]>
Commit | Line | Data |
---|---|---|
9385eb3d A |
1 | /*- |
2 | * Copyright (c) 1990, 1993, 1994 | |
e9ce8d39 A |
3 | * The Regents of the University of California. All rights reserved. |
4 | * | |
5 | * This code is derived from software contributed to Berkeley by | |
6 | * Mike Olson. | |
7 | * | |
8 | * Redistribution and use in source and binary forms, with or without | |
9 | * modification, are permitted provided that the following conditions | |
10 | * are met: | |
11 | * 1. Redistributions of source code must retain the above copyright | |
12 | * notice, this list of conditions and the following disclaimer. | |
13 | * 2. Redistributions in binary form must reproduce the above copyright | |
14 | * notice, this list of conditions and the following disclaimer in the | |
15 | * documentation and/or other materials provided with the distribution. | |
16 | * 3. All advertising materials mentioning features or use of this software | |
17 | * must display the following acknowledgement: | |
18 | * This product includes software developed by the University of | |
19 | * California, Berkeley and its contributors. | |
20 | * 4. Neither the name of the University nor the names of its contributors | |
21 | * may be used to endorse or promote products derived from this software | |
22 | * without specific prior written permission. | |
23 | * | |
24 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
25 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
26 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
27 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
28 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
29 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
30 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
31 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
32 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
33 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
34 | * SUCH DAMAGE. | |
35 | */ | |
36 | ||
9385eb3d A |
37 | #if defined(LIBC_SCCS) && !defined(lint) |
38 | static char sccsid[] = "@(#)bt_split.c 8.9 (Berkeley) 7/26/94"; | |
39 | #endif /* LIBC_SCCS and not lint */ | |
40 | #include <sys/cdefs.h> | |
59e0d9fe | 41 | __FBSDID("$FreeBSD: src/lib/libc/db/btree/bt_split.c,v 1.5 2003/02/16 17:29:09 nectar Exp $"); |
e9ce8d39 A |
42 | |
43 | #include <sys/types.h> | |
44 | ||
45 | #include <limits.h> | |
46 | #include <stdio.h> | |
47 | #include <stdlib.h> | |
48 | #include <string.h> | |
49 | ||
50 | #include <db.h> | |
51 | #include "btree.h" | |
52 | ||
9385eb3d A |
53 | static int bt_broot(BTREE *, PAGE *, PAGE *, PAGE *); |
54 | static PAGE *bt_page (BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t); | |
55 | static int bt_preserve(BTREE *, pgno_t); | |
56 | static PAGE *bt_psplit (BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t); | |
57 | static PAGE *bt_root (BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t); | |
58 | static int bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *); | |
59 | static recno_t rec_total(PAGE *); | |
e9ce8d39 A |
60 | |
61 | #ifdef STATISTICS | |
62 | u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved; | |
63 | #endif | |
64 | ||
65 | /* | |
66 | * __BT_SPLIT -- Split the tree. | |
67 | * | |
68 | * Parameters: | |
69 | * t: tree | |
70 | * sp: page to split | |
71 | * key: key to insert | |
72 | * data: data to insert | |
73 | * flags: BIGKEY/BIGDATA flags | |
74 | * ilen: insert length | |
75 | * skip: index to leave open | |
76 | * | |
77 | * Returns: | |
78 | * RET_ERROR, RET_SUCCESS | |
79 | */ | |
80 | int | |
9385eb3d | 81 | __bt_split(t, sp, key, data, flags, ilen, argskip) |
e9ce8d39 A |
82 | BTREE *t; |
83 | PAGE *sp; | |
84 | const DBT *key, *data; | |
85 | int flags; | |
86 | size_t ilen; | |
9385eb3d | 87 | u_int32_t argskip; |
e9ce8d39 A |
88 | { |
89 | BINTERNAL *bi; | |
90 | BLEAF *bl, *tbl; | |
91 | DBT a, b; | |
92 | EPGNO *parent; | |
93 | PAGE *h, *l, *r, *lchild, *rchild; | |
94 | indx_t nxtindex; | |
9385eb3d A |
95 | u_int16_t skip; |
96 | u_int32_t n, nbytes, nksize; | |
e9ce8d39 A |
97 | int parentsplit; |
98 | char *dest; | |
99 | ||
100 | /* | |
101 | * Split the page into two pages, l and r. The split routines return | |
102 | * a pointer to the page into which the key should be inserted and with | |
103 | * skip set to the offset which should be used. Additionally, l and r | |
104 | * are pinned. | |
105 | */ | |
9385eb3d | 106 | skip = argskip; |
e9ce8d39 A |
107 | h = sp->pgno == P_ROOT ? |
108 | bt_root(t, sp, &l, &r, &skip, ilen) : | |
109 | bt_page(t, sp, &l, &r, &skip, ilen); | |
110 | if (h == NULL) | |
111 | return (RET_ERROR); | |
112 | ||
113 | /* | |
114 | * Insert the new key/data pair into the leaf page. (Key inserts | |
115 | * always cause a leaf page to split first.) | |
116 | */ | |
117 | h->linp[skip] = h->upper -= ilen; | |
118 | dest = (char *)h + h->upper; | |
9385eb3d | 119 | if (F_ISSET(t, R_RECNO)) |
e9ce8d39 A |
120 | WR_RLEAF(dest, data, flags) |
121 | else | |
122 | WR_BLEAF(dest, key, data, flags) | |
123 | ||
124 | /* If the root page was split, make it look right. */ | |
125 | if (sp->pgno == P_ROOT && | |
9385eb3d | 126 | (F_ISSET(t, R_RECNO) ? |
e9ce8d39 A |
127 | bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) |
128 | goto err2; | |
129 | ||
130 | /* | |
131 | * Now we walk the parent page stack -- a LIFO stack of the pages that | |
132 | * were traversed when we searched for the page that split. Each stack | |
133 | * entry is a page number and a page index offset. The offset is for | |
134 | * the page traversed on the search. We've just split a page, so we | |
135 | * have to insert a new key into the parent page. | |
136 | * | |
137 | * If the insert into the parent page causes it to split, may have to | |
138 | * continue splitting all the way up the tree. We stop if the root | |
139 | * splits or the page inserted into didn't have to split to hold the | |
140 | * new key. Some algorithms replace the key for the old page as well | |
141 | * as the new page. We don't, as there's no reason to believe that the | |
142 | * first key on the old page is any better than the key we have, and, | |
143 | * in the case of a key being placed at index 0 causing the split, the | |
144 | * key is unavailable. | |
145 | * | |
146 | * There are a maximum of 5 pages pinned at any time. We keep the left | |
147 | * and right pages pinned while working on the parent. The 5 are the | |
148 | * two children, left parent and right parent (when the parent splits) | |
149 | * and the root page or the overflow key page when calling bt_preserve. | |
150 | * This code must make sure that all pins are released other than the | |
151 | * root page or overflow page which is unlocked elsewhere. | |
152 | */ | |
153 | while ((parent = BT_POP(t)) != NULL) { | |
154 | lchild = l; | |
155 | rchild = r; | |
156 | ||
157 | /* Get the parent page. */ | |
158 | if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL) | |
159 | goto err2; | |
160 | ||
161 | /* | |
162 | * The new key goes ONE AFTER the index, because the split | |
163 | * was to the right. | |
164 | */ | |
165 | skip = parent->index + 1; | |
166 | ||
167 | /* | |
168 | * Calculate the space needed on the parent page. | |
169 | * | |
170 | * Prefix trees: space hack when inserting into BINTERNAL | |
171 | * pages. Retain only what's needed to distinguish between | |
172 | * the new entry and the LAST entry on the page to its left. | |
173 | * If the keys compare equal, retain the entire key. Note, | |
174 | * we don't touch overflow keys, and the entire key must be | |
175 | * retained for the next-to-left most key on the leftmost | |
176 | * page of each level, or the search will fail. Applicable | |
177 | * ONLY to internal pages that have leaf pages as children. | |
178 | * Further reduction of the key between pairs of internal | |
179 | * pages loses too much information. | |
180 | */ | |
181 | switch (rchild->flags & P_TYPE) { | |
182 | case P_BINTERNAL: | |
183 | bi = GETBINTERNAL(rchild, 0); | |
184 | nbytes = NBINTERNAL(bi->ksize); | |
185 | break; | |
186 | case P_BLEAF: | |
187 | bl = GETBLEAF(rchild, 0); | |
188 | nbytes = NBINTERNAL(bl->ksize); | |
189 | if (t->bt_pfx && !(bl->flags & P_BIGKEY) && | |
190 | (h->prevpg != P_INVALID || skip > 1)) { | |
191 | tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1); | |
192 | a.size = tbl->ksize; | |
193 | a.data = tbl->bytes; | |
194 | b.size = bl->ksize; | |
195 | b.data = bl->bytes; | |
196 | nksize = t->bt_pfx(&a, &b); | |
197 | n = NBINTERNAL(nksize); | |
198 | if (n < nbytes) { | |
199 | #ifdef STATISTICS | |
200 | bt_pfxsaved += nbytes - n; | |
201 | #endif | |
202 | nbytes = n; | |
203 | } else | |
204 | nksize = 0; | |
205 | } else | |
206 | nksize = 0; | |
207 | break; | |
208 | case P_RINTERNAL: | |
209 | case P_RLEAF: | |
210 | nbytes = NRINTERNAL; | |
211 | break; | |
212 | default: | |
213 | abort(); | |
214 | } | |
215 | ||
216 | /* Split the parent page if necessary or shift the indices. */ | |
217 | if (h->upper - h->lower < nbytes + sizeof(indx_t)) { | |
218 | sp = h; | |
219 | h = h->pgno == P_ROOT ? | |
220 | bt_root(t, h, &l, &r, &skip, nbytes) : | |
221 | bt_page(t, h, &l, &r, &skip, nbytes); | |
222 | if (h == NULL) | |
223 | goto err1; | |
224 | parentsplit = 1; | |
225 | } else { | |
226 | if (skip < (nxtindex = NEXTINDEX(h))) | |
227 | memmove(h->linp + skip + 1, h->linp + skip, | |
228 | (nxtindex - skip) * sizeof(indx_t)); | |
229 | h->lower += sizeof(indx_t); | |
230 | parentsplit = 0; | |
231 | } | |
232 | ||
233 | /* Insert the key into the parent page. */ | |
9385eb3d | 234 | switch (rchild->flags & P_TYPE) { |
e9ce8d39 A |
235 | case P_BINTERNAL: |
236 | h->linp[skip] = h->upper -= nbytes; | |
237 | dest = (char *)h + h->linp[skip]; | |
238 | memmove(dest, bi, nbytes); | |
239 | ((BINTERNAL *)dest)->pgno = rchild->pgno; | |
240 | break; | |
241 | case P_BLEAF: | |
242 | h->linp[skip] = h->upper -= nbytes; | |
243 | dest = (char *)h + h->linp[skip]; | |
244 | WR_BINTERNAL(dest, nksize ? nksize : bl->ksize, | |
245 | rchild->pgno, bl->flags & P_BIGKEY); | |
246 | memmove(dest, bl->bytes, nksize ? nksize : bl->ksize); | |
247 | if (bl->flags & P_BIGKEY && | |
248 | bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR) | |
249 | goto err1; | |
250 | break; | |
251 | case P_RINTERNAL: | |
252 | /* | |
253 | * Update the left page count. If split | |
254 | * added at index 0, fix the correct page. | |
255 | */ | |
256 | if (skip > 0) | |
257 | dest = (char *)h + h->linp[skip - 1]; | |
258 | else | |
259 | dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; | |
260 | ((RINTERNAL *)dest)->nrecs = rec_total(lchild); | |
261 | ((RINTERNAL *)dest)->pgno = lchild->pgno; | |
262 | ||
263 | /* Update the right page count. */ | |
264 | h->linp[skip] = h->upper -= nbytes; | |
265 | dest = (char *)h + h->linp[skip]; | |
266 | ((RINTERNAL *)dest)->nrecs = rec_total(rchild); | |
267 | ((RINTERNAL *)dest)->pgno = rchild->pgno; | |
268 | break; | |
269 | case P_RLEAF: | |
270 | /* | |
271 | * Update the left page count. If split | |
272 | * added at index 0, fix the correct page. | |
273 | */ | |
274 | if (skip > 0) | |
275 | dest = (char *)h + h->linp[skip - 1]; | |
276 | else | |
277 | dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; | |
278 | ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild); | |
279 | ((RINTERNAL *)dest)->pgno = lchild->pgno; | |
280 | ||
281 | /* Update the right page count. */ | |
282 | h->linp[skip] = h->upper -= nbytes; | |
283 | dest = (char *)h + h->linp[skip]; | |
284 | ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild); | |
285 | ((RINTERNAL *)dest)->pgno = rchild->pgno; | |
286 | break; | |
287 | default: | |
288 | abort(); | |
289 | } | |
290 | ||
291 | /* Unpin the held pages. */ | |
292 | if (!parentsplit) { | |
293 | mpool_put(t->bt_mp, h, MPOOL_DIRTY); | |
294 | break; | |
295 | } | |
296 | ||
297 | /* If the root page was split, make it look right. */ | |
298 | if (sp->pgno == P_ROOT && | |
9385eb3d | 299 | (F_ISSET(t, R_RECNO) ? |
e9ce8d39 A |
300 | bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) |
301 | goto err1; | |
302 | ||
303 | mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); | |
304 | mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); | |
305 | } | |
306 | ||
307 | /* Unpin the held pages. */ | |
308 | mpool_put(t->bt_mp, l, MPOOL_DIRTY); | |
309 | mpool_put(t->bt_mp, r, MPOOL_DIRTY); | |
310 | ||
311 | /* Clear any pages left on the stack. */ | |
312 | return (RET_SUCCESS); | |
313 | ||
314 | /* | |
315 | * If something fails in the above loop we were already walking back | |
316 | * up the tree and the tree is now inconsistent. Nothing much we can | |
317 | * do about it but release any memory we're holding. | |
318 | */ | |
319 | err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); | |
320 | mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); | |
321 | ||
322 | err2: mpool_put(t->bt_mp, l, 0); | |
323 | mpool_put(t->bt_mp, r, 0); | |
324 | __dbpanic(t->bt_dbp); | |
325 | return (RET_ERROR); | |
326 | } | |
327 | ||
328 | /* | |
329 | * BT_PAGE -- Split a non-root page of a btree. | |
330 | * | |
331 | * Parameters: | |
332 | * t: tree | |
333 | * h: root page | |
334 | * lp: pointer to left page pointer | |
335 | * rp: pointer to right page pointer | |
336 | * skip: pointer to index to leave open | |
337 | * ilen: insert length | |
338 | * | |
339 | * Returns: | |
340 | * Pointer to page in which to insert or NULL on error. | |
341 | */ | |
342 | static PAGE * | |
343 | bt_page(t, h, lp, rp, skip, ilen) | |
344 | BTREE *t; | |
345 | PAGE *h, **lp, **rp; | |
346 | indx_t *skip; | |
347 | size_t ilen; | |
348 | { | |
349 | PAGE *l, *r, *tp; | |
350 | pgno_t npg; | |
351 | ||
352 | #ifdef STATISTICS | |
353 | ++bt_split; | |
354 | #endif | |
355 | /* Put the new right page for the split into place. */ | |
356 | if ((r = __bt_new(t, &npg)) == NULL) | |
357 | return (NULL); | |
358 | r->pgno = npg; | |
359 | r->lower = BTDATAOFF; | |
360 | r->upper = t->bt_psize; | |
361 | r->nextpg = h->nextpg; | |
362 | r->prevpg = h->pgno; | |
363 | r->flags = h->flags & P_TYPE; | |
364 | ||
365 | /* | |
366 | * If we're splitting the last page on a level because we're appending | |
367 | * a key to it (skip is NEXTINDEX()), it's likely that the data is | |
368 | * sorted. Adding an empty page on the side of the level is less work | |
369 | * and can push the fill factor much higher than normal. If we're | |
370 | * wrong it's no big deal, we'll just do the split the right way next | |
371 | * time. It may look like it's equally easy to do a similar hack for | |
372 | * reverse sorted data, that is, split the tree left, but it's not. | |
373 | * Don't even try. | |
374 | */ | |
375 | if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) { | |
376 | #ifdef STATISTICS | |
377 | ++bt_sortsplit; | |
378 | #endif | |
379 | h->nextpg = r->pgno; | |
380 | r->lower = BTDATAOFF + sizeof(indx_t); | |
381 | *skip = 0; | |
382 | *lp = h; | |
383 | *rp = r; | |
384 | return (r); | |
385 | } | |
386 | ||
387 | /* Put the new left page for the split into place. */ | |
388 | if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) { | |
389 | mpool_put(t->bt_mp, r, 0); | |
390 | return (NULL); | |
391 | } | |
9385eb3d A |
392 | #ifdef PURIFY |
393 | memset(l, 0xff, t->bt_psize); | |
394 | #endif | |
e9ce8d39 A |
395 | l->pgno = h->pgno; |
396 | l->nextpg = r->pgno; | |
397 | l->prevpg = h->prevpg; | |
398 | l->lower = BTDATAOFF; | |
399 | l->upper = t->bt_psize; | |
400 | l->flags = h->flags & P_TYPE; | |
401 | ||
402 | /* Fix up the previous pointer of the page after the split page. */ | |
403 | if (h->nextpg != P_INVALID) { | |
404 | if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) { | |
405 | free(l); | |
406 | /* XXX mpool_free(t->bt_mp, r->pgno); */ | |
407 | return (NULL); | |
408 | } | |
409 | tp->prevpg = r->pgno; | |
9385eb3d | 410 | mpool_put(t->bt_mp, tp, MPOOL_DIRTY); |
e9ce8d39 A |
411 | } |
412 | ||
413 | /* | |
414 | * Split right. The key/data pairs aren't sorted in the btree page so | |
415 | * it's simpler to copy the data from the split page onto two new pages | |
416 | * instead of copying half the data to the right page and compacting | |
417 | * the left page in place. Since the left page can't change, we have | |
418 | * to swap the original and the allocated left page after the split. | |
419 | */ | |
420 | tp = bt_psplit(t, h, l, r, skip, ilen); | |
421 | ||
422 | /* Move the new left page onto the old left page. */ | |
423 | memmove(h, l, t->bt_psize); | |
424 | if (tp == l) | |
425 | tp = h; | |
426 | free(l); | |
427 | ||
428 | *lp = h; | |
429 | *rp = r; | |
430 | return (tp); | |
431 | } | |
432 | ||
433 | /* | |
434 | * BT_ROOT -- Split the root page of a btree. | |
435 | * | |
436 | * Parameters: | |
437 | * t: tree | |
438 | * h: root page | |
439 | * lp: pointer to left page pointer | |
440 | * rp: pointer to right page pointer | |
441 | * skip: pointer to index to leave open | |
442 | * ilen: insert length | |
443 | * | |
444 | * Returns: | |
445 | * Pointer to page in which to insert or NULL on error. | |
446 | */ | |
447 | static PAGE * | |
448 | bt_root(t, h, lp, rp, skip, ilen) | |
449 | BTREE *t; | |
450 | PAGE *h, **lp, **rp; | |
451 | indx_t *skip; | |
452 | size_t ilen; | |
453 | { | |
454 | PAGE *l, *r, *tp; | |
455 | pgno_t lnpg, rnpg; | |
456 | ||
457 | #ifdef STATISTICS | |
458 | ++bt_split; | |
459 | ++bt_rootsplit; | |
460 | #endif | |
461 | /* Put the new left and right pages for the split into place. */ | |
462 | if ((l = __bt_new(t, &lnpg)) == NULL || | |
463 | (r = __bt_new(t, &rnpg)) == NULL) | |
464 | return (NULL); | |
465 | l->pgno = lnpg; | |
466 | r->pgno = rnpg; | |
467 | l->nextpg = r->pgno; | |
468 | r->prevpg = l->pgno; | |
469 | l->prevpg = r->nextpg = P_INVALID; | |
470 | l->lower = r->lower = BTDATAOFF; | |
471 | l->upper = r->upper = t->bt_psize; | |
472 | l->flags = r->flags = h->flags & P_TYPE; | |
473 | ||
474 | /* Split the root page. */ | |
475 | tp = bt_psplit(t, h, l, r, skip, ilen); | |
476 | ||
477 | *lp = l; | |
478 | *rp = r; | |
479 | return (tp); | |
480 | } | |
481 | ||
482 | /* | |
483 | * BT_RROOT -- Fix up the recno root page after it has been split. | |
484 | * | |
485 | * Parameters: | |
486 | * t: tree | |
487 | * h: root page | |
488 | * l: left page | |
489 | * r: right page | |
490 | * | |
491 | * Returns: | |
492 | * RET_ERROR, RET_SUCCESS | |
493 | */ | |
494 | static int | |
495 | bt_rroot(t, h, l, r) | |
496 | BTREE *t; | |
497 | PAGE *h, *l, *r; | |
498 | { | |
499 | char *dest; | |
500 | ||
501 | /* Insert the left and right keys, set the header information. */ | |
502 | h->linp[0] = h->upper = t->bt_psize - NRINTERNAL; | |
503 | dest = (char *)h + h->upper; | |
504 | WR_RINTERNAL(dest, | |
505 | l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno); | |
506 | ||
507 | h->linp[1] = h->upper -= NRINTERNAL; | |
508 | dest = (char *)h + h->upper; | |
509 | WR_RINTERNAL(dest, | |
510 | r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno); | |
511 | ||
512 | h->lower = BTDATAOFF + 2 * sizeof(indx_t); | |
513 | ||
514 | /* Unpin the root page, set to recno internal page. */ | |
515 | h->flags &= ~P_TYPE; | |
516 | h->flags |= P_RINTERNAL; | |
517 | mpool_put(t->bt_mp, h, MPOOL_DIRTY); | |
518 | ||
519 | return (RET_SUCCESS); | |
520 | } | |
521 | ||
522 | /* | |
523 | * BT_BROOT -- Fix up the btree root page after it has been split. | |
524 | * | |
525 | * Parameters: | |
526 | * t: tree | |
527 | * h: root page | |
528 | * l: left page | |
529 | * r: right page | |
530 | * | |
531 | * Returns: | |
532 | * RET_ERROR, RET_SUCCESS | |
533 | */ | |
534 | static int | |
535 | bt_broot(t, h, l, r) | |
536 | BTREE *t; | |
537 | PAGE *h, *l, *r; | |
538 | { | |
539 | BINTERNAL *bi; | |
540 | BLEAF *bl; | |
9385eb3d | 541 | u_int32_t nbytes; |
e9ce8d39 A |
542 | char *dest; |
543 | ||
544 | /* | |
545 | * If the root page was a leaf page, change it into an internal page. | |
546 | * We copy the key we split on (but not the key's data, in the case of | |
547 | * a leaf page) to the new root page. | |
548 | * | |
549 | * The btree comparison code guarantees that the left-most key on any | |
550 | * level of the tree is never used, so it doesn't need to be filled in. | |
551 | */ | |
552 | nbytes = NBINTERNAL(0); | |
553 | h->linp[0] = h->upper = t->bt_psize - nbytes; | |
554 | dest = (char *)h + h->upper; | |
555 | WR_BINTERNAL(dest, 0, l->pgno, 0); | |
556 | ||
9385eb3d | 557 | switch (h->flags & P_TYPE) { |
e9ce8d39 A |
558 | case P_BLEAF: |
559 | bl = GETBLEAF(r, 0); | |
560 | nbytes = NBINTERNAL(bl->ksize); | |
561 | h->linp[1] = h->upper -= nbytes; | |
562 | dest = (char *)h + h->upper; | |
563 | WR_BINTERNAL(dest, bl->ksize, r->pgno, 0); | |
564 | memmove(dest, bl->bytes, bl->ksize); | |
565 | ||
566 | /* | |
567 | * If the key is on an overflow page, mark the overflow chain | |
568 | * so it isn't deleted when the leaf copy of the key is deleted. | |
569 | */ | |
570 | if (bl->flags & P_BIGKEY && | |
571 | bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR) | |
572 | return (RET_ERROR); | |
573 | break; | |
574 | case P_BINTERNAL: | |
575 | bi = GETBINTERNAL(r, 0); | |
576 | nbytes = NBINTERNAL(bi->ksize); | |
577 | h->linp[1] = h->upper -= nbytes; | |
578 | dest = (char *)h + h->upper; | |
579 | memmove(dest, bi, nbytes); | |
580 | ((BINTERNAL *)dest)->pgno = r->pgno; | |
581 | break; | |
582 | default: | |
583 | abort(); | |
584 | } | |
585 | ||
586 | /* There are two keys on the page. */ | |
587 | h->lower = BTDATAOFF + 2 * sizeof(indx_t); | |
588 | ||
589 | /* Unpin the root page, set to btree internal page. */ | |
590 | h->flags &= ~P_TYPE; | |
591 | h->flags |= P_BINTERNAL; | |
592 | mpool_put(t->bt_mp, h, MPOOL_DIRTY); | |
593 | ||
594 | return (RET_SUCCESS); | |
595 | } | |
596 | ||
597 | /* | |
598 | * BT_PSPLIT -- Do the real work of splitting the page. | |
599 | * | |
600 | * Parameters: | |
601 | * t: tree | |
602 | * h: page to be split | |
603 | * l: page to put lower half of data | |
604 | * r: page to put upper half of data | |
605 | * pskip: pointer to index to leave open | |
606 | * ilen: insert length | |
607 | * | |
608 | * Returns: | |
609 | * Pointer to page in which to insert. | |
610 | */ | |
611 | static PAGE * | |
612 | bt_psplit(t, h, l, r, pskip, ilen) | |
613 | BTREE *t; | |
614 | PAGE *h, *l, *r; | |
615 | indx_t *pskip; | |
616 | size_t ilen; | |
617 | { | |
618 | BINTERNAL *bi; | |
619 | BLEAF *bl; | |
9385eb3d | 620 | CURSOR *c; |
e9ce8d39 | 621 | RLEAF *rl; |
e9ce8d39 A |
622 | PAGE *rval; |
623 | void *src; | |
624 | indx_t full, half, nxt, off, skip, top, used; | |
9385eb3d | 625 | u_int32_t nbytes; |
e9ce8d39 A |
626 | int bigkeycnt, isbigkey; |
627 | ||
628 | /* | |
629 | * Split the data to the left and right pages. Leave the skip index | |
630 | * open. Additionally, make some effort not to split on an overflow | |
631 | * key. This makes internal page processing faster and can save | |
632 | * space as overflow keys used by internal pages are never deleted. | |
633 | */ | |
634 | bigkeycnt = 0; | |
635 | skip = *pskip; | |
636 | full = t->bt_psize - BTDATAOFF; | |
637 | half = full / 2; | |
638 | used = 0; | |
639 | for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) { | |
640 | if (skip == off) { | |
641 | nbytes = ilen; | |
642 | isbigkey = 0; /* XXX: not really known. */ | |
643 | } else | |
644 | switch (h->flags & P_TYPE) { | |
645 | case P_BINTERNAL: | |
646 | src = bi = GETBINTERNAL(h, nxt); | |
647 | nbytes = NBINTERNAL(bi->ksize); | |
648 | isbigkey = bi->flags & P_BIGKEY; | |
649 | break; | |
650 | case P_BLEAF: | |
651 | src = bl = GETBLEAF(h, nxt); | |
652 | nbytes = NBLEAF(bl); | |
653 | isbigkey = bl->flags & P_BIGKEY; | |
654 | break; | |
655 | case P_RINTERNAL: | |
656 | src = GETRINTERNAL(h, nxt); | |
657 | nbytes = NRINTERNAL; | |
658 | isbigkey = 0; | |
659 | break; | |
660 | case P_RLEAF: | |
661 | src = rl = GETRLEAF(h, nxt); | |
662 | nbytes = NRLEAF(rl); | |
663 | isbigkey = 0; | |
664 | break; | |
665 | default: | |
666 | abort(); | |
667 | } | |
668 | ||
669 | /* | |
670 | * If the key/data pairs are substantial fractions of the max | |
671 | * possible size for the page, it's possible to get situations | |
672 | * where we decide to try and copy too much onto the left page. | |
673 | * Make sure that doesn't happen. | |
674 | */ | |
9385eb3d A |
675 | if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) |
676 | || nxt == top - 1) { | |
e9ce8d39 A |
677 | --off; |
678 | break; | |
679 | } | |
680 | ||
681 | /* Copy the key/data pair, if not the skipped index. */ | |
682 | if (skip != off) { | |
683 | ++nxt; | |
684 | ||
685 | l->linp[off] = l->upper -= nbytes; | |
686 | memmove((char *)l + l->upper, src, nbytes); | |
687 | } | |
688 | ||
9385eb3d | 689 | used += nbytes + sizeof(indx_t); |
e9ce8d39 A |
690 | if (used >= half) { |
691 | if (!isbigkey || bigkeycnt == 3) | |
692 | break; | |
693 | else | |
694 | ++bigkeycnt; | |
695 | } | |
696 | } | |
697 | ||
698 | /* | |
699 | * Off is the last offset that's valid for the left page. | |
700 | * Nxt is the first offset to be placed on the right page. | |
701 | */ | |
702 | l->lower += (off + 1) * sizeof(indx_t); | |
703 | ||
704 | /* | |
705 | * If splitting the page that the cursor was on, the cursor has to be | |
706 | * adjusted to point to the same record as before the split. If the | |
707 | * cursor is at or past the skipped slot, the cursor is incremented by | |
708 | * one. If the cursor is on the right page, it is decremented by the | |
709 | * number of records split to the left page. | |
e9ce8d39 | 710 | */ |
9385eb3d A |
711 | c = &t->bt_cursor; |
712 | if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) { | |
713 | if (c->pg.index >= skip) | |
714 | ++c->pg.index; | |
715 | if (c->pg.index < nxt) /* Left page. */ | |
716 | c->pg.pgno = l->pgno; | |
e9ce8d39 | 717 | else { /* Right page. */ |
9385eb3d A |
718 | c->pg.pgno = r->pgno; |
719 | c->pg.index -= nxt; | |
e9ce8d39 A |
720 | } |
721 | } | |
722 | ||
723 | /* | |
724 | * If the skipped index was on the left page, just return that page. | |
725 | * Otherwise, adjust the skip index to reflect the new position on | |
726 | * the right page. | |
727 | */ | |
728 | if (skip <= off) { | |
729 | skip = 0; | |
730 | rval = l; | |
731 | } else { | |
732 | rval = r; | |
733 | *pskip -= nxt; | |
734 | } | |
735 | ||
736 | for (off = 0; nxt < top; ++off) { | |
737 | if (skip == nxt) { | |
738 | ++off; | |
739 | skip = 0; | |
740 | } | |
741 | switch (h->flags & P_TYPE) { | |
742 | case P_BINTERNAL: | |
743 | src = bi = GETBINTERNAL(h, nxt); | |
744 | nbytes = NBINTERNAL(bi->ksize); | |
745 | break; | |
746 | case P_BLEAF: | |
747 | src = bl = GETBLEAF(h, nxt); | |
748 | nbytes = NBLEAF(bl); | |
749 | break; | |
750 | case P_RINTERNAL: | |
751 | src = GETRINTERNAL(h, nxt); | |
752 | nbytes = NRINTERNAL; | |
753 | break; | |
754 | case P_RLEAF: | |
755 | src = rl = GETRLEAF(h, nxt); | |
756 | nbytes = NRLEAF(rl); | |
757 | break; | |
758 | default: | |
759 | abort(); | |
760 | } | |
761 | ++nxt; | |
762 | r->linp[off] = r->upper -= nbytes; | |
763 | memmove((char *)r + r->upper, src, nbytes); | |
764 | } | |
765 | r->lower += off * sizeof(indx_t); | |
766 | ||
767 | /* If the key is being appended to the page, adjust the index. */ | |
768 | if (skip == top) | |
769 | r->lower += sizeof(indx_t); | |
770 | ||
771 | return (rval); | |
772 | } | |
773 | ||
774 | /* | |
775 | * BT_PRESERVE -- Mark a chain of pages as used by an internal node. | |
776 | * | |
777 | * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the | |
778 | * record that references them gets deleted. Chains pointed to by internal | |
779 | * pages never get deleted. This routine marks a chain as pointed to by an | |
780 | * internal page. | |
781 | * | |
782 | * Parameters: | |
783 | * t: tree | |
784 | * pg: page number of first page in the chain. | |
785 | * | |
786 | * Returns: | |
787 | * RET_SUCCESS, RET_ERROR. | |
788 | */ | |
789 | static int | |
790 | bt_preserve(t, pg) | |
791 | BTREE *t; | |
792 | pgno_t pg; | |
793 | { | |
794 | PAGE *h; | |
795 | ||
796 | if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL) | |
797 | return (RET_ERROR); | |
798 | h->flags |= P_PRESERVE; | |
799 | mpool_put(t->bt_mp, h, MPOOL_DIRTY); | |
800 | return (RET_SUCCESS); | |
801 | } | |
802 | ||
803 | /* | |
804 | * REC_TOTAL -- Return the number of recno entries below a page. | |
805 | * | |
806 | * Parameters: | |
807 | * h: page | |
808 | * | |
809 | * Returns: | |
810 | * The number of recno entries below a page. | |
811 | * | |
812 | * XXX | |
813 | * These values could be set by the bt_psplit routine. The problem is that the | |
814 | * entry has to be popped off of the stack etc. or the values have to be passed | |
815 | * all the way back to bt_split/bt_rroot and it's not very clean. | |
816 | */ | |
817 | static recno_t | |
818 | rec_total(h) | |
819 | PAGE *h; | |
820 | { | |
821 | recno_t recs; | |
822 | indx_t nxt, top; | |
823 | ||
824 | for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt) | |
825 | recs += GETRINTERNAL(h, nxt)->nrecs; | |
826 | return (recs); | |
827 | } |