]> git.saurik.com Git - apple/libc.git/blob - gen/crypt.c
Libc-1439.100.3.tar.gz
[apple/libc.git] / gen / crypt.c
1 /*
2 * Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23 /*
24 * Copyright (c) 1989, 1993
25 * The Regents of the University of California. All rights reserved.
26 *
27 * This code is derived from software contributed to Berkeley by
28 * Tom Truscott.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 * 3. All advertising materials mentioning features or use of this software
39 * must display the following acknowledgement:
40 * This product includes software developed by the University of
41 * California, Berkeley and its contributors.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59 #pragma clang diagnostic push
60 #pragma clang diagnostic ignored "-Wstrict-prototypes"
61
62 #include <sys/cdefs.h>
63 #include <unistd.h>
64 #include <limits.h>
65 #include <sys/types.h>
66 #include <pwd.h>
67 #include <stdlib.h>
68
69 /*
70 * UNIX password, and DES, encryption.
71 * By Tom Truscott, trt@rti.rti.org,
72 * from algorithms by Robert W. Baldwin and James Gillogly.
73 *
74 * References:
75 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
76 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
77 *
78 * "Password Security: A Case History," R. Morris and Ken Thompson,
79 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
80 *
81 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
82 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
83 */
84
85 /* ===== Configuration ==================== */
86
87 /*
88 * define "MUST_ALIGN" if your compiler cannot load/store
89 * long integers at arbitrary (e.g. odd) memory locations.
90 * (Either that or never pass unaligned addresses to __crypt_des_cipher!)
91 */
92 #if !defined(vax)
93 #define MUST_ALIGN
94 #endif
95
96 #ifdef CHAR_BITS
97 #if CHAR_BITS != 8
98 #error C_block structure assumes 8 bit characters
99 #endif
100 #endif
101
102 /*
103 * define "LONG_IS_32_BITS" only if sizeof(long)==4.
104 * This avoids use of bit fields (your compiler may be sloppy with them).
105 */
106 #if !defined(cray) && (LONG_BIT == 32)
107 #define LONG_IS_32_BITS
108 #endif
109
110 /*
111 * define "B64" to be the declaration for a 64 bit integer.
112 * XXX this feature is currently unused, see "endian" comment below.
113 */
114 #if defined(cray)
115 #define B64 long
116 #endif
117 #if defined(convex)
118 #define B64 long long
119 #endif
120
121 /*
122 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
123 * of lookup tables. This speeds up __crypt_des_setkey() and __crypt_des_cipher(), but has
124 * little effect on crypt().
125 */
126 #if defined(notdef)
127 #define LARGEDATA
128 #endif
129
130 /* compile with "-DSTATIC=int" when profiling */
131 #ifndef STATIC
132 #define STATIC static
133 #endif
134 #ifndef BUILDING_VARIANT
135 STATIC void init_des(), init_perm(), permute();
136 #ifdef DEBUG
137 #include <stdio.h>
138 STATIC void prtab();
139 #endif
140 #endif /* BUILDING_VARIANT */
141 __private_extern__ int __crypt_des_cipher(), __crypt_des_setkey();
142
143 /* ==================================== */
144
145 /*
146 * Cipher-block representation (Bob Baldwin):
147 *
148 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
149 * representation is to store one bit per byte in an array of bytes. Bit N of
150 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
151 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
152 * first byte, 9..16 in the second, and so on. The DES spec apparently has
153 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
154 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
155 * the MSB of the first byte. Specifically, the 64-bit input data and key are
156 * converted to LSB format, and the output 64-bit block is converted back into
157 * MSB format.
158 *
159 * DES operates internally on groups of 32 bits which are expanded to 48 bits
160 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
161 * the computation, the expansion is applied only once, the expanded
162 * representation is maintained during the encryption, and a compression
163 * permutation is applied only at the end. To speed up the S-box lookups,
164 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
165 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
166 * most significant ones. The low two bits of each byte are zero. (Thus,
167 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
168 * first byte in the eight byte representation, bit 2 of the 48 bit value is
169 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
170 * used, in which the output is the 64 bit result of an S-box lookup which
171 * has been permuted by P and expanded by E, and is ready for use in the next
172 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
173 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
174 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
175 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
176 * 8*64*8 = 4K bytes.
177 *
178 * To speed up bit-parallel operations (such as XOR), the 8 byte
179 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
180 * machines which support it, a 64 bit value "b64". This data structure,
181 * "C_block", has two problems. First, alignment restrictions must be
182 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
183 * the architecture becomes visible.
184 *
185 * The byte-order problem is unfortunate, since on the one hand it is good
186 * to have a machine-independent C_block representation (bits 1..8 in the
187 * first byte, etc.), and on the other hand it is good for the LSB of the
188 * first byte to be the LSB of i0. We cannot have both these things, so we
189 * currently use the "little-endian" representation and avoid any multi-byte
190 * operations that depend on byte order. This largely precludes use of the
191 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
192 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
193 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
194 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
195 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
196 * requires a 128 kilobyte table, so perhaps this is not a big loss.
197 *
198 * Permutation representation (Jim Gillogly):
199 *
200 * A transformation is defined by its effect on each of the 8 bytes of the
201 * 64-bit input. For each byte we give a 64-bit output that has the bits in
202 * the input distributed appropriately. The transformation is then the OR
203 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
204 * each transformation. Unless LARGEDATA is defined, however, a more compact
205 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
206 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
207 * is slower but tolerable, particularly for password encryption in which
208 * the SPE transformation is iterated many times. The small tables total 9K
209 * bytes, the large tables total 72K bytes.
210 *
211 * The transformations used are:
212 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
213 * This is done by collecting the 32 even-numbered bits and applying
214 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
215 * bits and applying the same transformation. Since there are only
216 * 32 input bits, the IE3264 transformation table is half the size of
217 * the usual table.
218 * CF6464: Compression, final permutation, and LSB->MSB conversion.
219 * This is done by two trivial 48->32 bit compressions to obtain
220 * a 64-bit block (the bit numbering is given in the "CIFP" table)
221 * followed by a 64->64 bit "cleanup" transformation. (It would
222 * be possible to group the bits in the 64-bit block so that 2
223 * identical 32->32 bit transformations could be used instead,
224 * saving a factor of 4 in space and possibly 2 in time, but
225 * byte-ordering and other complications rear their ugly head.
226 * Similar opportunities/problems arise in the key schedule
227 * transforms.)
228 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
229 * This admittedly baroque 64->64 bit transformation is used to
230 * produce the first code (in 8*(6+2) format) of the key schedule.
231 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
232 * It would be possible to define 15 more transformations, each
233 * with a different rotation, to generate the entire key schedule.
234 * To save space, however, we instead permute each code into the
235 * next by using a transformation that "undoes" the PC2 permutation,
236 * rotates the code, and then applies PC2. Unfortunately, PC2
237 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
238 * invertible. We get around that problem by using a modified PC2
239 * which retains the 8 otherwise-lost bits in the unused low-order
240 * bits of each byte. The low-order bits are cleared when the
241 * codes are stored into the key schedule.
242 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
243 * This is faster than applying PC2ROT[0] twice,
244 *
245 * The Bell Labs "salt" (Bob Baldwin):
246 *
247 * The salting is a simple permutation applied to the 48-bit result of E.
248 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
249 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
250 * 16777216 possible values. (The original salt was 12 bits and could not
251 * swap bits 13..24 with 36..48.)
252 *
253 * It is possible, but ugly, to warp the SPE table to account for the salt
254 * permutation. Fortunately, the conditional bit swapping requires only
255 * about four machine instructions and can be done on-the-fly with about an
256 * 8% performance penalty.
257 */
258
259 typedef union {
260 unsigned char b[8];
261 struct {
262 #if defined(LONG_IS_32_BITS)
263 /* long is often faster than a 32-bit bit field */
264 long i0;
265 long i1;
266 #else
267 long i0: 32;
268 long i1: 32;
269 #endif
270 } b32;
271 #if defined(B64)
272 B64 b64;
273 #endif
274 } C_block;
275
276 /*
277 * Convert twenty-four-bit long in host-order
278 * to six bits (and 2 low-order zeroes) per char little-endian format.
279 */
280 #define TO_SIX_BIT(rslt, src) { \
281 C_block cvt; \
282 cvt.b[0] = src; src >>= 6; \
283 cvt.b[1] = src; src >>= 6; \
284 cvt.b[2] = src; src >>= 6; \
285 cvt.b[3] = src; \
286 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
287 }
288
289 /*
290 * These macros may someday permit efficient use of 64-bit integers.
291 */
292 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
293 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
294 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
295 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
296 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
297 #define DCL_BLOCK(d,d0,d1) long d0, d1
298
299 #if defined(LARGEDATA)
300 /* Waste memory like crazy. Also, do permutations in line */
301 #define LGCHUNKBITS 3
302 #define CHUNKBITS (1<<LGCHUNKBITS)
303 #define PERM6464(d,d0,d1,cpp,p) \
304 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
305 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
306 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
307 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
308 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
309 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
310 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
311 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
312 #define PERM3264(d,d0,d1,cpp,p) \
313 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
314 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
315 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
316 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
317 #else
318 /* "small data" */
319 #define LGCHUNKBITS 2
320 #define CHUNKBITS (1<<LGCHUNKBITS)
321 #define PERM6464(d,d0,d1,cpp,p) \
322 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
323 #define PERM3264(d,d0,d1,cpp,p) \
324 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
325
326 #ifndef BUILDING_VARIANT
327 STATIC void permute(cp, out, p, chars_in)
328 unsigned char *cp;
329 C_block *out;
330 register C_block *p;
331 int chars_in;
332 {
333 register DCL_BLOCK(D,D0,D1);
334 register C_block *tp;
335 register int t;
336
337 ZERO(D,D0,D1);
338 do {
339 t = *cp++;
340 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
341 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
342 } while (--chars_in > 0);
343 STORE(D,D0,D1,*out);
344 }
345 #endif /* BUILDING_VARIANT */
346 #endif /* LARGEDATA */
347
348 #ifndef BUILDING_VARIANT
349 __private_extern__ int __crypt_des_setkey_called = 0;
350 #else /* BUILDING_VARIANT */
351 extern int __crypt_des_setkey_called;
352 #endif /* BUILDING_VARIANT */
353
354 /* ===== (mostly) Standard DES Tables ==================== */
355
356 #ifndef BUILDING_VARIANT
357 static const unsigned char IP[] = { /* initial permutation */
358 58, 50, 42, 34, 26, 18, 10, 2,
359 60, 52, 44, 36, 28, 20, 12, 4,
360 62, 54, 46, 38, 30, 22, 14, 6,
361 64, 56, 48, 40, 32, 24, 16, 8,
362 57, 49, 41, 33, 25, 17, 9, 1,
363 59, 51, 43, 35, 27, 19, 11, 3,
364 61, 53, 45, 37, 29, 21, 13, 5,
365 63, 55, 47, 39, 31, 23, 15, 7,
366 };
367
368 /* The final permutation is the inverse of IP - no table is necessary */
369
370 static const unsigned char ExpandTr[] = { /* expansion operation */
371 32, 1, 2, 3, 4, 5,
372 4, 5, 6, 7, 8, 9,
373 8, 9, 10, 11, 12, 13,
374 12, 13, 14, 15, 16, 17,
375 16, 17, 18, 19, 20, 21,
376 20, 21, 22, 23, 24, 25,
377 24, 25, 26, 27, 28, 29,
378 28, 29, 30, 31, 32, 1,
379 };
380
381 static const unsigned char PC1[] = { /* permuted choice table 1 */
382 57, 49, 41, 33, 25, 17, 9,
383 1, 58, 50, 42, 34, 26, 18,
384 10, 2, 59, 51, 43, 35, 27,
385 19, 11, 3, 60, 52, 44, 36,
386
387 63, 55, 47, 39, 31, 23, 15,
388 7, 62, 54, 46, 38, 30, 22,
389 14, 6, 61, 53, 45, 37, 29,
390 21, 13, 5, 28, 20, 12, 4,
391 };
392
393 static const unsigned char Rotates[] = { /* PC1 rotation schedule */
394 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
395 };
396
397 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
398 static const unsigned char PC2[] = { /* permuted choice table 2 */
399 9, 18, 14, 17, 11, 24, 1, 5,
400 22, 25, 3, 28, 15, 6, 21, 10,
401 35, 38, 23, 19, 12, 4, 26, 8,
402 43, 54, 16, 7, 27, 20, 13, 2,
403
404 0, 0, 41, 52, 31, 37, 47, 55,
405 0, 0, 30, 40, 51, 45, 33, 48,
406 0, 0, 44, 49, 39, 56, 34, 53,
407 0, 0, 46, 42, 50, 36, 29, 32,
408 };
409
410 static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
411 { /* S[1] */
412 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
413 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
414 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
415 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
416 },
417 { /* S[2] */
418 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
419 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
420 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
421 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
422 },
423 { /* S[3] */
424 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
425 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
426 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
427 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
428 },
429 { /* S[4] */
430 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
431 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
432 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
433 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
434 },
435 { /* S[5] */
436 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
437 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
438 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
439 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
440 },
441 { /* S[6] */
442 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
443 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
444 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
445 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
446 },
447 { /* S[7] */
448 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
449 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
450 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
451 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
452 },
453 { /* S[8] */
454 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
455 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
456 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
457 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
458 },
459 };
460
461 static const unsigned char P32Tr[] = { /* 32-bit permutation function */
462 16, 7, 20, 21,
463 29, 12, 28, 17,
464 1, 15, 23, 26,
465 5, 18, 31, 10,
466 2, 8, 24, 14,
467 32, 27, 3, 9,
468 19, 13, 30, 6,
469 22, 11, 4, 25,
470 };
471
472 static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
473 1, 2, 3, 4, 17, 18, 19, 20,
474 5, 6, 7, 8, 21, 22, 23, 24,
475 9, 10, 11, 12, 25, 26, 27, 28,
476 13, 14, 15, 16, 29, 30, 31, 32,
477
478 33, 34, 35, 36, 49, 50, 51, 52,
479 37, 38, 39, 40, 53, 54, 55, 56,
480 41, 42, 43, 44, 57, 58, 59, 60,
481 45, 46, 47, 48, 61, 62, 63, 64,
482 };
483
484 static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
485 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
486
487
488 /* ===== Tables that are initialized at run time ==================== */
489
490
491 /* ascii-64 => 0..63 */
492 static const unsigned char a64toi[128] = {
493 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
494 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
495 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
496 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 0, 0, 0, 0, 0,
497 0, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
498 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 0, 0, 0, 0, 0,
499 0, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
500 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 0, 0, 0, 0, 0,
501 };
502
503 /* Initial key schedule permutation */
504 // static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
505 static C_block *PC1ROT;
506
507 /* Subsequent key schedule rotation permutations */
508 // static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
509 static C_block *PC2ROT[2];
510
511 /* Initial permutation/expansion table */
512 // static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
513 static C_block *IE3264;
514
515 /* Table that combines the S, P, and E operations. */
516 // static long SPE[2][8][64];
517 static long *SPE;
518
519 /* compressed/interleaved => final permutation table */
520 // static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
521 static C_block *CF6464;
522
523
524 /* ==================================== */
525
526
527 static C_block constdatablock; /* encryption constant */
528 static char cryptresult[1+4+4+11+1]; /* encrypted result */
529
530 /*
531 * Return a pointer to static data consisting of the "setting"
532 * followed by an encryption produced by the "key" and "setting".
533 */
534 char *
535 crypt(key, setting)
536 register const char *key;
537 register const char *setting;
538 {
539 register char *encp;
540 register long i;
541 register int t;
542 long salt;
543 int num_iter, salt_size;
544 C_block keyblock, rsltblock;
545
546 for (i = 0; i < 8; i++) {
547 if ((t = 2*(unsigned char)(*key)) != 0)
548 key++;
549 keyblock.b[i] = t;
550 }
551 if (__crypt_des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
552 return (NULL);
553
554 encp = &cryptresult[0];
555 switch (*setting) {
556 case _PASSWORD_EFMT1:
557 /*
558 * Involve the rest of the password 8 characters at a time.
559 */
560 while (*key) {
561 if (__crypt_des_cipher((char *)&keyblock,
562 (char *)&keyblock, 0L, 1))
563 return (NULL);
564 for (i = 0; i < 8; i++) {
565 if ((t = 2*(unsigned char)(*key)) != 0)
566 key++;
567 keyblock.b[i] ^= t;
568 }
569 if (__crypt_des_setkey((char *)keyblock.b))
570 return (NULL);
571 }
572
573 *encp++ = *setting++;
574
575 /* get iteration count */
576 num_iter = 0;
577 for (i = 4; --i >= 0; ) {
578 if ((t = (unsigned char)setting[i]) == '\0')
579 t = '.';
580 encp[i] = t;
581 num_iter = (num_iter<<6) | a64toi[t];
582 }
583 setting += 4;
584 encp += 4;
585 salt_size = 4;
586 break;
587 default:
588 num_iter = 25;
589 salt_size = 2;
590 }
591
592 salt = 0;
593 for (i = salt_size; --i >= 0; ) {
594 if ((t = (unsigned char)setting[i]) == '\0')
595 t = '.';
596 encp[i] = t;
597 salt = (salt<<6) | a64toi[t];
598 }
599 encp += salt_size;
600 if (__crypt_des_cipher((char *)&constdatablock, (char *)&rsltblock,
601 salt, num_iter))
602 return (NULL);
603
604 /*
605 * Encode the 64 cipher bits as 11 ascii characters.
606 */
607 i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
608 encp[3] = itoa64[i&0x3f]; i >>= 6;
609 encp[2] = itoa64[i&0x3f]; i >>= 6;
610 encp[1] = itoa64[i&0x3f]; i >>= 6;
611 encp[0] = itoa64[i]; encp += 4;
612 i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
613 encp[3] = itoa64[i&0x3f]; i >>= 6;
614 encp[2] = itoa64[i&0x3f]; i >>= 6;
615 encp[1] = itoa64[i&0x3f]; i >>= 6;
616 encp[0] = itoa64[i]; encp += 4;
617 i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
618 encp[2] = itoa64[i&0x3f]; i >>= 6;
619 encp[1] = itoa64[i&0x3f]; i >>= 6;
620 encp[0] = itoa64[i];
621
622 encp[3] = 0;
623
624 return (cryptresult);
625 }
626
627
628 /*
629 * The Key Schedule, filled in by __crypt_des_setkey() or setkey().
630 */
631 #define KS_SIZE 16
632 static C_block KS[KS_SIZE];
633
634 /*
635 * Set up the key schedule from the key.
636 */
637 __private_extern__ int __crypt_des_setkey(key)
638 register const char *key;
639 {
640 register DCL_BLOCK(K, K0, K1);
641 register C_block *ptabp;
642 register int i;
643 static int des_ready = 0;
644
645 if (!des_ready) {
646 init_des();
647 des_ready = 1;
648 }
649
650 PERM6464(K,K0,K1,(unsigned char *)key,PC1ROT);
651 key = (char *)&KS[0];
652 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
653 for (i = 1; i < 16; i++) {
654 key += sizeof(C_block);
655 STORE(K,K0,K1,*(C_block *)key);
656 ptabp = PC2ROT[Rotates[i]-1];
657 PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
658 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
659 }
660 __crypt_des_setkey_called = 1;
661 return (0);
662 }
663
664 /*
665 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
666 * iterations of DES, using the the given 24-bit salt and the pre-computed key
667 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
668 *
669 * NOTE: the performance of this routine is critically dependent on your
670 * compiler and machine architecture.
671 */
672 __private_extern__ int __crypt_des_cipher(in, out, salt, num_iter)
673 const char *in;
674 char *out;
675 long salt;
676 int num_iter;
677 {
678 /* variables that we want in registers, most important first */
679 #if defined(pdp11)
680 register int j;
681 #endif
682 register long L0, L1, R0, R1, k;
683 register C_block *kp;
684 register int loop_count;
685 ssize_t ks_inc;
686 C_block B;
687
688 L0 = salt;
689 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
690
691 #if defined(vax) || defined(pdp11)
692 salt = ~salt; /* "x &~ y" is faster than "x & y". */
693 #define SALT (~salt)
694 #else
695 #define SALT salt
696 #endif
697
698 #if defined(MUST_ALIGN)
699 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
700 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
701 LOAD(L,L0,L1,B);
702 #else
703 LOAD(L,L0,L1,*(C_block *)in);
704 #endif
705 LOADREG(R,R0,R1,L,L0,L1);
706 L0 &= 0x55555555L;
707 L1 &= 0x55555555L;
708 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
709 R0 &= 0xaaaaaaaaL;
710 R1 = (R1 >> 1) & 0x55555555L;
711 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
712 STORE(L,L0,L1,B);
713 PERM3264(L,L0,L1,B.b,IE3264); /* even bits */
714 PERM3264(R,R0,R1,B.b+4,IE3264); /* odd bits */
715
716 if (num_iter >= 0)
717 { /* encryption */
718 kp = &KS[0];
719 ks_inc = sizeof(*kp);
720 }
721 else
722 { /* decryption */
723 num_iter = -num_iter;
724 kp = &KS[KS_SIZE-1];
725 ks_inc = -sizeof(*kp);
726 }
727
728 while (--num_iter >= 0) {
729 loop_count = 8;
730 do {
731
732 #define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
733 #if defined(gould)
734 /* use this if B.b[i] is evaluated just once ... */
735 #define DOXOR(x,y,i) x^=SPTAB(&SPE[i * 64],B.b[i]); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],B.b[i]);
736 #else
737 #if defined(pdp11)
738 /* use this if your "long" int indexing is slow */
739 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(&SPE[i * 64],j); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],j);
740 #else
741 /* use this if "k" is allocated to a register ... */
742 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(&SPE[i * 64],k); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],k);
743 #endif
744 #endif
745
746 #define CRUNCH(p0, p1, q0, q1) \
747 k = (q0 ^ q1) & SALT; \
748 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
749 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
750 kp = (C_block *)((char *)kp+ks_inc); \
751 \
752 DOXOR(p0, p1, 0); \
753 DOXOR(p0, p1, 1); \
754 DOXOR(p0, p1, 2); \
755 DOXOR(p0, p1, 3); \
756 DOXOR(p0, p1, 4); \
757 DOXOR(p0, p1, 5); \
758 DOXOR(p0, p1, 6); \
759 DOXOR(p0, p1, 7);
760
761 CRUNCH(L0, L1, R0, R1);
762 CRUNCH(R0, R1, L0, L1);
763 } while (--loop_count != 0);
764 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
765
766
767 /* swap L and R */
768 L0 ^= R0; L1 ^= R1;
769 R0 ^= L0; R1 ^= L1;
770 L0 ^= R0; L1 ^= R1;
771 }
772
773 /* store the encrypted (or decrypted) result */
774 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
775 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
776 STORE(L,L0,L1,B);
777 PERM6464(L,L0,L1,B.b,CF6464);
778 #if defined(MUST_ALIGN)
779 STORE(L,L0,L1,B);
780 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
781 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
782 #else
783 STORE(L,L0,L1,*(C_block *)out);
784 #endif
785 return (0);
786 }
787
788
789 /*
790 * Initialize various tables. This need only be done once. It could even be
791 * done at compile time, if the compiler were capable of that sort of thing.
792 */
793 STATIC void init_des()
794 {
795 register int i, j;
796 register long k;
797 register int tableno;
798 unsigned char perm[64] = {0};
799
800 /*
801 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
802 */
803 for (i = 0; i < 64; i++) {
804 if ((k = PC2[i]) == 0)
805 continue;
806 k += Rotates[0]-1;
807 if ((k%28) < Rotates[0]) k -= 28;
808 k = PC1[k];
809 if (k > 0) {
810 k--;
811 k = (k|07) - (k&07);
812 k++;
813 }
814 perm[i] = k;
815 }
816 #ifdef DEBUG
817 prtab("pc1tab", perm, 8);
818 #endif
819 PC1ROT = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
820 for (i = 0; i < 2; i++)
821 PC2ROT[i] = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
822 init_perm(PC1ROT, perm, 8, 8);
823
824 /*
825 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
826 */
827 for (j = 0; j < 2; j++) {
828 unsigned char pc2inv[64];
829 for (i = 0; i < 64; i++)
830 perm[i] = pc2inv[i] = 0;
831 for (i = 0; i < 64; i++) {
832 if ((k = PC2[i]) == 0)
833 continue;
834 pc2inv[k-1] = i+1;
835 }
836 for (i = 0; i < 64; i++) {
837 if ((k = PC2[i]) == 0)
838 continue;
839 k += j;
840 if ((k%28) <= j) k -= 28;
841 perm[i] = pc2inv[k];
842 }
843 #ifdef DEBUG
844 prtab("pc2tab", perm, 8);
845 #endif
846 init_perm(PC2ROT[j], perm, 8, 8);
847 }
848
849 /*
850 * Bit reverse, then initial permutation, then expansion.
851 */
852 for (i = 0; i < 8; i++) {
853 for (j = 0; j < 8; j++) {
854 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
855 if (k > 32)
856 k -= 32;
857 else if (k > 0)
858 k--;
859 if (k > 0) {
860 k--;
861 k = (k|07) - (k&07);
862 k++;
863 }
864 perm[i*8+j] = k;
865 }
866 }
867 #ifdef DEBUG
868 prtab("ietab", perm, 8);
869 #endif
870 IE3264 = (C_block *)calloc(sizeof(C_block), (32/CHUNKBITS) * (1<<CHUNKBITS));
871 init_perm(IE3264, perm, 4, 8);
872
873 /*
874 * Compression, then final permutation, then bit reverse.
875 */
876 for (i = 0; i < 64; i++) {
877 k = IP[CIFP[i]-1];
878 if (k > 0) {
879 k--;
880 k = (k|07) - (k&07);
881 k++;
882 }
883 perm[k-1] = i+1;
884 }
885 #ifdef DEBUG
886 prtab("cftab", perm, 8);
887 #endif
888 CF6464 = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
889 SPE = (long *)calloc(sizeof(long), 2 * 8 * 64);
890 init_perm(CF6464, perm, 8, 8);
891
892 /*
893 * SPE table
894 */
895 for (i = 0; i < 48; i++)
896 perm[i] = P32Tr[ExpandTr[i]-1];
897 for (tableno = 0; tableno < 8; tableno++) {
898 for (j = 0; j < 64; j++) {
899 unsigned char tmp32[32] = { 0 };
900 k = (((j >> 0) &01) << 5)|
901 (((j >> 1) &01) << 3)|
902 (((j >> 2) &01) << 2)|
903 (((j >> 3) &01) << 1)|
904 (((j >> 4) &01) << 0)|
905 (((j >> 5) &01) << 4);
906 k = S[tableno][k];
907 k = (((k >> 3)&01) << 0)|
908 (((k >> 2)&01) << 1)|
909 (((k >> 1)&01) << 2)|
910 (((k >> 0)&01) << 3);
911 for (i = 0; i < 4; i++)
912 tmp32[4 * tableno + i] = (k >> i) & 01;
913 k = 0;
914 for (i = 24; --i >= 0; )
915 k = (k<<1) | tmp32[perm[i]-1];
916 TO_SIX_BIT(SPE[(tableno * 64) + j], k);
917 k = 0;
918 for (i = 24; --i >= 0; )
919 k = (k<<1) | tmp32[perm[i+24]-1];
920 TO_SIX_BIT(SPE[(8 * 64) + (tableno * 64) + j], k);
921 }
922 }
923 }
924
925 /*
926 * Initialize "perm" to represent transformation "p", which rearranges
927 * (perhaps with expansion and/or contraction) one packed array of bits
928 * (of size "chars_in" characters) into another array (of size "chars_out"
929 * characters).
930 *
931 * "perm" must be all-zeroes on entry to this routine.
932 */
933 STATIC void init_perm(perm, p, chars_in, chars_out)
934 C_block *perm;
935 unsigned char p[64];
936 int chars_in, chars_out;
937 {
938 register int i, j, k, l;
939
940 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
941 l = p[k] - 1; /* where this bit comes from */
942 if (l < 0)
943 continue; /* output bit is always 0 */
944 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
945 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
946 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
947 if ((j & l) != 0)
948 perm[(i * (1<<CHUNKBITS)) + j].b[k>>3] |= 1<<(k&07);
949 }
950 }
951 }
952 #endif /* BUILDING_VARIANT */
953
954 /*
955 * "setkey" routine (for backwards compatibility)
956 */
957 #if __DARWIN_UNIX03
958 void setkey(key)
959 #else /* !__DARWIN_UNIX03 */
960 int setkey(key)
961 #endif /* __DARWIN_UNIX03 */
962 register const char *key;
963 {
964 register int i, j, k;
965 C_block keyblock;
966
967 for (i = 0; i < 8; i++) {
968 k = 0;
969 for (j = 0; j < 8; j++) {
970 k <<= 1;
971 k |= (unsigned char)*key++;
972 }
973 keyblock.b[i] = k;
974 }
975 #if __DARWIN_UNIX03
976 __crypt_des_setkey((char *)keyblock.b);
977 #else /* !__DARWIN_UNIX03 */
978 return (__crypt_des_setkey((char *)keyblock.b));
979 #endif /* __DARWIN_UNIX03 */
980 }
981
982 /*
983 * "encrypt" routine (for backwards compatibility)
984 */
985 #if __DARWIN_UNIX03
986 void encrypt(block, flag)
987 #else /* !__DARWIN_UNIX03 */
988 int encrypt(block, flag)
989 #endif /* __DARWIN_UNIX03 */
990 register char *block;
991 int flag;
992 {
993 register int i, j, k;
994 C_block cblock;
995
996 /* Prevent encrypt from crashing if setkey was never called.
997 * This does not make a good cypher */
998 if (!__crypt_des_setkey_called) {
999 cblock.b32.i0 = cblock.b32.i1 = 0;
1000 __crypt_des_setkey((char *)cblock.b);
1001 }
1002 for (i = 0; i < 8; i++) {
1003 k = 0;
1004 for (j = 0; j < 8; j++) {
1005 k <<= 1;
1006 k |= (unsigned char)*block++;
1007 }
1008 cblock.b[i] = k;
1009 }
1010 if (__crypt_des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
1011 #if __DARWIN_UNIX03
1012 return;
1013 #else /* !__DARWIN_UNIX03 */
1014 return (1);
1015 #endif /* __DARWIN_UNIX03 */
1016 for (i = 7; i >= 0; i--) {
1017 k = cblock.b[i];
1018 for (j = 7; j >= 0; j--) {
1019 *--block = k&01;
1020 k >>= 1;
1021 }
1022 }
1023 #if !__DARWIN_UNIX03
1024 return (0);
1025 #endif /* !__DARWIN_UNIX03 */
1026 }
1027
1028 #ifndef BUILDING_VARIANT
1029 #ifdef DEBUG
1030 STATIC void
1031 prtab(s, t, num_rows)
1032 char *s;
1033 unsigned char *t;
1034 int num_rows;
1035 {
1036 register int i, j;
1037
1038 (void)printf("%s:\n", s);
1039 for (i = 0; i < num_rows; i++) {
1040 for (j = 0; j < 8; j++) {
1041 (void)printf("%3d", t[i*8+j]);
1042 }
1043 (void)printf("\n");
1044 }
1045 (void)printf("\n");
1046 }
1047 #endif
1048 #endif /* BUILDING_VARIANT */
1049
1050 #pragma clang diagnostic pop