]> git.saurik.com Git - apple/libc.git/blob - gdtoa/FreeBSD/gdtoaimp.h
Libc-763.13.tar.gz
[apple/libc.git] / gdtoa / FreeBSD / gdtoaimp.h
1 /****************************************************************
2
3 The author of this software is David M. Gay.
4
5 Copyright (C) 1998-2000 by Lucent Technologies
6 All Rights Reserved
7
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
16 permission.
17
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25 THIS SOFTWARE.
26
27 ****************************************************************/
28
29 /* This is a variation on dtoa.c that converts arbitary binary
30 floating-point formats to and from decimal notation. It uses
31 double-precision arithmetic internally, so there are still
32 various #ifdefs that adapt the calculations to the native
33 double-precision arithmetic (any of IEEE, VAX D_floating,
34 or IBM mainframe arithmetic).
35
36 Please send bug reports to David M. Gay (dmg at acm dot org,
37 with " at " changed at "@" and " dot " changed to ".").
38 */
39
40 /* On a machine with IEEE extended-precision registers, it is
41 * necessary to specify double-precision (53-bit) rounding precision
42 * before invoking strtod or dtoa. If the machine uses (the equivalent
43 * of) Intel 80x87 arithmetic, the call
44 * _control87(PC_53, MCW_PC);
45 * does this with many compilers. Whether this or another call is
46 * appropriate depends on the compiler; for this to work, it may be
47 * necessary to #include "float.h" or another system-dependent header
48 * file.
49 */
50
51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
52 *
53 * This strtod returns a nearest machine number to the input decimal
54 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
55 * broken by the IEEE round-even rule. Otherwise ties are broken by
56 * biased rounding (add half and chop).
57 *
58 * Inspired loosely by William D. Clinger's paper "How to Read Floating
59 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
60 *
61 * Modifications:
62 *
63 * 1. We only require IEEE, IBM, or VAX double-precision
64 * arithmetic (not IEEE double-extended).
65 * 2. We get by with floating-point arithmetic in a case that
66 * Clinger missed -- when we're computing d * 10^n
67 * for a small integer d and the integer n is not too
68 * much larger than 22 (the maximum integer k for which
69 * we can represent 10^k exactly), we may be able to
70 * compute (d*10^k) * 10^(e-k) with just one roundoff.
71 * 3. Rather than a bit-at-a-time adjustment of the binary
72 * result in the hard case, we use floating-point
73 * arithmetic to determine the adjustment to within
74 * one bit; only in really hard cases do we need to
75 * compute a second residual.
76 * 4. Because of 3., we don't need a large table of powers of 10
77 * for ten-to-e (just some small tables, e.g. of 10^k
78 * for 0 <= k <= 22).
79 */
80
81 /*
82 * #define IEEE_8087 for IEEE-arithmetic machines where the least
83 * significant byte has the lowest address.
84 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85 * significant byte has the lowest address.
86 * #define Long int on machines with 32-bit ints and 64-bit longs.
87 * #define Sudden_Underflow for IEEE-format machines without gradual
88 * underflow (i.e., that flush to zero on underflow).
89 * #define IBM for IBM mainframe-style floating-point arithmetic.
90 * #define VAX for VAX-style floating-point arithmetic (D_floating).
91 * #define No_leftright to omit left-right logic in fast floating-point
92 * computation of dtoa.
93 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
94 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
95 * that use extended-precision instructions to compute rounded
96 * products and quotients) with IBM.
97 * #define ROUND_BIASED for IEEE-format with biased rounding.
98 * #define Inaccurate_Divide for IEEE-format with correctly rounded
99 * products but inaccurate quotients, e.g., for Intel i860.
100 * #define NO_LONG_LONG on machines that do not have a "long long"
101 * integer type (of >= 64 bits). On such machines, you can
102 * #define Just_16 to store 16 bits per 32-bit Long when doing
103 * high-precision integer arithmetic. Whether this speeds things
104 * up or slows things down depends on the machine and the number
105 * being converted. If long long is available and the name is
106 * something other than "long long", #define Llong to be the name,
107 * and if "unsigned Llong" does not work as an unsigned version of
108 * Llong, #define #ULLong to be the corresponding unsigned type.
109 * #define KR_headers for old-style C function headers.
110 * #define Bad_float_h if your system lacks a float.h or if it does not
111 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
112 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
113 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
114 * if memory is available and otherwise does something you deem
115 * appropriate. If MALLOC is undefined, malloc will be invoked
116 * directly -- and assumed always to succeed. Similarly, if you
117 * want something other than the system's free() to be called to
118 * recycle memory acquired from MALLOC, #define FREE to be the
119 * name of the alternate routine. (FREE or free is only called in
120 * pathological cases, e.g., in a gdtoa call after a gdtoa return in
121 * mode 3 with thousands of digits requested.)
122 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
123 * memory allocations from a private pool of memory when possible.
124 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
125 * unless #defined to be a different length. This default length
126 * suffices to get rid of MALLOC calls except for unusual cases,
127 * such as decimal-to-binary conversion of a very long string of
128 * digits. When converting IEEE double precision values, the
129 * longest string gdtoa can return is about 751 bytes long. For
130 * conversions by strtod of strings of 800 digits and all gdtoa
131 * conversions of IEEE doubles in single-threaded executions with
132 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
133 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
134 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
135 * #defined automatically on IEEE systems. On such systems,
136 * when INFNAN_CHECK is #defined, strtod checks
137 * for Infinity and NaN (case insensitively).
138 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
139 * strtodg also accepts (case insensitively) strings of the form
140 * NaN(x), where x is a string of hexadecimal digits (optionally
141 * preceded by 0x or 0X) and spaces; if there is only one string
142 * of hexadecimal digits, it is taken for the fraction bits of the
143 * resulting NaN; if there are two or more strings of hexadecimal
144 * digits, each string is assigned to the next available sequence
145 * of 32-bit words of fractions bits (starting with the most
146 * significant), right-aligned in each sequence.
147 * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
148 * is consumed even when ... has the wrong form (in which case the
149 * "(...)" is consumed but ignored).
150 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
151 * multiple threads. In this case, you must provide (or suitably
152 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
153 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
154 * in pow5mult, ensures lazy evaluation of only one copy of high
155 * powers of 5; omitting this lock would introduce a small
156 * probability of wasting memory, but would otherwise be harmless.)
157 * You must also invoke freedtoa(s) to free the value s returned by
158 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
159 * #define IMPRECISE_INEXACT if you do not care about the setting of
160 * the STRTOG_Inexact bits in the special case of doing IEEE double
161 * precision conversions (which could also be done by the strtod in
162 * dtoa.c).
163 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
164 * floating-point constants.
165 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
166 * strtodg.c).
167 * #define NO_STRING_H to use private versions of memcpy.
168 * On some K&R systems, it may also be necessary to
169 * #define DECLARE_SIZE_T in this case.
170 * #define USE_LOCALE to use the current locale's decimal_point value.
171 */
172
173 #ifndef GDTOAIMP_H_INCLUDED
174 #define GDTOAIMP_H_INCLUDED
175 #include "gdtoa.h"
176 #include "gd_qnan.h"
177 #ifdef Honor_FLT_ROUNDS
178 #include <fenv.h>
179 #endif
180
181 #ifdef DEBUG
182 #include "stdio.h"
183 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
184 #endif
185
186 #include "stdlib.h"
187 #include "string.h"
188
189 #ifdef KR_headers
190 #define Char char
191 #else
192 #define Char void
193 #endif
194
195 #ifdef MALLOC
196 extern Char *MALLOC ANSI((size_t));
197 #else
198 #define MALLOC malloc
199 #endif
200
201 #undef IEEE_Arith
202 #undef Avoid_Underflow
203 #ifdef IEEE_MC68k
204 #define IEEE_Arith
205 #endif
206 #ifdef IEEE_8087
207 #define IEEE_Arith
208 #endif
209
210 #include "errno.h"
211 #ifdef Bad_float_h
212
213 #ifdef IEEE_Arith
214 #define DBL_DIG 15
215 #define DBL_MAX_10_EXP 308
216 #define DBL_MAX_EXP 1024
217 #define FLT_RADIX 2
218 #define DBL_MAX 1.7976931348623157e+308
219 #endif
220
221 #ifdef IBM
222 #define DBL_DIG 16
223 #define DBL_MAX_10_EXP 75
224 #define DBL_MAX_EXP 63
225 #define FLT_RADIX 16
226 #define DBL_MAX 7.2370055773322621e+75
227 #endif
228
229 #ifdef VAX
230 #define DBL_DIG 16
231 #define DBL_MAX_10_EXP 38
232 #define DBL_MAX_EXP 127
233 #define FLT_RADIX 2
234 #define DBL_MAX 1.7014118346046923e+38
235 #define n_bigtens 2
236 #endif
237
238 #ifndef LONG_MAX
239 #define LONG_MAX 2147483647
240 #endif
241
242 #else /* ifndef Bad_float_h */
243 #include "float.h"
244 #endif /* Bad_float_h */
245
246 #ifdef IEEE_Arith
247 #define Scale_Bit 0x10
248 #define n_bigtens 5
249 #endif
250
251 #ifdef IBM
252 #define n_bigtens 3
253 #endif
254
255 #ifdef VAX
256 #define n_bigtens 2
257 #endif
258
259 #ifndef __MATH_H__
260 #include "math.h"
261 #endif
262
263 #ifdef __cplusplus
264 extern "C" {
265 #endif
266
267 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
268 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
269 #endif
270
271 typedef union { double d; ULong L[2]; } U;
272
273 #ifdef IEEE_8087
274 #define word0(x) (x)->L[1]
275 #define word1(x) (x)->L[0]
276 #else
277 #define word0(x) (x)->L[0]
278 #define word1(x) (x)->L[1]
279 #endif
280 #define dval(x) (x)->d
281
282 /* The following definition of Storeinc is appropriate for MIPS processors.
283 * An alternative that might be better on some machines is
284 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
285 */
286 #if defined(IEEE_8087) + defined(VAX)
287 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
288 ((unsigned short *)a)[0] = (unsigned short)c, a++)
289 #else
290 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
291 ((unsigned short *)a)[1] = (unsigned short)c, a++)
292 #endif
293
294 /* #define P DBL_MANT_DIG */
295 /* Ten_pmax = floor(P*log(2)/log(5)) */
296 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
297 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
298 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
299
300 #ifdef IEEE_Arith
301 #define Exp_shift 20
302 #define Exp_shift1 20
303 #define Exp_msk1 0x100000
304 #define Exp_msk11 0x100000
305 #define Exp_mask 0x7ff00000
306 #define P 53
307 #define Bias 1023
308 #define Emin (-1022)
309 #define Exp_1 0x3ff00000
310 #define Exp_11 0x3ff00000
311 #define Ebits 11
312 #define Frac_mask 0xfffff
313 #define Frac_mask1 0xfffff
314 #define Ten_pmax 22
315 #define Bletch 0x10
316 #define Bndry_mask 0xfffff
317 #define Bndry_mask1 0xfffff
318 #define LSB 1
319 #define Sign_bit 0x80000000
320 #define Log2P 1
321 #define Tiny0 0
322 #define Tiny1 1
323 #define Quick_max 14
324 #define Int_max 14
325
326 #ifndef Flt_Rounds
327 #ifdef FLT_ROUNDS
328 #define Flt_Rounds FLT_ROUNDS
329 #else
330 #define Flt_Rounds 1
331 #endif
332 #endif /*Flt_Rounds*/
333
334 #else /* ifndef IEEE_Arith */
335 #undef Sudden_Underflow
336 #define Sudden_Underflow
337 #ifdef IBM
338 #undef Flt_Rounds
339 #define Flt_Rounds 0
340 #define Exp_shift 24
341 #define Exp_shift1 24
342 #define Exp_msk1 0x1000000
343 #define Exp_msk11 0x1000000
344 #define Exp_mask 0x7f000000
345 #define P 14
346 #define Bias 65
347 #define Exp_1 0x41000000
348 #define Exp_11 0x41000000
349 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
350 #define Frac_mask 0xffffff
351 #define Frac_mask1 0xffffff
352 #define Bletch 4
353 #define Ten_pmax 22
354 #define Bndry_mask 0xefffff
355 #define Bndry_mask1 0xffffff
356 #define LSB 1
357 #define Sign_bit 0x80000000
358 #define Log2P 4
359 #define Tiny0 0x100000
360 #define Tiny1 0
361 #define Quick_max 14
362 #define Int_max 15
363 #else /* VAX */
364 #undef Flt_Rounds
365 #define Flt_Rounds 1
366 #define Exp_shift 23
367 #define Exp_shift1 7
368 #define Exp_msk1 0x80
369 #define Exp_msk11 0x800000
370 #define Exp_mask 0x7f80
371 #define P 56
372 #define Bias 129
373 #define Exp_1 0x40800000
374 #define Exp_11 0x4080
375 #define Ebits 8
376 #define Frac_mask 0x7fffff
377 #define Frac_mask1 0xffff007f
378 #define Ten_pmax 24
379 #define Bletch 2
380 #define Bndry_mask 0xffff007f
381 #define Bndry_mask1 0xffff007f
382 #define LSB 0x10000
383 #define Sign_bit 0x8000
384 #define Log2P 1
385 #define Tiny0 0x80
386 #define Tiny1 0
387 #define Quick_max 15
388 #define Int_max 15
389 #endif /* IBM, VAX */
390 #endif /* IEEE_Arith */
391
392 #ifndef IEEE_Arith
393 #define ROUND_BIASED
394 #endif
395
396 #ifdef RND_PRODQUOT
397 #define rounded_product(a,b) a = rnd_prod(a, b)
398 #define rounded_quotient(a,b) a = rnd_quot(a, b)
399 #ifdef KR_headers
400 extern double rnd_prod(), rnd_quot();
401 #else
402 extern double rnd_prod(double, double), rnd_quot(double, double);
403 #endif
404 #else
405 #define rounded_product(a,b) a *= b
406 #define rounded_quotient(a,b) a /= b
407 #endif
408
409 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
410 #define Big1 0xffffffff
411
412 #undef Pack_16
413 #ifndef Pack_32
414 #define Pack_32
415 #endif
416
417 #ifdef NO_LONG_LONG
418 #undef ULLong
419 #ifdef Just_16
420 #undef Pack_32
421 #define Pack_16
422 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
423 * This makes some inner loops simpler and sometimes saves work
424 * during multiplications, but it often seems to make things slightly
425 * slower. Hence the default is now to store 32 bits per Long.
426 */
427 #endif
428 #else /* long long available */
429 #ifndef Llong
430 #define Llong long long
431 #endif
432 #ifndef ULLong
433 #define ULLong unsigned Llong
434 #endif
435 #endif /* NO_LONG_LONG */
436
437 #ifdef Pack_32
438 #define ULbits 32
439 #define kshift 5
440 #define kmask 31
441 #define ALL_ON 0xffffffff
442 #else
443 #define ULbits 16
444 #define kshift 4
445 #define kmask 15
446 #define ALL_ON 0xffff
447 #endif
448
449 #ifndef MULTIPLE_THREADS
450 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
451 #define FREE_DTOA_LOCK(n) /*nothing*/
452 #endif
453
454 #define Kmax 9
455
456 struct
457 Bigint {
458 struct Bigint *next;
459 int k, maxwds, sign, wds;
460 ULong x[1];
461 };
462
463 typedef struct Bigint Bigint;
464
465 #ifdef NO_STRING_H
466 #ifdef DECLARE_SIZE_T
467 typedef unsigned int size_t;
468 #endif
469 extern void memcpy_D2A ANSI((void*, const void*, size_t));
470 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
471 #else /* !NO_STRING_H */
472 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
473 #endif /* NO_STRING_H */
474
475 #define Balloc Balloc_D2A
476 #define Bfree Bfree_D2A
477 #define ULtoQ ULtoQ_D2A
478 #define ULtof ULtof_D2A
479 #define ULtod ULtod_D2A
480 #define ULtodd ULtodd_D2A
481 #define ULtox ULtox_D2A
482 #define ULtoxL ULtoxL_D2A
483 #define any_on any_on_D2A
484 #define b2d b2d_D2A
485 #define bigtens bigtens_D2A
486 #define cmp cmp_D2A
487 #define copybits copybits_D2A
488 #define d2b d2b_D2A
489 #define decrement decrement_D2A
490 #define diff diff_D2A
491 #define dtoa_result dtoa_result_D2A
492 #define g__fmt g__fmt_D2A
493 #define gethex gethex_D2A
494 #define hexdig hexdig_D2A
495 #define hexnan hexnan_D2A
496 #define hi0bits(x) hi0bits_D2A((ULong)(x))
497 #define i2b i2b_D2A
498 #define increment increment_D2A
499 #define lo0bits lo0bits_D2A
500 #define lshift lshift_D2A
501 #define match match_D2A
502 #define mult mult_D2A
503 #define multadd multadd_D2A
504 #define nrv_alloc nrv_alloc_D2A
505 #define pow5mult pow5mult_D2A
506 #define quorem quorem_D2A
507 #define ratio ratio_D2A
508 #define rshift rshift_D2A
509 #define rv_alloc rv_alloc_D2A
510 #define s2b s2b_D2A
511 #define set_ones set_ones_D2A
512 #define strcp strcp_D2A
513 #define strtoIg strtoIg_D2A
514 #define sum sum_D2A
515 #define tens tens_D2A
516 #define tinytens tinytens_D2A
517 #define tinytens tinytens_D2A
518 #define trailz trailz_D2A
519 #define ulp ulp_D2A
520
521 extern char *dtoa_result;
522 extern CONST double bigtens[], tens[], tinytens[];
523 extern unsigned char hexdig[];
524
525 extern Bigint *Balloc ANSI((int));
526 extern void Bfree ANSI((Bigint*));
527 extern void ULtof ANSI((ULong*, ULong*, Long, int));
528 extern void ULtod ANSI((ULong*, ULong*, Long, int));
529 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
530 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
531 extern void ULtox ANSI((UShort*, ULong*, Long, int));
532 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
533 extern ULong any_on ANSI((Bigint*, int));
534 extern double b2d ANSI((Bigint*, int*));
535 extern int cmp ANSI((Bigint*, Bigint*));
536 extern void copybits ANSI((ULong*, int, Bigint*));
537 extern Bigint *d2b ANSI((double, int*, int*));
538 extern void decrement ANSI((Bigint*));
539 extern Bigint *diff ANSI((Bigint*, Bigint*));
540 extern char *dtoa ANSI((double d, int mode, int ndigits,
541 int *decpt, int *sign, char **rve));
542 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
543 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
544 extern void hexdig_init_D2A(Void);
545 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
546 extern int hi0bits_D2A ANSI((ULong));
547 extern Bigint *i2b ANSI((int));
548 extern Bigint *increment ANSI((Bigint*));
549 extern int lo0bits ANSI((ULong*));
550 extern Bigint *lshift ANSI((Bigint*, int));
551 extern int match ANSI((CONST char**, char*));
552 extern Bigint *mult ANSI((Bigint*, Bigint*));
553 extern Bigint *multadd ANSI((Bigint*, int, int));
554 extern char *nrv_alloc ANSI((char*, char **, int));
555 extern Bigint *pow5mult ANSI((Bigint*, int));
556 extern int quorem ANSI((Bigint*, Bigint*));
557 extern double ratio ANSI((Bigint*, Bigint*));
558 extern void rshift ANSI((Bigint*, int));
559 extern char *rv_alloc ANSI((int));
560 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
561 extern Bigint *set_ones ANSI((Bigint*, int));
562 extern char *strcp ANSI((char*, const char*));
563 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
564 extern double strtod ANSI((const char *s00, char **se));
565 extern Bigint *sum ANSI((Bigint*, Bigint*));
566 extern int trailz ANSI((Bigint*));
567 extern double ulp ANSI((U*));
568
569 #ifdef __cplusplus
570 }
571 #endif
572 /*
573 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
574 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
575 * respectively), but now are determined by compiling and running
576 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
577 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
578 * and -DNAN_WORD1=... values if necessary. This should still work.
579 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
580 */
581 #ifdef IEEE_Arith
582 #ifndef NO_INFNAN_CHECK
583 #undef INFNAN_CHECK
584 #define INFNAN_CHECK
585 #endif
586 #ifdef IEEE_MC68k
587 #define _0 0
588 #define _1 1
589 #ifndef NAN_WORD0
590 #define NAN_WORD0 d_QNAN0
591 #endif
592 #ifndef NAN_WORD1
593 #define NAN_WORD1 d_QNAN1
594 #endif
595 #else
596 #define _0 1
597 #define _1 0
598 #ifndef NAN_WORD0
599 #define NAN_WORD0 d_QNAN1
600 #endif
601 #ifndef NAN_WORD1
602 #define NAN_WORD1 d_QNAN0
603 #endif
604 #endif
605 #else
606 #undef INFNAN_CHECK
607 #endif
608
609 #undef SI
610 #ifdef Sudden_Underflow
611 #define SI 1
612 #else
613 #define SI 0
614 #endif
615
616 #endif /* GDTOAIMP_H_INCLUDED */