]>
Commit | Line | Data |
---|---|---|
44bd5ea7 A |
1 | /*- |
2 | * Copyright (c) 1990, 1993 | |
3 | * The Regents of the University of California. All rights reserved. | |
4 | * | |
5 | * This code is derived from software contributed to Berkeley by | |
6 | * Cimarron D. Taylor of the University of California, Berkeley. | |
7 | * | |
8 | * Redistribution and use in source and binary forms, with or without | |
9 | * modification, are permitted provided that the following conditions | |
10 | * are met: | |
11 | * 1. Redistributions of source code must retain the above copyright | |
12 | * notice, this list of conditions and the following disclaimer. | |
13 | * 2. Redistributions in binary form must reproduce the above copyright | |
14 | * notice, this list of conditions and the following disclaimer in the | |
15 | * documentation and/or other materials provided with the distribution. | |
16 | * 3. All advertising materials mentioning features or use of this software | |
17 | * must display the following acknowledgement: | |
18 | * This product includes software developed by the University of | |
19 | * California, Berkeley and its contributors. | |
20 | * 4. Neither the name of the University nor the names of its contributors | |
21 | * may be used to endorse or promote products derived from this software | |
22 | * without specific prior written permission. | |
23 | * | |
24 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
25 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
26 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
27 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
28 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
29 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
30 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
31 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
32 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
33 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
34 | * SUCH DAMAGE. | |
35 | */ | |
36 | ||
44bd5ea7 | 37 | #ifndef lint |
e1a085ba | 38 | #if 0 |
c0fcf4e1 | 39 | static char sccsid[] = "@(#)operator.c 8.1 (Berkeley) 6/6/93"; |
e1a085ba | 40 | #endif |
44bd5ea7 A |
41 | #endif /* not lint */ |
42 | ||
e1a085ba A |
43 | #include <sys/cdefs.h> |
44 | __FBSDID("$FreeBSD: src/usr.bin/find/operator.c,v 1.14 2003/06/14 13:00:21 markm Exp $"); | |
45 | ||
44bd5ea7 A |
46 | #include <sys/types.h> |
47 | ||
48 | #include <err.h> | |
49 | #include <fts.h> | |
50 | #include <stdio.h> | |
51 | ||
52 | #include "find.h" | |
44bd5ea7 | 53 | |
e1a085ba A |
54 | static PLAN *yanknode(PLAN **); |
55 | static PLAN *yankexpr(PLAN **); | |
56 | ||
44bd5ea7 A |
57 | /* |
58 | * yanknode -- | |
59 | * destructively removes the top from the plan | |
60 | */ | |
61 | static PLAN * | |
e1a085ba | 62 | yanknode(PLAN **planp) |
44bd5ea7 A |
63 | { |
64 | PLAN *node; /* top node removed from the plan */ | |
c0fcf4e1 | 65 | |
44bd5ea7 A |
66 | if ((node = (*planp)) == NULL) |
67 | return (NULL); | |
68 | (*planp) = (*planp)->next; | |
69 | node->next = NULL; | |
70 | return (node); | |
71 | } | |
c0fcf4e1 | 72 | |
44bd5ea7 A |
73 | /* |
74 | * yankexpr -- | |
75 | * Removes one expression from the plan. This is used mainly by | |
76 | * paren_squish. In comments below, an expression is either a | |
c0fcf4e1 | 77 | * simple node or a f_expr node containing a list of simple nodes. |
44bd5ea7 A |
78 | */ |
79 | static PLAN * | |
e1a085ba | 80 | yankexpr(PLAN **planp) |
44bd5ea7 | 81 | { |
e1a085ba | 82 | PLAN *next; /* temp node holding subexpression results */ |
44bd5ea7 A |
83 | PLAN *node; /* pointer to returned node or expression */ |
84 | PLAN *tail; /* pointer to tail of subplan */ | |
85 | PLAN *subplan; /* pointer to head of ( ) expression */ | |
c0fcf4e1 | 86 | |
44bd5ea7 A |
87 | /* first pull the top node from the plan */ |
88 | if ((node = yanknode(planp)) == NULL) | |
89 | return (NULL); | |
c0fcf4e1 | 90 | |
44bd5ea7 A |
91 | /* |
92 | * If the node is an '(' then we recursively slurp up expressions | |
93 | * until we find its associated ')'. If it's a closing paren we | |
94 | * just return it and unwind our recursion; all other nodes are | |
95 | * complete expressions, so just return them. | |
96 | */ | |
c0fcf4e1 | 97 | if (node->execute == f_openparen) |
44bd5ea7 A |
98 | for (tail = subplan = NULL;;) { |
99 | if ((next = yankexpr(planp)) == NULL) | |
e1a085ba | 100 | errx(1, "(: missing closing ')'"); |
44bd5ea7 A |
101 | /* |
102 | * If we find a closing ')' we store the collected | |
103 | * subplan in our '(' node and convert the node to | |
c0fcf4e1 | 104 | * a f_expr. The ')' we found is ignored. Otherwise, |
44bd5ea7 A |
105 | * we just continue to add whatever we get to our |
106 | * subplan. | |
107 | */ | |
c0fcf4e1 | 108 | if (next->execute == f_closeparen) { |
44bd5ea7 A |
109 | if (subplan == NULL) |
110 | errx(1, "(): empty inner expression"); | |
111 | node->p_data[0] = subplan; | |
c0fcf4e1 | 112 | node->execute = f_expr; |
44bd5ea7 A |
113 | break; |
114 | } else { | |
115 | if (subplan == NULL) | |
116 | tail = subplan = next; | |
117 | else { | |
118 | tail->next = next; | |
119 | tail = next; | |
120 | } | |
121 | tail->next = NULL; | |
122 | } | |
123 | } | |
124 | return (node); | |
125 | } | |
c0fcf4e1 | 126 | |
44bd5ea7 A |
127 | /* |
128 | * paren_squish -- | |
e1a085ba | 129 | * replaces "parenthesized" plans in our search plan with "expr" nodes. |
44bd5ea7 A |
130 | */ |
131 | PLAN * | |
e1a085ba | 132 | paren_squish(PLAN *plan) |
44bd5ea7 | 133 | { |
e1a085ba A |
134 | PLAN *expr; /* pointer to next expression */ |
135 | PLAN *tail; /* pointer to tail of result plan */ | |
44bd5ea7 | 136 | PLAN *result; /* pointer to head of result plan */ |
c0fcf4e1 | 137 | |
44bd5ea7 A |
138 | result = tail = NULL; |
139 | ||
140 | /* | |
141 | * the basic idea is to have yankexpr do all our work and just | |
c0fcf4e1 | 142 | * collect its results together. |
44bd5ea7 A |
143 | */ |
144 | while ((expr = yankexpr(&plan)) != NULL) { | |
145 | /* | |
146 | * if we find an unclaimed ')' it means there is a missing | |
147 | * '(' someplace. | |
148 | */ | |
c0fcf4e1 | 149 | if (expr->execute == f_closeparen) |
44bd5ea7 A |
150 | errx(1, "): no beginning '('"); |
151 | ||
152 | /* add the expression to our result plan */ | |
153 | if (result == NULL) | |
154 | tail = result = expr; | |
155 | else { | |
156 | tail->next = expr; | |
157 | tail = expr; | |
158 | } | |
159 | tail->next = NULL; | |
160 | } | |
161 | return (result); | |
162 | } | |
c0fcf4e1 | 163 | |
44bd5ea7 A |
164 | /* |
165 | * not_squish -- | |
166 | * compresses "!" expressions in our search plan. | |
167 | */ | |
168 | PLAN * | |
e1a085ba | 169 | not_squish(PLAN *plan) |
44bd5ea7 | 170 | { |
e1a085ba A |
171 | PLAN *next; /* next node being processed */ |
172 | PLAN *node; /* temporary node used in f_not processing */ | |
173 | PLAN *tail; /* pointer to tail of result plan */ | |
44bd5ea7 | 174 | PLAN *result; /* pointer to head of result plan */ |
c0fcf4e1 A |
175 | |
176 | tail = result = NULL; | |
177 | ||
e1a085ba | 178 | while ((next = yanknode(&plan))) { |
44bd5ea7 A |
179 | /* |
180 | * if we encounter a ( expression ) then look for nots in | |
181 | * the expr subplan. | |
182 | */ | |
c0fcf4e1 | 183 | if (next->execute == f_expr) |
44bd5ea7 A |
184 | next->p_data[0] = not_squish(next->p_data[0]); |
185 | ||
186 | /* | |
187 | * if we encounter a not, then snag the next node and place | |
188 | * it in the not's subplan. As an optimization we compress | |
189 | * several not's to zero or one not. | |
190 | */ | |
c0fcf4e1 | 191 | if (next->execute == f_not) { |
44bd5ea7 A |
192 | int notlevel = 1; |
193 | ||
194 | node = yanknode(&plan); | |
c0fcf4e1 | 195 | while (node != NULL && node->execute == f_not) { |
44bd5ea7 A |
196 | ++notlevel; |
197 | node = yanknode(&plan); | |
198 | } | |
199 | if (node == NULL) | |
200 | errx(1, "!: no following expression"); | |
c0fcf4e1 | 201 | if (node->execute == f_or) |
44bd5ea7 | 202 | errx(1, "!: nothing between ! and -o"); |
c0fcf4e1 A |
203 | /* |
204 | * If we encounter ! ( expr ) then look for nots in | |
205 | * the expr subplan. | |
206 | */ | |
207 | if (node->execute == f_expr) | |
208 | node->p_data[0] = not_squish(node->p_data[0]); | |
44bd5ea7 A |
209 | if (notlevel % 2 != 1) |
210 | next = node; | |
211 | else | |
212 | next->p_data[0] = node; | |
213 | } | |
214 | ||
215 | /* add the node to our result plan */ | |
216 | if (result == NULL) | |
217 | tail = result = next; | |
218 | else { | |
219 | tail->next = next; | |
220 | tail = next; | |
221 | } | |
222 | tail->next = NULL; | |
223 | } | |
224 | return (result); | |
225 | } | |
c0fcf4e1 | 226 | |
44bd5ea7 A |
227 | /* |
228 | * or_squish -- | |
229 | * compresses -o expressions in our search plan. | |
230 | */ | |
231 | PLAN * | |
e1a085ba | 232 | or_squish(PLAN *plan) |
44bd5ea7 | 233 | { |
e1a085ba A |
234 | PLAN *next; /* next node being processed */ |
235 | PLAN *tail; /* pointer to tail of result plan */ | |
44bd5ea7 | 236 | PLAN *result; /* pointer to head of result plan */ |
c0fcf4e1 | 237 | |
44bd5ea7 | 238 | tail = result = next = NULL; |
c0fcf4e1 | 239 | |
44bd5ea7 A |
240 | while ((next = yanknode(&plan)) != NULL) { |
241 | /* | |
242 | * if we encounter a ( expression ) then look for or's in | |
243 | * the expr subplan. | |
244 | */ | |
c0fcf4e1 | 245 | if (next->execute == f_expr) |
44bd5ea7 A |
246 | next->p_data[0] = or_squish(next->p_data[0]); |
247 | ||
c0fcf4e1 A |
248 | /* if we encounter a not then look for or's in the subplan */ |
249 | if (next->execute == f_not) | |
44bd5ea7 A |
250 | next->p_data[0] = or_squish(next->p_data[0]); |
251 | ||
252 | /* | |
253 | * if we encounter an or, then place our collected plan in the | |
254 | * or's first subplan and then recursively collect the | |
255 | * remaining stuff into the second subplan and return the or. | |
256 | */ | |
c0fcf4e1 | 257 | if (next->execute == f_or) { |
44bd5ea7 A |
258 | if (result == NULL) |
259 | errx(1, "-o: no expression before -o"); | |
260 | next->p_data[0] = result; | |
261 | next->p_data[1] = or_squish(plan); | |
262 | if (next->p_data[1] == NULL) | |
263 | errx(1, "-o: no expression after -o"); | |
264 | return (next); | |
265 | } | |
266 | ||
267 | /* add the node to our result plan */ | |
268 | if (result == NULL) | |
269 | tail = result = next; | |
270 | else { | |
271 | tail->next = next; | |
272 | tail = next; | |
273 | } | |
274 | tail->next = NULL; | |
275 | } | |
276 | return (result); | |
277 | } |