]> git.saurik.com Git - apple/shell_cmds.git/blob - find/operator.c
shell_cmds-162.tar.gz
[apple/shell_cmds.git] / find / operator.c
1 /*-
2 * Copyright (c) 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Cimarron D. Taylor of the University of California, Berkeley.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)operator.c 8.1 (Berkeley) 6/6/93";
40 #endif
41 #endif /* not lint */
42
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD: src/usr.bin/find/operator.c,v 1.14 2003/06/14 13:00:21 markm Exp $");
45
46 #include <sys/types.h>
47
48 #include <err.h>
49 #include <fts.h>
50 #include <stdio.h>
51
52 #include "find.h"
53
54 static PLAN *yanknode(PLAN **);
55 static PLAN *yankexpr(PLAN **);
56
57 /*
58 * yanknode --
59 * destructively removes the top from the plan
60 */
61 static PLAN *
62 yanknode(PLAN **planp)
63 {
64 PLAN *node; /* top node removed from the plan */
65
66 if ((node = (*planp)) == NULL)
67 return (NULL);
68 (*planp) = (*planp)->next;
69 node->next = NULL;
70 return (node);
71 }
72
73 /*
74 * yankexpr --
75 * Removes one expression from the plan. This is used mainly by
76 * paren_squish. In comments below, an expression is either a
77 * simple node or a f_expr node containing a list of simple nodes.
78 */
79 static PLAN *
80 yankexpr(PLAN **planp)
81 {
82 PLAN *next; /* temp node holding subexpression results */
83 PLAN *node; /* pointer to returned node or expression */
84 PLAN *tail; /* pointer to tail of subplan */
85 PLAN *subplan; /* pointer to head of ( ) expression */
86
87 /* first pull the top node from the plan */
88 if ((node = yanknode(planp)) == NULL)
89 return (NULL);
90
91 /*
92 * If the node is an '(' then we recursively slurp up expressions
93 * until we find its associated ')'. If it's a closing paren we
94 * just return it and unwind our recursion; all other nodes are
95 * complete expressions, so just return them.
96 */
97 if (node->execute == f_openparen)
98 for (tail = subplan = NULL;;) {
99 if ((next = yankexpr(planp)) == NULL)
100 errx(1, "(: missing closing ')'");
101 /*
102 * If we find a closing ')' we store the collected
103 * subplan in our '(' node and convert the node to
104 * a f_expr. The ')' we found is ignored. Otherwise,
105 * we just continue to add whatever we get to our
106 * subplan.
107 */
108 if (next->execute == f_closeparen) {
109 if (subplan == NULL)
110 errx(1, "(): empty inner expression");
111 node->p_data[0] = subplan;
112 node->execute = f_expr;
113 break;
114 } else {
115 if (subplan == NULL)
116 tail = subplan = next;
117 else {
118 tail->next = next;
119 tail = next;
120 }
121 tail->next = NULL;
122 }
123 }
124 return (node);
125 }
126
127 /*
128 * paren_squish --
129 * replaces "parenthesized" plans in our search plan with "expr" nodes.
130 */
131 PLAN *
132 paren_squish(PLAN *plan)
133 {
134 PLAN *expr; /* pointer to next expression */
135 PLAN *tail; /* pointer to tail of result plan */
136 PLAN *result; /* pointer to head of result plan */
137
138 result = tail = NULL;
139
140 /*
141 * the basic idea is to have yankexpr do all our work and just
142 * collect its results together.
143 */
144 while ((expr = yankexpr(&plan)) != NULL) {
145 /*
146 * if we find an unclaimed ')' it means there is a missing
147 * '(' someplace.
148 */
149 if (expr->execute == f_closeparen)
150 errx(1, "): no beginning '('");
151
152 /* add the expression to our result plan */
153 if (result == NULL)
154 tail = result = expr;
155 else {
156 tail->next = expr;
157 tail = expr;
158 }
159 tail->next = NULL;
160 }
161 return (result);
162 }
163
164 /*
165 * not_squish --
166 * compresses "!" expressions in our search plan.
167 */
168 PLAN *
169 not_squish(PLAN *plan)
170 {
171 PLAN *next; /* next node being processed */
172 PLAN *node; /* temporary node used in f_not processing */
173 PLAN *tail; /* pointer to tail of result plan */
174 PLAN *result; /* pointer to head of result plan */
175
176 tail = result = NULL;
177
178 while ((next = yanknode(&plan))) {
179 /*
180 * if we encounter a ( expression ) then look for nots in
181 * the expr subplan.
182 */
183 if (next->execute == f_expr)
184 next->p_data[0] = not_squish(next->p_data[0]);
185
186 /*
187 * if we encounter a not, then snag the next node and place
188 * it in the not's subplan. As an optimization we compress
189 * several not's to zero or one not.
190 */
191 if (next->execute == f_not) {
192 int notlevel = 1;
193
194 node = yanknode(&plan);
195 while (node != NULL && node->execute == f_not) {
196 ++notlevel;
197 node = yanknode(&plan);
198 }
199 if (node == NULL)
200 errx(1, "!: no following expression");
201 if (node->execute == f_or)
202 errx(1, "!: nothing between ! and -o");
203 /*
204 * If we encounter ! ( expr ) then look for nots in
205 * the expr subplan.
206 */
207 if (node->execute == f_expr)
208 node->p_data[0] = not_squish(node->p_data[0]);
209 if (notlevel % 2 != 1)
210 next = node;
211 else
212 next->p_data[0] = node;
213 }
214
215 /* add the node to our result plan */
216 if (result == NULL)
217 tail = result = next;
218 else {
219 tail->next = next;
220 tail = next;
221 }
222 tail->next = NULL;
223 }
224 return (result);
225 }
226
227 /*
228 * or_squish --
229 * compresses -o expressions in our search plan.
230 */
231 PLAN *
232 or_squish(PLAN *plan)
233 {
234 PLAN *next; /* next node being processed */
235 PLAN *tail; /* pointer to tail of result plan */
236 PLAN *result; /* pointer to head of result plan */
237
238 tail = result = next = NULL;
239
240 while ((next = yanknode(&plan)) != NULL) {
241 /*
242 * if we encounter a ( expression ) then look for or's in
243 * the expr subplan.
244 */
245 if (next->execute == f_expr)
246 next->p_data[0] = or_squish(next->p_data[0]);
247
248 /* if we encounter a not then look for or's in the subplan */
249 if (next->execute == f_not)
250 next->p_data[0] = or_squish(next->p_data[0]);
251
252 /*
253 * if we encounter an or, then place our collected plan in the
254 * or's first subplan and then recursively collect the
255 * remaining stuff into the second subplan and return the or.
256 */
257 if (next->execute == f_or) {
258 if (result == NULL)
259 errx(1, "-o: no expression before -o");
260 next->p_data[0] = result;
261 next->p_data[1] = or_squish(plan);
262 if (next->p_data[1] == NULL)
263 errx(1, "-o: no expression after -o");
264 return (next);
265 }
266
267 /* add the node to our result plan */
268 if (result == NULL)
269 tail = result = next;
270 else {
271 tail->next = next;
272 tail = next;
273 }
274 tail->next = NULL;
275 }
276 return (result);
277 }