]> git.saurik.com Git - apple/libc.git/blob - gen/crypt.c
Libc-825.24.tar.gz
[apple/libc.git] / gen / crypt.c
1 /*
2 * Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23 /*
24 * Copyright (c) 1989, 1993
25 * The Regents of the University of California. All rights reserved.
26 *
27 * This code is derived from software contributed to Berkeley by
28 * Tom Truscott.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 * 3. All advertising materials mentioning features or use of this software
39 * must display the following acknowledgement:
40 * This product includes software developed by the University of
41 * California, Berkeley and its contributors.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59
60 #include <sys/cdefs.h>
61 #include <unistd.h>
62 #include <limits.h>
63 #include <sys/types.h>
64 #include <pwd.h>
65 #include <stdlib.h>
66
67 /*
68 * UNIX password, and DES, encryption.
69 * By Tom Truscott, trt@rti.rti.org,
70 * from algorithms by Robert W. Baldwin and James Gillogly.
71 *
72 * References:
73 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
74 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
75 *
76 * "Password Security: A Case History," R. Morris and Ken Thompson,
77 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
78 *
79 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
80 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
81 */
82
83 /* ===== Configuration ==================== */
84
85 /*
86 * define "MUST_ALIGN" if your compiler cannot load/store
87 * long integers at arbitrary (e.g. odd) memory locations.
88 * (Either that or never pass unaligned addresses to __crypt_des_cipher!)
89 */
90 #if !defined(vax)
91 #define MUST_ALIGN
92 #endif
93
94 #ifdef CHAR_BITS
95 #if CHAR_BITS != 8
96 #error C_block structure assumes 8 bit characters
97 #endif
98 #endif
99
100 /*
101 * define "LONG_IS_32_BITS" only if sizeof(long)==4.
102 * This avoids use of bit fields (your compiler may be sloppy with them).
103 */
104 #if !defined(cray) && (LONG_BIT == 32)
105 #define LONG_IS_32_BITS
106 #endif
107
108 /*
109 * define "B64" to be the declaration for a 64 bit integer.
110 * XXX this feature is currently unused, see "endian" comment below.
111 */
112 #if defined(cray)
113 #define B64 long
114 #endif
115 #if defined(convex)
116 #define B64 long long
117 #endif
118
119 /*
120 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
121 * of lookup tables. This speeds up __crypt_des_setkey() and __crypt_des_cipher(), but has
122 * little effect on crypt().
123 */
124 #if defined(notdef)
125 #define LARGEDATA
126 #endif
127
128 /* compile with "-DSTATIC=int" when profiling */
129 #ifndef STATIC
130 #define STATIC static
131 #endif
132 #ifndef BUILDING_VARIANT
133 STATIC void init_des(), init_perm(), permute();
134 #ifdef DEBUG
135 #include <stdio.h>
136 STATIC void prtab();
137 #endif
138 #endif /* BUILDING_VARIANT */
139 __private_extern__ int __crypt_des_cipher(), __crypt_des_setkey();
140
141 /* ==================================== */
142
143 /*
144 * Cipher-block representation (Bob Baldwin):
145 *
146 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
147 * representation is to store one bit per byte in an array of bytes. Bit N of
148 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
149 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
150 * first byte, 9..16 in the second, and so on. The DES spec apparently has
151 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
152 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
153 * the MSB of the first byte. Specifically, the 64-bit input data and key are
154 * converted to LSB format, and the output 64-bit block is converted back into
155 * MSB format.
156 *
157 * DES operates internally on groups of 32 bits which are expanded to 48 bits
158 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
159 * the computation, the expansion is applied only once, the expanded
160 * representation is maintained during the encryption, and a compression
161 * permutation is applied only at the end. To speed up the S-box lookups,
162 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
163 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
164 * most significant ones. The low two bits of each byte are zero. (Thus,
165 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
166 * first byte in the eight byte representation, bit 2 of the 48 bit value is
167 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
168 * used, in which the output is the 64 bit result of an S-box lookup which
169 * has been permuted by P and expanded by E, and is ready for use in the next
170 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
171 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
172 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
173 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
174 * 8*64*8 = 4K bytes.
175 *
176 * To speed up bit-parallel operations (such as XOR), the 8 byte
177 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
178 * machines which support it, a 64 bit value "b64". This data structure,
179 * "C_block", has two problems. First, alignment restrictions must be
180 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
181 * the architecture becomes visible.
182 *
183 * The byte-order problem is unfortunate, since on the one hand it is good
184 * to have a machine-independent C_block representation (bits 1..8 in the
185 * first byte, etc.), and on the other hand it is good for the LSB of the
186 * first byte to be the LSB of i0. We cannot have both these things, so we
187 * currently use the "little-endian" representation and avoid any multi-byte
188 * operations that depend on byte order. This largely precludes use of the
189 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
190 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
191 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
192 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
193 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
194 * requires a 128 kilobyte table, so perhaps this is not a big loss.
195 *
196 * Permutation representation (Jim Gillogly):
197 *
198 * A transformation is defined by its effect on each of the 8 bytes of the
199 * 64-bit input. For each byte we give a 64-bit output that has the bits in
200 * the input distributed appropriately. The transformation is then the OR
201 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
202 * each transformation. Unless LARGEDATA is defined, however, a more compact
203 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
204 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
205 * is slower but tolerable, particularly for password encryption in which
206 * the SPE transformation is iterated many times. The small tables total 9K
207 * bytes, the large tables total 72K bytes.
208 *
209 * The transformations used are:
210 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
211 * This is done by collecting the 32 even-numbered bits and applying
212 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
213 * bits and applying the same transformation. Since there are only
214 * 32 input bits, the IE3264 transformation table is half the size of
215 * the usual table.
216 * CF6464: Compression, final permutation, and LSB->MSB conversion.
217 * This is done by two trivial 48->32 bit compressions to obtain
218 * a 64-bit block (the bit numbering is given in the "CIFP" table)
219 * followed by a 64->64 bit "cleanup" transformation. (It would
220 * be possible to group the bits in the 64-bit block so that 2
221 * identical 32->32 bit transformations could be used instead,
222 * saving a factor of 4 in space and possibly 2 in time, but
223 * byte-ordering and other complications rear their ugly head.
224 * Similar opportunities/problems arise in the key schedule
225 * transforms.)
226 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
227 * This admittedly baroque 64->64 bit transformation is used to
228 * produce the first code (in 8*(6+2) format) of the key schedule.
229 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
230 * It would be possible to define 15 more transformations, each
231 * with a different rotation, to generate the entire key schedule.
232 * To save space, however, we instead permute each code into the
233 * next by using a transformation that "undoes" the PC2 permutation,
234 * rotates the code, and then applies PC2. Unfortunately, PC2
235 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
236 * invertible. We get around that problem by using a modified PC2
237 * which retains the 8 otherwise-lost bits in the unused low-order
238 * bits of each byte. The low-order bits are cleared when the
239 * codes are stored into the key schedule.
240 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
241 * This is faster than applying PC2ROT[0] twice,
242 *
243 * The Bell Labs "salt" (Bob Baldwin):
244 *
245 * The salting is a simple permutation applied to the 48-bit result of E.
246 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
247 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
248 * 16777216 possible values. (The original salt was 12 bits and could not
249 * swap bits 13..24 with 36..48.)
250 *
251 * It is possible, but ugly, to warp the SPE table to account for the salt
252 * permutation. Fortunately, the conditional bit swapping requires only
253 * about four machine instructions and can be done on-the-fly with about an
254 * 8% performance penalty.
255 */
256
257 typedef union {
258 unsigned char b[8];
259 struct {
260 #if defined(LONG_IS_32_BITS)
261 /* long is often faster than a 32-bit bit field */
262 long i0;
263 long i1;
264 #else
265 long i0: 32;
266 long i1: 32;
267 #endif
268 } b32;
269 #if defined(B64)
270 B64 b64;
271 #endif
272 } C_block;
273
274 /*
275 * Convert twenty-four-bit long in host-order
276 * to six bits (and 2 low-order zeroes) per char little-endian format.
277 */
278 #define TO_SIX_BIT(rslt, src) { \
279 C_block cvt; \
280 cvt.b[0] = src; src >>= 6; \
281 cvt.b[1] = src; src >>= 6; \
282 cvt.b[2] = src; src >>= 6; \
283 cvt.b[3] = src; \
284 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
285 }
286
287 /*
288 * These macros may someday permit efficient use of 64-bit integers.
289 */
290 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
291 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
292 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
293 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
294 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
295 #define DCL_BLOCK(d,d0,d1) long d0, d1
296
297 #if defined(LARGEDATA)
298 /* Waste memory like crazy. Also, do permutations in line */
299 #define LGCHUNKBITS 3
300 #define CHUNKBITS (1<<LGCHUNKBITS)
301 #define PERM6464(d,d0,d1,cpp,p) \
302 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
303 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
304 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
305 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
306 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
307 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
308 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
309 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
310 #define PERM3264(d,d0,d1,cpp,p) \
311 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
312 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
313 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
314 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
315 #else
316 /* "small data" */
317 #define LGCHUNKBITS 2
318 #define CHUNKBITS (1<<LGCHUNKBITS)
319 #define PERM6464(d,d0,d1,cpp,p) \
320 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
321 #define PERM3264(d,d0,d1,cpp,p) \
322 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
323
324 #ifndef BUILDING_VARIANT
325 STATIC void permute(cp, out, p, chars_in)
326 unsigned char *cp;
327 C_block *out;
328 register C_block *p;
329 int chars_in;
330 {
331 register DCL_BLOCK(D,D0,D1);
332 register C_block *tp;
333 register int t;
334
335 ZERO(D,D0,D1);
336 do {
337 t = *cp++;
338 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
339 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
340 } while (--chars_in > 0);
341 STORE(D,D0,D1,*out);
342 }
343 #endif /* BUILDING_VARIANT */
344 #endif /* LARGEDATA */
345
346 #ifndef BUILDING_VARIANT
347 __private_extern__ int __crypt_des_setkey_called = 0;
348 #else /* BUILDING_VARIANT */
349 __private_extern__ int __crypt_des_setkey_called;
350 #endif /* BUILDING_VARIANT */
351
352 /* ===== (mostly) Standard DES Tables ==================== */
353
354 #ifndef BUILDING_VARIANT
355 static unsigned char IP[] = { /* initial permutation */
356 58, 50, 42, 34, 26, 18, 10, 2,
357 60, 52, 44, 36, 28, 20, 12, 4,
358 62, 54, 46, 38, 30, 22, 14, 6,
359 64, 56, 48, 40, 32, 24, 16, 8,
360 57, 49, 41, 33, 25, 17, 9, 1,
361 59, 51, 43, 35, 27, 19, 11, 3,
362 61, 53, 45, 37, 29, 21, 13, 5,
363 63, 55, 47, 39, 31, 23, 15, 7,
364 };
365
366 /* The final permutation is the inverse of IP - no table is necessary */
367
368 static unsigned char ExpandTr[] = { /* expansion operation */
369 32, 1, 2, 3, 4, 5,
370 4, 5, 6, 7, 8, 9,
371 8, 9, 10, 11, 12, 13,
372 12, 13, 14, 15, 16, 17,
373 16, 17, 18, 19, 20, 21,
374 20, 21, 22, 23, 24, 25,
375 24, 25, 26, 27, 28, 29,
376 28, 29, 30, 31, 32, 1,
377 };
378
379 static unsigned char PC1[] = { /* permuted choice table 1 */
380 57, 49, 41, 33, 25, 17, 9,
381 1, 58, 50, 42, 34, 26, 18,
382 10, 2, 59, 51, 43, 35, 27,
383 19, 11, 3, 60, 52, 44, 36,
384
385 63, 55, 47, 39, 31, 23, 15,
386 7, 62, 54, 46, 38, 30, 22,
387 14, 6, 61, 53, 45, 37, 29,
388 21, 13, 5, 28, 20, 12, 4,
389 };
390
391 static unsigned char Rotates[] = { /* PC1 rotation schedule */
392 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
393 };
394
395 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
396 static unsigned char PC2[] = { /* permuted choice table 2 */
397 9, 18, 14, 17, 11, 24, 1, 5,
398 22, 25, 3, 28, 15, 6, 21, 10,
399 35, 38, 23, 19, 12, 4, 26, 8,
400 43, 54, 16, 7, 27, 20, 13, 2,
401
402 0, 0, 41, 52, 31, 37, 47, 55,
403 0, 0, 30, 40, 51, 45, 33, 48,
404 0, 0, 44, 49, 39, 56, 34, 53,
405 0, 0, 46, 42, 50, 36, 29, 32,
406 };
407
408 static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
409 { /* S[1] */
410 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
411 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
412 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
413 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
414 },
415 { /* S[2] */
416 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
417 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
418 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
419 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
420 },
421 { /* S[3] */
422 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
423 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
424 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
425 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
426 },
427 { /* S[4] */
428 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
429 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
430 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
431 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
432 },
433 { /* S[5] */
434 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
435 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
436 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
437 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
438 },
439 { /* S[6] */
440 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
441 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
442 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
443 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
444 },
445 { /* S[7] */
446 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
447 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
448 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
449 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
450 },
451 { /* S[8] */
452 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
453 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
454 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
455 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
456 },
457 };
458
459 static unsigned char P32Tr[] = { /* 32-bit permutation function */
460 16, 7, 20, 21,
461 29, 12, 28, 17,
462 1, 15, 23, 26,
463 5, 18, 31, 10,
464 2, 8, 24, 14,
465 32, 27, 3, 9,
466 19, 13, 30, 6,
467 22, 11, 4, 25,
468 };
469
470 static unsigned char CIFP[] = { /* compressed/interleaved permutation */
471 1, 2, 3, 4, 17, 18, 19, 20,
472 5, 6, 7, 8, 21, 22, 23, 24,
473 9, 10, 11, 12, 25, 26, 27, 28,
474 13, 14, 15, 16, 29, 30, 31, 32,
475
476 33, 34, 35, 36, 49, 50, 51, 52,
477 37, 38, 39, 40, 53, 54, 55, 56,
478 41, 42, 43, 44, 57, 58, 59, 60,
479 45, 46, 47, 48, 61, 62, 63, 64,
480 };
481
482 static unsigned char itoa64[] = /* 0..63 => ascii-64 */
483 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
484
485
486 /* ===== Tables that are initialized at run time ==================== */
487
488
489 static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
490
491 /* Initial key schedule permutation */
492 // static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
493 static C_block *PC1ROT;
494
495 /* Subsequent key schedule rotation permutations */
496 // static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
497 static C_block *PC2ROT[2];
498
499 /* Initial permutation/expansion table */
500 // static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
501 static C_block *IE3264;
502
503 /* Table that combines the S, P, and E operations. */
504 // static long SPE[2][8][64];
505 static long *SPE;
506
507 /* compressed/interleaved => final permutation table */
508 // static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
509 static C_block *CF6464;
510
511
512 /* ==================================== */
513
514
515 static C_block constdatablock; /* encryption constant */
516 static char cryptresult[1+4+4+11+1]; /* encrypted result */
517
518 /*
519 * Return a pointer to static data consisting of the "setting"
520 * followed by an encryption produced by the "key" and "setting".
521 */
522 char *
523 crypt(key, setting)
524 register const char *key;
525 register const char *setting;
526 {
527 register char *encp;
528 register long i;
529 register int t;
530 long salt;
531 int num_iter, salt_size;
532 C_block keyblock, rsltblock;
533
534 for (i = 0; i < 8; i++) {
535 if ((t = 2*(unsigned char)(*key)) != 0)
536 key++;
537 keyblock.b[i] = t;
538 }
539 if (__crypt_des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
540 return (NULL);
541
542 encp = &cryptresult[0];
543 switch (*setting) {
544 case _PASSWORD_EFMT1:
545 /*
546 * Involve the rest of the password 8 characters at a time.
547 */
548 while (*key) {
549 if (__crypt_des_cipher((char *)&keyblock,
550 (char *)&keyblock, 0L, 1))
551 return (NULL);
552 for (i = 0; i < 8; i++) {
553 if ((t = 2*(unsigned char)(*key)) != 0)
554 key++;
555 keyblock.b[i] ^= t;
556 }
557 if (__crypt_des_setkey((char *)keyblock.b))
558 return (NULL);
559 }
560
561 *encp++ = *setting++;
562
563 /* get iteration count */
564 num_iter = 0;
565 for (i = 4; --i >= 0; ) {
566 if ((t = (unsigned char)setting[i]) == '\0')
567 t = '.';
568 encp[i] = t;
569 num_iter = (num_iter<<6) | a64toi[t];
570 }
571 setting += 4;
572 encp += 4;
573 salt_size = 4;
574 break;
575 default:
576 num_iter = 25;
577 salt_size = 2;
578 }
579
580 salt = 0;
581 for (i = salt_size; --i >= 0; ) {
582 if ((t = (unsigned char)setting[i]) == '\0')
583 t = '.';
584 encp[i] = t;
585 salt = (salt<<6) | a64toi[t];
586 }
587 encp += salt_size;
588 if (__crypt_des_cipher((char *)&constdatablock, (char *)&rsltblock,
589 salt, num_iter))
590 return (NULL);
591
592 /*
593 * Encode the 64 cipher bits as 11 ascii characters.
594 */
595 i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
596 encp[3] = itoa64[i&0x3f]; i >>= 6;
597 encp[2] = itoa64[i&0x3f]; i >>= 6;
598 encp[1] = itoa64[i&0x3f]; i >>= 6;
599 encp[0] = itoa64[i]; encp += 4;
600 i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
601 encp[3] = itoa64[i&0x3f]; i >>= 6;
602 encp[2] = itoa64[i&0x3f]; i >>= 6;
603 encp[1] = itoa64[i&0x3f]; i >>= 6;
604 encp[0] = itoa64[i]; encp += 4;
605 i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
606 encp[2] = itoa64[i&0x3f]; i >>= 6;
607 encp[1] = itoa64[i&0x3f]; i >>= 6;
608 encp[0] = itoa64[i];
609
610 encp[3] = 0;
611
612 return (cryptresult);
613 }
614
615
616 /*
617 * The Key Schedule, filled in by __crypt_des_setkey() or setkey().
618 */
619 #define KS_SIZE 16
620 static C_block KS[KS_SIZE];
621
622 /*
623 * Set up the key schedule from the key.
624 */
625 __private_extern__ int __crypt_des_setkey(key)
626 register const char *key;
627 {
628 register DCL_BLOCK(K, K0, K1);
629 register C_block *ptabp;
630 register int i;
631 static int des_ready = 0;
632
633 if (!des_ready) {
634 init_des();
635 des_ready = 1;
636 }
637
638 PERM6464(K,K0,K1,(unsigned char *)key,PC1ROT);
639 key = (char *)&KS[0];
640 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
641 for (i = 1; i < 16; i++) {
642 key += sizeof(C_block);
643 STORE(K,K0,K1,*(C_block *)key);
644 ptabp = PC2ROT[Rotates[i]-1];
645 PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
646 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
647 }
648 __crypt_des_setkey_called = 1;
649 return (0);
650 }
651
652 /*
653 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
654 * iterations of DES, using the the given 24-bit salt and the pre-computed key
655 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
656 *
657 * NOTE: the performance of this routine is critically dependent on your
658 * compiler and machine architecture.
659 */
660 __private_extern__ int __crypt_des_cipher(in, out, salt, num_iter)
661 const char *in;
662 char *out;
663 long salt;
664 int num_iter;
665 {
666 /* variables that we want in registers, most important first */
667 #if defined(pdp11)
668 register int j;
669 #endif
670 register long L0, L1, R0, R1, k;
671 register C_block *kp;
672 register int loop_count;
673 ssize_t ks_inc;
674 C_block B;
675
676 L0 = salt;
677 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
678
679 #if defined(vax) || defined(pdp11)
680 salt = ~salt; /* "x &~ y" is faster than "x & y". */
681 #define SALT (~salt)
682 #else
683 #define SALT salt
684 #endif
685
686 #if defined(MUST_ALIGN)
687 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
688 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
689 LOAD(L,L0,L1,B);
690 #else
691 LOAD(L,L0,L1,*(C_block *)in);
692 #endif
693 LOADREG(R,R0,R1,L,L0,L1);
694 L0 &= 0x55555555L;
695 L1 &= 0x55555555L;
696 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
697 R0 &= 0xaaaaaaaaL;
698 R1 = (R1 >> 1) & 0x55555555L;
699 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
700 STORE(L,L0,L1,B);
701 PERM3264(L,L0,L1,B.b,IE3264); /* even bits */
702 PERM3264(R,R0,R1,B.b+4,IE3264); /* odd bits */
703
704 if (num_iter >= 0)
705 { /* encryption */
706 kp = &KS[0];
707 ks_inc = sizeof(*kp);
708 }
709 else
710 { /* decryption */
711 num_iter = -num_iter;
712 kp = &KS[KS_SIZE-1];
713 ks_inc = -sizeof(*kp);
714 }
715
716 while (--num_iter >= 0) {
717 loop_count = 8;
718 do {
719
720 #define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
721 #if defined(gould)
722 /* use this if B.b[i] is evaluated just once ... */
723 #define DOXOR(x,y,i) x^=SPTAB(&SPE[i * 64],B.b[i]); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],B.b[i]);
724 #else
725 #if defined(pdp11)
726 /* use this if your "long" int indexing is slow */
727 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(&SPE[i * 64],j); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],j);
728 #else
729 /* use this if "k" is allocated to a register ... */
730 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(&SPE[i * 64],k); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],k);
731 #endif
732 #endif
733
734 #define CRUNCH(p0, p1, q0, q1) \
735 k = (q0 ^ q1) & SALT; \
736 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
737 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
738 kp = (C_block *)((char *)kp+ks_inc); \
739 \
740 DOXOR(p0, p1, 0); \
741 DOXOR(p0, p1, 1); \
742 DOXOR(p0, p1, 2); \
743 DOXOR(p0, p1, 3); \
744 DOXOR(p0, p1, 4); \
745 DOXOR(p0, p1, 5); \
746 DOXOR(p0, p1, 6); \
747 DOXOR(p0, p1, 7);
748
749 CRUNCH(L0, L1, R0, R1);
750 CRUNCH(R0, R1, L0, L1);
751 } while (--loop_count != 0);
752 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
753
754
755 /* swap L and R */
756 L0 ^= R0; L1 ^= R1;
757 R0 ^= L0; R1 ^= L1;
758 L0 ^= R0; L1 ^= R1;
759 }
760
761 /* store the encrypted (or decrypted) result */
762 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
763 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
764 STORE(L,L0,L1,B);
765 PERM6464(L,L0,L1,B.b,CF6464);
766 #if defined(MUST_ALIGN)
767 STORE(L,L0,L1,B);
768 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
769 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
770 #else
771 STORE(L,L0,L1,*(C_block *)out);
772 #endif
773 return (0);
774 }
775
776
777 /*
778 * Initialize various tables. This need only be done once. It could even be
779 * done at compile time, if the compiler were capable of that sort of thing.
780 */
781 STATIC void init_des()
782 {
783 register int i, j;
784 register long k;
785 register int tableno;
786 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
787
788 /*
789 * table that converts chars "./0-9A-Za-z"to integers 0-63.
790 */
791 for (i = 0; i < 64; i++)
792 a64toi[itoa64[i]] = i;
793
794 /*
795 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
796 */
797 for (i = 0; i < 64; i++)
798 perm[i] = 0;
799 for (i = 0; i < 64; i++) {
800 if ((k = PC2[i]) == 0)
801 continue;
802 k += Rotates[0]-1;
803 if ((k%28) < Rotates[0]) k -= 28;
804 k = PC1[k];
805 if (k > 0) {
806 k--;
807 k = (k|07) - (k&07);
808 k++;
809 }
810 perm[i] = k;
811 }
812 #ifdef DEBUG
813 prtab("pc1tab", perm, 8);
814 #endif
815 PC1ROT = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
816 for (i = 0; i < 2; i++)
817 PC2ROT[i] = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
818 init_perm(PC1ROT, perm, 8, 8);
819
820 /*
821 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
822 */
823 for (j = 0; j < 2; j++) {
824 unsigned char pc2inv[64];
825 for (i = 0; i < 64; i++)
826 perm[i] = pc2inv[i] = 0;
827 for (i = 0; i < 64; i++) {
828 if ((k = PC2[i]) == 0)
829 continue;
830 pc2inv[k-1] = i+1;
831 }
832 for (i = 0; i < 64; i++) {
833 if ((k = PC2[i]) == 0)
834 continue;
835 k += j;
836 if ((k%28) <= j) k -= 28;
837 perm[i] = pc2inv[k];
838 }
839 #ifdef DEBUG
840 prtab("pc2tab", perm, 8);
841 #endif
842 init_perm(PC2ROT[j], perm, 8, 8);
843 }
844
845 /*
846 * Bit reverse, then initial permutation, then expansion.
847 */
848 for (i = 0; i < 8; i++) {
849 for (j = 0; j < 8; j++) {
850 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
851 if (k > 32)
852 k -= 32;
853 else if (k > 0)
854 k--;
855 if (k > 0) {
856 k--;
857 k = (k|07) - (k&07);
858 k++;
859 }
860 perm[i*8+j] = k;
861 }
862 }
863 #ifdef DEBUG
864 prtab("ietab", perm, 8);
865 #endif
866 IE3264 = (C_block *)calloc(sizeof(C_block), (32/CHUNKBITS) * (1<<CHUNKBITS));
867 init_perm(IE3264, perm, 4, 8);
868
869 /*
870 * Compression, then final permutation, then bit reverse.
871 */
872 for (i = 0; i < 64; i++) {
873 k = IP[CIFP[i]-1];
874 if (k > 0) {
875 k--;
876 k = (k|07) - (k&07);
877 k++;
878 }
879 perm[k-1] = i+1;
880 }
881 #ifdef DEBUG
882 prtab("cftab", perm, 8);
883 #endif
884 CF6464 = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
885 SPE = (long *)calloc(sizeof(long), 2 * 8 * 64);
886 init_perm(CF6464, perm, 8, 8);
887
888 /*
889 * SPE table
890 */
891 for (i = 0; i < 48; i++)
892 perm[i] = P32Tr[ExpandTr[i]-1];
893 for (tableno = 0; tableno < 8; tableno++) {
894 for (j = 0; j < 64; j++) {
895 k = (((j >> 0) &01) << 5)|
896 (((j >> 1) &01) << 3)|
897 (((j >> 2) &01) << 2)|
898 (((j >> 3) &01) << 1)|
899 (((j >> 4) &01) << 0)|
900 (((j >> 5) &01) << 4);
901 k = S[tableno][k];
902 k = (((k >> 3)&01) << 0)|
903 (((k >> 2)&01) << 1)|
904 (((k >> 1)&01) << 2)|
905 (((k >> 0)&01) << 3);
906 for (i = 0; i < 32; i++)
907 tmp32[i] = 0;
908 for (i = 0; i < 4; i++)
909 tmp32[4 * tableno + i] = (k >> i) & 01;
910 k = 0;
911 for (i = 24; --i >= 0; )
912 k = (k<<1) | tmp32[perm[i]-1];
913 TO_SIX_BIT(SPE[(tableno * 64) + j], k);
914 k = 0;
915 for (i = 24; --i >= 0; )
916 k = (k<<1) | tmp32[perm[i+24]-1];
917 TO_SIX_BIT(SPE[(8 * 64) + (tableno * 64) + j], k);
918 }
919 }
920 }
921
922 /*
923 * Initialize "perm" to represent transformation "p", which rearranges
924 * (perhaps with expansion and/or contraction) one packed array of bits
925 * (of size "chars_in" characters) into another array (of size "chars_out"
926 * characters).
927 *
928 * "perm" must be all-zeroes on entry to this routine.
929 */
930 STATIC void init_perm(perm, p, chars_in, chars_out)
931 C_block *perm;
932 unsigned char p[64];
933 int chars_in, chars_out;
934 {
935 register int i, j, k, l;
936
937 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
938 l = p[k] - 1; /* where this bit comes from */
939 if (l < 0)
940 continue; /* output bit is always 0 */
941 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
942 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
943 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
944 if ((j & l) != 0)
945 perm[(i * (1<<CHUNKBITS)) + j].b[k>>3] |= 1<<(k&07);
946 }
947 }
948 }
949 #endif /* BUILDING_VARIANT */
950
951 /*
952 * "setkey" routine (for backwards compatibility)
953 */
954 #if __DARWIN_UNIX03
955 void setkey(key)
956 #else /* !__DARWIN_UNIX03 */
957 int setkey(key)
958 #endif /* __DARWIN_UNIX03 */
959 register const char *key;
960 {
961 register int i, j, k;
962 C_block keyblock;
963
964 for (i = 0; i < 8; i++) {
965 k = 0;
966 for (j = 0; j < 8; j++) {
967 k <<= 1;
968 k |= (unsigned char)*key++;
969 }
970 keyblock.b[i] = k;
971 }
972 #if __DARWIN_UNIX03
973 __crypt_des_setkey((char *)keyblock.b);
974 #else /* !__DARWIN_UNIX03 */
975 return (__crypt_des_setkey((char *)keyblock.b));
976 #endif /* __DARWIN_UNIX03 */
977 }
978
979 /*
980 * "encrypt" routine (for backwards compatibility)
981 */
982 #if __DARWIN_UNIX03
983 void encrypt(block, flag)
984 #else /* !__DARWIN_UNIX03 */
985 int encrypt(block, flag)
986 #endif /* __DARWIN_UNIX03 */
987 register char *block;
988 int flag;
989 {
990 register int i, j, k;
991 C_block cblock;
992
993 /* Prevent encrypt from crashing if setkey was never called.
994 * This does not make a good cypher */
995 if (!__crypt_des_setkey_called) {
996 cblock.b32.i0 = cblock.b32.i1 = 0;
997 __crypt_des_setkey((char *)cblock.b);
998 }
999 for (i = 0; i < 8; i++) {
1000 k = 0;
1001 for (j = 0; j < 8; j++) {
1002 k <<= 1;
1003 k |= (unsigned char)*block++;
1004 }
1005 cblock.b[i] = k;
1006 }
1007 if (__crypt_des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
1008 #if __DARWIN_UNIX03
1009 return;
1010 #else /* !__DARWIN_UNIX03 */
1011 return (1);
1012 #endif /* __DARWIN_UNIX03 */
1013 for (i = 7; i >= 0; i--) {
1014 k = cblock.b[i];
1015 for (j = 7; j >= 0; j--) {
1016 *--block = k&01;
1017 k >>= 1;
1018 }
1019 }
1020 #if !__DARWIN_UNIX03
1021 return (0);
1022 #endif /* !__DARWIN_UNIX03 */
1023 }
1024
1025 #ifndef BUILDING_VARIANT
1026 #ifdef DEBUG
1027 STATIC void
1028 prtab(s, t, num_rows)
1029 char *s;
1030 unsigned char *t;
1031 int num_rows;
1032 {
1033 register int i, j;
1034
1035 (void)printf("%s:\n", s);
1036 for (i = 0; i < num_rows; i++) {
1037 for (j = 0; j < 8; j++) {
1038 (void)printf("%3d", t[i*8+j]);
1039 }
1040 (void)printf("\n");
1041 }
1042 (void)printf("\n");
1043 }
1044 #endif
1045 #endif /* BUILDING_VARIANT */