]> git.saurik.com Git - apple/libc.git/blame - stdlib/FreeBSD/random.c
Libc-763.11.tar.gz
[apple/libc.git] / stdlib / FreeBSD / random.c
CommitLineData
e9ce8d39
A
1/*
2 * Copyright (c) 1983, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
e9ce8d39
A
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
9385eb3d
A
30#if defined(LIBC_SCCS) && !defined(lint)
31static char sccsid[] = "@(#)random.c 8.2 (Berkeley) 5/19/95";
32#endif /* LIBC_SCCS and not lint */
33#include <sys/cdefs.h>
1f2f436a 34__FBSDID("$FreeBSD: src/lib/libc/stdlib/random.c,v 1.25 2007/01/09 00:28:10 imp Exp $");
e9ce8d39 35
9385eb3d
A
36#include "namespace.h"
37#include <sys/time.h> /* for srandomdev() */
38#include <fcntl.h> /* for srandomdev() */
3d9156a7 39#include <stdint.h>
e9ce8d39
A
40#include <stdio.h>
41#include <stdlib.h>
9385eb3d
A
42#include <unistd.h> /* for srandomdev() */
43#include "un-namespace.h"
e9ce8d39
A
44
45/*
46 * random.c:
47 *
48 * An improved random number generation package. In addition to the standard
49 * rand()/srand() like interface, this package also has a special state info
50 * interface. The initstate() routine is called with a seed, an array of
51 * bytes, and a count of how many bytes are being passed in; this array is
52 * then initialized to contain information for random number generation with
53 * that much state information. Good sizes for the amount of state
54 * information are 32, 64, 128, and 256 bytes. The state can be switched by
55 * calling the setstate() routine with the same array as was initiallized
56 * with initstate(). By default, the package runs with 128 bytes of state
57 * information and generates far better random numbers than a linear
58 * congruential generator. If the amount of state information is less than
59 * 32 bytes, a simple linear congruential R.N.G. is used.
60 *
3d9156a7 61 * Internally, the state information is treated as an array of uint32_t's; the
e9ce8d39
A
62 * zeroeth element of the array is the type of R.N.G. being used (small
63 * integer); the remainder of the array is the state information for the
3d9156a7 64 * R.N.G. Thus, 32 bytes of state information will give 7 ints worth of
e9ce8d39
A
65 * state information, which will allow a degree seven polynomial. (Note:
66 * the zeroeth word of state information also has some other information
67 * stored in it -- see setstate() for details).
9385eb3d 68 *
e9ce8d39
A
69 * The random number generation technique is a linear feedback shift register
70 * approach, employing trinomials (since there are fewer terms to sum up that
71 * way). In this approach, the least significant bit of all the numbers in
72 * the state table will act as a linear feedback shift register, and will
73 * have period 2^deg - 1 (where deg is the degree of the polynomial being
74 * used, assuming that the polynomial is irreducible and primitive). The
75 * higher order bits will have longer periods, since their values are also
76 * influenced by pseudo-random carries out of the lower bits. The total
77 * period of the generator is approximately deg*(2**deg - 1); thus doubling
78 * the amount of state information has a vast influence on the period of the
79 * generator. Note: the deg*(2**deg - 1) is an approximation only good for
9385eb3d 80 * large deg, when the period of the shift is the dominant factor.
e9ce8d39
A
81 * With deg equal to seven, the period is actually much longer than the
82 * 7*(2**7 - 1) predicted by this formula.
9385eb3d
A
83 *
84 * Modified 28 December 1994 by Jacob S. Rosenberg.
85 * The following changes have been made:
86 * All references to the type u_int have been changed to unsigned long.
87 * All references to type int have been changed to type long. Other
88 * cleanups have been made as well. A warning for both initstate and
89 * setstate has been inserted to the effect that on Sparc platforms
90 * the 'arg_state' variable must be forced to begin on word boundaries.
91 * This can be easily done by casting a long integer array to char *.
92 * The overall logic has been left STRICTLY alone. This software was
93 * tested on both a VAX and Sun SpacsStation with exactly the same
94 * results. The new version and the original give IDENTICAL results.
95 * The new version is somewhat faster than the original. As the
96 * documentation says: "By default, the package runs with 128 bytes of
97 * state information and generates far better random numbers than a linear
98 * congruential generator. If the amount of state information is less than
99 * 32 bytes, a simple linear congruential R.N.G. is used." For a buffer of
100 * 128 bytes, this new version runs about 19 percent faster and for a 16
101 * byte buffer it is about 5 percent faster.
e9ce8d39
A
102 */
103
104/*
105 * For each of the currently supported random number generators, we have a
106 * break value on the amount of state information (you need at least this
107 * many bytes of state info to support this random number generator), a degree
108 * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
109 * the separation between the two lower order coefficients of the trinomial.
110 */
111#define TYPE_0 0 /* linear congruential */
112#define BREAK_0 8
113#define DEG_0 0
114#define SEP_0 0
115
116#define TYPE_1 1 /* x**7 + x**3 + 1 */
117#define BREAK_1 32
118#define DEG_1 7
119#define SEP_1 3
120
121#define TYPE_2 2 /* x**15 + x + 1 */
122#define BREAK_2 64
123#define DEG_2 15
124#define SEP_2 1
125
126#define TYPE_3 3 /* x**31 + x**3 + 1 */
127#define BREAK_3 128
128#define DEG_3 31
129#define SEP_3 3
130
131#define TYPE_4 4 /* x**63 + x + 1 */
132#define BREAK_4 256
133#define DEG_4 63
134#define SEP_4 1
135
136/*
137 * Array versions of the above information to make code run faster --
138 * relies on fact that TYPE_i == i.
139 */
140#define MAX_TYPES 5 /* max number of types above */
141
3d9156a7
A
142#ifdef USE_WEAK_SEEDING
143#define NSHUFF 0
144#else /* !USE_WEAK_SEEDING */
145#define NSHUFF 50 /* to drop some "seed -> 1st value" linearity */
146#endif /* !USE_WEAK_SEEDING */
9385eb3d 147
3d9156a7
A
148static const int degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
149static const int seps [MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
e9ce8d39
A
150
151/*
152 * Initially, everything is set up as if from:
153 *
9385eb3d 154 * initstate(1, randtbl, 128);
e9ce8d39
A
155 *
156 * Note that this initialization takes advantage of the fact that srandom()
157 * advances the front and rear pointers 10*rand_deg times, and hence the
158 * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
159 * element of the state information, which contains info about the current
160 * position of the rear pointer is just
161 *
162 * MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
163 */
164
3d9156a7 165static uint32_t randtbl[DEG_3 + 1] = {
e9ce8d39 166 TYPE_3,
9385eb3d
A
167#ifdef USE_WEAK_SEEDING
168/* Historic implementation compatibility */
169/* The random sequences do not vary much with the seed */
e9ce8d39
A
170 0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
171 0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
172 0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
173 0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
174 0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
175 0x27fb47b9,
9385eb3d
A
176#else /* !USE_WEAK_SEEDING */
177 0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
178 0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
179 0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
180 0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
181 0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
182 0xf3bec5da
183#endif /* !USE_WEAK_SEEDING */
e9ce8d39
A
184};
185
186/*
187 * fptr and rptr are two pointers into the state info, a front and a rear
188 * pointer. These two pointers are always rand_sep places aparts, as they
189 * cycle cyclically through the state information. (Yes, this does mean we
190 * could get away with just one pointer, but the code for random() is more
191 * efficient this way). The pointers are left positioned as they would be
192 * from the call
193 *
194 * initstate(1, randtbl, 128);
195 *
196 * (The position of the rear pointer, rptr, is really 0 (as explained above
197 * in the initialization of randtbl) because the state table pointer is set
198 * to point to randtbl[1] (as explained below).
199 */
3d9156a7
A
200static uint32_t *fptr = &randtbl[SEP_3 + 1];
201static uint32_t *rptr = &randtbl[1];
e9ce8d39
A
202
203/*
204 * The following things are the pointer to the state information table, the
205 * type of the current generator, the degree of the current polynomial being
206 * used, and the separation between the two pointers. Note that for efficiency
207 * of random(), we remember the first location of the state information, not
208 * the zeroeth. Hence it is valid to access state[-1], which is used to
209 * store the type of the R.N.G. Also, we remember the last location, since
210 * this is more efficient than indexing every time to find the address of
211 * the last element to see if the front and rear pointers have wrapped.
212 */
3d9156a7
A
213static uint32_t *state = &randtbl[1];
214static int rand_type = TYPE_3;
215static int rand_deg = DEG_3;
216static int rand_sep = SEP_3;
217static uint32_t *end_ptr = &randtbl[DEG_3 + 1];
e9ce8d39 218
3d9156a7 219static inline uint32_t good_rand(int32_t);
9385eb3d 220
3d9156a7
A
221static inline uint32_t good_rand (x)
222 int32_t x;
9385eb3d
A
223{
224#ifdef USE_WEAK_SEEDING
225/*
226 * Historic implementation compatibility.
227 * The random sequences do not vary much with the seed,
228 * even with overflowing.
229 */
230 return (1103515245 * x + 12345);
231#else /* !USE_WEAK_SEEDING */
232/*
233 * Compute x = (7^5 * x) mod (2^31 - 1)
234 * wihout overflowing 31 bits:
235 * (2^31 - 1) = 127773 * (7^5) + 2836
236 * From "Random number generators: good ones are hard to find",
237 * Park and Miller, Communications of the ACM, vol. 31, no. 10,
238 * October 1988, p. 1195.
239 */
3d9156a7 240 int32_t hi, lo;
9385eb3d
A
241
242 /* Can't be initialized with 0, so use another value. */
243 if (x == 0)
244 x = 123459876;
245 hi = x / 127773;
246 lo = x % 127773;
247 x = 16807 * lo - 2836 * hi;
248 if (x < 0)
249 x += 0x7fffffff;
250 return (x);
251#endif /* !USE_WEAK_SEEDING */
252}
253
e9ce8d39
A
254/*
255 * srandom:
256 *
257 * Initialize the random number generator based on the given seed. If the
258 * type is the trivial no-state-information type, just remember the seed.
259 * Otherwise, initializes state[] based on the given "seed" via a linear
260 * congruential generator. Then, the pointers are set to known locations
261 * that are exactly rand_sep places apart. Lastly, it cycles the state
262 * information a given number of times to get rid of any initial dependencies
263 * introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
264 * for default usage relies on values produced by this routine.
265 */
266void
267srandom(x)
268 unsigned long x;
269{
3d9156a7 270 int i, lim;
e9ce8d39 271
3d9156a7 272 state[0] = (uint32_t)x;
e9ce8d39 273 if (rand_type == TYPE_0)
9385eb3d 274 lim = NSHUFF;
e9ce8d39 275 else {
e9ce8d39 276 for (i = 1; i < rand_deg; i++)
9385eb3d
A
277 state[i] = good_rand(state[i - 1]);
278 fptr = &state[rand_sep];
279 rptr = &state[0];
280 lim = 10 * rand_deg;
281 }
282 for (i = 0; i < lim; i++)
283 (void)random();
284}
285
286/*
287 * srandomdev:
288 *
289 * Many programs choose the seed value in a totally predictable manner.
290 * This often causes problems. We seed the generator using the much more
291 * secure random(4) interface. Note that this particular seeding
292 * procedure can generate states which are impossible to reproduce by
293 * calling srandom() with any value, since the succeeding terms in the
294 * state buffer are no longer derived from the LC algorithm applied to
295 * a fixed seed.
296 */
297void
298srandomdev()
299{
300 int fd, done;
301 size_t len;
302
303 if (rand_type == TYPE_0)
304 len = sizeof state[0];
305 else
306 len = rand_deg * sizeof state[0];
307
308 done = 0;
309 fd = _open("/dev/random", O_RDONLY, 0);
310 if (fd >= 0) {
311 if (_read(fd, (void *) state, len) == (ssize_t) len)
312 done = 1;
313 _close(fd);
314 }
315
316 if (!done) {
317 struct timeval tv;
318 unsigned long junk;
319
320 gettimeofday(&tv, NULL);
321 srandom((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec ^ junk);
322 return;
323 }
324
325 if (rand_type != TYPE_0) {
e9ce8d39
A
326 fptr = &state[rand_sep];
327 rptr = &state[0];
e9ce8d39
A
328 }
329}
330
331/*
332 * initstate:
333 *
334 * Initialize the state information in the given array of n bytes for future
335 * random number generation. Based on the number of bytes we are given, and
336 * the break values for the different R.N.G.'s, we choose the best (largest)
337 * one we can and set things up for it. srandom() is then called to
338 * initialize the state information.
9385eb3d 339 *
e9ce8d39
A
340 * Note that on return from srandom(), we set state[-1] to be the type
341 * multiplexed with the current value of the rear pointer; this is so
342 * successive calls to initstate() won't lose this information and will be
343 * able to restart with setstate().
9385eb3d 344 *
e9ce8d39
A
345 * Note: the first thing we do is save the current state, if any, just like
346 * setstate() so that it doesn't matter when initstate is called.
347 *
348 * Returns a pointer to the old state.
349 *
3d9156a7 350 * Note: The Sparc platform requires that arg_state begin on an int
e9ce8d39
A
351 * word boundary; otherwise a bus error will occur. Even so, lint will
352 * complain about mis-alignment, but you should disregard these messages.
353 */
354char *
355initstate(seed, arg_state, n)
356 unsigned long seed; /* seed for R.N.G. */
357 char *arg_state; /* pointer to state array */
358 long n; /* # bytes of state info */
359{
9385eb3d 360 char *ostate = (char *)(&state[-1]);
3d9156a7 361 uint32_t *int_arg_state = (uint32_t *)arg_state;
e9ce8d39
A
362
363 if (rand_type == TYPE_0)
364 state[-1] = rand_type;
365 else
366 state[-1] = MAX_TYPES * (rptr - state) + rand_type;
367 if (n < BREAK_0) {
368 (void)fprintf(stderr,
369 "random: not enough state (%ld bytes); ignored.\n", n);
370 return(0);
371 }
372 if (n < BREAK_1) {
373 rand_type = TYPE_0;
374 rand_deg = DEG_0;
375 rand_sep = SEP_0;
376 } else if (n < BREAK_2) {
377 rand_type = TYPE_1;
378 rand_deg = DEG_1;
379 rand_sep = SEP_1;
380 } else if (n < BREAK_3) {
381 rand_type = TYPE_2;
382 rand_deg = DEG_2;
383 rand_sep = SEP_2;
384 } else if (n < BREAK_4) {
385 rand_type = TYPE_3;
386 rand_deg = DEG_3;
387 rand_sep = SEP_3;
388 } else {
389 rand_type = TYPE_4;
390 rand_deg = DEG_4;
391 rand_sep = SEP_4;
392 }
3d9156a7 393 state = int_arg_state + 1; /* first location */
e9ce8d39
A
394 end_ptr = &state[rand_deg]; /* must set end_ptr before srandom */
395 srandom(seed);
396 if (rand_type == TYPE_0)
3d9156a7 397 int_arg_state[0] = rand_type;
e9ce8d39 398 else
3d9156a7 399 int_arg_state[0] = MAX_TYPES * (rptr - state) + rand_type;
e9ce8d39
A
400 return(ostate);
401}
402
403/*
404 * setstate:
405 *
406 * Restore the state from the given state array.
407 *
408 * Note: it is important that we also remember the locations of the pointers
409 * in the current state information, and restore the locations of the pointers
410 * from the old state information. This is done by multiplexing the pointer
411 * location into the zeroeth word of the state information.
412 *
413 * Note that due to the order in which things are done, it is OK to call
414 * setstate() with the same state as the current state.
415 *
416 * Returns a pointer to the old state information.
417 *
3d9156a7 418 * Note: The Sparc platform requires that arg_state begin on an int
e9ce8d39
A
419 * word boundary; otherwise a bus error will occur. Even so, lint will
420 * complain about mis-alignment, but you should disregard these messages.
421 */
422char *
423setstate(arg_state)
424 char *arg_state; /* pointer to state array */
425{
3d9156a7
A
426 uint32_t *new_state = (uint32_t *)arg_state;
427 uint32_t type = new_state[0] % MAX_TYPES;
428 uint32_t rear = new_state[0] / MAX_TYPES;
e9ce8d39
A
429 char *ostate = (char *)(&state[-1]);
430
431 if (rand_type == TYPE_0)
432 state[-1] = rand_type;
433 else
434 state[-1] = MAX_TYPES * (rptr - state) + rand_type;
435 switch(type) {
436 case TYPE_0:
437 case TYPE_1:
438 case TYPE_2:
439 case TYPE_3:
440 case TYPE_4:
441 rand_type = type;
442 rand_deg = degrees[type];
443 rand_sep = seps[type];
444 break;
445 default:
446 (void)fprintf(stderr,
447 "random: state info corrupted; not changed.\n");
448 }
3d9156a7 449 state = new_state + 1;
e9ce8d39
A
450 if (rand_type != TYPE_0) {
451 rptr = &state[rear];
452 fptr = &state[(rear + rand_sep) % rand_deg];
453 }
454 end_ptr = &state[rand_deg]; /* set end_ptr too */
455 return(ostate);
456}
457
458/*
459 * random:
460 *
461 * If we are using the trivial TYPE_0 R.N.G., just do the old linear
462 * congruential bit. Otherwise, we do our fancy trinomial stuff, which is
463 * the same in all the other cases due to all the global variables that have
464 * been set up. The basic operation is to add the number at the rear pointer
465 * into the one at the front pointer. Then both pointers are advanced to
466 * the next location cyclically in the table. The value returned is the sum
467 * generated, reduced to 31 bits by throwing away the "least random" low bit.
468 *
469 * Note: the code takes advantage of the fact that both the front and
470 * rear pointers can't wrap on the same call by not testing the rear
471 * pointer if the front one has wrapped.
472 *
473 * Returns a 31-bit random number.
474 */
475long
476random()
477{
3d9156a7
A
478 uint32_t i;
479 uint32_t *f, *r;
e9ce8d39
A
480
481 if (rand_type == TYPE_0) {
482 i = state[0];
9385eb3d 483 state[0] = i = (good_rand(i)) & 0x7fffffff;
e9ce8d39
A
484 } else {
485 /*
486 * Use local variables rather than static variables for speed.
487 */
488 f = fptr; r = rptr;
489 *f += *r;
490 i = (*f >> 1) & 0x7fffffff; /* chucking least random bit */
491 if (++f >= end_ptr) {
492 f = state;
493 ++r;
494 }
495 else if (++r >= end_ptr) {
496 r = state;
497 }
498
499 fptr = f; rptr = r;
500 }
3d9156a7 501 return((long)i);
e9ce8d39 502}