]> git.saurik.com Git - apple/libc.git/blame - gdtoa/FreeBSD/gdtoaimp.h
Libc-594.9.5.tar.gz
[apple/libc.git] / gdtoa / FreeBSD / gdtoaimp.h
CommitLineData
9385eb3d
A
1/****************************************************************
2
3The author of this software is David M. Gay.
4
5Copyright (C) 1998-2000 by Lucent Technologies
6All Rights Reserved
7
8Permission to use, copy, modify, and distribute this software and
9its documentation for any purpose and without fee is hereby
10granted, provided that the above copyright notice appear in all
11copies and that both that the copyright notice and this
12permission notice and warranty disclaimer appear in supporting
13documentation, and that the name of Lucent or any of its entities
14not be used in advertising or publicity pertaining to
15distribution of the software without specific, written prior
16permission.
17
18LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25THIS SOFTWARE.
26
27****************************************************************/
28
9385eb3d
A
29/* This is a variation on dtoa.c that converts arbitary binary
30 floating-point formats to and from decimal notation. It uses
31 double-precision arithmetic internally, so there are still
32 various #ifdefs that adapt the calculations to the native
33 double-precision arithmetic (any of IEEE, VAX D_floating,
34 or IBM mainframe arithmetic).
35
3d9156a7
A
36 Please send bug reports to David M. Gay (dmg at acm dot org,
37 with " at " changed at "@" and " dot " changed to ".").
9385eb3d
A
38 */
39
40/* On a machine with IEEE extended-precision registers, it is
41 * necessary to specify double-precision (53-bit) rounding precision
42 * before invoking strtod or dtoa. If the machine uses (the equivalent
43 * of) Intel 80x87 arithmetic, the call
44 * _control87(PC_53, MCW_PC);
45 * does this with many compilers. Whether this or another call is
46 * appropriate depends on the compiler; for this to work, it may be
47 * necessary to #include "float.h" or another system-dependent header
48 * file.
49 */
50
51/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
52 *
53 * This strtod returns a nearest machine number to the input decimal
54 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
55 * broken by the IEEE round-even rule. Otherwise ties are broken by
56 * biased rounding (add half and chop).
57 *
58 * Inspired loosely by William D. Clinger's paper "How to Read Floating
3d9156a7 59 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
9385eb3d
A
60 *
61 * Modifications:
62 *
63 * 1. We only require IEEE, IBM, or VAX double-precision
64 * arithmetic (not IEEE double-extended).
65 * 2. We get by with floating-point arithmetic in a case that
66 * Clinger missed -- when we're computing d * 10^n
67 * for a small integer d and the integer n is not too
68 * much larger than 22 (the maximum integer k for which
69 * we can represent 10^k exactly), we may be able to
70 * compute (d*10^k) * 10^(e-k) with just one roundoff.
71 * 3. Rather than a bit-at-a-time adjustment of the binary
72 * result in the hard case, we use floating-point
73 * arithmetic to determine the adjustment to within
74 * one bit; only in really hard cases do we need to
75 * compute a second residual.
76 * 4. Because of 3., we don't need a large table of powers of 10
77 * for ten-to-e (just some small tables, e.g. of 10^k
78 * for 0 <= k <= 22).
79 */
80
81/*
82 * #define IEEE_8087 for IEEE-arithmetic machines where the least
83 * significant byte has the lowest address.
84 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85 * significant byte has the lowest address.
86 * #define Long int on machines with 32-bit ints and 64-bit longs.
87 * #define Sudden_Underflow for IEEE-format machines without gradual
88 * underflow (i.e., that flush to zero on underflow).
89 * #define IBM for IBM mainframe-style floating-point arithmetic.
90 * #define VAX for VAX-style floating-point arithmetic (D_floating).
91 * #define No_leftright to omit left-right logic in fast floating-point
92 * computation of dtoa.
93 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
94 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
95 * that use extended-precision instructions to compute rounded
96 * products and quotients) with IBM.
97 * #define ROUND_BIASED for IEEE-format with biased rounding.
98 * #define Inaccurate_Divide for IEEE-format with correctly rounded
99 * products but inaccurate quotients, e.g., for Intel i860.
100 * #define NO_LONG_LONG on machines that do not have a "long long"
101 * integer type (of >= 64 bits). On such machines, you can
102 * #define Just_16 to store 16 bits per 32-bit Long when doing
103 * high-precision integer arithmetic. Whether this speeds things
104 * up or slows things down depends on the machine and the number
105 * being converted. If long long is available and the name is
106 * something other than "long long", #define Llong to be the name,
107 * and if "unsigned Llong" does not work as an unsigned version of
108 * Llong, #define #ULLong to be the corresponding unsigned type.
109 * #define KR_headers for old-style C function headers.
110 * #define Bad_float_h if your system lacks a float.h or if it does not
111 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
112 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
113 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
114 * if memory is available and otherwise does something you deem
115 * appropriate. If MALLOC is undefined, malloc will be invoked
116 * directly -- and assumed always to succeed.
117 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
118 * memory allocations from a private pool of memory when possible.
119 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
120 * unless #defined to be a different length. This default length
121 * suffices to get rid of MALLOC calls except for unusual cases,
122 * such as decimal-to-binary conversion of a very long string of
123 * digits. When converting IEEE double precision values, the
124 * longest string gdtoa can return is about 751 bytes long. For
125 * conversions by strtod of strings of 800 digits and all gdtoa
126 * conversions of IEEE doubles in single-threaded executions with
127 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
128 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
129 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
3d9156a7 130 * Infinity and NaN (case insensitively).
9385eb3d
A
131 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
132 * strtodg also accepts (case insensitively) strings of the form
34e8f829
A
133 * NaN(x), where x is a string of hexadecimal digits (optionally
134 * preceded by 0x or 0X) and spaces; if there is only one string
135 * of hexadecimal digits, it is taken for the fraction bits of the
136 * resulting NaN; if there are two or more strings of hexadecimal
137 * digits, each string is assigned to the next available sequence
138 * of 32-bit words of fractions bits (starting with the most
139 * significant), right-aligned in each sequence.
140 * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
141 * is consumed even when ... has the wrong form (in which case the
142 * "(...)" is consumed but ignored).
9385eb3d
A
143 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
144 * multiple threads. In this case, you must provide (or suitably
145 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
146 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
147 * in pow5mult, ensures lazy evaluation of only one copy of high
148 * powers of 5; omitting this lock would introduce a small
149 * probability of wasting memory, but would otherwise be harmless.)
150 * You must also invoke freedtoa(s) to free the value s returned by
151 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
152 * #define IMPRECISE_INEXACT if you do not care about the setting of
153 * the STRTOG_Inexact bits in the special case of doing IEEE double
34e8f829 154 * precision conversions (which could also be done by the strtod in
9385eb3d
A
155 * dtoa.c).
156 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
157 * floating-point constants.
158 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
159 * strtodg.c).
160 * #define NO_STRING_H to use private versions of memcpy.
161 * On some K&R systems, it may also be necessary to
162 * #define DECLARE_SIZE_T in this case.
163 * #define YES_ALIAS to permit aliasing certain double values with
164 * arrays of ULongs. This leads to slightly better code with
165 * some compilers and was always used prior to 19990916, but it
166 * is not strictly legal and can cause trouble with aggressively
167 * optimizing compilers (e.g., gcc 2.95.1 under -O2).
168 * #define USE_LOCALE to use the current locale's decimal_point value.
169 */
170
171#ifndef GDTOAIMP_H_INCLUDED
172#define GDTOAIMP_H_INCLUDED
173#include "gdtoa.h"
3d9156a7 174#include "gd_qnan.h"
34e8f829
A
175#ifdef Honor_FLT_ROUNDS
176#include <fenv.h>
177#endif
9385eb3d
A
178
179#ifdef DEBUG
180#include "stdio.h"
181#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
182#endif
183
9385eb3d
A
184#include "stdlib.h"
185#include "string.h"
9385eb3d
A
186
187#ifdef KR_headers
188#define Char char
189#else
190#define Char void
191#endif
192
193#ifdef MALLOC
194extern Char *MALLOC ANSI((size_t));
195#else
196#define MALLOC malloc
197#endif
198
9385eb3d
A
199#undef IEEE_Arith
200#undef Avoid_Underflow
201#ifdef IEEE_MC68k
202#define IEEE_Arith
203#endif
204#ifdef IEEE_8087
205#define IEEE_Arith
206#endif
207
208#include "errno.h"
209#ifdef Bad_float_h
210
211#ifdef IEEE_Arith
212#define DBL_DIG 15
213#define DBL_MAX_10_EXP 308
214#define DBL_MAX_EXP 1024
215#define FLT_RADIX 2
216#define DBL_MAX 1.7976931348623157e+308
217#endif
218
219#ifdef IBM
220#define DBL_DIG 16
221#define DBL_MAX_10_EXP 75
222#define DBL_MAX_EXP 63
223#define FLT_RADIX 16
224#define DBL_MAX 7.2370055773322621e+75
225#endif
226
227#ifdef VAX
228#define DBL_DIG 16
229#define DBL_MAX_10_EXP 38
230#define DBL_MAX_EXP 127
231#define FLT_RADIX 2
232#define DBL_MAX 1.7014118346046923e+38
233#define n_bigtens 2
234#endif
235
236#ifndef LONG_MAX
237#define LONG_MAX 2147483647
238#endif
239
240#else /* ifndef Bad_float_h */
241#include "float.h"
242#endif /* Bad_float_h */
243
244#ifdef IEEE_Arith
245#define Scale_Bit 0x10
246#define n_bigtens 5
247#endif
248
249#ifdef IBM
250#define n_bigtens 3
251#endif
252
253#ifdef VAX
254#define n_bigtens 2
255#endif
256
257#ifndef __MATH_H__
258#include "math.h"
259#endif
260
261#ifdef __cplusplus
262extern "C" {
263#endif
264
265#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
266Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
267#endif
268
269typedef union { double d; ULong L[2]; } U;
270
271#ifdef YES_ALIAS
272#define dval(x) x
273#ifdef IEEE_8087
274#define word0(x) ((ULong *)&x)[1]
275#define word1(x) ((ULong *)&x)[0]
276#else
277#define word0(x) ((ULong *)&x)[0]
278#define word1(x) ((ULong *)&x)[1]
279#endif
280#else /* !YES_ALIAS */
281#ifdef IEEE_8087
282#define word0(x) ((U*)&x)->L[1]
283#define word1(x) ((U*)&x)->L[0]
284#else
285#define word0(x) ((U*)&x)->L[0]
286#define word1(x) ((U*)&x)->L[1]
287#endif
288#define dval(x) ((U*)&x)->d
289#endif /* YES_ALIAS */
290
291/* The following definition of Storeinc is appropriate for MIPS processors.
292 * An alternative that might be better on some machines is
293 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
294 */
295#if defined(IEEE_8087) + defined(VAX)
296#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
297((unsigned short *)a)[0] = (unsigned short)c, a++)
298#else
299#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
300((unsigned short *)a)[1] = (unsigned short)c, a++)
301#endif
302
303/* #define P DBL_MANT_DIG */
304/* Ten_pmax = floor(P*log(2)/log(5)) */
305/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
306/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
307/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
308
309#ifdef IEEE_Arith
310#define Exp_shift 20
311#define Exp_shift1 20
312#define Exp_msk1 0x100000
313#define Exp_msk11 0x100000
314#define Exp_mask 0x7ff00000
315#define P 53
316#define Bias 1023
317#define Emin (-1022)
318#define Exp_1 0x3ff00000
319#define Exp_11 0x3ff00000
320#define Ebits 11
321#define Frac_mask 0xfffff
322#define Frac_mask1 0xfffff
323#define Ten_pmax 22
324#define Bletch 0x10
325#define Bndry_mask 0xfffff
326#define Bndry_mask1 0xfffff
327#define LSB 1
328#define Sign_bit 0x80000000
329#define Log2P 1
330#define Tiny0 0
331#define Tiny1 1
332#define Quick_max 14
333#define Int_max 14
334
335#ifndef Flt_Rounds
336#ifdef FLT_ROUNDS
337#define Flt_Rounds FLT_ROUNDS
338#else
339#define Flt_Rounds 1
340#endif
341#endif /*Flt_Rounds*/
342
343#else /* ifndef IEEE_Arith */
344#undef Sudden_Underflow
345#define Sudden_Underflow
346#ifdef IBM
347#undef Flt_Rounds
348#define Flt_Rounds 0
349#define Exp_shift 24
350#define Exp_shift1 24
351#define Exp_msk1 0x1000000
352#define Exp_msk11 0x1000000
353#define Exp_mask 0x7f000000
354#define P 14
355#define Bias 65
356#define Exp_1 0x41000000
357#define Exp_11 0x41000000
358#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
359#define Frac_mask 0xffffff
360#define Frac_mask1 0xffffff
361#define Bletch 4
362#define Ten_pmax 22
363#define Bndry_mask 0xefffff
364#define Bndry_mask1 0xffffff
365#define LSB 1
366#define Sign_bit 0x80000000
367#define Log2P 4
368#define Tiny0 0x100000
369#define Tiny1 0
370#define Quick_max 14
371#define Int_max 15
372#else /* VAX */
373#undef Flt_Rounds
374#define Flt_Rounds 1
375#define Exp_shift 23
376#define Exp_shift1 7
377#define Exp_msk1 0x80
378#define Exp_msk11 0x800000
379#define Exp_mask 0x7f80
380#define P 56
381#define Bias 129
382#define Exp_1 0x40800000
383#define Exp_11 0x4080
384#define Ebits 8
385#define Frac_mask 0x7fffff
386#define Frac_mask1 0xffff007f
387#define Ten_pmax 24
388#define Bletch 2
389#define Bndry_mask 0xffff007f
390#define Bndry_mask1 0xffff007f
391#define LSB 0x10000
392#define Sign_bit 0x8000
393#define Log2P 1
394#define Tiny0 0x80
395#define Tiny1 0
396#define Quick_max 15
397#define Int_max 15
398#endif /* IBM, VAX */
399#endif /* IEEE_Arith */
400
401#ifndef IEEE_Arith
402#define ROUND_BIASED
403#endif
404
405#ifdef RND_PRODQUOT
406#define rounded_product(a,b) a = rnd_prod(a, b)
407#define rounded_quotient(a,b) a = rnd_quot(a, b)
408#ifdef KR_headers
409extern double rnd_prod(), rnd_quot();
410#else
411extern double rnd_prod(double, double), rnd_quot(double, double);
412#endif
413#else
414#define rounded_product(a,b) a *= b
415#define rounded_quotient(a,b) a /= b
416#endif
417
418#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
419#define Big1 0xffffffff
420
421#undef Pack_16
422#ifndef Pack_32
423#define Pack_32
424#endif
425
426#ifdef NO_LONG_LONG
427#undef ULLong
428#ifdef Just_16
429#undef Pack_32
430#define Pack_16
431/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
432 * This makes some inner loops simpler and sometimes saves work
433 * during multiplications, but it often seems to make things slightly
434 * slower. Hence the default is now to store 32 bits per Long.
435 */
436#endif
437#else /* long long available */
438#ifndef Llong
439#define Llong long long
440#endif
441#ifndef ULLong
442#define ULLong unsigned Llong
443#endif
444#endif /* NO_LONG_LONG */
445
446#ifdef Pack_32
447#define ULbits 32
448#define kshift 5
449#define kmask 31
450#define ALL_ON 0xffffffff
451#else
452#define ULbits 16
453#define kshift 4
454#define kmask 15
455#define ALL_ON 0xffff
456#endif
457
3d9156a7
A
458#ifndef MULTIPLE_THREADS
459#define ACQUIRE_DTOA_LOCK(n) /*nothing*/
460#define FREE_DTOA_LOCK(n) /*nothing*/
461#endif
9385eb3d
A
462
463#define Kmax 15
464
465 struct
466Bigint {
467 struct Bigint *next;
468 int k, maxwds, sign, wds;
469 ULong x[1];
470 };
471
472 typedef struct Bigint Bigint;
473
474#ifdef NO_STRING_H
475#ifdef DECLARE_SIZE_T
476typedef unsigned int size_t;
477#endif
478extern void memcpy_D2A ANSI((void*, const void*, size_t));
479#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
480#else /* !NO_STRING_H */
481#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
482#endif /* NO_STRING_H */
483
3d9156a7
A
484#define Balloc Balloc_D2A
485#define Bfree Bfree_D2A
486#define ULtoQ ULtoQ_D2A
487#define ULtof ULtof_D2A
488#define ULtod ULtod_D2A
489#define ULtodd ULtodd_D2A
490#define ULtox ULtox_D2A
491#define ULtoxL ULtoxL_D2A
492#define any_on any_on_D2A
493#define b2d b2d_D2A
494#define bigtens bigtens_D2A
495#define cmp cmp_D2A
496#define copybits copybits_D2A
497#define d2b d2b_D2A
498#define decrement decrement_D2A
499#define diff diff_D2A
500#define dtoa_result dtoa_result_D2A
501#define g__fmt g__fmt_D2A
502#define gethex gethex_D2A
503#define hexdig hexdig_D2A
504#define hexnan hexnan_D2A
505#define hi0bits(x) hi0bits_D2A((ULong)(x))
506#define i2b i2b_D2A
507#define increment increment_D2A
508#define lo0bits lo0bits_D2A
509#define lshift lshift_D2A
510#define match match_D2A
511#define mult mult_D2A
512#define multadd multadd_D2A
513#define nrv_alloc nrv_alloc_D2A
514#define pow5mult pow5mult_D2A
515#define quorem quorem_D2A
516#define ratio ratio_D2A
517#define rshift rshift_D2A
518#define rv_alloc rv_alloc_D2A
519#define s2b s2b_D2A
520#define set_ones set_ones_D2A
521#define strcp strcp_D2A
522#define strtoIg strtoIg_D2A
523#define sum sum_D2A
524#define tens tens_D2A
525#define tinytens tinytens_D2A
526#define tinytens tinytens_D2A
527#define trailz trailz_D2A
528#define ulp ulp_D2A
9385eb3d
A
529
530 extern char *dtoa_result;
531 extern CONST double bigtens[], tens[], tinytens[];
532 extern unsigned char hexdig[];
533
534 extern Bigint *Balloc ANSI((int));
535 extern void Bfree ANSI((Bigint*));
536 extern void ULtof ANSI((ULong*, ULong*, Long, int));
537 extern void ULtod ANSI((ULong*, ULong*, Long, int));
538 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
539 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
540 extern void ULtox ANSI((UShort*, ULong*, Long, int));
541 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
542 extern ULong any_on ANSI((Bigint*, int));
543 extern double b2d ANSI((Bigint*, int*));
544 extern int cmp ANSI((Bigint*, Bigint*));
545 extern void copybits ANSI((ULong*, int, Bigint*));
546 extern Bigint *d2b ANSI((double, int*, int*));
34e8f829 547 extern void decrement ANSI((Bigint*));
9385eb3d
A
548 extern Bigint *diff ANSI((Bigint*, Bigint*));
549 extern char *dtoa ANSI((double d, int mode, int ndigits,
550 int *decpt, int *sign, char **rve));
34e8f829 551 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
9385eb3d
A
552 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
553 extern void hexdig_init_D2A(Void);
554 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
3d9156a7 555 extern int hi0bits_D2A ANSI((ULong));
9385eb3d
A
556 extern Bigint *i2b ANSI((int));
557 extern Bigint *increment ANSI((Bigint*));
558 extern int lo0bits ANSI((ULong*));
559 extern Bigint *lshift ANSI((Bigint*, int));
560 extern int match ANSI((CONST char**, char*));
561 extern Bigint *mult ANSI((Bigint*, Bigint*));
562 extern Bigint *multadd ANSI((Bigint*, int, int));
563 extern char *nrv_alloc ANSI((char*, char **, int));
564 extern Bigint *pow5mult ANSI((Bigint*, int));
565 extern int quorem ANSI((Bigint*, Bigint*));
566 extern double ratio ANSI((Bigint*, Bigint*));
567 extern void rshift ANSI((Bigint*, int));
568 extern char *rv_alloc ANSI((int));
569 extern Bigint *s2b ANSI((CONST char*, int, int, ULong));
570 extern Bigint *set_ones ANSI((Bigint*, int));
571 extern char *strcp ANSI((char*, const char*));
9385eb3d 572 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
9385eb3d 573 extern double strtod ANSI((const char *s00, char **se));
9385eb3d
A
574 extern Bigint *sum ANSI((Bigint*, Bigint*));
575 extern int trailz ANSI((Bigint*));
576 extern double ulp ANSI((double));
577
578#ifdef __cplusplus
579}
580#endif
3d9156a7
A
581/*
582 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
583 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
584 * respectively), but now are determined by compiling and running
585 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
586 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
587 * and -DNAN_WORD1=... values if necessary. This should still work.
588 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
589 */
9385eb3d
A
590#ifdef IEEE_Arith
591#ifdef IEEE_MC68k
592#define _0 0
593#define _1 1
3d9156a7
A
594#ifndef NAN_WORD0
595#define NAN_WORD0 d_QNAN0
596#endif
597#ifndef NAN_WORD1
598#define NAN_WORD1 d_QNAN1
599#endif
9385eb3d
A
600#else
601#define _0 1
602#define _1 0
9385eb3d 603#ifndef NAN_WORD0
3d9156a7 604#define NAN_WORD0 d_QNAN1
9385eb3d 605#endif
9385eb3d 606#ifndef NAN_WORD1
3d9156a7
A
607#define NAN_WORD1 d_QNAN0
608#endif
609#endif
610#else
611#undef INFNAN_CHECK
9385eb3d 612#endif
9385eb3d
A
613
614#undef SI
615#ifdef Sudden_Underflow
616#define SI 1
617#else
618#define SI 0
619#endif
620
621#endif /* GDTOAIMP_H_INCLUDED */