * Find a zone that has a replenish thread | |
6478 | */ | |
6479 | zone_index_foreach(i) { | |
6480 | z = &zone_array[i]; | |
6481 | if (z->prio_refill_count && | |
6482 | zone_elem_size(z) >= sizeof(struct data)) { | |
6483 | z = &zone_array[i]; | |
6484 | break; | |
6485 | } | |
6486 | } | |
6487 | if (z == NULL) { | |
6488 | printf("Couldn't find a replenish zone\n"); | |
6489 | return; | |
6490 | } | |
6491 | ||
6492 | for (uint32_t i = 0; i < 2000; ++i) { /* something big enough to go past replenishment */ | |
6493 | node = zalloc(z); | |
6494 | node->next = list; | |
6495 | list = node; | |
6496 | } | |
6497 | ||
6498 | /* | |
6499 | * release the memory we allocated | |
6500 | */ | |
6501 | while (list != NULL) { | |
6502 | node = list; | |
6503 | list = list->next; | |
6504 | zfree(z, node); | |
6505 | } | |
6506 | } | |
6507 | ||
39037602 | 6508 | #endif /* DEBUG || DEVELOPMENT */ |