]>
Commit | Line | Data |
---|---|---|
9385eb3d A |
1 | /**************************************************************** |
2 | ||
3 | The author of this software is David M. Gay. | |
4 | ||
5 | Copyright (C) 1998-2000 by Lucent Technologies | |
6 | All Rights Reserved | |
7 | ||
8 | Permission to use, copy, modify, and distribute this software and | |
9 | its documentation for any purpose and without fee is hereby | |
10 | granted, provided that the above copyright notice appear in all | |
11 | copies and that both that the copyright notice and this | |
12 | permission notice and warranty disclaimer appear in supporting | |
13 | documentation, and that the name of Lucent or any of its entities | |
14 | not be used in advertising or publicity pertaining to | |
15 | distribution of the software without specific, written prior | |
16 | permission. | |
17 | ||
18 | LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, | |
19 | INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. | |
20 | IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY | |
21 | SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |
22 | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER | |
23 | IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, | |
24 | ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF | |
25 | THIS SOFTWARE. | |
26 | ||
27 | ****************************************************************/ | |
28 | ||
9385eb3d A |
29 | /* This is a variation on dtoa.c that converts arbitary binary |
30 | floating-point formats to and from decimal notation. It uses | |
31 | double-precision arithmetic internally, so there are still | |
32 | various #ifdefs that adapt the calculations to the native | |
33 | double-precision arithmetic (any of IEEE, VAX D_floating, | |
34 | or IBM mainframe arithmetic). | |
35 | ||
3d9156a7 A |
36 | Please send bug reports to David M. Gay (dmg at acm dot org, |
37 | with " at " changed at "@" and " dot " changed to "."). | |
9385eb3d A |
38 | */ |
39 | ||
40 | /* On a machine with IEEE extended-precision registers, it is | |
41 | * necessary to specify double-precision (53-bit) rounding precision | |
42 | * before invoking strtod or dtoa. If the machine uses (the equivalent | |
43 | * of) Intel 80x87 arithmetic, the call | |
44 | * _control87(PC_53, MCW_PC); | |
45 | * does this with many compilers. Whether this or another call is | |
46 | * appropriate depends on the compiler; for this to work, it may be | |
47 | * necessary to #include "float.h" or another system-dependent header | |
48 | * file. | |
49 | */ | |
50 | ||
51 | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. | |
52 | * | |
53 | * This strtod returns a nearest machine number to the input decimal | |
54 | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are | |
55 | * broken by the IEEE round-even rule. Otherwise ties are broken by | |
56 | * biased rounding (add half and chop). | |
57 | * | |
58 | * Inspired loosely by William D. Clinger's paper "How to Read Floating | |
3d9156a7 | 59 | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. |
9385eb3d A |
60 | * |
61 | * Modifications: | |
62 | * | |
63 | * 1. We only require IEEE, IBM, or VAX double-precision | |
64 | * arithmetic (not IEEE double-extended). | |
65 | * 2. We get by with floating-point arithmetic in a case that | |
66 | * Clinger missed -- when we're computing d * 10^n | |
67 | * for a small integer d and the integer n is not too | |
68 | * much larger than 22 (the maximum integer k for which | |
69 | * we can represent 10^k exactly), we may be able to | |
70 | * compute (d*10^k) * 10^(e-k) with just one roundoff. | |
71 | * 3. Rather than a bit-at-a-time adjustment of the binary | |
72 | * result in the hard case, we use floating-point | |
73 | * arithmetic to determine the adjustment to within | |
74 | * one bit; only in really hard cases do we need to | |
75 | * compute a second residual. | |
76 | * 4. Because of 3., we don't need a large table of powers of 10 | |
77 | * for ten-to-e (just some small tables, e.g. of 10^k | |
78 | * for 0 <= k <= 22). | |
79 | */ | |
80 | ||
81 | /* | |
82 | * #define IEEE_8087 for IEEE-arithmetic machines where the least | |
83 | * significant byte has the lowest address. | |
84 | * #define IEEE_MC68k for IEEE-arithmetic machines where the most | |
85 | * significant byte has the lowest address. | |
86 | * #define Long int on machines with 32-bit ints and 64-bit longs. | |
87 | * #define Sudden_Underflow for IEEE-format machines without gradual | |
88 | * underflow (i.e., that flush to zero on underflow). | |
89 | * #define IBM for IBM mainframe-style floating-point arithmetic. | |
90 | * #define VAX for VAX-style floating-point arithmetic (D_floating). | |
91 | * #define No_leftright to omit left-right logic in fast floating-point | |
92 | * computation of dtoa. | |
93 | * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. | |
94 | * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines | |
95 | * that use extended-precision instructions to compute rounded | |
96 | * products and quotients) with IBM. | |
97 | * #define ROUND_BIASED for IEEE-format with biased rounding. | |
98 | * #define Inaccurate_Divide for IEEE-format with correctly rounded | |
99 | * products but inaccurate quotients, e.g., for Intel i860. | |
100 | * #define NO_LONG_LONG on machines that do not have a "long long" | |
101 | * integer type (of >= 64 bits). On such machines, you can | |
102 | * #define Just_16 to store 16 bits per 32-bit Long when doing | |
103 | * high-precision integer arithmetic. Whether this speeds things | |
104 | * up or slows things down depends on the machine and the number | |
105 | * being converted. If long long is available and the name is | |
106 | * something other than "long long", #define Llong to be the name, | |
107 | * and if "unsigned Llong" does not work as an unsigned version of | |
108 | * Llong, #define #ULLong to be the corresponding unsigned type. | |
109 | * #define KR_headers for old-style C function headers. | |
110 | * #define Bad_float_h if your system lacks a float.h or if it does not | |
111 | * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, | |
112 | * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. | |
113 | * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) | |
114 | * if memory is available and otherwise does something you deem | |
115 | * appropriate. If MALLOC is undefined, malloc will be invoked | |
1f2f436a A |
116 | * directly -- and assumed always to succeed. Similarly, if you |
117 | * want something other than the system's free() to be called to | |
118 | * recycle memory acquired from MALLOC, #define FREE to be the | |
119 | * name of the alternate routine. (FREE or free is only called in | |
120 | * pathological cases, e.g., in a gdtoa call after a gdtoa return in | |
121 | * mode 3 with thousands of digits requested.) | |
9385eb3d A |
122 | * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making |
123 | * memory allocations from a private pool of memory when possible. | |
124 | * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, | |
125 | * unless #defined to be a different length. This default length | |
126 | * suffices to get rid of MALLOC calls except for unusual cases, | |
127 | * such as decimal-to-binary conversion of a very long string of | |
128 | * digits. When converting IEEE double precision values, the | |
129 | * longest string gdtoa can return is about 751 bytes long. For | |
130 | * conversions by strtod of strings of 800 digits and all gdtoa | |
131 | * conversions of IEEE doubles in single-threaded executions with | |
132 | * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with | |
133 | * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. | |
1f2f436a A |
134 | * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK |
135 | * #defined automatically on IEEE systems. On such systems, | |
136 | * when INFNAN_CHECK is #defined, strtod checks | |
137 | * for Infinity and NaN (case insensitively). | |
9385eb3d A |
138 | * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, |
139 | * strtodg also accepts (case insensitively) strings of the form | |
34e8f829 A |
140 | * NaN(x), where x is a string of hexadecimal digits (optionally |
141 | * preceded by 0x or 0X) and spaces; if there is only one string | |
142 | * of hexadecimal digits, it is taken for the fraction bits of the | |
143 | * resulting NaN; if there are two or more strings of hexadecimal | |
144 | * digits, each string is assigned to the next available sequence | |
145 | * of 32-bit words of fractions bits (starting with the most | |
146 | * significant), right-aligned in each sequence. | |
147 | * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)" | |
148 | * is consumed even when ... has the wrong form (in which case the | |
149 | * "(...)" is consumed but ignored). | |
9385eb3d A |
150 | * #define MULTIPLE_THREADS if the system offers preemptively scheduled |
151 | * multiple threads. In this case, you must provide (or suitably | |
152 | * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed | |
153 | * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed | |
154 | * in pow5mult, ensures lazy evaluation of only one copy of high | |
155 | * powers of 5; omitting this lock would introduce a small | |
156 | * probability of wasting memory, but would otherwise be harmless.) | |
157 | * You must also invoke freedtoa(s) to free the value s returned by | |
158 | * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. | |
159 | * #define IMPRECISE_INEXACT if you do not care about the setting of | |
160 | * the STRTOG_Inexact bits in the special case of doing IEEE double | |
34e8f829 | 161 | * precision conversions (which could also be done by the strtod in |
9385eb3d A |
162 | * dtoa.c). |
163 | * #define NO_HEX_FP to disable recognition of C9x's hexadecimal | |
164 | * floating-point constants. | |
165 | * #define -DNO_ERRNO to suppress setting errno (in strtod.c and | |
166 | * strtodg.c). | |
167 | * #define NO_STRING_H to use private versions of memcpy. | |
168 | * On some K&R systems, it may also be necessary to | |
169 | * #define DECLARE_SIZE_T in this case. | |
9385eb3d A |
170 | * #define USE_LOCALE to use the current locale's decimal_point value. |
171 | */ | |
172 | ||
173 | #ifndef GDTOAIMP_H_INCLUDED | |
174 | #define GDTOAIMP_H_INCLUDED | |
175 | #include "gdtoa.h" | |
3d9156a7 | 176 | #include "gd_qnan.h" |
34e8f829 A |
177 | #ifdef Honor_FLT_ROUNDS |
178 | #include <fenv.h> | |
179 | #endif | |
9385eb3d A |
180 | |
181 | #ifdef DEBUG | |
182 | #include "stdio.h" | |
183 | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} | |
184 | #endif | |
185 | ||
9385eb3d A |
186 | #include "stdlib.h" |
187 | #include "string.h" | |
9385eb3d A |
188 | |
189 | #ifdef KR_headers | |
190 | #define Char char | |
191 | #else | |
192 | #define Char void | |
193 | #endif | |
194 | ||
195 | #ifdef MALLOC | |
196 | extern Char *MALLOC ANSI((size_t)); | |
197 | #else | |
198 | #define MALLOC malloc | |
199 | #endif | |
200 | ||
9385eb3d A |
201 | #undef IEEE_Arith |
202 | #undef Avoid_Underflow | |
203 | #ifdef IEEE_MC68k | |
204 | #define IEEE_Arith | |
205 | #endif | |
206 | #ifdef IEEE_8087 | |
207 | #define IEEE_Arith | |
208 | #endif | |
209 | ||
210 | #include "errno.h" | |
211 | #ifdef Bad_float_h | |
212 | ||
213 | #ifdef IEEE_Arith | |
214 | #define DBL_DIG 15 | |
215 | #define DBL_MAX_10_EXP 308 | |
216 | #define DBL_MAX_EXP 1024 | |
217 | #define FLT_RADIX 2 | |
218 | #define DBL_MAX 1.7976931348623157e+308 | |
219 | #endif | |
220 | ||
221 | #ifdef IBM | |
222 | #define DBL_DIG 16 | |
223 | #define DBL_MAX_10_EXP 75 | |
224 | #define DBL_MAX_EXP 63 | |
225 | #define FLT_RADIX 16 | |
226 | #define DBL_MAX 7.2370055773322621e+75 | |
227 | #endif | |
228 | ||
229 | #ifdef VAX | |
230 | #define DBL_DIG 16 | |
231 | #define DBL_MAX_10_EXP 38 | |
232 | #define DBL_MAX_EXP 127 | |
233 | #define FLT_RADIX 2 | |
234 | #define DBL_MAX 1.7014118346046923e+38 | |
235 | #define n_bigtens 2 | |
236 | #endif | |
237 | ||
238 | #ifndef LONG_MAX | |
239 | #define LONG_MAX 2147483647 | |
240 | #endif | |
241 | ||
242 | #else /* ifndef Bad_float_h */ | |
243 | #include "float.h" | |
244 | #endif /* Bad_float_h */ | |
245 | ||
246 | #ifdef IEEE_Arith | |
247 | #define Scale_Bit 0x10 | |
248 | #define n_bigtens 5 | |
249 | #endif | |
250 | ||
251 | #ifdef IBM | |
252 | #define n_bigtens 3 | |
253 | #endif | |
254 | ||
255 | #ifdef VAX | |
256 | #define n_bigtens 2 | |
257 | #endif | |
258 | ||
259 | #ifndef __MATH_H__ | |
260 | #include "math.h" | |
261 | #endif | |
262 | ||
263 | #ifdef __cplusplus | |
264 | extern "C" { | |
265 | #endif | |
266 | ||
267 | #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 | |
268 | Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. | |
269 | #endif | |
270 | ||
271 | typedef union { double d; ULong L[2]; } U; | |
272 | ||
9385eb3d | 273 | #ifdef IEEE_8087 |
1f2f436a A |
274 | #define word0(x) (x)->L[1] |
275 | #define word1(x) (x)->L[0] | |
9385eb3d | 276 | #else |
1f2f436a A |
277 | #define word0(x) (x)->L[0] |
278 | #define word1(x) (x)->L[1] | |
9385eb3d | 279 | #endif |
1f2f436a | 280 | #define dval(x) (x)->d |
9385eb3d A |
281 | |
282 | /* The following definition of Storeinc is appropriate for MIPS processors. | |
283 | * An alternative that might be better on some machines is | |
284 | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) | |
285 | */ | |
286 | #if defined(IEEE_8087) + defined(VAX) | |
287 | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ | |
288 | ((unsigned short *)a)[0] = (unsigned short)c, a++) | |
289 | #else | |
290 | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ | |
291 | ((unsigned short *)a)[1] = (unsigned short)c, a++) | |
292 | #endif | |
293 | ||
294 | /* #define P DBL_MANT_DIG */ | |
295 | /* Ten_pmax = floor(P*log(2)/log(5)) */ | |
296 | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ | |
297 | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ | |
298 | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ | |
299 | ||
300 | #ifdef IEEE_Arith | |
301 | #define Exp_shift 20 | |
302 | #define Exp_shift1 20 | |
303 | #define Exp_msk1 0x100000 | |
304 | #define Exp_msk11 0x100000 | |
305 | #define Exp_mask 0x7ff00000 | |
306 | #define P 53 | |
307 | #define Bias 1023 | |
308 | #define Emin (-1022) | |
309 | #define Exp_1 0x3ff00000 | |
310 | #define Exp_11 0x3ff00000 | |
311 | #define Ebits 11 | |
312 | #define Frac_mask 0xfffff | |
313 | #define Frac_mask1 0xfffff | |
314 | #define Ten_pmax 22 | |
315 | #define Bletch 0x10 | |
316 | #define Bndry_mask 0xfffff | |
317 | #define Bndry_mask1 0xfffff | |
318 | #define LSB 1 | |
319 | #define Sign_bit 0x80000000 | |
320 | #define Log2P 1 | |
321 | #define Tiny0 0 | |
322 | #define Tiny1 1 | |
323 | #define Quick_max 14 | |
324 | #define Int_max 14 | |
325 | ||
326 | #ifndef Flt_Rounds | |
327 | #ifdef FLT_ROUNDS | |
328 | #define Flt_Rounds FLT_ROUNDS | |
329 | #else | |
330 | #define Flt_Rounds 1 | |
331 | #endif | |
332 | #endif /*Flt_Rounds*/ | |
333 | ||
334 | #else /* ifndef IEEE_Arith */ | |
335 | #undef Sudden_Underflow | |
336 | #define Sudden_Underflow | |
337 | #ifdef IBM | |
338 | #undef Flt_Rounds | |
339 | #define Flt_Rounds 0 | |
340 | #define Exp_shift 24 | |
341 | #define Exp_shift1 24 | |
342 | #define Exp_msk1 0x1000000 | |
343 | #define Exp_msk11 0x1000000 | |
344 | #define Exp_mask 0x7f000000 | |
345 | #define P 14 | |
346 | #define Bias 65 | |
347 | #define Exp_1 0x41000000 | |
348 | #define Exp_11 0x41000000 | |
349 | #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ | |
350 | #define Frac_mask 0xffffff | |
351 | #define Frac_mask1 0xffffff | |
352 | #define Bletch 4 | |
353 | #define Ten_pmax 22 | |
354 | #define Bndry_mask 0xefffff | |
355 | #define Bndry_mask1 0xffffff | |
356 | #define LSB 1 | |
357 | #define Sign_bit 0x80000000 | |
358 | #define Log2P 4 | |
359 | #define Tiny0 0x100000 | |
360 | #define Tiny1 0 | |
361 | #define Quick_max 14 | |
362 | #define Int_max 15 | |
363 | #else /* VAX */ | |
364 | #undef Flt_Rounds | |
365 | #define Flt_Rounds 1 | |
366 | #define Exp_shift 23 | |
367 | #define Exp_shift1 7 | |
368 | #define Exp_msk1 0x80 | |
369 | #define Exp_msk11 0x800000 | |
370 | #define Exp_mask 0x7f80 | |
371 | #define P 56 | |
372 | #define Bias 129 | |
373 | #define Exp_1 0x40800000 | |
374 | #define Exp_11 0x4080 | |
375 | #define Ebits 8 | |
376 | #define Frac_mask 0x7fffff | |
377 | #define Frac_mask1 0xffff007f | |
378 | #define Ten_pmax 24 | |
379 | #define Bletch 2 | |
380 | #define Bndry_mask 0xffff007f | |
381 | #define Bndry_mask1 0xffff007f | |
382 | #define LSB 0x10000 | |
383 | #define Sign_bit 0x8000 | |
384 | #define Log2P 1 | |
385 | #define Tiny0 0x80 | |
386 | #define Tiny1 0 | |
387 | #define Quick_max 15 | |
388 | #define Int_max 15 | |
389 | #endif /* IBM, VAX */ | |
390 | #endif /* IEEE_Arith */ | |
391 | ||
392 | #ifndef IEEE_Arith | |
393 | #define ROUND_BIASED | |
394 | #endif | |
395 | ||
396 | #ifdef RND_PRODQUOT | |
397 | #define rounded_product(a,b) a = rnd_prod(a, b) | |
398 | #define rounded_quotient(a,b) a = rnd_quot(a, b) | |
399 | #ifdef KR_headers | |
400 | extern double rnd_prod(), rnd_quot(); | |
401 | #else | |
402 | extern double rnd_prod(double, double), rnd_quot(double, double); | |
403 | #endif | |
404 | #else | |
405 | #define rounded_product(a,b) a *= b | |
406 | #define rounded_quotient(a,b) a /= b | |
407 | #endif | |
408 | ||
409 | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) | |
410 | #define Big1 0xffffffff | |
411 | ||
412 | #undef Pack_16 | |
413 | #ifndef Pack_32 | |
414 | #define Pack_32 | |
415 | #endif | |
416 | ||
417 | #ifdef NO_LONG_LONG | |
418 | #undef ULLong | |
419 | #ifdef Just_16 | |
420 | #undef Pack_32 | |
421 | #define Pack_16 | |
422 | /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. | |
423 | * This makes some inner loops simpler and sometimes saves work | |
424 | * during multiplications, but it often seems to make things slightly | |
425 | * slower. Hence the default is now to store 32 bits per Long. | |
426 | */ | |
427 | #endif | |
428 | #else /* long long available */ | |
429 | #ifndef Llong | |
430 | #define Llong long long | |
431 | #endif | |
432 | #ifndef ULLong | |
433 | #define ULLong unsigned Llong | |
434 | #endif | |
435 | #endif /* NO_LONG_LONG */ | |
436 | ||
437 | #ifdef Pack_32 | |
438 | #define ULbits 32 | |
439 | #define kshift 5 | |
440 | #define kmask 31 | |
441 | #define ALL_ON 0xffffffff | |
442 | #else | |
443 | #define ULbits 16 | |
444 | #define kshift 4 | |
445 | #define kmask 15 | |
446 | #define ALL_ON 0xffff | |
447 | #endif | |
448 | ||
3d9156a7 A |
449 | #ifndef MULTIPLE_THREADS |
450 | #define ACQUIRE_DTOA_LOCK(n) /*nothing*/ | |
451 | #define FREE_DTOA_LOCK(n) /*nothing*/ | |
452 | #endif | |
9385eb3d | 453 | |
1f2f436a | 454 | #define Kmax 9 |
9385eb3d A |
455 | |
456 | struct | |
457 | Bigint { | |
458 | struct Bigint *next; | |
459 | int k, maxwds, sign, wds; | |
460 | ULong x[1]; | |
461 | }; | |
462 | ||
463 | typedef struct Bigint Bigint; | |
464 | ||
465 | #ifdef NO_STRING_H | |
466 | #ifdef DECLARE_SIZE_T | |
467 | typedef unsigned int size_t; | |
468 | #endif | |
469 | extern void memcpy_D2A ANSI((void*, const void*, size_t)); | |
470 | #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) | |
471 | #else /* !NO_STRING_H */ | |
472 | #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) | |
473 | #endif /* NO_STRING_H */ | |
474 | ||
3d9156a7 A |
475 | #define Balloc Balloc_D2A |
476 | #define Bfree Bfree_D2A | |
477 | #define ULtoQ ULtoQ_D2A | |
478 | #define ULtof ULtof_D2A | |
479 | #define ULtod ULtod_D2A | |
480 | #define ULtodd ULtodd_D2A | |
481 | #define ULtox ULtox_D2A | |
482 | #define ULtoxL ULtoxL_D2A | |
483 | #define any_on any_on_D2A | |
484 | #define b2d b2d_D2A | |
485 | #define bigtens bigtens_D2A | |
486 | #define cmp cmp_D2A | |
487 | #define copybits copybits_D2A | |
488 | #define d2b d2b_D2A | |
489 | #define decrement decrement_D2A | |
490 | #define diff diff_D2A | |
491 | #define dtoa_result dtoa_result_D2A | |
492 | #define g__fmt g__fmt_D2A | |
493 | #define gethex gethex_D2A | |
494 | #define hexdig hexdig_D2A | |
495 | #define hexnan hexnan_D2A | |
496 | #define hi0bits(x) hi0bits_D2A((ULong)(x)) | |
497 | #define i2b i2b_D2A | |
498 | #define increment increment_D2A | |
499 | #define lo0bits lo0bits_D2A | |
500 | #define lshift lshift_D2A | |
501 | #define match match_D2A | |
502 | #define mult mult_D2A | |
503 | #define multadd multadd_D2A | |
504 | #define nrv_alloc nrv_alloc_D2A | |
505 | #define pow5mult pow5mult_D2A | |
506 | #define quorem quorem_D2A | |
507 | #define ratio ratio_D2A | |
508 | #define rshift rshift_D2A | |
509 | #define rv_alloc rv_alloc_D2A | |
510 | #define s2b s2b_D2A | |
511 | #define set_ones set_ones_D2A | |
512 | #define strcp strcp_D2A | |
513 | #define strtoIg strtoIg_D2A | |
514 | #define sum sum_D2A | |
515 | #define tens tens_D2A | |
516 | #define tinytens tinytens_D2A | |
517 | #define tinytens tinytens_D2A | |
518 | #define trailz trailz_D2A | |
519 | #define ulp ulp_D2A | |
9385eb3d A |
520 | |
521 | extern char *dtoa_result; | |
522 | extern CONST double bigtens[], tens[], tinytens[]; | |
523 | extern unsigned char hexdig[]; | |
524 | ||
525 | extern Bigint *Balloc ANSI((int)); | |
526 | extern void Bfree ANSI((Bigint*)); | |
527 | extern void ULtof ANSI((ULong*, ULong*, Long, int)); | |
528 | extern void ULtod ANSI((ULong*, ULong*, Long, int)); | |
529 | extern void ULtodd ANSI((ULong*, ULong*, Long, int)); | |
530 | extern void ULtoQ ANSI((ULong*, ULong*, Long, int)); | |
531 | extern void ULtox ANSI((UShort*, ULong*, Long, int)); | |
532 | extern void ULtoxL ANSI((ULong*, ULong*, Long, int)); | |
533 | extern ULong any_on ANSI((Bigint*, int)); | |
534 | extern double b2d ANSI((Bigint*, int*)); | |
535 | extern int cmp ANSI((Bigint*, Bigint*)); | |
536 | extern void copybits ANSI((ULong*, int, Bigint*)); | |
537 | extern Bigint *d2b ANSI((double, int*, int*)); | |
34e8f829 | 538 | extern void decrement ANSI((Bigint*)); |
9385eb3d A |
539 | extern Bigint *diff ANSI((Bigint*, Bigint*)); |
540 | extern char *dtoa ANSI((double d, int mode, int ndigits, | |
541 | int *decpt, int *sign, char **rve)); | |
34e8f829 | 542 | extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t)); |
9385eb3d A |
543 | extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int)); |
544 | extern void hexdig_init_D2A(Void); | |
545 | extern int hexnan ANSI((CONST char**, FPI*, ULong*)); | |
3d9156a7 | 546 | extern int hi0bits_D2A ANSI((ULong)); |
9385eb3d A |
547 | extern Bigint *i2b ANSI((int)); |
548 | extern Bigint *increment ANSI((Bigint*)); | |
549 | extern int lo0bits ANSI((ULong*)); | |
550 | extern Bigint *lshift ANSI((Bigint*, int)); | |
551 | extern int match ANSI((CONST char**, char*)); | |
552 | extern Bigint *mult ANSI((Bigint*, Bigint*)); | |
553 | extern Bigint *multadd ANSI((Bigint*, int, int)); | |
554 | extern char *nrv_alloc ANSI((char*, char **, int)); | |
555 | extern Bigint *pow5mult ANSI((Bigint*, int)); | |
556 | extern int quorem ANSI((Bigint*, Bigint*)); | |
557 | extern double ratio ANSI((Bigint*, Bigint*)); | |
558 | extern void rshift ANSI((Bigint*, int)); | |
559 | extern char *rv_alloc ANSI((int)); | |
1f2f436a | 560 | extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int)); |
9385eb3d A |
561 | extern Bigint *set_ones ANSI((Bigint*, int)); |
562 | extern char *strcp ANSI((char*, const char*)); | |
9385eb3d | 563 | extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*)); |
9385eb3d | 564 | extern double strtod ANSI((const char *s00, char **se)); |
9385eb3d A |
565 | extern Bigint *sum ANSI((Bigint*, Bigint*)); |
566 | extern int trailz ANSI((Bigint*)); | |
1f2f436a | 567 | extern double ulp ANSI((U*)); |
9385eb3d A |
568 | |
569 | #ifdef __cplusplus | |
570 | } | |
571 | #endif | |
3d9156a7 A |
572 | /* |
573 | * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to | |
574 | * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, | |
575 | * respectively), but now are determined by compiling and running | |
576 | * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. | |
577 | * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... | |
578 | * and -DNAN_WORD1=... values if necessary. This should still work. | |
579 | * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) | |
580 | */ | |
9385eb3d | 581 | #ifdef IEEE_Arith |
1f2f436a A |
582 | #ifndef NO_INFNAN_CHECK |
583 | #undef INFNAN_CHECK | |
584 | #define INFNAN_CHECK | |
585 | #endif | |
9385eb3d A |
586 | #ifdef IEEE_MC68k |
587 | #define _0 0 | |
588 | #define _1 1 | |
3d9156a7 A |
589 | #ifndef NAN_WORD0 |
590 | #define NAN_WORD0 d_QNAN0 | |
591 | #endif | |
592 | #ifndef NAN_WORD1 | |
593 | #define NAN_WORD1 d_QNAN1 | |
594 | #endif | |
9385eb3d A |
595 | #else |
596 | #define _0 1 | |
597 | #define _1 0 | |
9385eb3d | 598 | #ifndef NAN_WORD0 |
3d9156a7 | 599 | #define NAN_WORD0 d_QNAN1 |
9385eb3d | 600 | #endif |
9385eb3d | 601 | #ifndef NAN_WORD1 |
3d9156a7 A |
602 | #define NAN_WORD1 d_QNAN0 |
603 | #endif | |
604 | #endif | |
605 | #else | |
606 | #undef INFNAN_CHECK | |
9385eb3d | 607 | #endif |
9385eb3d A |
608 | |
609 | #undef SI | |
610 | #ifdef Sudden_Underflow | |
611 | #define SI 1 | |
612 | #else | |
613 | #define SI 0 | |
614 | #endif | |
615 | ||
616 | #endif /* GDTOAIMP_H_INCLUDED */ |