2 * Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
21 * @APPLE_LICENSE_HEADER_END@
24 * Copyright (c) 1989, 1993
25 * The Regents of the University of California. All rights reserved.
27 * This code is derived from software contributed to Berkeley by
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 * 3. All advertising materials mentioning features or use of this software
39 * must display the following acknowledgement:
40 * This product includes software developed by the University of
41 * California, Berkeley and its contributors.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 #include <sys/cdefs.h>
63 #include <sys/types.h>
68 * UNIX password, and DES, encryption.
69 * By Tom Truscott, trt@rti.rti.org,
70 * from algorithms by Robert W. Baldwin and James Gillogly.
73 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
74 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
76 * "Password Security: A Case History," R. Morris and Ken Thompson,
77 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
79 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
80 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
83 /* ===== Configuration ==================== */
86 * define "MUST_ALIGN" if your compiler cannot load/store
87 * long integers at arbitrary (e.g. odd) memory locations.
88 * (Either that or never pass unaligned addresses to __crypt_des_cipher!)
96 #error C_block structure assumes 8 bit characters
101 * define "LONG_IS_32_BITS" only if sizeof(long)==4.
102 * This avoids use of bit fields (your compiler may be sloppy with them).
104 #if !defined(cray) && (LONG_BIT == 32)
105 #define LONG_IS_32_BITS
109 * define "B64" to be the declaration for a 64 bit integer.
110 * XXX this feature is currently unused, see "endian" comment below.
116 #define B64 long long
120 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
121 * of lookup tables. This speeds up __crypt_des_setkey() and __crypt_des_cipher(), but has
122 * little effect on crypt().
128 /* compile with "-DSTATIC=int" when profiling */
130 #define STATIC static
132 #ifndef BUILDING_VARIANT
133 STATIC
void init_des(), init_perm(), permute();
138 #endif /* BUILDING_VARIANT */
139 __private_extern__
int __crypt_des_cipher(), __crypt_des_setkey();
141 /* ==================================== */
144 * Cipher-block representation (Bob Baldwin):
146 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
147 * representation is to store one bit per byte in an array of bytes. Bit N of
148 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
149 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
150 * first byte, 9..16 in the second, and so on. The DES spec apparently has
151 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
152 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
153 * the MSB of the first byte. Specifically, the 64-bit input data and key are
154 * converted to LSB format, and the output 64-bit block is converted back into
157 * DES operates internally on groups of 32 bits which are expanded to 48 bits
158 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
159 * the computation, the expansion is applied only once, the expanded
160 * representation is maintained during the encryption, and a compression
161 * permutation is applied only at the end. To speed up the S-box lookups,
162 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
163 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
164 * most significant ones. The low two bits of each byte are zero. (Thus,
165 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
166 * first byte in the eight byte representation, bit 2 of the 48 bit value is
167 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
168 * used, in which the output is the 64 bit result of an S-box lookup which
169 * has been permuted by P and expanded by E, and is ready for use in the next
170 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
171 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
172 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
173 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
176 * To speed up bit-parallel operations (such as XOR), the 8 byte
177 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
178 * machines which support it, a 64 bit value "b64". This data structure,
179 * "C_block", has two problems. First, alignment restrictions must be
180 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
181 * the architecture becomes visible.
183 * The byte-order problem is unfortunate, since on the one hand it is good
184 * to have a machine-independent C_block representation (bits 1..8 in the
185 * first byte, etc.), and on the other hand it is good for the LSB of the
186 * first byte to be the LSB of i0. We cannot have both these things, so we
187 * currently use the "little-endian" representation and avoid any multi-byte
188 * operations that depend on byte order. This largely precludes use of the
189 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
190 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
191 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
192 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
193 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
194 * requires a 128 kilobyte table, so perhaps this is not a big loss.
196 * Permutation representation (Jim Gillogly):
198 * A transformation is defined by its effect on each of the 8 bytes of the
199 * 64-bit input. For each byte we give a 64-bit output that has the bits in
200 * the input distributed appropriately. The transformation is then the OR
201 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
202 * each transformation. Unless LARGEDATA is defined, however, a more compact
203 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
204 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
205 * is slower but tolerable, particularly for password encryption in which
206 * the SPE transformation is iterated many times. The small tables total 9K
207 * bytes, the large tables total 72K bytes.
209 * The transformations used are:
210 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
211 * This is done by collecting the 32 even-numbered bits and applying
212 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
213 * bits and applying the same transformation. Since there are only
214 * 32 input bits, the IE3264 transformation table is half the size of
216 * CF6464: Compression, final permutation, and LSB->MSB conversion.
217 * This is done by two trivial 48->32 bit compressions to obtain
218 * a 64-bit block (the bit numbering is given in the "CIFP" table)
219 * followed by a 64->64 bit "cleanup" transformation. (It would
220 * be possible to group the bits in the 64-bit block so that 2
221 * identical 32->32 bit transformations could be used instead,
222 * saving a factor of 4 in space and possibly 2 in time, but
223 * byte-ordering and other complications rear their ugly head.
224 * Similar opportunities/problems arise in the key schedule
226 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
227 * This admittedly baroque 64->64 bit transformation is used to
228 * produce the first code (in 8*(6+2) format) of the key schedule.
229 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
230 * It would be possible to define 15 more transformations, each
231 * with a different rotation, to generate the entire key schedule.
232 * To save space, however, we instead permute each code into the
233 * next by using a transformation that "undoes" the PC2 permutation,
234 * rotates the code, and then applies PC2. Unfortunately, PC2
235 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
236 * invertible. We get around that problem by using a modified PC2
237 * which retains the 8 otherwise-lost bits in the unused low-order
238 * bits of each byte. The low-order bits are cleared when the
239 * codes are stored into the key schedule.
240 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
241 * This is faster than applying PC2ROT[0] twice,
243 * The Bell Labs "salt" (Bob Baldwin):
245 * The salting is a simple permutation applied to the 48-bit result of E.
246 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
247 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
248 * 16777216 possible values. (The original salt was 12 bits and could not
249 * swap bits 13..24 with 36..48.)
251 * It is possible, but ugly, to warp the SPE table to account for the salt
252 * permutation. Fortunately, the conditional bit swapping requires only
253 * about four machine instructions and can be done on-the-fly with about an
254 * 8% performance penalty.
260 #if defined(LONG_IS_32_BITS)
261 /* long is often faster than a 32-bit bit field */
275 * Convert twenty-four-bit long in host-order
276 * to six bits (and 2 low-order zeroes) per char little-endian format.
278 #define TO_SIX_BIT(rslt, src) { \
280 cvt.b[0] = src; src >>= 6; \
281 cvt.b[1] = src; src >>= 6; \
282 cvt.b[2] = src; src >>= 6; \
284 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
288 * These macros may someday permit efficient use of 64-bit integers.
290 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
291 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
292 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
293 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
294 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
295 #define DCL_BLOCK(d,d0,d1) long d0, d1
297 #if defined(LARGEDATA)
298 /* Waste memory like crazy. Also, do permutations in line */
299 #define LGCHUNKBITS 3
300 #define CHUNKBITS (1<<LGCHUNKBITS)
301 #define PERM6464(d,d0,d1,cpp,p) \
302 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
303 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
304 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
305 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
306 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
307 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
308 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
309 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
310 #define PERM3264(d,d0,d1,cpp,p) \
311 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
312 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
313 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
314 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
317 #define LGCHUNKBITS 2
318 #define CHUNKBITS (1<<LGCHUNKBITS)
319 #define PERM6464(d,d0,d1,cpp,p) \
320 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
321 #define PERM3264(d,d0,d1,cpp,p) \
322 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
324 #ifndef BUILDING_VARIANT
325 STATIC
void permute(cp
, out
, p
, chars_in
)
331 register DCL_BLOCK(D
,D0
,D1
);
332 register C_block
*tp
;
338 tp
= &p
[t
&0xf]; OR(D
,D0
,D1
,*tp
); p
+= (1<<CHUNKBITS
);
339 tp
= &p
[t
>>4]; OR(D
,D0
,D1
,*tp
); p
+= (1<<CHUNKBITS
);
340 } while (--chars_in
> 0);
343 #endif /* BUILDING_VARIANT */
344 #endif /* LARGEDATA */
346 #ifndef BUILDING_VARIANT
347 __private_extern__
int __crypt_des_setkey_called
= 0;
348 #else /* BUILDING_VARIANT */
349 __private_extern__
int __crypt_des_setkey_called
;
350 #endif /* BUILDING_VARIANT */
352 /* ===== (mostly) Standard DES Tables ==================== */
354 #ifndef BUILDING_VARIANT
355 static unsigned char IP
[] = { /* initial permutation */
356 58, 50, 42, 34, 26, 18, 10, 2,
357 60, 52, 44, 36, 28, 20, 12, 4,
358 62, 54, 46, 38, 30, 22, 14, 6,
359 64, 56, 48, 40, 32, 24, 16, 8,
360 57, 49, 41, 33, 25, 17, 9, 1,
361 59, 51, 43, 35, 27, 19, 11, 3,
362 61, 53, 45, 37, 29, 21, 13, 5,
363 63, 55, 47, 39, 31, 23, 15, 7,
366 /* The final permutation is the inverse of IP - no table is necessary */
368 static unsigned char ExpandTr
[] = { /* expansion operation */
371 8, 9, 10, 11, 12, 13,
372 12, 13, 14, 15, 16, 17,
373 16, 17, 18, 19, 20, 21,
374 20, 21, 22, 23, 24, 25,
375 24, 25, 26, 27, 28, 29,
376 28, 29, 30, 31, 32, 1,
379 static unsigned char PC1
[] = { /* permuted choice table 1 */
380 57, 49, 41, 33, 25, 17, 9,
381 1, 58, 50, 42, 34, 26, 18,
382 10, 2, 59, 51, 43, 35, 27,
383 19, 11, 3, 60, 52, 44, 36,
385 63, 55, 47, 39, 31, 23, 15,
386 7, 62, 54, 46, 38, 30, 22,
387 14, 6, 61, 53, 45, 37, 29,
388 21, 13, 5, 28, 20, 12, 4,
391 static unsigned char Rotates
[] = { /* PC1 rotation schedule */
392 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
395 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
396 static unsigned char PC2
[] = { /* permuted choice table 2 */
397 9, 18, 14, 17, 11, 24, 1, 5,
398 22, 25, 3, 28, 15, 6, 21, 10,
399 35, 38, 23, 19, 12, 4, 26, 8,
400 43, 54, 16, 7, 27, 20, 13, 2,
402 0, 0, 41, 52, 31, 37, 47, 55,
403 0, 0, 30, 40, 51, 45, 33, 48,
404 0, 0, 44, 49, 39, 56, 34, 53,
405 0, 0, 46, 42, 50, 36, 29, 32,
408 static const unsigned char S
[8][64] = { /* 48->32 bit substitution tables */
410 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
411 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
412 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
413 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
416 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
417 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
418 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
419 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
422 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
423 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
424 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
425 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
428 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
429 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
430 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
431 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
434 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
435 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
436 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
437 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
440 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
441 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
442 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
443 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
446 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
447 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
448 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
449 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
452 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
453 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
454 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
455 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
459 static unsigned char P32Tr
[] = { /* 32-bit permutation function */
470 static unsigned char CIFP
[] = { /* compressed/interleaved permutation */
471 1, 2, 3, 4, 17, 18, 19, 20,
472 5, 6, 7, 8, 21, 22, 23, 24,
473 9, 10, 11, 12, 25, 26, 27, 28,
474 13, 14, 15, 16, 29, 30, 31, 32,
476 33, 34, 35, 36, 49, 50, 51, 52,
477 37, 38, 39, 40, 53, 54, 55, 56,
478 41, 42, 43, 44, 57, 58, 59, 60,
479 45, 46, 47, 48, 61, 62, 63, 64,
482 static unsigned char itoa64
[] = /* 0..63 => ascii-64 */
483 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
486 /* ===== Tables that are initialized at run time ==================== */
489 static unsigned char a64toi
[128]; /* ascii-64 => 0..63 */
491 /* Initial key schedule permutation */
492 // static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
493 static C_block
*PC1ROT
;
495 /* Subsequent key schedule rotation permutations */
496 // static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
497 static C_block
*PC2ROT
[2];
499 /* Initial permutation/expansion table */
500 // static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
501 static C_block
*IE3264
;
503 /* Table that combines the S, P, and E operations. */
504 // static long SPE[2][8][64];
507 /* compressed/interleaved => final permutation table */
508 // static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
509 static C_block
*CF6464
;
512 /* ==================================== */
515 static C_block constdatablock
; /* encryption constant */
516 static char cryptresult
[1+4+4+11+1]; /* encrypted result */
519 * Return a pointer to static data consisting of the "setting"
520 * followed by an encryption produced by the "key" and "setting".
524 register const char *key
;
525 register const char *setting
;
531 int num_iter
, salt_size
;
532 C_block keyblock
, rsltblock
;
534 for (i
= 0; i
< 8; i
++) {
535 if ((t
= 2*(unsigned char)(*key
)) != 0)
539 if (__crypt_des_setkey((char *)keyblock
.b
)) /* also initializes "a64toi" */
542 encp
= &cryptresult
[0];
544 case _PASSWORD_EFMT1
:
546 * Involve the rest of the password 8 characters at a time.
549 if (__crypt_des_cipher((char *)&keyblock
,
550 (char *)&keyblock
, 0L, 1))
552 for (i
= 0; i
< 8; i
++) {
553 if ((t
= 2*(unsigned char)(*key
)) != 0)
557 if (__crypt_des_setkey((char *)keyblock
.b
))
561 *encp
++ = *setting
++;
563 /* get iteration count */
565 for (i
= 4; --i
>= 0; ) {
566 if ((t
= (unsigned char)setting
[i
]) == '\0')
569 num_iter
= (num_iter
<<6) | a64toi
[t
];
581 for (i
= salt_size
; --i
>= 0; ) {
582 if ((t
= (unsigned char)setting
[i
]) == '\0')
585 salt
= (salt
<<6) | a64toi
[t
];
588 if (__crypt_des_cipher((char *)&constdatablock
, (char *)&rsltblock
,
593 * Encode the 64 cipher bits as 11 ascii characters.
595 i
= ((long)((rsltblock
.b
[0]<<8) | rsltblock
.b
[1])<<8) | rsltblock
.b
[2];
596 encp
[3] = itoa64
[i
&0x3f]; i
>>= 6;
597 encp
[2] = itoa64
[i
&0x3f]; i
>>= 6;
598 encp
[1] = itoa64
[i
&0x3f]; i
>>= 6;
599 encp
[0] = itoa64
[i
]; encp
+= 4;
600 i
= ((long)((rsltblock
.b
[3]<<8) | rsltblock
.b
[4])<<8) | rsltblock
.b
[5];
601 encp
[3] = itoa64
[i
&0x3f]; i
>>= 6;
602 encp
[2] = itoa64
[i
&0x3f]; i
>>= 6;
603 encp
[1] = itoa64
[i
&0x3f]; i
>>= 6;
604 encp
[0] = itoa64
[i
]; encp
+= 4;
605 i
= ((long)((rsltblock
.b
[6])<<8) | rsltblock
.b
[7])<<2;
606 encp
[2] = itoa64
[i
&0x3f]; i
>>= 6;
607 encp
[1] = itoa64
[i
&0x3f]; i
>>= 6;
612 return (cryptresult
);
617 * The Key Schedule, filled in by __crypt_des_setkey() or setkey().
620 static C_block KS
[KS_SIZE
];
623 * Set up the key schedule from the key.
625 __private_extern__
int __crypt_des_setkey(key
)
626 register const char *key
;
628 register DCL_BLOCK(K
, K0
, K1
);
629 register C_block
*ptabp
;
631 static int des_ready
= 0;
638 PERM6464(K
,K0
,K1
,(unsigned char *)key
,PC1ROT
);
639 key
= (char *)&KS
[0];
640 STORE(K
&~0x03030303L
, K0
&~0x03030303L
, K1
, *(C_block
*)key
);
641 for (i
= 1; i
< 16; i
++) {
642 key
+= sizeof(C_block
);
643 STORE(K
,K0
,K1
,*(C_block
*)key
);
644 ptabp
= PC2ROT
[Rotates
[i
]-1];
645 PERM6464(K
,K0
,K1
,(unsigned char *)key
,ptabp
);
646 STORE(K
&~0x03030303L
, K0
&~0x03030303L
, K1
, *(C_block
*)key
);
648 __crypt_des_setkey_called
= 1;
653 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
654 * iterations of DES, using the the given 24-bit salt and the pre-computed key
655 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
657 * NOTE: the performance of this routine is critically dependent on your
658 * compiler and machine architecture.
660 __private_extern__
int __crypt_des_cipher(in
, out
, salt
, num_iter
)
666 /* variables that we want in registers, most important first */
670 register long L0
, L1
, R0
, R1
, k
;
671 register C_block
*kp
;
672 register int loop_count
;
677 TO_SIX_BIT(salt
, L0
); /* convert to 4*(6+2) format */
679 #if defined(vax) || defined(pdp11)
680 salt
= ~salt
; /* "x &~ y" is faster than "x & y". */
686 #if defined(MUST_ALIGN)
687 B
.b
[0] = in
[0]; B
.b
[1] = in
[1]; B
.b
[2] = in
[2]; B
.b
[3] = in
[3];
688 B
.b
[4] = in
[4]; B
.b
[5] = in
[5]; B
.b
[6] = in
[6]; B
.b
[7] = in
[7];
691 LOAD(L
,L0
,L1
,*(C_block
*)in
);
693 LOADREG(R
,R0
,R1
,L
,L0
,L1
);
696 L0
= (L0
<< 1) | L1
; /* L0 is the even-numbered input bits */
698 R1
= (R1
>> 1) & 0x55555555L
;
699 L1
= R0
| R1
; /* L1 is the odd-numbered input bits */
701 PERM3264(L
,L0
,L1
,B
.b
,IE3264
); /* even bits */
702 PERM3264(R
,R0
,R1
,B
.b
+4,IE3264
); /* odd bits */
707 ks_inc
= sizeof(*kp
);
711 num_iter
= -num_iter
;
713 ks_inc
= -sizeof(*kp
);
716 while (--num_iter
>= 0) {
720 #define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
722 /* use this if B.b[i] is evaluated just once ... */
723 #define DOXOR(x,y,i) x^=SPTAB(&SPE[i * 64],B.b[i]); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],B.b[i]);
726 /* use this if your "long" int indexing is slow */
727 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(&SPE[i * 64],j); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],j);
729 /* use this if "k" is allocated to a register ... */
730 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(&SPE[i * 64],k); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],k);
734 #define CRUNCH(p0, p1, q0, q1) \
735 k = (q0 ^ q1) & SALT; \
736 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
737 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
738 kp = (C_block *)((char *)kp+ks_inc); \
749 CRUNCH(L0
, L1
, R0
, R1
);
750 CRUNCH(R0
, R1
, L0
, L1
);
751 } while (--loop_count
!= 0);
752 kp
= (C_block
*)((char *)kp
-(ks_inc
*KS_SIZE
));
761 /* store the encrypted (or decrypted) result */
762 L0
= ((L0
>> 3) & 0x0f0f0f0fL
) | ((L1
<< 1) & 0xf0f0f0f0L
);
763 L1
= ((R0
>> 3) & 0x0f0f0f0fL
) | ((R1
<< 1) & 0xf0f0f0f0L
);
765 PERM6464(L
,L0
,L1
,B
.b
,CF6464
);
766 #if defined(MUST_ALIGN)
768 out
[0] = B
.b
[0]; out
[1] = B
.b
[1]; out
[2] = B
.b
[2]; out
[3] = B
.b
[3];
769 out
[4] = B
.b
[4]; out
[5] = B
.b
[5]; out
[6] = B
.b
[6]; out
[7] = B
.b
[7];
771 STORE(L
,L0
,L1
,*(C_block
*)out
);
778 * Initialize various tables. This need only be done once. It could even be
779 * done at compile time, if the compiler were capable of that sort of thing.
781 STATIC
void init_des()
785 register int tableno
;
786 static unsigned char perm
[64], tmp32
[32]; /* "static" for speed */
789 * table that converts chars "./0-9A-Za-z"to integers 0-63.
791 for (i
= 0; i
< 64; i
++)
792 a64toi
[itoa64
[i
]] = i
;
795 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
797 for (i
= 0; i
< 64; i
++)
799 for (i
= 0; i
< 64; i
++) {
800 if ((k
= PC2
[i
]) == 0)
803 if ((k%28
) < Rotates
[0]) k
-= 28;
813 prtab("pc1tab", perm
, 8);
815 PC1ROT
= (C_block
*)calloc(sizeof(C_block
), (64/CHUNKBITS
) * (1<<CHUNKBITS
));
816 for (i
= 0; i
< 2; i
++)
817 PC2ROT
[i
] = (C_block
*)calloc(sizeof(C_block
), (64/CHUNKBITS
) * (1<<CHUNKBITS
));
818 init_perm(PC1ROT
, perm
, 8, 8);
821 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
823 for (j
= 0; j
< 2; j
++) {
824 unsigned char pc2inv
[64];
825 for (i
= 0; i
< 64; i
++)
826 perm
[i
] = pc2inv
[i
] = 0;
827 for (i
= 0; i
< 64; i
++) {
828 if ((k
= PC2
[i
]) == 0)
832 for (i
= 0; i
< 64; i
++) {
833 if ((k
= PC2
[i
]) == 0)
836 if ((k%28
) <= j
) k
-= 28;
840 prtab("pc2tab", perm
, 8);
842 init_perm(PC2ROT
[j
], perm
, 8, 8);
846 * Bit reverse, then initial permutation, then expansion.
848 for (i
= 0; i
< 8; i
++) {
849 for (j
= 0; j
< 8; j
++) {
850 k
= (j
< 2)? 0: IP
[ExpandTr
[i
*6+j
-2]-1];
864 prtab("ietab", perm
, 8);
866 IE3264
= (C_block
*)calloc(sizeof(C_block
), (32/CHUNKBITS
) * (1<<CHUNKBITS
));
867 init_perm(IE3264
, perm
, 4, 8);
870 * Compression, then final permutation, then bit reverse.
872 for (i
= 0; i
< 64; i
++) {
882 prtab("cftab", perm
, 8);
884 CF6464
= (C_block
*)calloc(sizeof(C_block
), (64/CHUNKBITS
) * (1<<CHUNKBITS
));
885 SPE
= (long *)calloc(sizeof(long), 2 * 8 * 64);
886 init_perm(CF6464
, perm
, 8, 8);
891 for (i
= 0; i
< 48; i
++)
892 perm
[i
] = P32Tr
[ExpandTr
[i
]-1];
893 for (tableno
= 0; tableno
< 8; tableno
++) {
894 for (j
= 0; j
< 64; j
++) {
895 k
= (((j
>> 0) &01) << 5)|
896 (((j
>> 1) &01) << 3)|
897 (((j
>> 2) &01) << 2)|
898 (((j
>> 3) &01) << 1)|
899 (((j
>> 4) &01) << 0)|
900 (((j
>> 5) &01) << 4);
902 k
= (((k
>> 3)&01) << 0)|
903 (((k
>> 2)&01) << 1)|
904 (((k
>> 1)&01) << 2)|
905 (((k
>> 0)&01) << 3);
906 for (i
= 0; i
< 32; i
++)
908 for (i
= 0; i
< 4; i
++)
909 tmp32
[4 * tableno
+ i
] = (k
>> i
) & 01;
911 for (i
= 24; --i
>= 0; )
912 k
= (k
<<1) | tmp32
[perm
[i
]-1];
913 TO_SIX_BIT(SPE
[(tableno
* 64) + j
], k
);
915 for (i
= 24; --i
>= 0; )
916 k
= (k
<<1) | tmp32
[perm
[i
+24]-1];
917 TO_SIX_BIT(SPE
[(8 * 64) + (tableno
* 64) + j
], k
);
923 * Initialize "perm" to represent transformation "p", which rearranges
924 * (perhaps with expansion and/or contraction) one packed array of bits
925 * (of size "chars_in" characters) into another array (of size "chars_out"
928 * "perm" must be all-zeroes on entry to this routine.
930 STATIC
void init_perm(perm
, p
, chars_in
, chars_out
)
933 int chars_in
, chars_out
;
935 register int i
, j
, k
, l
;
937 for (k
= 0; k
< chars_out
*8; k
++) { /* each output bit position */
938 l
= p
[k
] - 1; /* where this bit comes from */
940 continue; /* output bit is always 0 */
941 i
= l
>>LGCHUNKBITS
; /* which chunk this bit comes from */
942 l
= 1<<(l
&(CHUNKBITS
-1)); /* mask for this bit */
943 for (j
= 0; j
< (1<<CHUNKBITS
); j
++) { /* each chunk value */
945 perm
[(i
* (1<<CHUNKBITS
)) + j
].b
[k
>>3] |= 1<<(k
&07);
949 #endif /* BUILDING_VARIANT */
952 * "setkey" routine (for backwards compatibility)
956 #else /* !__DARWIN_UNIX03 */
958 #endif /* __DARWIN_UNIX03 */
959 register const char *key
;
961 register int i
, j
, k
;
964 for (i
= 0; i
< 8; i
++) {
966 for (j
= 0; j
< 8; j
++) {
968 k
|= (unsigned char)*key
++;
973 __crypt_des_setkey((char *)keyblock
.b
);
974 #else /* !__DARWIN_UNIX03 */
975 return (__crypt_des_setkey((char *)keyblock
.b
));
976 #endif /* __DARWIN_UNIX03 */
980 * "encrypt" routine (for backwards compatibility)
983 void encrypt(block
, flag
)
984 #else /* !__DARWIN_UNIX03 */
985 int encrypt(block
, flag
)
986 #endif /* __DARWIN_UNIX03 */
987 register char *block
;
990 register int i
, j
, k
;
993 /* Prevent encrypt from crashing if setkey was never called.
994 * This does not make a good cypher */
995 if (!__crypt_des_setkey_called
) {
996 cblock
.b32
.i0
= cblock
.b32
.i1
= 0;
997 __crypt_des_setkey((char *)cblock
.b
);
999 for (i
= 0; i
< 8; i
++) {
1001 for (j
= 0; j
< 8; j
++) {
1003 k
|= (unsigned char)*block
++;
1007 if (__crypt_des_cipher((char *)&cblock
, (char *)&cblock
, 0L, (flag
? -1: 1)))
1010 #else /* !__DARWIN_UNIX03 */
1012 #endif /* __DARWIN_UNIX03 */
1013 for (i
= 7; i
>= 0; i
--) {
1015 for (j
= 7; j
>= 0; j
--) {
1020 #if !__DARWIN_UNIX03
1022 #endif /* !__DARWIN_UNIX03 */
1025 #ifndef BUILDING_VARIANT
1028 prtab(s
, t
, num_rows
)
1035 (void)printf("%s:\n", s
);
1036 for (i
= 0; i
< num_rows
; i
++) {
1037 for (j
= 0; j
< 8; j
++) {
1038 (void)printf("%3d", t
[i
*8+j
]);
1045 #endif /* BUILDING_VARIANT */