]>
git.saurik.com Git - apple/libc.git/blob - db/btree/FreeBSD/bt_split.c
2 * Copyright (c) 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid
[] = "@(#)bt_split.c 8.9 (Berkeley) 7/26/94";
39 #endif /* LIBC_SCCS and not lint */
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD: src/lib/libc/db/btree/bt_split.c,v 1.5 2003/02/16 17:29:09 nectar Exp $");
43 #include <sys/types.h>
53 static int bt_broot(BTREE
*, PAGE
*, PAGE
*, PAGE
*);
54 static PAGE
*bt_page (BTREE
*, PAGE
*, PAGE
**, PAGE
**, indx_t
*, size_t);
55 static int bt_preserve(BTREE
*, pgno_t
);
56 static PAGE
*bt_psplit (BTREE
*, PAGE
*, PAGE
*, PAGE
*, indx_t
*, size_t);
57 static PAGE
*bt_root (BTREE
*, PAGE
*, PAGE
**, PAGE
**, indx_t
*, size_t);
58 static int bt_rroot(BTREE
*, PAGE
*, PAGE
*, PAGE
*);
59 static recno_t
rec_total(PAGE
*);
62 u_long bt_rootsplit
, bt_split
, bt_sortsplit
, bt_pfxsaved
;
66 * __BT_SPLIT -- Split the tree.
72 * data: data to insert
73 * flags: BIGKEY/BIGDATA flags
75 * skip: index to leave open
78 * RET_ERROR, RET_SUCCESS
81 __bt_split(t
, sp
, key
, data
, flags
, ilen
, argskip
)
84 const DBT
*key
, *data
;
93 PAGE
*h
, *l
, *r
, *lchild
, *rchild
;
96 u_int32_t n
, nbytes
, nksize
;
101 * Split the page into two pages, l and r. The split routines return
102 * a pointer to the page into which the key should be inserted and with
103 * skip set to the offset which should be used. Additionally, l and r
107 h
= sp
->pgno
== P_ROOT
?
108 bt_root(t
, sp
, &l
, &r
, &skip
, ilen
) :
109 bt_page(t
, sp
, &l
, &r
, &skip
, ilen
);
114 * Insert the new key/data pair into the leaf page. (Key inserts
115 * always cause a leaf page to split first.)
117 h
->linp
[skip
] = h
->upper
-= ilen
;
118 dest
= (char *)h
+ h
->upper
;
119 if (F_ISSET(t
, R_RECNO
))
120 WR_RLEAF(dest
, data
, flags
)
122 WR_BLEAF(dest
, key
, data
, flags
)
124 /* If the root page was split, make it look right. */
125 if (sp
->pgno
== P_ROOT
&&
126 (F_ISSET(t
, R_RECNO
) ?
127 bt_rroot(t
, sp
, l
, r
) : bt_broot(t
, sp
, l
, r
)) == RET_ERROR
)
131 * Now we walk the parent page stack -- a LIFO stack of the pages that
132 * were traversed when we searched for the page that split. Each stack
133 * entry is a page number and a page index offset. The offset is for
134 * the page traversed on the search. We've just split a page, so we
135 * have to insert a new key into the parent page.
137 * If the insert into the parent page causes it to split, may have to
138 * continue splitting all the way up the tree. We stop if the root
139 * splits or the page inserted into didn't have to split to hold the
140 * new key. Some algorithms replace the key for the old page as well
141 * as the new page. We don't, as there's no reason to believe that the
142 * first key on the old page is any better than the key we have, and,
143 * in the case of a key being placed at index 0 causing the split, the
144 * key is unavailable.
146 * There are a maximum of 5 pages pinned at any time. We keep the left
147 * and right pages pinned while working on the parent. The 5 are the
148 * two children, left parent and right parent (when the parent splits)
149 * and the root page or the overflow key page when calling bt_preserve.
150 * This code must make sure that all pins are released other than the
151 * root page or overflow page which is unlocked elsewhere.
153 while ((parent
= BT_POP(t
)) != NULL
) {
157 /* Get the parent page. */
158 if ((h
= mpool_get(t
->bt_mp
, parent
->pgno
, 0)) == NULL
)
162 * The new key goes ONE AFTER the index, because the split
165 skip
= parent
->index
+ 1;
168 * Calculate the space needed on the parent page.
170 * Prefix trees: space hack when inserting into BINTERNAL
171 * pages. Retain only what's needed to distinguish between
172 * the new entry and the LAST entry on the page to its left.
173 * If the keys compare equal, retain the entire key. Note,
174 * we don't touch overflow keys, and the entire key must be
175 * retained for the next-to-left most key on the leftmost
176 * page of each level, or the search will fail. Applicable
177 * ONLY to internal pages that have leaf pages as children.
178 * Further reduction of the key between pairs of internal
179 * pages loses too much information.
181 switch (rchild
->flags
& P_TYPE
) {
183 bi
= GETBINTERNAL(rchild
, 0);
184 nbytes
= NBINTERNAL(bi
->ksize
);
187 bl
= GETBLEAF(rchild
, 0);
188 nbytes
= NBINTERNAL(bl
->ksize
);
189 if (t
->bt_pfx
&& !(bl
->flags
& P_BIGKEY
) &&
190 (h
->prevpg
!= P_INVALID
|| skip
> 1)) {
191 tbl
= GETBLEAF(lchild
, NEXTINDEX(lchild
) - 1);
196 nksize
= t
->bt_pfx(&a
, &b
);
197 n
= NBINTERNAL(nksize
);
200 bt_pfxsaved
+= nbytes
- n
;
216 /* Split the parent page if necessary or shift the indices. */
217 if (h
->upper
- h
->lower
< nbytes
+ sizeof(indx_t
)) {
219 h
= h
->pgno
== P_ROOT
?
220 bt_root(t
, h
, &l
, &r
, &skip
, nbytes
) :
221 bt_page(t
, h
, &l
, &r
, &skip
, nbytes
);
226 if (skip
< (nxtindex
= NEXTINDEX(h
)))
227 memmove(h
->linp
+ skip
+ 1, h
->linp
+ skip
,
228 (nxtindex
- skip
) * sizeof(indx_t
));
229 h
->lower
+= sizeof(indx_t
);
233 /* Insert the key into the parent page. */
234 switch (rchild
->flags
& P_TYPE
) {
236 h
->linp
[skip
] = h
->upper
-= nbytes
;
237 dest
= (char *)h
+ h
->linp
[skip
];
238 memmove(dest
, bi
, nbytes
);
239 ((BINTERNAL
*)dest
)->pgno
= rchild
->pgno
;
242 h
->linp
[skip
] = h
->upper
-= nbytes
;
243 dest
= (char *)h
+ h
->linp
[skip
];
244 WR_BINTERNAL(dest
, nksize
? nksize
: bl
->ksize
,
245 rchild
->pgno
, bl
->flags
& P_BIGKEY
);
246 memmove(dest
, bl
->bytes
, nksize
? nksize
: bl
->ksize
);
247 if (bl
->flags
& P_BIGKEY
&&
248 bt_preserve(t
, *(pgno_t
*)bl
->bytes
) == RET_ERROR
)
253 * Update the left page count. If split
254 * added at index 0, fix the correct page.
257 dest
= (char *)h
+ h
->linp
[skip
- 1];
259 dest
= (char *)l
+ l
->linp
[NEXTINDEX(l
) - 1];
260 ((RINTERNAL
*)dest
)->nrecs
= rec_total(lchild
);
261 ((RINTERNAL
*)dest
)->pgno
= lchild
->pgno
;
263 /* Update the right page count. */
264 h
->linp
[skip
] = h
->upper
-= nbytes
;
265 dest
= (char *)h
+ h
->linp
[skip
];
266 ((RINTERNAL
*)dest
)->nrecs
= rec_total(rchild
);
267 ((RINTERNAL
*)dest
)->pgno
= rchild
->pgno
;
271 * Update the left page count. If split
272 * added at index 0, fix the correct page.
275 dest
= (char *)h
+ h
->linp
[skip
- 1];
277 dest
= (char *)l
+ l
->linp
[NEXTINDEX(l
) - 1];
278 ((RINTERNAL
*)dest
)->nrecs
= NEXTINDEX(lchild
);
279 ((RINTERNAL
*)dest
)->pgno
= lchild
->pgno
;
281 /* Update the right page count. */
282 h
->linp
[skip
] = h
->upper
-= nbytes
;
283 dest
= (char *)h
+ h
->linp
[skip
];
284 ((RINTERNAL
*)dest
)->nrecs
= NEXTINDEX(rchild
);
285 ((RINTERNAL
*)dest
)->pgno
= rchild
->pgno
;
291 /* Unpin the held pages. */
293 mpool_put(t
->bt_mp
, h
, MPOOL_DIRTY
);
297 /* If the root page was split, make it look right. */
298 if (sp
->pgno
== P_ROOT
&&
299 (F_ISSET(t
, R_RECNO
) ?
300 bt_rroot(t
, sp
, l
, r
) : bt_broot(t
, sp
, l
, r
)) == RET_ERROR
)
303 mpool_put(t
->bt_mp
, lchild
, MPOOL_DIRTY
);
304 mpool_put(t
->bt_mp
, rchild
, MPOOL_DIRTY
);
307 /* Unpin the held pages. */
308 mpool_put(t
->bt_mp
, l
, MPOOL_DIRTY
);
309 mpool_put(t
->bt_mp
, r
, MPOOL_DIRTY
);
311 /* Clear any pages left on the stack. */
312 return (RET_SUCCESS
);
315 * If something fails in the above loop we were already walking back
316 * up the tree and the tree is now inconsistent. Nothing much we can
317 * do about it but release any memory we're holding.
319 err1
: mpool_put(t
->bt_mp
, lchild
, MPOOL_DIRTY
);
320 mpool_put(t
->bt_mp
, rchild
, MPOOL_DIRTY
);
322 err2
: mpool_put(t
->bt_mp
, l
, 0);
323 mpool_put(t
->bt_mp
, r
, 0);
324 __dbpanic(t
->bt_dbp
);
329 * BT_PAGE -- Split a non-root page of a btree.
334 * lp: pointer to left page pointer
335 * rp: pointer to right page pointer
336 * skip: pointer to index to leave open
337 * ilen: insert length
340 * Pointer to page in which to insert or NULL on error.
343 bt_page(t
, h
, lp
, rp
, skip
, ilen
)
355 /* Put the new right page for the split into place. */
356 if ((r
= __bt_new(t
, &npg
)) == NULL
)
359 r
->lower
= BTDATAOFF
;
360 r
->upper
= t
->bt_psize
;
361 r
->nextpg
= h
->nextpg
;
363 r
->flags
= h
->flags
& P_TYPE
;
366 * If we're splitting the last page on a level because we're appending
367 * a key to it (skip is NEXTINDEX()), it's likely that the data is
368 * sorted. Adding an empty page on the side of the level is less work
369 * and can push the fill factor much higher than normal. If we're
370 * wrong it's no big deal, we'll just do the split the right way next
371 * time. It may look like it's equally easy to do a similar hack for
372 * reverse sorted data, that is, split the tree left, but it's not.
375 if (h
->nextpg
== P_INVALID
&& *skip
== NEXTINDEX(h
)) {
380 r
->lower
= BTDATAOFF
+ sizeof(indx_t
);
387 /* Put the new left page for the split into place. */
388 if ((l
= (PAGE
*)malloc(t
->bt_psize
)) == NULL
) {
389 mpool_put(t
->bt_mp
, r
, 0);
393 memset(l
, 0xff, t
->bt_psize
);
397 l
->prevpg
= h
->prevpg
;
398 l
->lower
= BTDATAOFF
;
399 l
->upper
= t
->bt_psize
;
400 l
->flags
= h
->flags
& P_TYPE
;
402 /* Fix up the previous pointer of the page after the split page. */
403 if (h
->nextpg
!= P_INVALID
) {
404 if ((tp
= mpool_get(t
->bt_mp
, h
->nextpg
, 0)) == NULL
) {
406 /* XXX mpool_free(t->bt_mp, r->pgno); */
409 tp
->prevpg
= r
->pgno
;
410 mpool_put(t
->bt_mp
, tp
, MPOOL_DIRTY
);
414 * Split right. The key/data pairs aren't sorted in the btree page so
415 * it's simpler to copy the data from the split page onto two new pages
416 * instead of copying half the data to the right page and compacting
417 * the left page in place. Since the left page can't change, we have
418 * to swap the original and the allocated left page after the split.
420 tp
= bt_psplit(t
, h
, l
, r
, skip
, ilen
);
422 /* Move the new left page onto the old left page. */
423 memmove(h
, l
, t
->bt_psize
);
434 * BT_ROOT -- Split the root page of a btree.
439 * lp: pointer to left page pointer
440 * rp: pointer to right page pointer
441 * skip: pointer to index to leave open
442 * ilen: insert length
445 * Pointer to page in which to insert or NULL on error.
448 bt_root(t
, h
, lp
, rp
, skip
, ilen
)
461 /* Put the new left and right pages for the split into place. */
462 if ((l
= __bt_new(t
, &lnpg
)) == NULL
||
463 (r
= __bt_new(t
, &rnpg
)) == NULL
)
469 l
->prevpg
= r
->nextpg
= P_INVALID
;
470 l
->lower
= r
->lower
= BTDATAOFF
;
471 l
->upper
= r
->upper
= t
->bt_psize
;
472 l
->flags
= r
->flags
= h
->flags
& P_TYPE
;
474 /* Split the root page. */
475 tp
= bt_psplit(t
, h
, l
, r
, skip
, ilen
);
483 * BT_RROOT -- Fix up the recno root page after it has been split.
492 * RET_ERROR, RET_SUCCESS
501 /* Insert the left and right keys, set the header information. */
502 h
->linp
[0] = h
->upper
= t
->bt_psize
- NRINTERNAL
;
503 dest
= (char *)h
+ h
->upper
;
505 l
->flags
& P_RLEAF
? NEXTINDEX(l
) : rec_total(l
), l
->pgno
);
507 h
->linp
[1] = h
->upper
-= NRINTERNAL
;
508 dest
= (char *)h
+ h
->upper
;
510 r
->flags
& P_RLEAF
? NEXTINDEX(r
) : rec_total(r
), r
->pgno
);
512 h
->lower
= BTDATAOFF
+ 2 * sizeof(indx_t
);
514 /* Unpin the root page, set to recno internal page. */
516 h
->flags
|= P_RINTERNAL
;
517 mpool_put(t
->bt_mp
, h
, MPOOL_DIRTY
);
519 return (RET_SUCCESS
);
523 * BT_BROOT -- Fix up the btree root page after it has been split.
532 * RET_ERROR, RET_SUCCESS
545 * If the root page was a leaf page, change it into an internal page.
546 * We copy the key we split on (but not the key's data, in the case of
547 * a leaf page) to the new root page.
549 * The btree comparison code guarantees that the left-most key on any
550 * level of the tree is never used, so it doesn't need to be filled in.
552 nbytes
= NBINTERNAL(0);
553 h
->linp
[0] = h
->upper
= t
->bt_psize
- nbytes
;
554 dest
= (char *)h
+ h
->upper
;
555 WR_BINTERNAL(dest
, 0, l
->pgno
, 0);
557 switch (h
->flags
& P_TYPE
) {
560 nbytes
= NBINTERNAL(bl
->ksize
);
561 h
->linp
[1] = h
->upper
-= nbytes
;
562 dest
= (char *)h
+ h
->upper
;
563 WR_BINTERNAL(dest
, bl
->ksize
, r
->pgno
, 0);
564 memmove(dest
, bl
->bytes
, bl
->ksize
);
567 * If the key is on an overflow page, mark the overflow chain
568 * so it isn't deleted when the leaf copy of the key is deleted.
570 if (bl
->flags
& P_BIGKEY
&&
571 bt_preserve(t
, *(pgno_t
*)bl
->bytes
) == RET_ERROR
)
575 bi
= GETBINTERNAL(r
, 0);
576 nbytes
= NBINTERNAL(bi
->ksize
);
577 h
->linp
[1] = h
->upper
-= nbytes
;
578 dest
= (char *)h
+ h
->upper
;
579 memmove(dest
, bi
, nbytes
);
580 ((BINTERNAL
*)dest
)->pgno
= r
->pgno
;
586 /* There are two keys on the page. */
587 h
->lower
= BTDATAOFF
+ 2 * sizeof(indx_t
);
589 /* Unpin the root page, set to btree internal page. */
591 h
->flags
|= P_BINTERNAL
;
592 mpool_put(t
->bt_mp
, h
, MPOOL_DIRTY
);
594 return (RET_SUCCESS
);
598 * BT_PSPLIT -- Do the real work of splitting the page.
602 * h: page to be split
603 * l: page to put lower half of data
604 * r: page to put upper half of data
605 * pskip: pointer to index to leave open
606 * ilen: insert length
609 * Pointer to page in which to insert.
612 bt_psplit(t
, h
, l
, r
, pskip
, ilen
)
624 indx_t full
, half
, nxt
, off
, skip
, top
, used
;
626 int bigkeycnt
, isbigkey
;
629 * Split the data to the left and right pages. Leave the skip index
630 * open. Additionally, make some effort not to split on an overflow
631 * key. This makes internal page processing faster and can save
632 * space as overflow keys used by internal pages are never deleted.
636 full
= t
->bt_psize
- BTDATAOFF
;
639 for (nxt
= off
= 0, top
= NEXTINDEX(h
); nxt
< top
; ++off
) {
642 isbigkey
= 0; /* XXX: not really known. */
644 switch (h
->flags
& P_TYPE
) {
646 src
= bi
= GETBINTERNAL(h
, nxt
);
647 nbytes
= NBINTERNAL(bi
->ksize
);
648 isbigkey
= bi
->flags
& P_BIGKEY
;
651 src
= bl
= GETBLEAF(h
, nxt
);
653 isbigkey
= bl
->flags
& P_BIGKEY
;
656 src
= GETRINTERNAL(h
, nxt
);
661 src
= rl
= GETRLEAF(h
, nxt
);
670 * If the key/data pairs are substantial fractions of the max
671 * possible size for the page, it's possible to get situations
672 * where we decide to try and copy too much onto the left page.
673 * Make sure that doesn't happen.
675 if ((skip
<= off
&& used
+ nbytes
+ sizeof(indx_t
) >= full
)
681 /* Copy the key/data pair, if not the skipped index. */
685 l
->linp
[off
] = l
->upper
-= nbytes
;
686 memmove((char *)l
+ l
->upper
, src
, nbytes
);
689 used
+= nbytes
+ sizeof(indx_t
);
691 if (!isbigkey
|| bigkeycnt
== 3)
699 * Off is the last offset that's valid for the left page.
700 * Nxt is the first offset to be placed on the right page.
702 l
->lower
+= (off
+ 1) * sizeof(indx_t
);
705 * If splitting the page that the cursor was on, the cursor has to be
706 * adjusted to point to the same record as before the split. If the
707 * cursor is at or past the skipped slot, the cursor is incremented by
708 * one. If the cursor is on the right page, it is decremented by the
709 * number of records split to the left page.
712 if (F_ISSET(c
, CURS_INIT
) && c
->pg
.pgno
== h
->pgno
) {
713 if (c
->pg
.index
>= skip
)
715 if (c
->pg
.index
< nxt
) /* Left page. */
716 c
->pg
.pgno
= l
->pgno
;
717 else { /* Right page. */
718 c
->pg
.pgno
= r
->pgno
;
724 * If the skipped index was on the left page, just return that page.
725 * Otherwise, adjust the skip index to reflect the new position on
736 for (off
= 0; nxt
< top
; ++off
) {
741 switch (h
->flags
& P_TYPE
) {
743 src
= bi
= GETBINTERNAL(h
, nxt
);
744 nbytes
= NBINTERNAL(bi
->ksize
);
747 src
= bl
= GETBLEAF(h
, nxt
);
751 src
= GETRINTERNAL(h
, nxt
);
755 src
= rl
= GETRLEAF(h
, nxt
);
762 r
->linp
[off
] = r
->upper
-= nbytes
;
763 memmove((char *)r
+ r
->upper
, src
, nbytes
);
765 r
->lower
+= off
* sizeof(indx_t
);
767 /* If the key is being appended to the page, adjust the index. */
769 r
->lower
+= sizeof(indx_t
);
775 * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
777 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
778 * record that references them gets deleted. Chains pointed to by internal
779 * pages never get deleted. This routine marks a chain as pointed to by an
784 * pg: page number of first page in the chain.
787 * RET_SUCCESS, RET_ERROR.
796 if ((h
= mpool_get(t
->bt_mp
, pg
, 0)) == NULL
)
798 h
->flags
|= P_PRESERVE
;
799 mpool_put(t
->bt_mp
, h
, MPOOL_DIRTY
);
800 return (RET_SUCCESS
);
804 * REC_TOTAL -- Return the number of recno entries below a page.
810 * The number of recno entries below a page.
813 * These values could be set by the bt_psplit routine. The problem is that the
814 * entry has to be popped off of the stack etc. or the values have to be passed
815 * all the way back to bt_split/bt_rroot and it's not very clean.
824 for (recs
= 0, nxt
= 0, top
= NEXTINDEX(h
); nxt
< top
; ++nxt
)
825 recs
+= GETRINTERNAL(h
, nxt
)->nrecs
;