+/* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-
+ *
+ * Copyright (c) 2005-2009 Apple Inc. All rights reserved.
+ *
+ * @APPLE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this
+ * file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_LICENSE_HEADER_END@
+ */
+
+#ifndef __EXECUTABLE_MACH_O__
+#define __EXECUTABLE_MACH_O__
+
+#include <stdint.h>
+#include <stddef.h>
+#include <fcntl.h>
+#include <sys/time.h>
+#include <uuid/uuid.h>
+#include <mach/i386/thread_status.h>
+#include <mach/ppc/thread_status.h>
+#include <CommonCrypto/CommonDigest.h>
+
+#include <vector>
+#include <algorithm>
+#include <map>
+#include <set>
+#include <ext/hash_map>
+
+#include "ObjectFile.h"
+#include "ExecutableFile.h"
+#include "Options.h"
+
+#include "MachOFileAbstraction.hpp"
+#include "MachOTrie.hpp"
+
+
+//
+//
+// To implement architecture xxx, you must write template specializations for the following methods:
+// MachHeaderAtom<xxx>::setHeaderInfo()
+// ThreadsLoadCommandsAtom<xxx>::getSize()
+// ThreadsLoadCommandsAtom<xxx>::copyRawContent()
+// Writer<xxx>::addObjectRelocs()
+// Writer<xxx>::fixUpReferenceRelocatable()
+// Writer<xxx>::fixUpReferenceFinal()
+// Writer<xxx>::stubableReference()
+// Writer<xxx>::weakImportReferenceKind()
+// Writer<xxx>::GOTReferenceKind()
+//
+
+
+namespace mach_o {
+namespace executable {
+
+// forward references
+template <typename A> class WriterAtom;
+template <typename A> class PageZeroAtom;
+template <typename A> class CustomStackAtom;
+template <typename A> class MachHeaderAtom;
+template <typename A> class SegmentLoadCommandsAtom;
+template <typename A> class EncryptionLoadCommandsAtom;
+template <typename A> class SymbolTableLoadCommandsAtom;
+template <typename A> class DyldInfoLoadCommandsAtom;
+template <typename A> class ThreadsLoadCommandsAtom;
+template <typename A> class DylibIDLoadCommandsAtom;
+template <typename A> class RoutinesLoadCommandsAtom;
+template <typename A> class DyldLoadCommandsAtom;
+template <typename A> class UUIDLoadCommandAtom;
+template <typename A> class LinkEditAtom;
+template <typename A> class SectionRelocationsLinkEditAtom;
+template <typename A> class CompressedRebaseInfoLinkEditAtom;
+template <typename A> class CompressedBindingInfoLinkEditAtom;
+template <typename A> class CompressedWeakBindingInfoLinkEditAtom;
+template <typename A> class CompressedLazyBindingInfoLinkEditAtom;
+template <typename A> class CompressedExportInfoLinkEditAtom;
+template <typename A> class LocalRelocationsLinkEditAtom;
+template <typename A> class ExternalRelocationsLinkEditAtom;
+template <typename A> class SymbolTableLinkEditAtom;
+template <typename A> class SegmentSplitInfoLoadCommandsAtom;
+template <typename A> class SegmentSplitInfoContentAtom;
+template <typename A> class IndirectTableLinkEditAtom;
+template <typename A> class ModuleInfoLinkEditAtom;
+template <typename A> class StringsLinkEditAtom;
+template <typename A> class LoadCommandsPaddingAtom;
+template <typename A> class UnwindInfoAtom;
+template <typename A> class StubAtom;
+template <typename A> class StubHelperAtom;
+template <typename A> class ClassicStubHelperAtom;
+template <typename A> class HybridStubHelperAtom;
+template <typename A> class HybridStubHelperHelperAtom;
+template <typename A> class FastStubHelperAtom;
+template <typename A> class FastStubHelperHelperAtom;
+template <typename A> class LazyPointerAtom;
+template <typename A> class NonLazyPointerAtom;
+template <typename A> class DylibLoadCommandsAtom;
+
+
+// SectionInfo should be nested inside Writer, but I can't figure out how to make the type accessible to the Atom classes
+class SectionInfo : public ObjectFile::Section {
+public:
+ SectionInfo() : fFileOffset(0), fSize(0), fRelocCount(0), fRelocOffset(0),
+ fIndirectSymbolOffset(0), fAlignment(0), fAllLazyPointers(false),
+ fAllLazyDylibPointers(false),fAllNonLazyPointers(false), fAllStubs(false),
+ fAllSelfModifyingStubs(false), fAllStubHelpers(false),
+ fAllZeroFill(false), fVirtualSection(false),
+ fHasTextLocalRelocs(false), fHasTextExternalRelocs(false)
+ { fSegmentName[0] = '\0'; fSectionName[0] = '\0'; }
+ void setIndex(unsigned int index) { fIndex=index; }
+ std::vector<ObjectFile::Atom*> fAtoms;
+ char fSegmentName[20];
+ char fSectionName[20];
+ uint64_t fFileOffset;
+ uint64_t fSize;
+ uint32_t fRelocCount;
+ uint32_t fRelocOffset;
+ uint32_t fIndirectSymbolOffset;
+ uint8_t fAlignment;
+ bool fAllLazyPointers;
+ bool fAllLazyDylibPointers;
+ bool fAllNonLazyPointers;
+ bool fAllStubs;
+ bool fAllSelfModifyingStubs;
+ bool fAllStubHelpers;
+ bool fAllZeroFill;
+ bool fVirtualSection;
+ bool fHasTextLocalRelocs;
+ bool fHasTextExternalRelocs;
+};
+
+// SegmentInfo should be nested inside Writer, but I can't figure out how to make the type accessible to the Atom classes
+class SegmentInfo
+{
+public:
+ SegmentInfo(uint64_t pageSize) : fInitProtection(0), fMaxProtection(0), fFileOffset(0), fFileSize(0),
+ fBaseAddress(0), fSize(0), fPageSize(pageSize), fFixedAddress(false),
+ fIndependentAddress(false), fHasLoadCommand(true) { fName[0] = '\0'; }
+ std::vector<class SectionInfo*> fSections;
+ char fName[20];
+ uint32_t fInitProtection;
+ uint32_t fMaxProtection;
+ uint64_t fFileOffset;
+ uint64_t fFileSize;
+ uint64_t fBaseAddress;
+ uint64_t fSize;
+ uint64_t fPageSize;
+ bool fFixedAddress;
+ bool fIndependentAddress;
+ bool fHasLoadCommand;
+};
+
+
+struct RebaseInfo {
+ RebaseInfo(uint8_t t, uint64_t addr) : fType(t), fAddress(addr) {}
+ uint8_t fType;
+ uint64_t fAddress;
+ // for sorting
+ int operator<(const RebaseInfo& rhs) const {
+ // sort by type, then address
+ if ( this->fType != rhs.fType )
+ return (this->fType < rhs.fType );
+ return (this->fAddress < rhs.fAddress );
+ }
+};
+
+struct BindingInfo {
+ BindingInfo(uint8_t t, int ord, const char* sym, bool weak_import, uint64_t addr, int64_t addend)
+ : fType(t), fFlags(weak_import ? BIND_SYMBOL_FLAGS_WEAK_IMPORT : 0 ), fLibraryOrdinal(ord),
+ fSymbolName(sym), fAddress(addr), fAddend(addend) {}
+ BindingInfo(uint8_t t, const char* sym, bool non_weak_definition, uint64_t addr, int64_t addend)
+ : fType(t), fFlags(non_weak_definition ? BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION : 0 ), fLibraryOrdinal(0),
+ fSymbolName(sym), fAddress(addr), fAddend(addend) {}
+ uint8_t fType;
+ uint8_t fFlags;
+ int fLibraryOrdinal;
+ const char* fSymbolName;
+ uint64_t fAddress;
+ int64_t fAddend;
+
+ // for sorting
+ int operator<(const BindingInfo& rhs) const {
+ // sort by library, symbol, type, then address
+ if ( this->fLibraryOrdinal != rhs.fLibraryOrdinal )
+ return (this->fLibraryOrdinal < rhs.fLibraryOrdinal );
+ if ( this->fSymbolName != rhs.fSymbolName )
+ return ( strcmp(this->fSymbolName, rhs.fSymbolName) < 0 );
+ if ( this->fType != rhs.fType )
+ return (this->fType < rhs.fType );
+ return (this->fAddress < rhs.fAddress );
+ }
+};
+
+
+class ByteStream {
+private:
+ std::vector<uint8_t> fData;
+public:
+ std::vector<uint8_t>& bytes() { return fData; }
+ unsigned long size() const { return fData.size(); }
+ void reserve(unsigned long l) { fData.reserve(l); }
+ const uint8_t* start() const { return &fData[0]; }
+
+ void append_uleb128(uint64_t value) {
+ uint8_t byte;
+ do {
+ byte = value & 0x7F;
+ value &= ~0x7F;
+ if ( value != 0 )
+ byte |= 0x80;
+ fData.push_back(byte);
+ value = value >> 7;
+ } while( byte >= 0x80 );
+ }
+
+ void append_sleb128(int64_t value) {
+ bool isNeg = ( value < 0 );
+ uint8_t byte;
+ bool more;
+ do {
+ byte = value & 0x7F;
+ value = value >> 7;
+ if ( isNeg )
+ more = ( (value != -1) || ((byte & 0x40) == 0) );
+ else
+ more = ( (value != 0) || ((byte & 0x40) != 0) );
+ if ( more )
+ byte |= 0x80;
+ fData.push_back(byte);
+ }
+ while( more );
+ }
+
+ void append_string(const char* str) {
+ for (const char* s = str; *s != '\0'; ++s)
+ fData.push_back(*s);
+ fData.push_back('\0');
+ }
+
+ void append_byte(uint8_t byte) {
+ fData.push_back(byte);
+ }
+
+ static unsigned int uleb128_size(uint64_t value) {
+ uint32_t result = 0;
+ do {
+ value = value >> 7;
+ ++result;
+ } while ( value != 0 );
+ return result;
+ }
+
+ void pad_to_size(unsigned int alignment) {
+ while ( (fData.size() % alignment) != 0 )
+ fData.push_back(0);
+ }
+};
+
+
+template <typename A>
+class Writer : public ExecutableFile::Writer
+{
+public:
+ Writer(const char* path, Options& options, std::vector<ExecutableFile::DyLibUsed>& dynamicLibraries);
+ virtual ~Writer();
+
+ virtual const char* getPath() { return fFilePath; }
+ virtual time_t getModificationTime() { return 0; }
+ virtual DebugInfoKind getDebugInfoKind() { return ObjectFile::Reader::kDebugInfoNone; }
+ virtual std::vector<class ObjectFile::Atom*>& getAtoms() { return fWriterSynthesizedAtoms; }
+ virtual std::vector<class ObjectFile::Atom*>* getJustInTimeAtomsFor(const char* name) { return NULL; }
+ virtual std::vector<Stab>* getStabs() { return NULL; }
+
+ virtual ObjectFile::Atom& makeObjcInfoAtom(ObjectFile::Reader::ObjcConstraint objcContraint,
+ bool objcReplacementClasses);
+ virtual class ObjectFile::Atom* getUndefinedProxyAtom(const char* name);
+ virtual uint64_t write(std::vector<class ObjectFile::Atom*>& atoms,
+ std::vector<class ObjectFile::Reader::Stab>& stabs,
+ class ObjectFile::Atom* entryPointAtom,
+ class ObjectFile::Atom* dyldClassicHelperAtom,
+ class ObjectFile::Atom* dyldCompressedHelperAtom,
+ class ObjectFile::Atom* dyldLazyDylibHelperAtom,
+ bool createUUID, bool canScatter,
+ ObjectFile::Reader::CpuConstraint cpuConstraint,
+ bool biggerThanTwoGigs,
+ std::set<const class ObjectFile::Atom*>& atomsThatOverrideWeak,
+ bool hasExternalWeakDefinitions);
+
+private:
+ typedef typename A::P P;
+ typedef typename A::P::uint_t pint_t;
+
+ enum RelocKind { kRelocNone, kRelocInternal, kRelocExternal };
+
+ void assignFileOffsets();
+ void synthesizeStubs();
+ void synthesizeKextGOT();
+ void createSplitSegContent();
+ void synthesizeUnwindInfoTable();
+ void insertDummyStubs();
+ void partitionIntoSections();
+ bool addBranchIslands();
+ bool addPPCBranchIslands();
+ bool isBranch24Reference(uint8_t kind);
+ void adjustLoadCommandsAndPadding();
+ void createDynamicLinkerCommand();
+ void createDylibCommands();
+ void buildLinkEdit();
+ const char* getArchString();
+ void writeMap();
+ uint64_t writeAtoms();
+ void writeNoOps(int fd, uint32_t from, uint32_t to);
+ void copyNoOps(uint8_t* from, uint8_t* to);
+ bool segmentsCanSplitApart(const ObjectFile::Atom& from, const ObjectFile::Atom& to);
+ void addCrossSegmentRef(const ObjectFile::Atom* atom, const ObjectFile::Reference* ref);
+ void collectExportedAndImportedAndLocalAtoms();
+ void setNlistRange(std::vector<class ObjectFile::Atom*>& atoms, uint32_t startIndex, uint32_t count);
+ void addLocalLabel(ObjectFile::Atom& atom, uint32_t offsetInAtom, const char* name);
+ void addGlobalLabel(ObjectFile::Atom& atom, uint32_t offsetInAtom, const char* name);
+ void buildSymbolTable();
+ bool stringsNeedLabelsInObjects();
+ const char* symbolTableName(const ObjectFile::Atom* atom);
+ void setExportNlist(const ObjectFile::Atom* atom, macho_nlist<P>* entry);
+ void setImportNlist(const ObjectFile::Atom* atom, macho_nlist<P>* entry);
+ void setLocalNlist(const ObjectFile::Atom* atom, macho_nlist<P>* entry);
+ void copyNlistRange(const std::vector<macho_nlist<P> >& entries, uint32_t startIndex);
+ uint64_t getAtomLoadAddress(const ObjectFile::Atom* atom);
+ uint8_t ordinalForLibrary(ObjectFile::Reader* file);
+ bool targetRequiresWeakBinding(const ObjectFile::Atom& target);
+ int compressedOrdinalForImortedAtom(ObjectFile::Atom* target);
+ bool shouldExport(const ObjectFile::Atom& atom) const;
+ void buildFixups();
+ void adjustLinkEditSections();
+ void buildObjectFileFixups();
+ void buildExecutableFixups();
+ bool preboundLazyPointerType(uint8_t* type);
+ uint64_t relocAddressInFinalLinkedImage(uint64_t address, const ObjectFile::Atom* atom) const;
+ void fixUpReferenceFinal(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const;
+ void fixUpReferenceRelocatable(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const;
+ void fixUpReference_powerpc(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom,
+ uint8_t buffer[], bool finalLinkedImage) const;
+ uint32_t symbolIndex(ObjectFile::Atom& atom);
+ bool makesExternalRelocatableReference(ObjectFile::Atom& target) const;
+ uint32_t addObjectRelocs(ObjectFile::Atom* atom, ObjectFile::Reference* ref);
+ uint32_t addObjectRelocs_powerpc(ObjectFile::Atom* atom, ObjectFile::Reference* ref);
+ uint8_t getRelocPointerSize();
+ uint64_t maxAddress();
+ bool stubableReference(const ObjectFile::Atom* inAtom, const ObjectFile::Reference* ref);
+ bool GOTReferenceKind(uint8_t kind);
+ bool optimizableGOTReferenceKind(uint8_t kind);
+ bool weakImportReferenceKind(uint8_t kind);
+ unsigned int collectStabs();
+ uint64_t valueForStab(const ObjectFile::Reader::Stab& stab);
+ uint32_t stringOffsetForStab(const ObjectFile::Reader::Stab& stab);
+ uint8_t sectionIndexForStab(const ObjectFile::Reader::Stab& stab);
+ void addStabs(uint32_t startIndex);
+ RelocKind relocationNeededInFinalLinkedImage(const ObjectFile::Atom& target) const;
+ bool illegalRelocInFinalLinkedImage(const ObjectFile::Reference&);
+ bool generatesLocalTextReloc(const ObjectFile::Reference&, const ObjectFile::Atom& atom, SectionInfo* curSection);
+ bool generatesExternalTextReloc(const ObjectFile::Reference&, const ObjectFile::Atom& atom, SectionInfo* curSection);
+ bool mightNeedPadSegment();
+ void scanForAbsoluteReferences();
+ bool needsModuleTable();
+ void optimizeDylibReferences();
+ bool indirectSymbolInRelocatableIsLocal(const ObjectFile::Reference* ref) const;
+
+ struct DirectLibrary {
+ class ObjectFile::Reader* fLibrary;
+ bool fWeak;
+ bool fReExport;
+ };
+
+ friend class WriterAtom<A>;
+ friend class PageZeroAtom<A>;
+ friend class CustomStackAtom<A>;
+ friend class MachHeaderAtom<A>;
+ friend class SegmentLoadCommandsAtom<A>;
+ friend class EncryptionLoadCommandsAtom<A>;
+ friend class SymbolTableLoadCommandsAtom<A>;
+ friend class DyldInfoLoadCommandsAtom<A>;
+ friend class ThreadsLoadCommandsAtom<A>;
+ friend class DylibIDLoadCommandsAtom<A>;
+ friend class RoutinesLoadCommandsAtom<A>;
+ friend class DyldLoadCommandsAtom<A>;
+ friend class UUIDLoadCommandAtom<A>;
+ friend class LinkEditAtom<A>;
+ friend class SectionRelocationsLinkEditAtom<A>;
+ friend class CompressedRebaseInfoLinkEditAtom<A>;
+ friend class CompressedBindingInfoLinkEditAtom<A>;
+ friend class CompressedWeakBindingInfoLinkEditAtom<A>;
+ friend class CompressedLazyBindingInfoLinkEditAtom<A>;
+ friend class CompressedExportInfoLinkEditAtom<A>;
+ friend class LocalRelocationsLinkEditAtom<A>;
+ friend class ExternalRelocationsLinkEditAtom<A>;
+ friend class SymbolTableLinkEditAtom<A>;
+ friend class SegmentSplitInfoLoadCommandsAtom<A>;
+ friend class SegmentSplitInfoContentAtom<A>;
+ friend class IndirectTableLinkEditAtom<A>;
+ friend class ModuleInfoLinkEditAtom<A>;
+ friend class StringsLinkEditAtom<A>;
+ friend class LoadCommandsPaddingAtom<A>;
+ friend class UnwindInfoAtom<A>;
+ friend class StubAtom<A>;
+ friend class StubHelperAtom<A>;
+ friend class ClassicStubHelperAtom<A>;
+ friend class HybridStubHelperAtom<A>;
+ friend class FastStubHelperAtom<A>;
+ friend class FastStubHelperHelperAtom<A>;
+ friend class HybridStubHelperHelperAtom<A>;
+ friend class LazyPointerAtom<A>;
+ friend class NonLazyPointerAtom<A>;
+ friend class DylibLoadCommandsAtom<A>;
+
+ const char* fFilePath;
+ Options& fOptions;
+ std::vector<class ObjectFile::Atom*>* fAllAtoms;
+ std::vector<class ObjectFile::Reader::Stab>* fStabs;
+ std::set<const class ObjectFile::Atom*>* fRegularDefAtomsThatOverrideADylibsWeakDef;
+ class SectionInfo* fLoadCommandsSection;
+ class SegmentInfo* fLoadCommandsSegment;
+ class MachHeaderAtom<A>* fMachHeaderAtom;
+ class EncryptionLoadCommandsAtom<A>* fEncryptionLoadCommand;
+ class SegmentLoadCommandsAtom<A>* fSegmentCommands;
+ class SymbolTableLoadCommandsAtom<A>* fSymbolTableCommands;
+ class LoadCommandsPaddingAtom<A>* fHeaderPadding;
+ class UnwindInfoAtom<A>* fUnwindInfoAtom;
+ class UUIDLoadCommandAtom<A>* fUUIDAtom;
+ std::vector<class ObjectFile::Atom*> fWriterSynthesizedAtoms;
+ std::vector<SegmentInfo*> fSegmentInfos;
+ class SegmentInfo* fPadSegmentInfo;
+ class ObjectFile::Atom* fEntryPoint;
+ class ObjectFile::Atom* fDyldClassicHelperAtom;
+ class ObjectFile::Atom* fDyldCompressedHelperAtom;
+ class ObjectFile::Atom* fDyldLazyDylibHelper;
+ std::map<class ObjectFile::Reader*, DylibLoadCommandsAtom<A>*> fLibraryToLoadCommand;
+ std::map<class ObjectFile::Reader*, uint32_t> fLibraryToOrdinal;
+ std::map<class ObjectFile::Reader*, class ObjectFile::Reader*> fLibraryAliases;
+ std::set<class ObjectFile::Reader*> fForcedWeakImportReaders;
+ std::vector<class ObjectFile::Atom*> fExportedAtoms;
+ std::vector<class ObjectFile::Atom*> fImportedAtoms;
+ std::vector<class ObjectFile::Atom*> fLocalSymbolAtoms;
+ std::vector<macho_nlist<P> > fLocalExtraLabels;
+ std::vector<macho_nlist<P> > fGlobalExtraLabels;
+ std::map<ObjectFile::Atom*, uint32_t> fAtomToSymbolIndex;
+ class SectionRelocationsLinkEditAtom<A>* fSectionRelocationsAtom;
+ class CompressedRebaseInfoLinkEditAtom<A>* fCompressedRebaseInfoAtom;
+ class CompressedBindingInfoLinkEditAtom<A>* fCompressedBindingInfoAtom;
+ class CompressedWeakBindingInfoLinkEditAtom<A>* fCompressedWeakBindingInfoAtom;
+ class CompressedLazyBindingInfoLinkEditAtom<A>* fCompressedLazyBindingInfoAtom;
+ class CompressedExportInfoLinkEditAtom<A>* fCompressedExportInfoAtom;
+ class LocalRelocationsLinkEditAtom<A>* fLocalRelocationsAtom;
+ class ExternalRelocationsLinkEditAtom<A>* fExternalRelocationsAtom;
+ class SymbolTableLinkEditAtom<A>* fSymbolTableAtom;
+ class SegmentSplitInfoContentAtom<A>* fSplitCodeToDataContentAtom;
+ class IndirectTableLinkEditAtom<A>* fIndirectTableAtom;
+ class ModuleInfoLinkEditAtom<A>* fModuleInfoAtom;
+ class StringsLinkEditAtom<A>* fStringsAtom;
+ class PageZeroAtom<A>* fPageZeroAtom;
+ class NonLazyPointerAtom<A>* fFastStubGOTAtom;
+ macho_nlist<P>* fSymbolTable;
+ std::vector<macho_relocation_info<P> > fSectionRelocs;
+ std::vector<macho_relocation_info<P> > fInternalRelocs;
+ std::vector<macho_relocation_info<P> > fExternalRelocs;
+ std::vector<RebaseInfo> fRebaseInfo;
+ std::vector<BindingInfo> fBindingInfo;
+ std::vector<BindingInfo> fWeakBindingInfo;
+ std::map<const ObjectFile::Atom*,ObjectFile::Atom*> fStubsMap;
+ std::map<ObjectFile::Atom*,ObjectFile::Atom*> fGOTMap;
+ std::vector<class StubAtom<A>*> fAllSynthesizedStubs;
+ std::vector<ObjectFile::Atom*> fAllSynthesizedStubHelpers;
+ std::vector<class LazyPointerAtom<A>*> fAllSynthesizedLazyPointers;
+ std::vector<class LazyPointerAtom<A>*> fAllSynthesizedLazyDylibPointers;
+ std::vector<class NonLazyPointerAtom<A>*> fAllSynthesizedNonLazyPointers;
+ uint32_t fSymbolTableCount;
+ uint32_t fSymbolTableStabsCount;
+ uint32_t fSymbolTableStabsStartIndex;
+ uint32_t fSymbolTableLocalCount;
+ uint32_t fSymbolTableLocalStartIndex;
+ uint32_t fSymbolTableExportCount;
+ uint32_t fSymbolTableExportStartIndex;
+ uint32_t fSymbolTableImportCount;
+ uint32_t fSymbolTableImportStartIndex;
+ uint32_t fLargestAtomSize;
+ bool fEmitVirtualSections;
+ bool fHasWeakExports;
+ bool fReferencesWeakImports;
+ bool fCanScatter;
+ bool fWritableSegmentPastFirst4GB;
+ bool fNoReExportedDylibs;
+ bool fBiggerThanTwoGigs;
+ bool fSlideable;
+ std::map<const ObjectFile::Atom*,bool> fWeakImportMap;
+ std::set<const ObjectFile::Reader*> fDylibReadersWithNonWeakImports;
+ std::set<const ObjectFile::Reader*> fDylibReadersWithWeakImports;
+ SegmentInfo* fFirstWritableSegment;
+ ObjectFile::Reader::CpuConstraint fCpuConstraint;
+ uint32_t fAnonNameIndex;
+};
+
+
+class Segment : public ObjectFile::Segment
+{
+public:
+ Segment(const char* name, bool readable, bool writable, bool executable, bool fixedAddress)
+ : fName(name), fReadable(readable), fWritable(writable), fExecutable(executable), fFixedAddress(fixedAddress) {}
+ virtual const char* getName() const { return fName; }
+ virtual bool isContentReadable() const { return fReadable; }
+ virtual bool isContentWritable() const { return fWritable; }
+ virtual bool isContentExecutable() const { return fExecutable; }
+ virtual bool hasFixedAddress() const { return fFixedAddress; }
+
+ static Segment fgTextSegment;
+ static Segment fgPageZeroSegment;
+ static Segment fgLinkEditSegment;
+ static Segment fgStackSegment;
+ static Segment fgImportSegment;
+ static Segment fgROImportSegment;
+ static Segment fgDataSegment;
+ static Segment fgObjCSegment;
+ static Segment fgHeaderSegment;
+
+
+private:
+ const char* fName;
+ const bool fReadable;
+ const bool fWritable;
+ const bool fExecutable;
+ const bool fFixedAddress;
+};
+
+Segment Segment::fgPageZeroSegment("__PAGEZERO", false, false, false, true);
+Segment Segment::fgTextSegment("__TEXT", true, false, true, false);
+Segment Segment::fgLinkEditSegment("__LINKEDIT", true, false, false, false);
+Segment Segment::fgStackSegment("__UNIXSTACK", true, true, false, true);
+Segment Segment::fgImportSegment("__IMPORT", true, true, true, false);
+Segment Segment::fgROImportSegment("__IMPORT", true, false, true, false);
+Segment Segment::fgDataSegment("__DATA", true, true, false, false);
+Segment Segment::fgObjCSegment("__OBJC", true, true, false, false);
+Segment Segment::fgHeaderSegment("__HEADER", true, false, true, false);
+
+
+template <typename A>
+class WriterAtom : public ObjectFile::Atom
+{
+public:
+ enum Kind { zeropage, machHeaderApp, machHeaderDylib, machHeaderBundle, machHeaderObject, loadCommands, undefinedProxy };
+ WriterAtom(Writer<A>& writer, Segment& segment) : fWriter(writer), fSegment(segment) { }
+
+ virtual ObjectFile::Reader* getFile() const { return &fWriter; }
+ virtual bool getTranslationUnitSource(const char** dir, const char** name) const { return false; }
+ virtual const char* getName() const { return NULL; }
+ virtual const char* getDisplayName() const { return this->getName(); }
+ virtual Scope getScope() const { return ObjectFile::Atom::scopeTranslationUnit; }
+ virtual DefinitionKind getDefinitionKind() const { return kRegularDefinition; }
+ virtual SymbolTableInclusion getSymbolTableInclusion() const { return ObjectFile::Atom::kSymbolTableNotIn; }
+ virtual bool dontDeadStrip() const { return true; }
+ virtual bool isZeroFill() const { return false; }
+ virtual bool isThumb() const { return false; }
+ virtual std::vector<ObjectFile::Reference*>& getReferences() const { return fgEmptyReferenceList; }
+ virtual bool mustRemainInSection() const { return true; }
+ virtual ObjectFile::Segment& getSegment() const { return fSegment; }
+ virtual ObjectFile::Atom& getFollowOnAtom() const { return *((ObjectFile::Atom*)NULL); }
+ virtual uint32_t getOrdinal() const { return 0; }
+ virtual std::vector<ObjectFile::LineInfo>* getLineInfo() const { return NULL; }
+ virtual ObjectFile::Alignment getAlignment() const { return ObjectFile::Alignment(2); }
+ virtual void copyRawContent(uint8_t buffer[]) const { throw "don't use copyRawContent"; }
+ virtual void setScope(Scope) { }
+
+
+protected:
+ virtual ~WriterAtom() {}
+ typedef typename A::P P;
+ typedef typename A::P::E E;
+
+ static Segment& headerSegment(Writer<A>& writer) { return (writer.fOptions.outputKind()==Options::kPreload)
+ ? Segment::fgHeaderSegment : Segment::fgTextSegment; }
+
+ static std::vector<ObjectFile::Reference*> fgEmptyReferenceList;
+
+ Writer<A>& fWriter;
+ Segment& fSegment;
+};
+
+template <typename A> std::vector<ObjectFile::Reference*> WriterAtom<A>::fgEmptyReferenceList;
+
+
+template <typename A>
+class PageZeroAtom : public WriterAtom<A>
+{
+public:
+ PageZeroAtom(Writer<A>& writer) : WriterAtom<A>(writer, Segment::fgPageZeroSegment),
+ fSize(fWriter.fOptions.zeroPageSize()) {}
+ virtual const char* getDisplayName() const { return "page zero content"; }
+ virtual bool isZeroFill() const { return true; }
+ virtual uint64_t getSize() const { return fSize; }
+ virtual const char* getSectionName() const { return "._zeropage"; }
+ virtual ObjectFile::Alignment getAlignment() const { return ObjectFile::Alignment(12); }
+ void setSize(uint64_t size) { fSize = size; }
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ uint64_t fSize;
+};
+
+
+template <typename A>
+class DsoHandleAtom : public WriterAtom<A>
+{
+public:
+ DsoHandleAtom(Writer<A>& writer) : WriterAtom<A>(writer, Segment::fgTextSegment) {}
+ virtual const char* getName() const { return "___dso_handle"; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeLinkageUnit; }
+ virtual ObjectFile::Atom::SymbolTableInclusion getSymbolTableInclusion() const { return ObjectFile::Atom::kSymbolTableNotIn; }
+ virtual uint64_t getSize() const { return 0; }
+ virtual ObjectFile::Alignment getAlignment() const { return ObjectFile::Alignment(12); }
+ virtual const char* getSectionName() const { return "._mach_header"; }
+ virtual void copyRawContent(uint8_t buffer[]) const {}
+};
+
+
+template <typename A>
+class MachHeaderAtom : public WriterAtom<A>
+{
+public:
+ MachHeaderAtom(Writer<A>& writer) : WriterAtom<A>(writer, headerSegment(writer)) {}
+ virtual const char* getName() const;
+ virtual const char* getDisplayName() const;
+ virtual ObjectFile::Atom::Scope getScope() const;
+ virtual ObjectFile::Atom::SymbolTableInclusion getSymbolTableInclusion() const;
+ virtual uint64_t getSize() const { return sizeof(macho_header<typename A::P>); }
+ virtual ObjectFile::Alignment getAlignment() const { return ObjectFile::Alignment(12); }
+ virtual const char* getSectionName() const { return "._mach_header"; }
+ virtual uint32_t getOrdinal() const { return 1; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ void setHeaderInfo(macho_header<typename A::P>& header) const;
+};
+
+template <typename A>
+class CustomStackAtom : public WriterAtom<A>
+{
+public:
+ CustomStackAtom(Writer<A>& writer);
+ virtual const char* getDisplayName() const { return "custom stack content"; }
+ virtual bool isZeroFill() const { return true; }
+ virtual uint64_t getSize() const { return fWriter.fOptions.customStackSize(); }
+ virtual const char* getSectionName() const { return "._stack"; }
+ virtual ObjectFile::Alignment getAlignment() const { return ObjectFile::Alignment(12); }
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ static bool stackGrowsDown();
+};
+
+template <typename A>
+class LoadCommandAtom : public WriterAtom<A>
+{
+protected:
+ LoadCommandAtom(Writer<A>& writer) : WriterAtom<A>(writer, headerSegment(writer)), fOrdinal(fgCurrentOrdinal++) {}
+ virtual ObjectFile::Alignment getAlignment() const { return ObjectFile::Alignment(log2(sizeof(typename A::P::uint_t))); }
+ virtual const char* getSectionName() const { return "._load_commands"; }
+ virtual uint32_t getOrdinal() const { return fOrdinal; }
+ static uint64_t alignedSize(uint64_t size);
+protected:
+ uint32_t fOrdinal;
+ static uint32_t fgCurrentOrdinal;
+};
+
+template <typename A> uint32_t LoadCommandAtom<A>::fgCurrentOrdinal = 0;
+
+template <typename A>
+class SegmentLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ SegmentLoadCommandsAtom(Writer<A>& writer)
+ : LoadCommandAtom<A>(writer), fCommandCount(0), fSize(0)
+ { writer.fSegmentCommands = this; }
+ virtual const char* getDisplayName() const { return "segment load commands"; }
+ virtual uint64_t getSize() const { return fSize; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+
+ void computeSize();
+ void setup();
+ unsigned int commandCount() { return fCommandCount; }
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ unsigned int fCommandCount;
+ uint32_t fSize;
+};
+
+
+template <typename A>
+class SymbolTableLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ SymbolTableLoadCommandsAtom(Writer<A>&);
+ virtual const char* getDisplayName() const { return "symbol table load commands"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ unsigned int commandCount();
+ void needDynamicTable();
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ bool fNeedsDynamicSymbolTable;
+ macho_symtab_command<typename A::P> fSymbolTable;
+ macho_dysymtab_command<typename A::P> fDynamicSymbolTable;
+};
+
+template <typename A>
+class ThreadsLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ ThreadsLoadCommandsAtom(Writer<A>& writer)
+ : LoadCommandAtom<A>(writer) {}
+ virtual const char* getDisplayName() const { return "thread load commands"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ uint8_t* fBuffer;
+ uint32_t fBufferSize;
+};
+
+template <typename A>
+class DyldLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ DyldLoadCommandsAtom(Writer<A>& writer) : LoadCommandAtom<A>(writer) {}
+ virtual const char* getDisplayName() const { return "dyld load command"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+template <typename A>
+class SegmentSplitInfoLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ SegmentSplitInfoLoadCommandsAtom(Writer<A>& writer) : LoadCommandAtom<A>(writer) {}
+ virtual const char* getDisplayName() const { return "segment split info load command"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+template <typename A>
+class AllowableClientLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ AllowableClientLoadCommandsAtom(Writer<A>& writer, const char* client) :
+ LoadCommandAtom<A>(writer), clientString(client) {}
+ virtual const char* getDisplayName() const { return "allowable_client load command"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ const char* clientString;
+};
+
+template <typename A>
+class DylibLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ DylibLoadCommandsAtom(Writer<A>& writer, ExecutableFile::DyLibUsed& info)
+ : LoadCommandAtom<A>(writer), fInfo(info),
+ fOptimizedAway(false) { if (fInfo.options.fLazyLoad) this->fOrdinal += 256; }
+ virtual const char* getDisplayName() const { return "dylib load command"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ virtual void optimizeAway() { fOptimizedAway = true; }
+ bool linkedWeak() { return fInfo.options.fWeakImport; }
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ ExecutableFile::DyLibUsed fInfo;
+ bool fOptimizedAway;
+};
+
+template <typename A>
+class DylibIDLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ DylibIDLoadCommandsAtom(Writer<A>& writer) : LoadCommandAtom<A>(writer) {}
+ virtual const char* getDisplayName() const { return "dylib ID load command"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+template <typename A>
+class RoutinesLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ RoutinesLoadCommandsAtom(Writer<A>& writer) : LoadCommandAtom<A>(writer) {}
+ virtual const char* getDisplayName() const { return "routines load command"; }
+ virtual uint64_t getSize() const { return sizeof(macho_routines_command<typename A::P>); }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+template <typename A>
+class SubUmbrellaLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ SubUmbrellaLoadCommandsAtom(Writer<A>& writer, const char* name)
+ : LoadCommandAtom<A>(writer), fName(name) {}
+ virtual const char* getDisplayName() const { return "sub-umbrella load command"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ typedef typename A::P P;
+ const char* fName;
+};
+
+template <typename A>
+class SubLibraryLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ SubLibraryLoadCommandsAtom(Writer<A>& writer, const char* nameStart, int nameLen)
+ : LoadCommandAtom<A>(writer), fNameStart(nameStart), fNameLength(nameLen) {}
+ virtual const char* getDisplayName() const { return "sub-library load command"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ const char* fNameStart;
+ int fNameLength;
+};
+
+template <typename A>
+class UmbrellaLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ UmbrellaLoadCommandsAtom(Writer<A>& writer, const char* name)
+ : LoadCommandAtom<A>(writer), fName(name) {}
+ virtual const char* getDisplayName() const { return "umbrella load command"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ const char* fName;
+};
+
+template <typename A>
+class UUIDLoadCommandAtom : public LoadCommandAtom<A>
+{
+public:
+ UUIDLoadCommandAtom(Writer<A>& writer)
+ : LoadCommandAtom<A>(writer), fEmit(false) {}
+ virtual const char* getDisplayName() const { return "uuid load command"; }
+ virtual uint64_t getSize() const { return fEmit ? sizeof(macho_uuid_command<typename A::P>) : 0; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ virtual void generate();
+ void setContent(const uint8_t uuid[16]);
+ const uint8_t* getUUID() { return fUUID; }
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ uuid_t fUUID;
+ bool fEmit;
+};
+
+
+template <typename A>
+class RPathLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ RPathLoadCommandsAtom(Writer<A>& writer, const char* path)
+ : LoadCommandAtom<A>(writer), fPath(path) {}
+ virtual const char* getDisplayName() const { return "rpath load command"; }
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ const char* fPath;
+};
+
+template <typename A>
+class EncryptionLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ EncryptionLoadCommandsAtom(Writer<A>& writer)
+ : LoadCommandAtom<A>(writer), fStartOffset(0),
+ fEndOffset(0) {}
+ virtual const char* getDisplayName() const { return "encryption info load command"; }
+ virtual uint64_t getSize() const { return sizeof(macho_encryption_info_command<typename A::P>); }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ void setStartEncryptionOffset(uint32_t off) { fStartOffset = off; }
+ void setEndEncryptionOffset(uint32_t off) { fEndOffset = off; }
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ uint32_t fStartOffset;
+ uint32_t fEndOffset;
+};
+
+template <typename A>
+class DyldInfoLoadCommandsAtom : public LoadCommandAtom<A>
+{
+public:
+ DyldInfoLoadCommandsAtom(Writer<A>& writer)
+ : LoadCommandAtom<A>(writer) {}
+ virtual const char* getDisplayName() const { return "dyld info load command"; }
+ virtual uint64_t getSize() const { return sizeof(macho_dyld_info_command<typename A::P>); }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+
+template <typename A>
+class LoadCommandsPaddingAtom : public WriterAtom<A>
+{
+public:
+ LoadCommandsPaddingAtom(Writer<A>& writer)
+ : WriterAtom<A>(writer, headerSegment(writer)), fSize(0) {}
+ virtual const char* getDisplayName() const { return "header padding"; }
+ virtual uint64_t getSize() const { return fSize; }
+ virtual const char* getSectionName() const { return "._load_cmds_pad"; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+
+ void setSize(uint64_t newSize);
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ uint64_t fSize;
+};
+
+template <typename A>
+class UnwindInfoAtom : public WriterAtom<A>
+{
+public:
+ UnwindInfoAtom(Writer<A>& writer) : WriterAtom<A>(writer, Segment::fgTextSegment),
+ fHeaderSize(0), fPagesSize(0), fAlignment(4) {}
+ virtual const char* getName() const { return "unwind info"; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeTranslationUnit; }
+ virtual ObjectFile::Atom::SymbolTableInclusion getSymbolTableInclusion() const { return ObjectFile::Atom::kSymbolTableNotIn; }
+ virtual uint64_t getSize() const { return fHeaderSize+fPagesSize; }
+ virtual ObjectFile::Alignment getAlignment() const { return fAlignment; }
+ virtual const char* getSectionName() const { return "__unwind_info"; }
+ virtual uint32_t getOrdinal() const { return 1; }
+ virtual std::vector<ObjectFile::Reference*>& getReferences() const { return (std::vector<ObjectFile::Reference*>&)fReferences; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+
+ void addUnwindInfo(ObjectFile::Atom* func, uint32_t offset, uint32_t encoding,
+ ObjectFile::Reference* fdeRef, ObjectFile::Reference* lsda,
+ ObjectFile::Atom* personalityPointer);
+ void generate();
+
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ struct Info { ObjectFile::Atom* func; ObjectFile::Atom* fde; ObjectFile::Atom* lsda; uint32_t lsdaOffset; ObjectFile::Atom* personalityPointer; uint32_t encoding; };
+ struct LSDAEntry { ObjectFile::Atom* func; ObjectFile::Atom* lsda; uint32_t lsdaOffset; };
+ struct RegFixUp { uint8_t* contentPointer; ObjectFile::Atom* func; ObjectFile::Atom* fde; };
+ struct CompressedFixUp { uint8_t* contentPointer; ObjectFile::Atom* func; ObjectFile::Atom* fromFunc; };
+ struct CompressedEncodingFixUp { uint8_t* contentPointer; ObjectFile::Atom* fde; };
+
+ bool encodingMeansUseDwarf(compact_unwind_encoding_t encoding);
+ void compressDuplicates(std::vector<Info>& uniqueInfos);
+ void findCommonEncoding(const std::vector<Info>& uniqueInfos, std::map<uint32_t, unsigned int>& commonEncodings);
+ void makeLsdaIndex(const std::vector<Info>& uniqueInfos, std::map<ObjectFile::Atom*, uint32_t>& lsdaIndexOffsetMap);
+ unsigned int makeRegularSecondLevelPage(const std::vector<Info>& uniqueInfos, uint32_t pageSize, unsigned int endIndex,
+ uint8_t*& pageEnd);
+ unsigned int makeCompressedSecondLevelPage(const std::vector<Info>& uniqueInfos,
+ const std::map<uint32_t,unsigned int> commonEncodings,
+ uint32_t pageSize, unsigned int endIndex, uint8_t*& pageEnd);
+ void makePersonalityIndex(std::vector<Info>& uniqueInfos);
+
+
+ uint32_t fHeaderSize;
+ uint32_t fPagesSize;
+ uint8_t* fHeaderContent;
+ uint8_t* fPagesContent;
+ uint8_t* fPagesContentForDelete;
+ ObjectFile::Alignment fAlignment;
+ std::vector<Info> fInfos;
+ std::map<ObjectFile::Atom*, uint32_t> fPersonalityIndexMap;
+ std::vector<LSDAEntry> fLSDAIndex;
+ std::vector<RegFixUp> fRegFixUps;
+ std::vector<CompressedFixUp> fCompressedFixUps;
+ std::vector<CompressedEncodingFixUp> fCompressedEncodingFixUps;
+ std::vector<ObjectFile::Reference*> fReferences;
+};
+
+
+
+template <typename A>
+class LinkEditAtom : public WriterAtom<A>
+{
+public:
+ LinkEditAtom(Writer<A>& writer) : WriterAtom<A>(writer, Segment::fgLinkEditSegment), fOrdinal(fgCurrentOrdinal++) {}
+ uint64_t getFileOffset() const;
+ virtual ObjectFile::Alignment getAlignment() const { return ObjectFile::Alignment(log2(sizeof(typename A::P::uint_t))); }
+ virtual uint32_t getOrdinal() const { return fOrdinal; }
+private:
+ uint32_t fOrdinal;
+ static uint32_t fgCurrentOrdinal;
+private:
+ typedef typename A::P P;
+};
+
+template <typename A> uint32_t LinkEditAtom<A>::fgCurrentOrdinal = 0;
+
+template <typename A>
+class SectionRelocationsLinkEditAtom : public LinkEditAtom<A>
+{
+public:
+ SectionRelocationsLinkEditAtom(Writer<A>& writer) : LinkEditAtom<A>(writer) { }
+ virtual const char* getDisplayName() const { return "section relocations"; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "._section_relocs"; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+template <typename A>
+class CompressedInfoLinkEditAtom : public LinkEditAtom<A>
+{
+public:
+ CompressedInfoLinkEditAtom(Writer<A>& writer) : LinkEditAtom<A>(writer) { }
+ virtual uint64_t getSize() const { return fEncodedData.size(); }
+ virtual void copyRawContent(uint8_t buffer[]) const { memcpy(buffer, fEncodedData.start(), fEncodedData.size()); }
+protected:
+ typedef typename A::P::uint_t pint_t;
+ ByteStream fEncodedData;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+
+
+template <typename A>
+class CompressedRebaseInfoLinkEditAtom : public CompressedInfoLinkEditAtom<A>
+{
+public:
+ CompressedRebaseInfoLinkEditAtom(Writer<A>& writer) : CompressedInfoLinkEditAtom<A>(writer) { }
+ virtual const char* getDisplayName() const { return "compressed rebase info"; }
+ virtual const char* getSectionName() const { return "._rebase info"; }
+ void encode();
+private:
+ using CompressedInfoLinkEditAtom<A>::fEncodedData;
+ using CompressedInfoLinkEditAtom<A>::fWriter;
+ typedef typename A::P P;
+ typedef typename A::P::uint_t pint_t;
+};
+
+template <typename A>
+class CompressedBindingInfoLinkEditAtom : public CompressedInfoLinkEditAtom<A>
+{
+public:
+ CompressedBindingInfoLinkEditAtom(Writer<A>& writer) : CompressedInfoLinkEditAtom<A>(writer) { }
+ virtual const char* getDisplayName() const { return "compressed binding info"; }
+ virtual const char* getSectionName() const { return "._binding info"; }
+ void encode();
+private:
+ using CompressedInfoLinkEditAtom<A>::fWriter;
+ using CompressedInfoLinkEditAtom<A>::fEncodedData;
+ typedef typename A::P P;
+ typedef typename A::P::uint_t pint_t;
+};
+
+template <typename A>
+class CompressedWeakBindingInfoLinkEditAtom : public CompressedInfoLinkEditAtom<A>
+{
+public:
+ CompressedWeakBindingInfoLinkEditAtom(Writer<A>& writer) : CompressedInfoLinkEditAtom<A>(writer) { }
+ virtual const char* getDisplayName() const { return "compressed weak binding info"; }
+ virtual const char* getSectionName() const { return "._wkbinding info"; }
+ void encode();
+private:
+ using CompressedInfoLinkEditAtom<A>::fWriter;
+ using CompressedInfoLinkEditAtom<A>::fEncodedData;
+ typedef typename A::P P;
+ typedef typename A::P::uint_t pint_t;
+};
+
+template <typename A>
+class CompressedLazyBindingInfoLinkEditAtom : public CompressedInfoLinkEditAtom<A>
+{
+public:
+ CompressedLazyBindingInfoLinkEditAtom(Writer<A>& writer) : CompressedInfoLinkEditAtom<A>(writer) { }
+ virtual const char* getDisplayName() const { return "compressed lazy binding info"; }
+ virtual const char* getSectionName() const { return "._lzbinding info"; }
+ void encode();
+private:
+ std::vector<uint32_t> fStarts;
+
+ using CompressedInfoLinkEditAtom<A>::fWriter;
+ using CompressedInfoLinkEditAtom<A>::fEncodedData;
+ typedef typename A::P P;
+ typedef typename A::P::uint_t pint_t;
+};
+
+
+template <typename A>
+class CompressedExportInfoLinkEditAtom : public CompressedInfoLinkEditAtom<A>
+{
+public:
+ CompressedExportInfoLinkEditAtom(Writer<A>& writer)
+ : CompressedInfoLinkEditAtom<A>(writer), fStartNode(strdup("")) { }
+ virtual const char* getDisplayName() const { return "compressed export info"; }
+ virtual const char* getSectionName() const { return "._export info"; }
+ void encode();
+private:
+ using WriterAtom<A>::fWriter;
+ using CompressedInfoLinkEditAtom<A>::fEncodedData;
+ typedef typename A::P P;
+ typedef typename A::P::uint_t pint_t;
+ struct node;
+
+ struct edge
+ {
+ edge(const char* s, struct node* n) : fSubString(s), fChild(n) { }
+ ~edge() { }
+ const char* fSubString;
+ struct node* fChild;
+
+ };
+
+ struct node
+ {
+ node(const char* s) : fCummulativeString(s), fAddress(0), fFlags(0), fOrdered(false),
+ fHaveExportInfo(false), fTrieOffset(0) {}
+ ~node() { }
+ const char* fCummulativeString;
+ std::vector<edge> fChildren;
+ uint64_t fAddress;
+ uint32_t fFlags;
+ bool fOrdered;
+ bool fHaveExportInfo;
+ uint32_t fTrieOffset;
+
+ void addSymbol(const char* fullStr, uint64_t address, uint32_t flags) {
+ const char* partialStr = &fullStr[strlen(fCummulativeString)];
+ for (typename std::vector<edge>::iterator it = fChildren.begin(); it != fChildren.end(); ++it) {
+ edge& e = *it;
+ int subStringLen = strlen(e.fSubString);
+ if ( strncmp(e.fSubString, partialStr, subStringLen) == 0 ) {
+ // already have matching edge, go down that path
+ e.fChild->addSymbol(fullStr, address, flags);
+ return;
+ }
+ else {
+ for (int i=subStringLen-1; i > 0; --i) {
+ if ( strncmp(e.fSubString, partialStr, i) == 0 ) {
+ // found a common substring, splice in new node
+ // was A -> C, now A -> B -> C
+ char* bNodeCummStr = strdup(e.fChild->fCummulativeString);
+ bNodeCummStr[strlen(bNodeCummStr)+i-subStringLen] = '\0';
+ //node* aNode = this;
+ node* bNode = new node(bNodeCummStr);
+ node* cNode = e.fChild;
+ char* abEdgeStr = strdup(e.fSubString);
+ abEdgeStr[i] = '\0';
+ char* bcEdgeStr = strdup(&e.fSubString[i]);
+ edge& abEdge = e;
+ abEdge.fSubString = abEdgeStr;
+ abEdge.fChild = bNode;
+ edge bcEdge(bcEdgeStr, cNode);
+ bNode->fChildren.push_back(bcEdge);
+ bNode->addSymbol(fullStr, address, flags);
+ return;
+ }
+ }
+ }
+ }
+ // no commonality with any existing child, make a new edge that is this whole string
+ node* newNode = new node(strdup(fullStr));
+ edge newEdge(strdup(partialStr), newNode);
+ fChildren.push_back(newEdge);
+ newNode->fAddress = address;
+ newNode->fFlags = flags;
+ newNode->fHaveExportInfo = true;
+ }
+
+ void addOrderedNodes(const char* name, std::vector<node*>& orderedNodes) {
+ if ( !fOrdered ) {
+ orderedNodes.push_back(this);
+ //fprintf(stderr, "ordered %p %s\n", this, fCummulativeString);
+ fOrdered = true;
+ }
+ const char* partialStr = &name[strlen(fCummulativeString)];
+ for (typename std::vector<edge>::iterator it = fChildren.begin(); it != fChildren.end(); ++it) {
+ edge& e = *it;
+ int subStringLen = strlen(e.fSubString);
+ if ( strncmp(e.fSubString, partialStr, subStringLen) == 0 ) {
+ // already have matching edge, go down that path
+ e.fChild->addOrderedNodes(name, orderedNodes);
+ return;
+ }
+ }
+ }
+
+ // byte for terminal node size in bytes, or 0x00 if not terminal node
+ // teminal node (uleb128 flags, uleb128 addr)
+ // byte for child node count
+ // each child: zero terminated substring, uleb128 node offset
+ bool updateOffset(uint32_t& offset) {
+ uint32_t nodeSize = 1; // byte for length of export info
+ if ( fHaveExportInfo )
+ nodeSize += ByteStream::uleb128_size(fFlags) + ByteStream::uleb128_size(fAddress);
+
+ // add children
+ ++nodeSize; // byte for count of chidren
+ for (typename std::vector<edge>::iterator it = fChildren.begin(); it != fChildren.end(); ++it) {
+ edge& e = *it;
+ nodeSize += strlen(e.fSubString) + 1 + ByteStream::uleb128_size(e.fChild->fTrieOffset);
+ }
+ bool result = (fTrieOffset != offset);
+ fTrieOffset = offset;
+ //fprintf(stderr, "updateOffset %p %05d %s\n", this, fTrieOffset, fCummulativeString);
+ offset += nodeSize;
+ // return true if fTrieOffset was changed
+ return result;
+ }
+
+ void appendToStream(ByteStream& out) {
+ if ( fHaveExportInfo ) {
+ // nodes with export info: size, flags, address
+ out.append_byte(out.uleb128_size(fFlags) + out.uleb128_size(fAddress));
+ out.append_uleb128(fFlags);
+ out.append_uleb128(fAddress);
+ }
+ else {
+ // no export info
+ out.append_byte(0);
+ }
+ // write number of children
+ out.append_byte(fChildren.size());
+ // write each child
+ for (typename std::vector<edge>::iterator it = fChildren.begin(); it != fChildren.end(); ++it) {
+ edge& e = *it;
+ out.append_string(e.fSubString);
+ out.append_uleb128(e.fChild->fTrieOffset);
+ }
+ }
+
+ };
+
+
+ struct node fStartNode;
+};
+
+template <typename A>
+class LocalRelocationsLinkEditAtom : public LinkEditAtom<A>
+{
+public:
+ LocalRelocationsLinkEditAtom(Writer<A>& writer) : LinkEditAtom<A>(writer) { }
+ virtual const char* getDisplayName() const { return "local relocations"; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "._local_relocs"; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+template <typename A>
+class SymbolTableLinkEditAtom : public LinkEditAtom<A>
+{
+public:
+ SymbolTableLinkEditAtom(Writer<A>& writer) : LinkEditAtom<A>(writer) { }
+ virtual const char* getDisplayName() const { return "symbol table"; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "._symbol_table"; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+template <typename A>
+class ExternalRelocationsLinkEditAtom : public LinkEditAtom<A>
+{
+public:
+ ExternalRelocationsLinkEditAtom(Writer<A>& writer) : LinkEditAtom<A>(writer) { }
+ virtual const char* getDisplayName() const { return "external relocations"; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "._extern_relocs"; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+struct IndirectEntry {
+ uint32_t indirectIndex;
+ uint32_t symbolIndex;
+};
+
+
+template <typename A>
+class SegmentSplitInfoContentAtom : public LinkEditAtom<A>
+{
+public:
+ SegmentSplitInfoContentAtom(Writer<A>& writer) : LinkEditAtom<A>(writer), fCantEncode(false) { }
+ virtual const char* getDisplayName() const { return "split segment info"; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "._split_info"; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ bool canEncode() { return !fCantEncode; }
+ void setCantEncode() { fCantEncode = true; }
+ void add32bitPointerLocation(const ObjectFile::Atom* atom, uint32_t offset) { fKind1Locations.push_back(AtomAndOffset(atom, offset)); }
+ void add64bitPointerLocation(const ObjectFile::Atom* atom, uint32_t offset) { fKind2Locations.push_back(AtomAndOffset(atom, offset)); }
+ void addPPCHi16Location(const ObjectFile::Atom* atom, uint32_t offset) { fKind3Locations.push_back(AtomAndOffset(atom, offset)); }
+ void add32bitImportLocation(const ObjectFile::Atom* atom, uint32_t offset) { fKind4Locations.push_back(AtomAndOffset(atom, offset)); }
+ void encode();
+
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ typedef typename A::P::uint_t pint_t;
+ struct AtomAndOffset {
+ AtomAndOffset(const ObjectFile::Atom* a, uint32_t off) : atom(a), offset(off) {}
+ const ObjectFile::Atom* atom;
+ uint32_t offset;
+ };
+ void uleb128EncodeAddresses(const std::vector<AtomAndOffset>& locations);
+
+ std::vector<AtomAndOffset> fKind1Locations;
+ std::vector<AtomAndOffset> fKind2Locations;
+ std::vector<AtomAndOffset> fKind3Locations;
+ std::vector<AtomAndOffset> fKind4Locations;
+ std::vector<uint8_t> fEncodedData;
+ bool fCantEncode;
+};
+
+template <typename A>
+class IndirectTableLinkEditAtom : public LinkEditAtom<A>
+{
+public:
+ IndirectTableLinkEditAtom(Writer<A>& writer) : LinkEditAtom<A>(writer) { }
+ virtual const char* getDisplayName() const { return "indirect symbol table"; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "._indirect_syms"; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+
+ std::vector<IndirectEntry> fTable;
+
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+};
+
+template <typename A>
+class ModuleInfoLinkEditAtom : public LinkEditAtom<A>
+{
+public:
+ ModuleInfoLinkEditAtom(Writer<A>& writer) : LinkEditAtom<A>(writer), fModuleNameOffset(0) { }
+ virtual const char* getDisplayName() const { return "module table"; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "._module_info"; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+
+ void setName() { fModuleNameOffset = fWriter.fStringsAtom->add("single module"); }
+ uint32_t getTableOfContentsFileOffset() const;
+ uint32_t getModuleTableFileOffset() const;
+ uint32_t getReferencesFileOffset() const;
+ uint32_t getReferencesCount() const;
+
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ typedef typename A::P::uint_t pint_t;
+ uint32_t fModuleNameOffset;
+};
+
+
+class CStringEquals
+{
+public:
+ bool operator()(const char* left, const char* right) const { return (strcmp(left, right) == 0); }
+};
+
+template <typename A>
+class StringsLinkEditAtom : public LinkEditAtom<A>
+{
+public:
+ StringsLinkEditAtom(Writer<A>& writer);
+ virtual const char* getDisplayName() const { return "string pool"; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "._string_pool"; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+
+ int32_t add(const char* name);
+ int32_t addUnique(const char* name);
+ int32_t emptyString() { return 1; }
+ const char* stringForIndex(int32_t) const;
+
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ enum { kBufferSize = 0x01000000 };
+ typedef __gnu_cxx::hash_map<const char*, int32_t, __gnu_cxx::hash<const char*>, CStringEquals> StringToOffset;
+
+ std::vector<char*> fFullBuffers;
+ char* fCurrentBuffer;
+ uint32_t fCurrentBufferUsed;
+ StringToOffset fUniqueStrings;
+};
+
+
+
+template <typename A>
+class UndefinedSymbolProxyAtom : public WriterAtom<A>
+{
+public:
+ UndefinedSymbolProxyAtom(Writer<A>& writer, const char* name) : WriterAtom<A>(writer, Segment::fgLinkEditSegment), fName(name) {}
+ virtual const char* getName() const { return fName; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeGlobal; }
+ virtual ObjectFile::Atom::DefinitionKind getDefinitionKind() const { return ObjectFile::Atom::kExternalDefinition; }
+ virtual ObjectFile::Atom::SymbolTableInclusion getSymbolTableInclusion() const { return ObjectFile::Atom::kSymbolTableIn; }
+ virtual uint64_t getSize() const { return 0; }
+ virtual const char* getSectionName() const { return "._imports"; }
+private:
+ using WriterAtom<A>::fWriter;
+ typedef typename A::P P;
+ const char* fName;
+};
+
+template <typename A>
+class BranchIslandAtom : public WriterAtom<A>
+{
+public:
+ BranchIslandAtom(Writer<A>& writer, const char* name, int islandRegion, ObjectFile::Atom& target, uint32_t targetOffset);
+ virtual const char* getName() const { return fName; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeLinkageUnit; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "__text"; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ using WriterAtom<A>::fWriter;
+ const char* fName;
+ ObjectFile::Atom& fTarget;
+ uint32_t fTargetOffset;
+};
+
+template <typename A>
+class StubAtom : public WriterAtom<A>
+{
+public:
+ StubAtom(Writer<A>& writer, ObjectFile::Atom& target, bool forLazyDylib);
+ virtual const char* getName() const { return fName; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeLinkageUnit; }
+ virtual uint64_t getSize() const;
+ virtual ObjectFile::Alignment getAlignment() const;
+ virtual const char* getSectionName() const { return "__symbol_stub1"; }
+ virtual std::vector<ObjectFile::Reference*>& getReferences() const { return (std::vector<ObjectFile::Reference*>&)(fReferences); }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ ObjectFile::Atom* getTarget() { return &fTarget; }
+private:
+ static const char* stubName(const char* importName);
+ bool pic() const { return fWriter.fSlideable; }
+ using WriterAtom<A>::fWriter;
+ const char* fName;
+ ObjectFile::Atom& fTarget;
+ std::vector<ObjectFile::Reference*> fReferences;
+ bool fForLazyDylib;
+};
+
+
+template <typename A>
+class FastStubHelperHelperAtom : public WriterAtom<A>
+{
+public:
+ FastStubHelperHelperAtom(Writer<A>& writer);
+ virtual const char* getName() const { return " stub helpers"; } // name sorts to start of helpers
+ virtual ObjectFile::Atom::SymbolTableInclusion getSymbolTableInclusion() const { return ObjectFile::Atom::kSymbolTableIn; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeLinkageUnit; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "__stub_helper"; }
+ virtual std::vector<ObjectFile::Reference*>& getReferences() const { return (std::vector<ObjectFile::Reference*>&)(fReferences); }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ virtual ObjectFile::Alignment getAlignment() const { return ObjectFile::Alignment(0); }
+protected:
+ using WriterAtom<A>::fWriter;
+ std::vector<ObjectFile::Reference*> fReferences;
+};
+
+template <typename A>
+class HybridStubHelperHelperAtom : public WriterAtom<A>
+{
+public:
+ HybridStubHelperHelperAtom(Writer<A>& writer);
+ virtual const char* getName() const { return " stub helpers"; } // name sorts to start of helpers
+ virtual ObjectFile::Atom::SymbolTableInclusion getSymbolTableInclusion() const { return ObjectFile::Atom::kSymbolTableIn; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeLinkageUnit; }
+ virtual uint64_t getSize() const;
+ virtual const char* getSectionName() const { return "__stub_helper"; }
+ virtual std::vector<ObjectFile::Reference*>& getReferences() const { return (std::vector<ObjectFile::Reference*>&)(fReferences); }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ virtual ObjectFile::Alignment getAlignment() const { return ObjectFile::Alignment(0); }
+protected:
+ using WriterAtom<A>::fWriter;
+ std::vector<ObjectFile::Reference*> fReferences;
+};
+
+template <typename A>
+class StubHelperAtom : public WriterAtom<A>
+{
+public:
+ StubHelperAtom(Writer<A>& writer, ObjectFile::Atom& target,
+ LazyPointerAtom<A>& lazyPointer, bool forLazyDylib)
+ : WriterAtom<A>(writer, Segment::fgTextSegment), fName(stubName(target.getName())),
+ fTarget(target), fLazyPointerAtom(lazyPointer) {
+ writer.fAllSynthesizedStubHelpers.push_back(this);
+ }
+
+ virtual const char* getName() const { return fName; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeLinkageUnit; }
+ virtual const char* getSectionName() const { return "__stub_helper"; }
+ virtual std::vector<ObjectFile::Reference*>& getReferences() const { return (std::vector<ObjectFile::Reference*>&)(fReferences); }
+ ObjectFile::Atom* getTarget() { return &fTarget; }
+ virtual ObjectFile::Alignment getAlignment() const { return ObjectFile::Alignment(0); }
+protected:
+ static const char* stubName(const char* importName);
+ using WriterAtom<A>::fWriter;
+ const char* fName;
+ ObjectFile::Atom& fTarget;
+ LazyPointerAtom<A>& fLazyPointerAtom;
+ std::vector<ObjectFile::Reference*> fReferences;
+};
+
+template <typename A>
+class ClassicStubHelperAtom : public StubHelperAtom<A>
+{
+public:
+ ClassicStubHelperAtom(Writer<A>& writer, ObjectFile::Atom& target,
+ class LazyPointerAtom<A>& lazyPointer, bool forLazyDylib);
+
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+};
+
+
+template <typename A>
+class HybridStubHelperAtom : public StubHelperAtom<A>
+{
+public:
+ HybridStubHelperAtom(Writer<A>& writer, ObjectFile::Atom& target,
+ class LazyPointerAtom<A>& lazyPointer, bool forLazyDylib);
+
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ static class HybridStubHelperHelperAtom<A>* fgHelperHelperAtom;
+};
+template <typename A> class HybridStubHelperHelperAtom<A>* HybridStubHelperAtom<A>::fgHelperHelperAtom = NULL;
+
+template <typename A>
+class FastStubHelperAtom : public StubHelperAtom<A>
+{
+public:
+ FastStubHelperAtom(Writer<A>& writer, ObjectFile::Atom& target,
+ class LazyPointerAtom<A>& lazyPointer, bool forLazyDylib);
+ virtual uint64_t getSize() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ static FastStubHelperHelperAtom<A>* fgHelperHelperAtom;
+};
+template <typename A> FastStubHelperHelperAtom<A>* FastStubHelperAtom<A>::fgHelperHelperAtom = NULL;
+
+
+
+template <typename A>
+class LazyPointerAtom : public WriterAtom<A>
+{
+public:
+ LazyPointerAtom(Writer<A>& writer, ObjectFile::Atom& target,
+ StubAtom<A>& stub, bool forLazyDylib);
+ virtual const char* getName() const { return fName; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeLinkageUnit; }
+ virtual uint64_t getSize() const { return sizeof(typename A::P::uint_t); }
+ virtual const char* getSectionName() const { return fForLazyDylib ? "__ld_symbol_ptr" : "__la_symbol_ptr"; }
+ virtual std::vector<ObjectFile::Reference*>& getReferences() const { return (std::vector<ObjectFile::Reference*>&)(fReferences); }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ ObjectFile::Atom* getTarget() { return &fExternalTarget; }
+ void setLazyBindingInfoOffset(uint32_t off) { fLazyBindingOffset = off; }
+ uint32_t getLazyBindingInfoOffset() { return fLazyBindingOffset; }
+private:
+ using WriterAtom<A>::fWriter;
+ static const char* lazyPointerName(const char* importName);
+ const char* fName;
+ ObjectFile::Atom& fTarget;
+ ObjectFile::Atom& fExternalTarget;
+ std::vector<ObjectFile::Reference*> fReferences;
+ bool fForLazyDylib;
+ uint32_t fLazyBindingOffset;
+};
+
+
+template <typename A>
+class NonLazyPointerAtom : public WriterAtom<A>
+{
+public:
+ NonLazyPointerAtom(Writer<A>& writer, ObjectFile::Atom& target);
+ NonLazyPointerAtom(Writer<A>& writer, const char* targetName);
+ NonLazyPointerAtom(Writer<A>& writer);
+ virtual const char* getName() const { return fName; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeLinkageUnit; }
+ virtual uint64_t getSize() const { return sizeof(typename A::P::uint_t); }
+ virtual const char* getSectionName() const { return (fWriter.fOptions.outputKind() == Options::kKextBundle) ? "__got" : "__nl_symbol_ptr"; }
+ virtual std::vector<ObjectFile::Reference*>& getReferences() const { return (std::vector<ObjectFile::Reference*>&)(fReferences); }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ ObjectFile::Atom* getTarget() { return fTarget; }
+private:
+ using WriterAtom<A>::fWriter;
+ static const char* nonlazyPointerName(const char* importName);
+ const char* fName;
+ ObjectFile::Atom* fTarget;
+ std::vector<ObjectFile::Reference*> fReferences;
+};
+
+
+template <typename A>
+class ObjCInfoAtom : public WriterAtom<A>
+{
+public:
+ ObjCInfoAtom(Writer<A>& writer, ObjectFile::Reader::ObjcConstraint objcContraint,
+ bool objcReplacementClasses);
+ virtual const char* getName() const { return "objc$info"; }
+ virtual ObjectFile::Atom::Scope getScope() const { return ObjectFile::Atom::scopeLinkageUnit; }
+ virtual uint64_t getSize() const { return 8; }
+ virtual const char* getSectionName() const;
+ virtual void copyRawContent(uint8_t buffer[]) const;
+private:
+ Segment& getInfoSegment() const;
+ uint32_t fContent[2];
+};
+
+
+template <typename A>
+class WriterReference : public ObjectFile::Reference
+{
+public:
+ typedef typename A::ReferenceKinds Kinds;
+
+ WriterReference(uint32_t offset, Kinds kind, ObjectFile::Atom* target,
+ uint32_t toOffset=0, ObjectFile::Atom* fromTarget=NULL, uint32_t fromOffset=0)
+ : fKind(kind), fFixUpOffsetInSrc(offset), fTarget(target), fTargetName(target->getName()),
+ fTargetOffset(toOffset), fFromTarget(fromTarget), fFromTargetOffset(fromOffset) {}
+ WriterReference(uint32_t offset, Kinds kind, const char* targetName)
+ : fKind(kind), fFixUpOffsetInSrc(offset), fTarget(NULL), fTargetName(targetName),
+ fTargetOffset(0), fFromTarget(NULL), fFromTargetOffset(0) {}
+
+ virtual ~WriterReference() {}
+
+ virtual ObjectFile::Reference::TargetBinding getTargetBinding() const { return (fTarget != NULL) ? ObjectFile::Reference::kBoundDirectly : ObjectFile::Reference::kUnboundByName; }
+ virtual ObjectFile::Reference::TargetBinding getFromTargetBinding() const { return (fFromTarget != NULL) ? ObjectFile::Reference::kBoundDirectly : ObjectFile::Reference::kDontBind; }
+ virtual uint8_t getKind() const { return (uint8_t)fKind; }
+ virtual uint64_t getFixUpOffset() const { return fFixUpOffsetInSrc; }
+ virtual const char* getTargetName() const { return fTargetName; }
+ virtual ObjectFile::Atom& getTarget() const { return *fTarget; }
+ virtual uint64_t getTargetOffset() const { return fTargetOffset; }
+ virtual ObjectFile::Atom& getFromTarget() const { return *fFromTarget; }
+ virtual const char* getFromTargetName() const { return fFromTarget->getName(); }
+ virtual void setTarget(ObjectFile::Atom& target, uint64_t offset) { fTarget = ⌖ fTargetOffset = offset; }
+ virtual void setFromTarget(ObjectFile::Atom& target) { fFromTarget = ⌖ }
+ virtual void setFromTargetName(const char* name) { }
+ virtual void setFromTargetOffset(uint64_t offset) { fFromTargetOffset = offset; }
+ virtual const char* getDescription() const { return "writer reference"; }
+ virtual uint64_t getFromTargetOffset() const { return fFromTargetOffset; }
+
+private:
+ Kinds fKind;
+ uint32_t fFixUpOffsetInSrc;
+ ObjectFile::Atom* fTarget;
+ const char* fTargetName;
+ uint32_t fTargetOffset;
+ ObjectFile::Atom* fFromTarget;
+ uint32_t fFromTargetOffset;
+};
+
+
+template <typename A>
+const char* StubHelperAtom<A>::stubName(const char* name)
+{
+ char* buf;
+ asprintf(&buf, "%s$stubHelper", name);
+ return buf;
+}
+
+template <>
+ClassicStubHelperAtom<x86_64>::ClassicStubHelperAtom(Writer<x86_64>& writer, ObjectFile::Atom& target,
+ class LazyPointerAtom<x86_64>& lazyPointer, bool forLazyDylib)
+ : StubHelperAtom<x86_64>(writer, target, lazyPointer, forLazyDylib)
+{
+ fReferences.push_back(new WriterReference<x86_64>(3, x86_64::kPCRel32, &fLazyPointerAtom));
+ if ( forLazyDylib ) {
+ if ( fWriter.fDyldLazyDylibHelper == NULL )
+ throw "symbol dyld_lazy_dylib_stub_binding_helper not defined (usually in lazydylib1.o)";
+ fReferences.push_back(new WriterReference<x86_64>(8, x86_64::kPCRel32, fWriter.fDyldLazyDylibHelper));
+ }
+ else {
+ if ( fWriter.fDyldClassicHelperAtom == NULL )
+ throw "symbol dyld_stub_binding_helper not defined (usually in crt1.o/dylib1.o/bundle1.o)";
+ fReferences.push_back(new WriterReference<x86_64>(8, x86_64::kPCRel32, fWriter.fDyldClassicHelperAtom));
+ }
+}
+
+
+template <>
+uint64_t ClassicStubHelperAtom<x86_64>::getSize() const
+{
+ return 12;
+}
+
+template <>
+void ClassicStubHelperAtom<x86_64>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0x4C; // lea foo$lazy_ptr(%rip),%r11
+ buffer[1] = 0x8D;
+ buffer[2] = 0x1D;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0x00;
+ buffer[6] = 0x00;
+ buffer[7] = 0xE9; // jmp dyld_stub_binding_helper
+ buffer[8] = 0x00;
+ buffer[9] = 0x00;
+ buffer[10] = 0x00;
+ buffer[11] = 0x00;
+}
+
+
+template <>
+FastStubHelperHelperAtom<x86_64>::FastStubHelperHelperAtom(Writer<x86_64>& writer)
+ : WriterAtom<x86_64>(writer, Segment::fgTextSegment)
+{
+ fReferences.push_back(new WriterReference<x86_64>(3, x86_64::kPCRel32, new NonLazyPointerAtom<x86_64>(writer)));
+ fReferences.push_back(new WriterReference<x86_64>(11, x86_64::kPCRel32, writer.fFastStubGOTAtom));
+}
+
+template <>
+uint64_t FastStubHelperHelperAtom<x86_64>::getSize() const
+{
+ return 16;
+}
+
+template <>
+void FastStubHelperHelperAtom<x86_64>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0x4C; // leaq dyld_mageLoaderCache(%rip),%r11
+ buffer[1] = 0x8D;
+ buffer[2] = 0x1D;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0x00;
+ buffer[6] = 0x00;
+ buffer[7] = 0x41; // pushq %r11
+ buffer[8] = 0x53;
+ buffer[9] = 0xFF; // jmp *_fast_lazy_bind(%rip)
+ buffer[10] = 0x25;
+ buffer[11] = 0x00;
+ buffer[12] = 0x00;
+ buffer[13] = 0x00;
+ buffer[14] = 0x00;
+ buffer[15] = 0x90; // nop
+}
+
+
+template <>
+HybridStubHelperHelperAtom<x86_64>::HybridStubHelperHelperAtom(Writer<x86_64>& writer)
+ : WriterAtom<x86_64>(writer, Segment::fgTextSegment)
+{
+ if ( writer.fDyldClassicHelperAtom == NULL )
+ throw "symbol dyld_stub_binding_helper not defined (usually in crt1.o/dylib1.o/bundle1.o)";
+ fReferences.push_back(new WriterReference<x86_64>(3, x86_64::kPCRel32_1, writer.fFastStubGOTAtom));
+ fReferences.push_back(new WriterReference<x86_64>(13, x86_64::kPCRel32, new NonLazyPointerAtom<x86_64>(writer)));
+ fReferences.push_back(new WriterReference<x86_64>(21, x86_64::kPCRel32, writer.fFastStubGOTAtom));
+ fReferences.push_back(new WriterReference<x86_64>(30, x86_64::kPCRel32, writer.fDyldClassicHelperAtom));
+}
+
+template <>
+uint64_t HybridStubHelperHelperAtom<x86_64>::getSize() const
+{
+ return 34;
+}
+
+template <>
+void HybridStubHelperHelperAtom<x86_64>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0x48; // cmpl $0x00,_fast_lazy_bind
+ buffer[1] = 0x83;
+ buffer[2] = 0x3D;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0x00;
+ buffer[6] = 0x00;
+ buffer[7] = 0x00;
+ buffer[8] = 0x74; // je 16
+ buffer[9] = 0x0F;
+ buffer[10] = 0x4C; // leaq imageCache(%rip),%r11
+ buffer[11] = 0x8D;
+ buffer[12] = 0x1D;
+ buffer[13] = 0x00;
+ buffer[14] = 0x00;
+ buffer[15] = 0x00;
+ buffer[16] = 0x00;
+ buffer[17] = 0x41; // pushq %r11
+ buffer[18] = 0x53;
+ buffer[19] = 0xFF; // jmp *_fast_lazy_bind(%rip)
+ buffer[20] = 0x25;
+ buffer[21] = 0x00;
+ buffer[22] = 0x00;
+ buffer[23] = 0x00;
+ buffer[24] = 0x00;
+ buffer[25] = 0x48; // addq $8,%rsp
+ buffer[26] = 0x83;
+ buffer[27] = 0xC4;
+ buffer[28] = 0x08;
+ buffer[29] = 0xE9; // jmp dyld_stub_binding_helper
+ buffer[30] = 0x00;
+ buffer[31] = 0x00;
+ buffer[32] = 0x00;
+ buffer[33] = 0x00;
+}
+
+
+template <>
+HybridStubHelperAtom<x86_64>::HybridStubHelperAtom(Writer<x86_64>& writer, ObjectFile::Atom& target,
+ class LazyPointerAtom<x86_64>& lazyPointer, bool forLazyDylib)
+ : StubHelperAtom<x86_64>(writer, target, lazyPointer, forLazyDylib)
+{
+ if ( fgHelperHelperAtom == NULL ) {
+ fgHelperHelperAtom = new HybridStubHelperHelperAtom<x86_64>::HybridStubHelperHelperAtom(fWriter);
+ fWriter.fAllSynthesizedStubHelpers.push_back(fgHelperHelperAtom);
+ }
+ fReferences.push_back(new WriterReference<x86_64>(8, x86_64::kPCRel32, &fLazyPointerAtom));
+ fReferences.push_back(new WriterReference<x86_64>(13, x86_64::kPCRel32, fgHelperHelperAtom));
+}
+
+template <>
+uint64_t HybridStubHelperAtom<x86_64>::getSize() const
+{
+ return 18;
+}
+
+template <>
+void HybridStubHelperAtom<x86_64>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0x68; // pushq $lazy-info-offset
+ buffer[1] = 0x00;
+ buffer[2] = 0x00;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0x4C; // lea foo$lazy_ptr(%rip),%r11
+ buffer[6] = 0x8D;
+ buffer[7] = 0x1D;
+ buffer[8] = 0x00;
+ buffer[9] = 0x00;
+ buffer[10] = 0x00;
+ buffer[11] = 0x00;
+ buffer[12] = 0xE9; // jmp helper-helper
+ buffer[13] = 0x00;
+ buffer[14] = 0x00;
+ buffer[15] = 0x00;
+ buffer[16] = 0x00;
+ buffer[17] = 0x90; // nop
+
+ // the lazy binding info is created later than this helper atom, so there
+ // is no Reference to update. Instead we blast the offset here.
+ uint32_t offset;
+ LittleEndian::set32(offset, fLazyPointerAtom.getLazyBindingInfoOffset());
+ memcpy(&buffer[1], &offset, 4);
+}
+
+template <>
+FastStubHelperAtom<x86_64>::FastStubHelperAtom(Writer<x86_64>& writer, ObjectFile::Atom& target,
+ class LazyPointerAtom<x86_64>& lazyPointer, bool forLazyDylib)
+ : StubHelperAtom<x86_64>(writer, target, lazyPointer, forLazyDylib)
+{
+ if ( fgHelperHelperAtom == NULL ) {
+ fgHelperHelperAtom = new FastStubHelperHelperAtom<x86_64>::FastStubHelperHelperAtom(fWriter);
+ fWriter.fAllSynthesizedStubHelpers.push_back(fgHelperHelperAtom);
+ }
+ fReferences.push_back(new WriterReference<x86_64>(6, x86_64::kPCRel32, fgHelperHelperAtom));
+}
+
+template <>
+uint64_t FastStubHelperAtom<x86_64>::getSize() const
+{
+ return 10;
+}
+
+template <>
+void FastStubHelperAtom<x86_64>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0x68; // pushq $lazy-info-offset
+ buffer[1] = 0x00;
+ buffer[2] = 0x00;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0xE9; // jmp helperhelper
+ buffer[6] = 0x00;
+ buffer[7] = 0x00;
+ buffer[8] = 0x00;
+ buffer[9] = 0x00;
+
+ // the lazy binding info is created later than this helper atom, so there
+ // is no Reference to update. Instead we blast the offset here.
+ uint32_t offset;
+ LittleEndian::set32(offset, fLazyPointerAtom.getLazyBindingInfoOffset());
+ memcpy(&buffer[1], &offset, 4);
+}
+
+template <>
+FastStubHelperHelperAtom<x86>::FastStubHelperHelperAtom(Writer<x86>& writer)
+ : WriterAtom<x86>(writer, Segment::fgTextSegment)
+{
+ fReferences.push_back(new WriterReference<x86>(1, x86::kAbsolute32, new NonLazyPointerAtom<x86>(writer)));
+ fReferences.push_back(new WriterReference<x86>(7, x86::kAbsolute32, writer.fFastStubGOTAtom));
+}
+
+template <>
+uint64_t FastStubHelperHelperAtom<x86>::getSize() const
+{
+ return 12;
+}
+
+template <>
+void FastStubHelperHelperAtom<x86>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0x68; // pushl $dyld_ImageLoaderCache
+ buffer[1] = 0x00;
+ buffer[2] = 0x00;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0xFF; // jmp *_fast_lazy_bind(%rip)
+ buffer[6] = 0x25;
+ buffer[7] = 0x00;
+ buffer[8] = 0x00;
+ buffer[9] = 0x00;
+ buffer[10] = 0x00;
+ buffer[11] = 0x90; // nop
+}
+
+
+template <>
+HybridStubHelperHelperAtom<x86>::HybridStubHelperHelperAtom(Writer<x86>& writer)
+ : WriterAtom<x86>(writer, Segment::fgTextSegment)
+{
+ if ( writer.fDyldClassicHelperAtom == NULL )
+ throw "symbol dyld_stub_binding_helper not defined (usually in crt1.o/dylib1.o/bundle1.o)";
+ fReferences.push_back(new WriterReference<x86>(2, x86::kAbsolute32, writer.fFastStubGOTAtom));
+ fReferences.push_back(new WriterReference<x86>(18, x86::kPCRel32, writer.fDyldClassicHelperAtom));
+ fReferences.push_back(new WriterReference<x86>(26, x86::kAbsolute32, new NonLazyPointerAtom<x86>(writer)));
+ fReferences.push_back(new WriterReference<x86>(32, x86::kAbsolute32, writer.fFastStubGOTAtom));
+}
+
+template <>
+uint64_t HybridStubHelperHelperAtom<x86>::getSize() const
+{
+ return 36;
+}
+
+
+template <>
+void HybridStubHelperHelperAtom<x86>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0x83; // cmpl $0x00,_fast_lazy_bind
+ buffer[1] = 0x3D;
+ buffer[2] = 0x00;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0x00;
+ buffer[6] = 0x00;
+ buffer[7] = 0x75; // jne 22
+ buffer[8] = 0x0D;
+ buffer[9] = 0x89; // %eax,4(%esp)
+ buffer[10] = 0x44;
+ buffer[11] = 0x24;
+ buffer[12] = 0x04;
+ buffer[13] = 0x58; // popl %eax
+ buffer[14] = 0x87; // xchgl (%esp),%eax
+ buffer[15] = 0x04;
+ buffer[16] = 0x24;
+ buffer[17] = 0xE9; // jmpl dyld_stub_binding_helper
+ buffer[18] = 0x00;
+ buffer[19] = 0x00;
+ buffer[20] = 0x00;
+ buffer[21] = 0x00;
+ buffer[22] = 0x83; // addl $0x04,%esp
+ buffer[23] = 0xC4;
+ buffer[24] = 0x04;
+ buffer[25] = 0x68; // pushl imageloadercahce
+ buffer[26] = 0x00;
+ buffer[27] = 0x00;
+ buffer[28] = 0x00;
+ buffer[29] = 0x00;
+ buffer[30] = 0xFF; // jmp *_fast_lazy_bind(%rip)
+ buffer[31] = 0x25;
+ buffer[32] = 0x00;
+ buffer[33] = 0x00;
+ buffer[34] = 0x00;
+ buffer[35] = 0x00;
+}
+
+
+template <>
+ClassicStubHelperAtom<x86>::ClassicStubHelperAtom(Writer<x86>& writer, ObjectFile::Atom& target,
+ class LazyPointerAtom<x86>& lazyPointer, bool forLazyDylib)
+ : StubHelperAtom<x86>(writer, target, lazyPointer, forLazyDylib)
+{
+ fReferences.push_back(new WriterReference<x86>(1, x86::kAbsolute32, &fLazyPointerAtom));
+ if ( forLazyDylib ) {
+ if ( fWriter.fDyldLazyDylibHelper == NULL )
+ throw "symbol dyld_lazy_dylib_stub_binding_helper not defined (usually in lazydylib1.o)";
+ fReferences.push_back(new WriterReference<x86>(6, x86::kPCRel32, fWriter.fDyldLazyDylibHelper));
+ }
+ else {
+ if ( fWriter.fDyldClassicHelperAtom == NULL )
+ throw "symbol dyld_stub_binding_helper not defined (usually in crt1.o/dylib1.o/bundle1.o)";
+ fReferences.push_back(new WriterReference<x86>(6, x86::kPCRel32, fWriter.fDyldClassicHelperAtom));
+ }
+}
+
+template <>
+uint64_t ClassicStubHelperAtom<x86>::getSize() const
+{
+ return 10;
+}
+
+template <>
+void ClassicStubHelperAtom<x86>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0x68; // pushl $foo$lazy_ptr
+ buffer[1] = 0x00;
+ buffer[2] = 0x00;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0xE9; // jmp helperhelper
+ buffer[6] = 0x00;
+ buffer[7] = 0x00;
+ buffer[8] = 0x00;
+ buffer[9] = 0x00;
+}
+
+template <>
+HybridStubHelperAtom<x86>::HybridStubHelperAtom(Writer<x86>& writer, ObjectFile::Atom& target,
+ class LazyPointerAtom<x86>& lazyPointer, bool forLazyDylib)
+ : StubHelperAtom<x86>(writer, target, lazyPointer, forLazyDylib)
+{
+ if ( fgHelperHelperAtom == NULL ) {
+ fgHelperHelperAtom = new HybridStubHelperHelperAtom<x86>::HybridStubHelperHelperAtom(fWriter);
+ fWriter.fAllSynthesizedStubHelpers.push_back(fgHelperHelperAtom);
+ }
+ fReferences.push_back(new WriterReference<x86>(6, x86::kAbsolute32, &fLazyPointerAtom));
+ fReferences.push_back(new WriterReference<x86>(11, x86::kPCRel32, fgHelperHelperAtom));
+}
+
+
+template <>
+uint64_t HybridStubHelperAtom<x86>::getSize() const
+{
+ return 16;
+}
+
+template <>
+void HybridStubHelperAtom<x86>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0x68; // pushl $lazy-info-offset
+ buffer[1] = 0x00;
+ buffer[2] = 0x00;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0x68; // pushl $foo$lazy_ptr
+ buffer[6] = 0x00;
+ buffer[7] = 0x00;
+ buffer[8] = 0x00;
+ buffer[9] = 0x00;
+ buffer[10] = 0xE9; // jmp dyld_hybrid_stub_binding_helper
+ buffer[11] = 0x00;
+ buffer[12] = 0x00;
+ buffer[13] = 0x00;
+ buffer[14] = 0x00;
+ buffer[15] = 0x90; // nop
+
+ // the lazy binding info is created later than this helper atom, so there
+ // is no Reference to update. Instead we blast the offset here.
+ uint32_t offset;
+ LittleEndian::set32(offset, fLazyPointerAtom.getLazyBindingInfoOffset());
+ memcpy(&buffer[1], &offset, 4);
+}
+
+
+template <>
+FastStubHelperAtom<x86>::FastStubHelperAtom(Writer<x86>& writer, ObjectFile::Atom& target,
+ class LazyPointerAtom<x86>& lazyPointer, bool forLazyDylib)
+ : StubHelperAtom<x86>(writer, target, lazyPointer, forLazyDylib)
+{
+ if ( fgHelperHelperAtom == NULL ) {
+ fgHelperHelperAtom = new FastStubHelperHelperAtom<x86>::FastStubHelperHelperAtom(fWriter);
+ fWriter.fAllSynthesizedStubHelpers.push_back(fgHelperHelperAtom);
+ }
+ fReferences.push_back(new WriterReference<x86>(6, x86::kPCRel32, fgHelperHelperAtom));
+}
+
+
+template <>
+uint64_t FastStubHelperAtom<x86>::getSize() const
+{
+ return 10;
+}
+
+template <>
+void FastStubHelperAtom<x86>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0x68; // pushl $lazy-info-offset
+ buffer[1] = 0x00;
+ buffer[2] = 0x00;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0xE9; // jmp helperhelper
+ buffer[6] = 0x00;
+ buffer[7] = 0x00;
+ buffer[8] = 0x00;
+ buffer[9] = 0x00;
+
+ // the lazy binding info is created later than this helper atom, so there
+ // is no Reference to update. Instead we blast the offset here.
+ uint32_t offset;
+ LittleEndian::set32(offset, fLazyPointerAtom.getLazyBindingInfoOffset());
+ memcpy(&buffer[1], &offset, 4);
+}
+
+
+
+// specialize lazy pointer for x86_64 to initially pointer to stub helper
+template <>
+LazyPointerAtom<x86_64>::LazyPointerAtom(Writer<x86_64>& writer, ObjectFile::Atom& target, StubAtom<x86_64>& stub, bool forLazyDylib)
+ : WriterAtom<x86_64>(writer, Segment::fgDataSegment), fName(lazyPointerName(target.getName())), fTarget(target),
+ fExternalTarget(*stub.getTarget()), fForLazyDylib(forLazyDylib), fLazyBindingOffset(0)
+{
+ if ( forLazyDylib )
+ writer.fAllSynthesizedLazyDylibPointers.push_back(this);
+ else
+ writer.fAllSynthesizedLazyPointers.push_back(this);
+
+ ObjectFile::Atom* helper;
+ if ( writer.fOptions.makeCompressedDyldInfo() && !forLazyDylib ) {
+ if ( writer.fOptions.makeClassicDyldInfo() )
+ // hybrid LINKEDIT, no fast bind info for weak symbols so use traditional helper
+ if ( writer.targetRequiresWeakBinding(target) )
+ helper = new ClassicStubHelperAtom<x86_64>(writer, target, *this, forLazyDylib);
+ else
+ helper = new HybridStubHelperAtom<x86_64>(writer, target, *this, forLazyDylib);
+ else {
+ if ( target.getDefinitionKind() == ObjectFile::Atom::kWeakDefinition )
+ helper = ⌖
+ else
+ helper = new FastStubHelperAtom<x86_64>(writer, target, *this, forLazyDylib);
+ }
+ }
+ else {
+ helper = new ClassicStubHelperAtom<x86_64>(writer, target, *this, forLazyDylib);
+ }
+ fReferences.push_back(new WriterReference<x86_64>(0, x86_64::kPointer, helper));
+}
+
+
+// specialize lazy pointer for x86 to initially pointer to stub helper
+template <>
+LazyPointerAtom<x86>::LazyPointerAtom(Writer<x86>& writer, ObjectFile::Atom& target, StubAtom<x86>& stub, bool forLazyDylib)
+ : WriterAtom<x86>(writer, Segment::fgDataSegment), fName(lazyPointerName(target.getName())), fTarget(target),
+ fExternalTarget(*stub.getTarget()), fForLazyDylib(forLazyDylib)
+{
+ if ( forLazyDylib )
+ writer.fAllSynthesizedLazyDylibPointers.push_back(this);
+ else
+ writer.fAllSynthesizedLazyPointers.push_back(this);
+
+ ObjectFile::Atom* helper;
+ if ( writer.fOptions.makeCompressedDyldInfo() && !forLazyDylib ) {
+ if ( writer.fOptions.makeClassicDyldInfo() ) {
+ // hybrid LINKEDIT, no fast bind info for weak symbols so use traditional helper
+ if ( writer.targetRequiresWeakBinding(target) )
+ helper = new ClassicStubHelperAtom<x86>(writer, target, *this, forLazyDylib);
+ else
+ helper = new HybridStubHelperAtom<x86>(writer, target, *this, forLazyDylib);
+ }
+ else {
+ if ( target.getDefinitionKind() == ObjectFile::Atom::kWeakDefinition )
+ helper = ⌖
+ else
+ helper = new FastStubHelperAtom<x86>(writer, target, *this, forLazyDylib);
+ }
+ }
+ else {
+ helper = new ClassicStubHelperAtom<x86>(writer, target, *this, forLazyDylib);
+ }
+ fReferences.push_back(new WriterReference<x86>(0, x86::kPointer, helper));
+}
+
+template <typename A>
+LazyPointerAtom<A>::LazyPointerAtom(Writer<A>& writer, ObjectFile::Atom& target, StubAtom<A>& stub, bool forLazyDylib)
+ : WriterAtom<A>(writer, Segment::fgDataSegment), fName(lazyPointerName(target.getName())), fTarget(target),
+ fExternalTarget(*stub.getTarget()), fForLazyDylib(forLazyDylib)
+{
+ if ( forLazyDylib )
+ writer.fAllSynthesizedLazyDylibPointers.push_back(this);
+ else
+ writer.fAllSynthesizedLazyPointers.push_back(this);
+
+ fReferences.push_back(new WriterReference<A>(0, A::kPointer, &target));
+}
+
+
+
+template <typename A>
+const char* LazyPointerAtom<A>::lazyPointerName(const char* name)
+{
+ char* buf;
+ asprintf(&buf, "%s$lazy_pointer", name);
+ return buf;
+}
+
+template <typename A>
+void LazyPointerAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ bzero(buffer, getSize());
+}
+
+
+template <typename A>
+NonLazyPointerAtom<A>::NonLazyPointerAtom(Writer<A>& writer, ObjectFile::Atom& target)
+ : WriterAtom<A>(writer, Segment::fgDataSegment), fName(nonlazyPointerName(target.getName())), fTarget(&target)
+{
+ writer.fAllSynthesizedNonLazyPointers.push_back(this);
+ fReferences.push_back(new WriterReference<A>(0, A::kPointer, &target));
+}
+
+template <typename A>
+NonLazyPointerAtom<A>::NonLazyPointerAtom(Writer<A>& writer)
+ : WriterAtom<A>(writer, Segment::fgDataSegment), fName("none"), fTarget(NULL)
+{
+ writer.fAllSynthesizedNonLazyPointers.push_back(this);
+}
+
+template <typename A>
+NonLazyPointerAtom<A>::NonLazyPointerAtom(Writer<A>& writer, const char* targetName)
+ : WriterAtom<A>(writer, Segment::fgDataSegment), fName(nonlazyPointerName(targetName)), fTarget(NULL)
+{
+ writer.fAllSynthesizedNonLazyPointers.push_back(this);
+ fReferences.push_back(new WriterReference<A>(0, A::kPointer, targetName));
+}
+
+template <typename A>
+const char* NonLazyPointerAtom<A>::nonlazyPointerName(const char* name)
+{
+ char* buf;
+ asprintf(&buf, "%s$non_lazy_pointer", name);
+ return buf;
+}
+
+template <typename A>
+void NonLazyPointerAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ bzero(buffer, getSize());
+}
+
+
+
+template <>
+bool StubAtom<ppc64>::pic() const
+{
+ // no-pic stubs for ppc64 don't work if lazy pointer is above low 2GB.
+ // Usually that only happens if page zero is very large
+ return ( fWriter.fSlideable || ((fWriter.fPageZeroAtom != NULL) && (fWriter.fPageZeroAtom->getSize() > 4096)) );
+}
+
+
+template <>
+bool StubAtom<arm>::pic() const
+{
+ return fWriter.fSlideable;
+}
+
+template <>
+ObjectFile::Alignment StubAtom<ppc>::getAlignment() const
+{
+ return 2;
+}
+
+template <>
+ObjectFile::Alignment StubAtom<ppc64>::getAlignment() const
+{
+ return 2;
+}
+
+template <>
+ObjectFile::Alignment StubAtom<arm>::getAlignment() const
+{
+ return 2;
+}
+
+template <>
+StubAtom<ppc>::StubAtom(Writer<ppc>& writer, ObjectFile::Atom& target, bool forLazyDylib)
+ : WriterAtom<ppc>(writer, Segment::fgTextSegment), fName(stubName(target.getName())),
+ fTarget(target), fForLazyDylib(forLazyDylib)
+{
+ writer.fAllSynthesizedStubs.push_back(this);
+ LazyPointerAtom<ppc>* lp;
+ if ( fWriter.fOptions.prebind() ) {
+ // for prebound ppc, lazy pointer starts out pointing to target symbol's address
+ // if target is a weak definition within this linkage unit or zero if in some dylib
+ lp = new LazyPointerAtom<ppc>(writer, target, *this, forLazyDylib);
+ }
+ else {
+ // for non-prebound ppc, lazy pointer starts out pointing to dyld_stub_binding_helper glue code
+ if ( forLazyDylib ) {
+ if ( writer.fDyldLazyDylibHelper == NULL )
+ throw "symbol dyld_lazy_dylib_stub_binding_helper not defined (usually in lazydylib1.o)";
+ lp = new LazyPointerAtom<ppc>(writer, *writer.fDyldLazyDylibHelper, *this, forLazyDylib);
+ }
+ else {
+ if ( writer.fDyldClassicHelperAtom == NULL )
+ throw "symbol dyld_stub_binding_helper not defined (usually in crt1.o/dylib1.o/bundle1.o)";
+ lp = new LazyPointerAtom<ppc>(writer, *writer.fDyldClassicHelperAtom, *this, forLazyDylib);
+ }
+ }
+ if ( pic() ) {
+ // picbase is 8 bytes into atom
+ fReferences.push_back(new WriterReference<ppc>(12, ppc::kPICBaseHigh16, lp, 0, this, 8));
+ fReferences.push_back(new WriterReference<ppc>(20, ppc::kPICBaseLow16, lp, 0, this, 8));
+ }
+ else {
+ fReferences.push_back(new WriterReference<ppc>(0, ppc::kAbsHigh16AddLow, lp));
+ fReferences.push_back(new WriterReference<ppc>(4, ppc::kAbsLow16, lp));
+ }
+}
+
+template <>
+StubAtom<ppc64>::StubAtom(Writer<ppc64>& writer, ObjectFile::Atom& target, bool forLazyDylib)
+ : WriterAtom<ppc64>(writer, Segment::fgTextSegment), fName(stubName(target.getName())),
+ fTarget(target), fForLazyDylib(forLazyDylib)
+{
+ writer.fAllSynthesizedStubs.push_back(this);
+
+ LazyPointerAtom<ppc64>* lp;
+ if ( forLazyDylib ) {
+ if ( writer.fDyldLazyDylibHelper == NULL )
+ throw "symbol dyld_lazy_dylib_stub_binding_helper not defined (usually in lazydylib1.o)";
+ lp = new LazyPointerAtom<ppc64>(writer, *writer.fDyldLazyDylibHelper, *this, forLazyDylib);
+ }
+ else {
+ if ( writer.fDyldClassicHelperAtom == NULL )
+ throw "symbol dyld_stub_binding_helper not defined (usually in crt1.o/dylib1.o/bundle1.o)";
+ lp = new LazyPointerAtom<ppc64>(writer, *writer.fDyldClassicHelperAtom, *this, forLazyDylib);
+ }
+ if ( pic() ) {
+ // picbase is 8 bytes into atom
+ fReferences.push_back(new WriterReference<ppc64>(12, ppc64::kPICBaseHigh16, lp, 0, this, 8));
+ fReferences.push_back(new WriterReference<ppc64>(20, ppc64::kPICBaseLow14, lp, 0, this, 8));
+ }
+ else {
+ fReferences.push_back(new WriterReference<ppc64>(0, ppc64::kAbsHigh16AddLow, lp));
+ fReferences.push_back(new WriterReference<ppc64>(4, ppc64::kAbsLow14, lp));
+ }
+}
+
+template <>
+StubAtom<x86>::StubAtom(Writer<x86>& writer, ObjectFile::Atom& target, bool forLazyDylib)
+ : WriterAtom<x86>(writer, (writer.fOptions.makeCompressedDyldInfo()|| forLazyDylib) ? Segment::fgTextSegment : Segment::fgImportSegment),
+ fName(NULL), fTarget(target), fForLazyDylib(forLazyDylib)
+{
+ if ( writer.fOptions.makeCompressedDyldInfo() || forLazyDylib ) {
+ fName = stubName(target.getName());
+ LazyPointerAtom<x86>* lp = new LazyPointerAtom<x86>(writer, target, *this, forLazyDylib);
+ fReferences.push_back(new WriterReference<x86>(2, x86::kAbsolute32, lp));
+ writer.fAllSynthesizedStubs.push_back(this);
+ }
+ else {
+ if ( &target == NULL )
+ fName = "cache-line-crossing-stub";
+ else {
+ fName = stubName(target.getName());
+ writer.fAllSynthesizedStubs.push_back(this);
+ }
+ }
+}
+
+
+template <>
+StubAtom<x86_64>::StubAtom(Writer<x86_64>& writer, ObjectFile::Atom& target, bool forLazyDylib)
+ : WriterAtom<x86_64>(writer, Segment::fgTextSegment), fName(stubName(target.getName())), fTarget(target)
+{
+ writer.fAllSynthesizedStubs.push_back(this);
+
+ LazyPointerAtom<x86_64>* lp = new LazyPointerAtom<x86_64>(writer, target, *this, forLazyDylib);
+ fReferences.push_back(new WriterReference<x86_64>(2, x86_64::kPCRel32, lp));
+}
+
+template <>
+StubAtom<arm>::StubAtom(Writer<arm>& writer, ObjectFile::Atom& target, bool forLazyDylib)
+ : WriterAtom<arm>(writer, Segment::fgTextSegment), fName(stubName(target.getName())), fTarget(target)
+{
+ writer.fAllSynthesizedStubs.push_back(this);
+
+ LazyPointerAtom<arm>* lp;
+ if ( fWriter.fOptions.prebind() && !forLazyDylib ) {
+ // for prebound arm, lazy pointer starts out pointing to target symbol's address
+ // if target is a weak definition within this linkage unit or zero if in some dylib
+ lp = new LazyPointerAtom<arm>(writer, target, *this, forLazyDylib);
+ }
+ else {
+ // for non-prebound arm, lazy pointer starts out pointing to dyld_stub_binding_helper glue code
+ ObjectFile::Atom* helper;
+ if ( forLazyDylib ) {
+ if ( writer.fDyldLazyDylibHelper == NULL )
+ throw "symbol dyld_lazy_dylib_stub_binding_helper not defined (usually in lazydylib1.o)";
+ helper = writer.fDyldLazyDylibHelper;
+ }
+ else {
+ if ( writer.fDyldClassicHelperAtom == NULL )
+ throw "symbol dyld_stub_binding_helper not defined (usually in crt1.o/dylib1.o/bundle1.o)";
+ helper = writer.fDyldClassicHelperAtom;
+ }
+ lp = new LazyPointerAtom<arm>(writer, *helper, *this, forLazyDylib);
+ }
+ if ( pic() )
+ fReferences.push_back(new WriterReference<arm>(12, arm::kPointerDiff, lp, 0, this, 12));
+ else
+ fReferences.push_back(new WriterReference<arm>(8, arm::kPointer, lp));
+}
+
+template <typename A>
+const char* StubAtom<A>::stubName(const char* name)
+{
+ char* buf;
+ asprintf(&buf, "%s$stub", name);
+ return buf;
+}
+
+template <>
+uint64_t StubAtom<ppc>::getSize() const
+{
+ return ( pic() ? 32 : 16 );
+}
+
+template <>
+uint64_t StubAtom<ppc64>::getSize() const
+{
+ return ( pic() ? 32 : 16 );
+}
+
+
+template <>
+uint64_t StubAtom<arm>::getSize() const
+{
+ return ( pic() ? 16 : 12 );
+}
+
+template <>
+uint64_t StubAtom<x86>::getSize() const
+{
+ if ( fWriter.fOptions.makeCompressedDyldInfo() || fForLazyDylib )
+ return 6;
+ else
+ return 5;
+}
+
+template <>
+uint64_t StubAtom<x86_64>::getSize() const
+{
+ return 6;
+}
+
+template <>
+ObjectFile::Alignment StubAtom<x86>::getAlignment() const
+{
+ if ( fWriter.fOptions.makeCompressedDyldInfo() || fForLazyDylib )
+ return 1;
+ else
+ return 0; // special case x86 self-modifying stubs to be byte aligned
+}
+
+template <>
+void StubAtom<ppc64>::copyRawContent(uint8_t buffer[]) const
+{
+ if ( pic() ) {
+ OSWriteBigInt32(&buffer [0], 0, 0x7c0802a6); // mflr r0
+ OSWriteBigInt32(&buffer[ 4], 0, 0x429f0005); // bcl 20,31,Lpicbase
+ OSWriteBigInt32(&buffer[ 8], 0, 0x7d6802a6); // Lpicbase: mflr r11
+ OSWriteBigInt32(&buffer[12], 0, 0x3d6b0000); // addis r11,r11,ha16(L_fwrite$lazy_ptr-Lpicbase)
+ OSWriteBigInt32(&buffer[16], 0, 0x7c0803a6); // mtlr r0
+ OSWriteBigInt32(&buffer[20], 0, 0xe98b0001); // ldu r12,lo16(L_fwrite$lazy_ptr-Lpicbase)(r11)
+ OSWriteBigInt32(&buffer[24], 0, 0x7d8903a6); // mtctr r12
+ OSWriteBigInt32(&buffer[28], 0, 0x4e800420); // bctr
+ }
+ else {
+ OSWriteBigInt32(&buffer[ 0], 0, 0x3d600000); // lis r11,ha16(L_fwrite$lazy_ptr)
+ OSWriteBigInt32(&buffer[ 4], 0, 0xe98b0001); // ldu r12,lo16(L_fwrite$lazy_ptr)(r11)
+ OSWriteBigInt32(&buffer[ 8], 0, 0x7d8903a6); // mtctr r12
+ OSWriteBigInt32(&buffer[12], 0, 0x4e800420); // bctr
+ }
+}
+
+template <>
+void StubAtom<ppc>::copyRawContent(uint8_t buffer[]) const
+{
+ if ( pic() ) {
+ OSWriteBigInt32(&buffer[ 0], 0, 0x7c0802a6); // mflr r0
+ OSWriteBigInt32(&buffer[ 4], 0, 0x429f0005); // bcl 20,31,Lpicbase
+ OSWriteBigInt32(&buffer[ 8], 0, 0x7d6802a6); // Lpicbase: mflr r11
+ OSWriteBigInt32(&buffer[12], 0, 0x3d6b0000); // addis r11,r11,ha16(L_fwrite$lazy_ptr-Lpicbase)
+ OSWriteBigInt32(&buffer[16], 0, 0x7c0803a6); // mtlr r0
+ OSWriteBigInt32(&buffer[20], 0, 0x858b0000); // lwzu r12,lo16(L_fwrite$lazy_ptr-Lpicbase)(r11)
+ OSWriteBigInt32(&buffer[24], 0, 0x7d8903a6); // mtctr r12
+ OSWriteBigInt32(&buffer[28], 0, 0x4e800420); // bctr
+ }
+ else {
+ OSWriteBigInt32(&buffer[ 0], 0, 0x3d600000); // lis r11,ha16(L_fwrite$lazy_ptr)
+ OSWriteBigInt32(&buffer[ 4], 0, 0x858b0000); // lwzu r12,lo16(L_fwrite$lazy_ptr)(r11)
+ OSWriteBigInt32(&buffer[ 8], 0, 0x7d8903a6); // mtctr r12
+ OSWriteBigInt32(&buffer[12], 0, 0x4e800420); // bctr
+ }
+}
+
+template <>
+void StubAtom<x86>::copyRawContent(uint8_t buffer[]) const
+{
+ if ( fWriter.fOptions.makeCompressedDyldInfo() || fForLazyDylib ) {
+ buffer[0] = 0xFF; // jmp *foo$lazy_pointer
+ buffer[1] = 0x25;
+ buffer[2] = 0x00;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0x00;
+ }
+ else {
+ if ( fWriter.fOptions.prebind() ) {
+ uint32_t address = this->getAddress();
+ int32_t rel32 = 0 - (address+5);
+ buffer[0] = 0xE9;
+ buffer[1] = rel32 & 0xFF;
+ buffer[2] = (rel32 >> 8) & 0xFF;
+ buffer[3] = (rel32 >> 16) & 0xFF;
+ buffer[4] = (rel32 >> 24) & 0xFF;
+ }
+ else {
+ buffer[0] = 0xF4;
+ buffer[1] = 0xF4;
+ buffer[2] = 0xF4;
+ buffer[3] = 0xF4;
+ buffer[4] = 0xF4;
+ }
+ }
+}
+
+template <>
+void StubAtom<x86_64>::copyRawContent(uint8_t buffer[]) const
+{
+ buffer[0] = 0xFF; // jmp *foo$lazy_pointer(%rip)
+ buffer[1] = 0x25;
+ buffer[2] = 0x00;
+ buffer[3] = 0x00;
+ buffer[4] = 0x00;
+ buffer[5] = 0x00;
+}
+
+template <>
+void StubAtom<arm>::copyRawContent(uint8_t buffer[]) const
+{
+ if ( pic() ) {
+ OSWriteLittleInt32(&buffer[ 0], 0, 0xe59fc004); // ldr ip, pc + 12
+ OSWriteLittleInt32(&buffer[ 4], 0, 0xe08fc00c); // add ip, pc, ip
+ OSWriteLittleInt32(&buffer[ 8], 0, 0xe59cf000); // ldr pc, [ip]
+ OSWriteLittleInt32(&buffer[12], 0, 0x00000000); // .long L_foo$lazy_ptr - (L1$scv + 8)
+ }
+ else {
+ OSWriteLittleInt32(&buffer[ 0], 0, 0xe59fc000); // ldr ip, [pc, #0]
+ OSWriteLittleInt32(&buffer[ 4], 0, 0xe59cf000); // ldr pc, [ip]
+ OSWriteLittleInt32(&buffer[ 8], 0, 0x00000000); // .long L_foo$lazy_ptr
+ }
+}
+
+// x86_64 stubs are 6 bytes
+template <>
+ObjectFile::Alignment StubAtom<x86_64>::getAlignment() const
+{
+ return 1;
+}
+
+template <>
+const char* StubAtom<ppc>::getSectionName() const
+{
+ return ( pic() ? "__picsymbolstub1" : "__symbol_stub1");
+}
+
+template <>
+const char* StubAtom<ppc64>::getSectionName() const
+{
+ return ( pic() ? "__picsymbolstub1" : "__symbol_stub1");
+}
+
+template <>
+const char* StubAtom<arm>::getSectionName() const
+{
+ return ( pic() ? "__picsymbolstub4" : "__symbol_stub4");
+}
+
+template <>
+const char* StubAtom<x86>::getSectionName() const
+{
+ if ( fWriter.fOptions.makeCompressedDyldInfo() || fForLazyDylib )
+ return "__symbol_stub";
+ else
+ return "__jump_table";
+}
+
+
+
+
+struct AtomByNameSorter
+{
+ bool operator()(ObjectFile::Atom* left, ObjectFile::Atom* right)
+ {
+ return (strcmp(left->getName(), right->getName()) < 0);
+ }
+};
+
+template <typename P>
+struct ExternalRelocSorter
+{
+ bool operator()(const macho_relocation_info<P>& left, const macho_relocation_info<P>& right)
+ {
+ // sort first by symbol number
+ if ( left.r_symbolnum() != right.r_symbolnum() )
+ return (left.r_symbolnum() < right.r_symbolnum());
+ // then sort all uses of the same symbol by address
+ return (left.r_address() < right.r_address());
+ }
+};
+
+
+template <typename A>
+Writer<A>::Writer(const char* path, Options& options, std::vector<ExecutableFile::DyLibUsed>& dynamicLibraries)
+ : ExecutableFile::Writer(dynamicLibraries), fFilePath(strdup(path)), fOptions(options),
+ fAllAtoms(NULL), fStabs(NULL), fRegularDefAtomsThatOverrideADylibsWeakDef(NULL), fLoadCommandsSection(NULL),
+ fLoadCommandsSegment(NULL), fMachHeaderAtom(NULL), fEncryptionLoadCommand(NULL), fSegmentCommands(NULL),
+ fSymbolTableCommands(NULL), fHeaderPadding(NULL), fUnwindInfoAtom(NULL),
+ fUUIDAtom(NULL), fPadSegmentInfo(NULL), fEntryPoint( NULL),
+ fDyldClassicHelperAtom(NULL), fDyldCompressedHelperAtom(NULL), fDyldLazyDylibHelper(NULL),
+ fSectionRelocationsAtom(NULL), fCompressedRebaseInfoAtom(NULL), fCompressedBindingInfoAtom(NULL),
+ fCompressedWeakBindingInfoAtom(NULL), fCompressedLazyBindingInfoAtom(NULL), fCompressedExportInfoAtom(NULL),
+ fLocalRelocationsAtom(NULL), fExternalRelocationsAtom(NULL),
+ fSymbolTableAtom(NULL), fSplitCodeToDataContentAtom(NULL), fIndirectTableAtom(NULL), fModuleInfoAtom(NULL),
+ fStringsAtom(NULL), fPageZeroAtom(NULL), fFastStubGOTAtom(NULL), fSymbolTable(NULL), fSymbolTableCount(0),
+ fSymbolTableStabsCount(0), fSymbolTableLocalCount(0), fSymbolTableExportCount(0), fSymbolTableImportCount(0),
+ fLargestAtomSize(1),
+ fEmitVirtualSections(false), fHasWeakExports(false), fReferencesWeakImports(false),
+ fCanScatter(false), fWritableSegmentPastFirst4GB(false), fNoReExportedDylibs(false),
+ fBiggerThanTwoGigs(false), fSlideable(false),
+ fFirstWritableSegment(NULL), fAnonNameIndex(1000)
+{
+ switch ( fOptions.outputKind() ) {
+ case Options::kDynamicExecutable:
+ case Options::kStaticExecutable:
+ if ( fOptions.zeroPageSize() != 0 )
+ fWriterSynthesizedAtoms.push_back(fPageZeroAtom = new PageZeroAtom<A>(*this));
+ if ( fOptions.outputKind() == Options::kDynamicExecutable )
+ fWriterSynthesizedAtoms.push_back(new DsoHandleAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fMachHeaderAtom = new MachHeaderAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new SegmentLoadCommandsAtom<A>(*this));
+ if ( fOptions.makeCompressedDyldInfo() )
+ fWriterSynthesizedAtoms.push_back(new DyldInfoLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new SymbolTableLoadCommandsAtom<A>(*this));
+ if ( fOptions.outputKind() == Options::kDynamicExecutable )
+ fWriterSynthesizedAtoms.push_back(new DyldLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fUUIDAtom = new UUIDLoadCommandAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new ThreadsLoadCommandsAtom<A>(*this));
+ if ( fOptions.hasCustomStack() )
+ fWriterSynthesizedAtoms.push_back(new CustomStackAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fHeaderPadding = new LoadCommandsPaddingAtom<A>(*this));
+ if ( fOptions.needsUnwindInfoSection() )
+ fWriterSynthesizedAtoms.push_back(fUnwindInfoAtom = new UnwindInfoAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fSectionRelocationsAtom = new SectionRelocationsLinkEditAtom<A>(*this));
+ if ( fOptions.makeCompressedDyldInfo() ) {
+ fWriterSynthesizedAtoms.push_back(fCompressedRebaseInfoAtom = new CompressedRebaseInfoLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fCompressedBindingInfoAtom = new CompressedBindingInfoLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fCompressedWeakBindingInfoAtom = new CompressedWeakBindingInfoLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fCompressedLazyBindingInfoAtom = new CompressedLazyBindingInfoLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fCompressedExportInfoAtom = new CompressedExportInfoLinkEditAtom<A>(*this));
+ }
+ if ( fOptions.makeClassicDyldInfo() )
+ fWriterSynthesizedAtoms.push_back(fLocalRelocationsAtom = new LocalRelocationsLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fSymbolTableAtom = new SymbolTableLinkEditAtom<A>(*this));
+ if ( fOptions.makeClassicDyldInfo() )
+ fWriterSynthesizedAtoms.push_back(fExternalRelocationsAtom = new ExternalRelocationsLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fIndirectTableAtom = new IndirectTableLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fStringsAtom = new StringsLinkEditAtom<A>(*this));
+ break;
+ case Options::kPreload:
+ fWriterSynthesizedAtoms.push_back(fMachHeaderAtom = new MachHeaderAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new SegmentLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new SymbolTableLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fUUIDAtom = new UUIDLoadCommandAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new ThreadsLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fHeaderPadding = new LoadCommandsPaddingAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fSectionRelocationsAtom = new SectionRelocationsLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fLocalRelocationsAtom = new LocalRelocationsLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fExternalRelocationsAtom = new ExternalRelocationsLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fIndirectTableAtom = new IndirectTableLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fSymbolTableAtom = new SymbolTableLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fStringsAtom = new StringsLinkEditAtom<A>(*this));
+ break;
+ case Options::kDynamicLibrary:
+ case Options::kDynamicBundle:
+ fWriterSynthesizedAtoms.push_back(new DsoHandleAtom<A>(*this));
+ case Options::kKextBundle:
+ fWriterSynthesizedAtoms.push_back(fMachHeaderAtom = new MachHeaderAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new SegmentLoadCommandsAtom<A>(*this));
+ if ( fOptions.outputKind() == Options::kDynamicLibrary ) {
+ fWriterSynthesizedAtoms.push_back(new DylibIDLoadCommandsAtom<A>(*this));
+ if ( fOptions.initFunctionName() != NULL )
+ fWriterSynthesizedAtoms.push_back(new RoutinesLoadCommandsAtom<A>(*this));
+ }
+ fWriterSynthesizedAtoms.push_back(fUUIDAtom = new UUIDLoadCommandAtom<A>(*this));
+ if ( fOptions.makeCompressedDyldInfo() )
+ fWriterSynthesizedAtoms.push_back(new DyldInfoLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new SymbolTableLoadCommandsAtom<A>(*this));
+ if ( fOptions.sharedRegionEligible() )
+ fWriterSynthesizedAtoms.push_back(new SegmentSplitInfoLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fHeaderPadding = new LoadCommandsPaddingAtom<A>(*this));
+ if ( fOptions.needsUnwindInfoSection() )
+ fWriterSynthesizedAtoms.push_back(fUnwindInfoAtom = new UnwindInfoAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fSectionRelocationsAtom = new SectionRelocationsLinkEditAtom<A>(*this));
+ if ( fOptions.makeCompressedDyldInfo() ) {
+ fWriterSynthesizedAtoms.push_back(fCompressedRebaseInfoAtom = new CompressedRebaseInfoLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fCompressedBindingInfoAtom = new CompressedBindingInfoLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fCompressedWeakBindingInfoAtom = new CompressedWeakBindingInfoLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fCompressedLazyBindingInfoAtom = new CompressedLazyBindingInfoLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fCompressedExportInfoAtom = new CompressedExportInfoLinkEditAtom<A>(*this));
+ }
+ if ( fOptions.makeClassicDyldInfo() )
+ fWriterSynthesizedAtoms.push_back(fLocalRelocationsAtom = new LocalRelocationsLinkEditAtom<A>(*this));
+ if ( fOptions.sharedRegionEligible() ) {
+ fWriterSynthesizedAtoms.push_back(fSplitCodeToDataContentAtom = new SegmentSplitInfoContentAtom<A>(*this));
+ }
+ fWriterSynthesizedAtoms.push_back(fSymbolTableAtom = new SymbolTableLinkEditAtom<A>(*this));
+ if ( fOptions.makeClassicDyldInfo() )
+ fWriterSynthesizedAtoms.push_back(fExternalRelocationsAtom = new ExternalRelocationsLinkEditAtom<A>(*this));
+ if ( fOptions.outputKind() != Options::kKextBundle )
+ fWriterSynthesizedAtoms.push_back(fIndirectTableAtom = new IndirectTableLinkEditAtom<A>(*this));
+ if ( this->needsModuleTable() )
+ fWriterSynthesizedAtoms.push_back(fModuleInfoAtom = new ModuleInfoLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fStringsAtom = new StringsLinkEditAtom<A>(*this));
+ break;
+ case Options::kObjectFile:
+ fWriterSynthesizedAtoms.push_back(fMachHeaderAtom = new MachHeaderAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new SegmentLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fUUIDAtom = new UUIDLoadCommandAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new SymbolTableLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fHeaderPadding = new LoadCommandsPaddingAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fSectionRelocationsAtom = new SectionRelocationsLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fLocalRelocationsAtom = new LocalRelocationsLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fSymbolTableAtom = new SymbolTableLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fExternalRelocationsAtom = new ExternalRelocationsLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fIndirectTableAtom = new IndirectTableLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fStringsAtom = new StringsLinkEditAtom<A>(*this));
+ break;
+ case Options::kDyld:
+ fWriterSynthesizedAtoms.push_back(new DsoHandleAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fMachHeaderAtom = new MachHeaderAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new SegmentLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new SymbolTableLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new DyldLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fUUIDAtom = new UUIDLoadCommandAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(new ThreadsLoadCommandsAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fHeaderPadding = new LoadCommandsPaddingAtom<A>(*this));
+ if ( fOptions.needsUnwindInfoSection() )
+ fWriterSynthesizedAtoms.push_back(fUnwindInfoAtom = new UnwindInfoAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fLocalRelocationsAtom = new LocalRelocationsLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fSymbolTableAtom = new SymbolTableLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fExternalRelocationsAtom = new ExternalRelocationsLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fIndirectTableAtom = new IndirectTableLinkEditAtom<A>(*this));
+ fWriterSynthesizedAtoms.push_back(fStringsAtom = new StringsLinkEditAtom<A>(*this));
+ break;
+ }
+
+ // add extra commmands
+ bool hasReExports = false;
+ uint32_t ordinal = 1;
+ switch ( fOptions.outputKind() ) {
+ case Options::kDynamicExecutable:
+ if ( fOptions.makeEncryptable() ) {
+ fEncryptionLoadCommand = new EncryptionLoadCommandsAtom<A>(*this);
+ fWriterSynthesizedAtoms.push_back(fEncryptionLoadCommand);
+ }
+ // fall through
+ case Options::kDynamicLibrary:
+ case Options::kDynamicBundle:
+ {
+ // add dylib load command atoms for all dynamic libraries
+ const unsigned int libCount = dynamicLibraries.size();
+ for (unsigned int i=0; i < libCount; ++i) {
+ ExecutableFile::DyLibUsed& dylibInfo = dynamicLibraries[i];
+ //fprintf(stderr, "dynamicLibraries[%d]: reader=%p, %s, install=%s\n", i, dylibInfo.reader, dylibInfo.reader->getPath(), dylibInfo.reader->getInstallPath() );
+
+ if ( dylibInfo.options.fReExport ) {
+ hasReExports = true;
+ }
+ else {
+ const char* parentUmbrella = dylibInfo.reader->parentUmbrella();
+ if ( (parentUmbrella != NULL) && (fOptions.outputKind() == Options::kDynamicLibrary) ) {
+ const char* thisIDLastSlash = strrchr(fOptions.installPath(), '/');
+ if ( (thisIDLastSlash != NULL) && (strcmp(&thisIDLastSlash[1], parentUmbrella) == 0) )
+ hasReExports = true;
+ }
+ }
+
+ if ( dylibInfo.options.fWeakImport ) {
+ fForcedWeakImportReaders.insert(dylibInfo.reader);
+ }
+
+ if ( dylibInfo.options.fBundleLoader ) {
+ fLibraryToOrdinal[dylibInfo.reader] = EXECUTABLE_ORDINAL;
+ }
+ else {
+ // see if a DylibLoadCommandsAtom has already been created for this install path
+ bool newDylib = true;
+ const char* dylibInstallPath = dylibInfo.reader->getInstallPath();
+ for (unsigned int seenLib=0; seenLib < i; ++seenLib) {
+ ExecutableFile::DyLibUsed& seenDylibInfo = dynamicLibraries[seenLib];
+ if ( !seenDylibInfo.options.fBundleLoader ) {
+ const char* seenDylibInstallPath = seenDylibInfo.reader->getInstallPath();
+ if ( strcmp(seenDylibInstallPath, dylibInstallPath) == 0 ) {
+ fLibraryToOrdinal[dylibInfo.reader] = fLibraryToOrdinal[seenDylibInfo.reader];
+ fLibraryToLoadCommand[dylibInfo.reader] = fLibraryToLoadCommand[seenDylibInfo.reader];
+ fLibraryAliases[dylibInfo.reader] = seenDylibInfo.reader;
+ newDylib = false;
+ break;
+ }
+ }
+ }
+
+ if ( newDylib ) {
+ // assign new ordinal and check for other paired load commands
+ fLibraryToOrdinal[dylibInfo.reader] = ordinal++;
+ DylibLoadCommandsAtom<A>* dyliblc = new DylibLoadCommandsAtom<A>(*this, dylibInfo);
+ fLibraryToLoadCommand[dylibInfo.reader] = dyliblc;
+ fWriterSynthesizedAtoms.push_back(dyliblc);
+ if ( dylibInfo.options.fReExport
+ && (fOptions.macosxVersionMin() < ObjectFile::ReaderOptions::k10_5)
+ && (fOptions.outputKind() == Options::kDynamicLibrary) ) {
+ // see if child has sub-framework that is this
+ bool isSubFramework = false;
+ const char* childInUmbrella = dylibInfo.reader->parentUmbrella();
+ if ( childInUmbrella != NULL ) {
+ const char* myLeaf = strrchr(fOptions.installPath(), '/');
+ if ( myLeaf != NULL ) {
+ if ( strcmp(childInUmbrella, &myLeaf[1]) == 0 )
+ isSubFramework = true;
+ }
+ }
+ // LC_SUB_FRAMEWORK is in child, so do nothing in parent
+ if ( ! isSubFramework ) {
+ // this dylib also needs a sub_x load command
+ bool isFrameworkReExport = false;
+ const char* lastSlash = strrchr(dylibInstallPath, '/');
+ if ( lastSlash != NULL ) {
+ char frameworkName[strlen(lastSlash)+20];
+ sprintf(frameworkName, "/%s.framework/", &lastSlash[1]);
+ isFrameworkReExport = (strstr(dylibInstallPath, frameworkName) != NULL);
+ }
+ if ( isFrameworkReExport ) {
+ // needs a LC_SUB_UMBRELLA command
+ fWriterSynthesizedAtoms.push_back(new SubUmbrellaLoadCommandsAtom<A>(*this, &lastSlash[1]));
+ }
+ else {
+ // needs a LC_SUB_LIBRARY command
+ const char* nameStart = &lastSlash[1];
+ if ( lastSlash == NULL )
+ nameStart = dylibInstallPath;
+ int len = strlen(nameStart);
+ const char* dot = strchr(nameStart, '.');
+ if ( dot != NULL )
+ len = dot - nameStart;
+ fWriterSynthesizedAtoms.push_back(new SubLibraryLoadCommandsAtom<A>(*this, nameStart, len));
+ }
+ }
+ }
+ }
+ }
+ }
+ // add umbrella command if needed
+ if ( fOptions.umbrellaName() != NULL ) {
+ fWriterSynthesizedAtoms.push_back(new UmbrellaLoadCommandsAtom<A>(*this, fOptions.umbrellaName()));
+ }
+ // add allowable client commands if used
+ std::vector<const char*>& allowableClients = fOptions.allowableClients();
+ for (std::vector<const char*>::iterator it=allowableClients.begin(); it != allowableClients.end(); ++it)
+ fWriterSynthesizedAtoms.push_back(new AllowableClientLoadCommandsAtom<A>(*this, *it));
+ }
+ break;
+ case Options::kStaticExecutable:
+ case Options::kObjectFile:
+ case Options::kDyld:
+ case Options::kPreload:
+ case Options::kKextBundle:
+ break;
+ }
+ fNoReExportedDylibs = !hasReExports;
+
+ // add any rpath load commands
+ for(std::vector<const char*>::const_iterator it=fOptions.rpaths().begin(); it != fOptions.rpaths().end(); ++it) {
+ fWriterSynthesizedAtoms.push_back(new RPathLoadCommandsAtom<A>(*this, *it));
+ }
+
+ // set up fSlideable
+ switch ( fOptions.outputKind() ) {
+ case Options::kObjectFile:
+ case Options::kStaticExecutable:
+ fSlideable = false;
+ break;
+ case Options::kDynamicExecutable:
+ fSlideable = fOptions.positionIndependentExecutable();
+ break;
+ case Options::kDyld:
+ case Options::kDynamicLibrary:
+ case Options::kDynamicBundle:
+ case Options::kPreload:
+ case Options::kKextBundle:
+ fSlideable = true;
+ break;
+ }
+
+ //fprintf(stderr, "ordinals table:\n");
+ //for (std::map<class ObjectFile::Reader*, uint32_t>::iterator it = fLibraryToOrdinal.begin(); it != fLibraryToOrdinal.end(); ++it) {
+ // fprintf(stderr, "%d <== %s\n", it->second, it->first->getPath());
+ //}
+}
+
+template <typename A>
+Writer<A>::~Writer()
+{
+ if ( fFilePath != NULL )
+ free((void*)fFilePath);
+ if ( fSymbolTable != NULL )
+ delete [] fSymbolTable;
+}
+
+
+// for ppc64, -mdynamic-no-pic only works in low 2GB, so we might need to split the zeropage into two segments
+template <>bool Writer<ppc64>::mightNeedPadSegment() { return (fOptions.zeroPageSize() >= 0x80000000ULL); }
+template <typename A> bool Writer<A>::mightNeedPadSegment() { return false; }
+
+
+template <typename A>
+ObjectFile::Atom* Writer<A>::getUndefinedProxyAtom(const char* name)
+{
+ if ( fOptions.outputKind() == Options::kKextBundle ) {
+ return new UndefinedSymbolProxyAtom<A>(*this, name);
+ }
+ else if ( fOptions.outputKind() == Options::kObjectFile ) {
+ // when doing -r -exported_symbols_list, don't create proxy for a symbol
+ // that is supposed to be exported. We want an error instead
+ // <rdar://problem/5062685> ld does not report error when -r is used and exported symbols are not defined.
+ if ( fOptions.hasExportMaskList() && fOptions.shouldExport(name) )
+ return NULL;
+ else
+ return new UndefinedSymbolProxyAtom<A>(*this, name);
+ }
+ else if ( (fOptions.undefinedTreatment() != Options::kUndefinedError) || fOptions.allowedUndefined(name) )
+ return new UndefinedSymbolProxyAtom<A>(*this, name);
+ else
+ return NULL;
+}
+
+template <typename A>
+uint8_t Writer<A>::ordinalForLibrary(ObjectFile::Reader* lib)
+{
+ // flat namespace images use zero for all ordinals
+ if ( fOptions.nameSpace() != Options::kTwoLevelNameSpace )
+ return 0;
+
+ // is an UndefinedSymbolProxyAtom
+ if ( lib == this )
+ if ( fOptions.nameSpace() == Options::kTwoLevelNameSpace )
+ return DYNAMIC_LOOKUP_ORDINAL;
+
+ std::map<class ObjectFile::Reader*, uint32_t>::iterator pos = fLibraryToOrdinal.find(lib);
+ if ( pos != fLibraryToOrdinal.end() )
+ return pos->second;
+
+ throw "can't find ordinal for imported symbol";
+}
+
+template <typename A>
+bool Writer<A>::targetRequiresWeakBinding(const ObjectFile::Atom& target)
+{
+ switch ( target.getDefinitionKind() ) {
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ return true;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kTentativeDefinition:
+ break;
+ }
+ return false;
+}
+
+template <typename A>
+int Writer<A>::compressedOrdinalForImortedAtom(ObjectFile::Atom* target)
+{
+ // flat namespace images use zero for all ordinals
+ if ( fOptions.nameSpace() != Options::kTwoLevelNameSpace )
+ return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
+
+ // is an UndefinedSymbolProxyAtom
+ ObjectFile::Reader* lib = target->getFile();
+ if ( lib == this )
+ if ( fOptions.nameSpace() == Options::kTwoLevelNameSpace )
+ return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
+
+ std::map<class ObjectFile::Reader*, uint32_t>::iterator pos;
+ switch ( target->getDefinitionKind() ) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ pos = fLibraryToOrdinal.find(lib);
+ if ( pos != fLibraryToOrdinal.end() ) {
+ if ( pos->second == EXECUTABLE_ORDINAL )
+ return BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE;
+ else
+ return pos->second;
+ }
+ break;
+ case ObjectFile::Atom::kWeakDefinition:
+ throw "compressedOrdinalForImortedAtom() should not have been called on a weak definition";
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kTentativeDefinition:
+ return BIND_SPECIAL_DYLIB_SELF;
+ }
+
+ throw "can't find ordinal for imported symbol";
+}
+
+
+template <typename A>
+ObjectFile::Atom& Writer<A>::makeObjcInfoAtom(ObjectFile::Reader::ObjcConstraint objcContraint, bool objcReplacementClasses)
+{
+ return *(new ObjCInfoAtom<A>(*this, objcContraint, objcReplacementClasses));
+}
+
+
+template <typename A>
+uint64_t Writer<A>::write(std::vector<class ObjectFile::Atom*>& atoms,
+ std::vector<class ObjectFile::Reader::Stab>& stabs,
+ class ObjectFile::Atom* entryPointAtom,
+ class ObjectFile::Atom* dyldClassicHelperAtom,
+ class ObjectFile::Atom* dyldCompressedHelperAtom,
+ class ObjectFile::Atom* dyldLazyDylibHelperAtom,
+ bool createUUID, bool canScatter, ObjectFile::Reader::CpuConstraint cpuConstraint,
+ bool biggerThanTwoGigs,
+ std::set<const class ObjectFile::Atom*>& atomsThatOverrideWeak,
+ bool hasExternalWeakDefinitions)
+{
+ fAllAtoms = &atoms;
+ fStabs = &stabs;
+ fEntryPoint = entryPointAtom;
+ fDyldClassicHelperAtom = dyldClassicHelperAtom;
+ fDyldCompressedHelperAtom = dyldCompressedHelperAtom;
+ fDyldLazyDylibHelper = dyldLazyDylibHelperAtom;
+ fCanScatter = canScatter;
+ fCpuConstraint = cpuConstraint;
+ fBiggerThanTwoGigs = biggerThanTwoGigs;
+ fHasWeakExports = hasExternalWeakDefinitions; // dyld needs to search this image as if it had weak exports
+ fRegularDefAtomsThatOverrideADylibsWeakDef = &atomsThatOverrideWeak;
+
+
+ try {
+ // Set for create UUID
+ if (createUUID)
+ fUUIDAtom->generate();
+
+ // remove uneeded dylib load commands
+ optimizeDylibReferences();
+
+ // check for mdynamic-no-pic codegen
+ scanForAbsoluteReferences();
+
+ // create inter-library stubs
+ synthesizeStubs();
+
+ // create table of unwind info
+ synthesizeUnwindInfoTable();
+
+ // create SegmentInfo and SectionInfo objects and assign all atoms to a section
+ partitionIntoSections();
+
+ // segment load command can now be sized and padding can be set
+ adjustLoadCommandsAndPadding();
+
+ // assign each section a file offset
+ assignFileOffsets();
+
+ // if need to add branch islands, reassign file offsets
+ if ( addBranchIslands() )
+ assignFileOffsets();
+
+ // now that addresses are assigned, create unwind info
+ if ( fUnwindInfoAtom != NULL ) {
+ fUnwindInfoAtom->generate();
+ // re-layout
+ adjustLoadCommandsAndPadding();
+ assignFileOffsets();
+ }
+
+ // make spit-seg info now that all atoms exist
+ createSplitSegContent();
+
+ // build symbol table and relocations
+ buildLinkEdit();
+
+ // write map file if requested
+ writeMap();
+
+ // write everything
+ return writeAtoms();
+ } catch (...) {
+ // clean up if any errors
+ (void)unlink(fFilePath);
+ throw;
+ }
+}
+
+template <typename A>
+void Writer<A>::buildLinkEdit()
+{
+ this->collectExportedAndImportedAndLocalAtoms();
+ this->buildSymbolTable();
+ this->buildFixups();
+ this->adjustLinkEditSections();
+}
+
+
+
+template <typename A>
+uint64_t Writer<A>::getAtomLoadAddress(const ObjectFile::Atom* atom)
+{
+ return atom->getAddress();
+// SectionInfo* info = (SectionInfo*)atom->getSection();
+// return info->getBaseAddress() + atom->getSectionOffset();
+}
+
+template <>
+bool Writer<x86_64>::stringsNeedLabelsInObjects()
+{
+ return true;
+}
+
+template <typename A>
+bool Writer<A>::stringsNeedLabelsInObjects()
+{
+ return false;
+}
+
+template <typename A>
+const char* Writer<A>::symbolTableName(const ObjectFile::Atom* atom)
+{
+ static unsigned int counter = 0;
+ const char* name;
+ if ( stringsNeedLabelsInObjects()
+ && (atom->getContentType() == ObjectFile::Atom::kCStringType)
+ && (atom->getDefinitionKind() == ObjectFile::Atom::kWeakDefinition) )
+ asprintf((char**)&name, "LC%u", counter++);
+ else
+ name = atom->getName();
+ return name;
+ return atom->getName();
+}
+
+template <typename A>
+void Writer<A>::setExportNlist(const ObjectFile::Atom* atom, macho_nlist<P>* entry)
+{
+ // set n_strx
+ entry->set_n_strx(this->fStringsAtom->add(this->symbolTableName(atom)));
+
+ // set n_type
+ if ( atom->getSymbolTableInclusion() == ObjectFile::Atom::kSymbolTableInAsAbsolute ) {
+ entry->set_n_type(N_EXT | N_ABS);
+ }
+ else {
+ entry->set_n_type(N_EXT | N_SECT);
+ if ( (atom->getScope() == ObjectFile::Atom::scopeLinkageUnit) && (fOptions.outputKind() == Options::kObjectFile) ) {
+ if ( fOptions.keepPrivateExterns() )
+ entry->set_n_type(N_EXT | N_SECT | N_PEXT);
+ }
+ }
+
+ // set n_sect (section number of implementation )
+ uint8_t sectionIndex = atom->getSection()->getIndex();
+ entry->set_n_sect(sectionIndex);
+
+ // the __mh_execute_header is magic and must be an absolute symbol
+ if ( (sectionIndex==0)
+ && (fOptions.outputKind() == Options::kDynamicExecutable)
+ && (atom->getSymbolTableInclusion() == ObjectFile::Atom::kSymbolTableInAndNeverStrip ))
+ entry->set_n_type(N_EXT | N_ABS);
+
+ // set n_desc
+ uint16_t desc = 0;
+ if ( atom->isThumb() )
+ desc |= N_ARM_THUMB_DEF;
+ if ( atom->getSymbolTableInclusion() == ObjectFile::Atom::kSymbolTableInAndNeverStrip )
+ desc |= REFERENCED_DYNAMICALLY;
+ if ( atom->dontDeadStrip() && (fOptions.outputKind() == Options::kObjectFile) )
+ desc |= N_NO_DEAD_STRIP;
+ if ( atom->getDefinitionKind() == ObjectFile::Atom::kWeakDefinition ) {
+ desc |= N_WEAK_DEF;
+ fHasWeakExports = true;
+ }
+ entry->set_n_desc(desc);
+
+ // set n_value ( address this symbol will be at if this executable is loaded at it preferred address )
+ if ( atom->getDefinitionKind() == ObjectFile::Atom::kAbsoluteSymbol )
+ entry->set_n_value(atom->getSectionOffset());
+ else
+ entry->set_n_value(this->getAtomLoadAddress(atom));
+}
+
+template <typename A>
+void Writer<A>::setImportNlist(const ObjectFile::Atom* atom, macho_nlist<P>* entry)
+{
+ // set n_strx
+ entry->set_n_strx(this->fStringsAtom->add(atom->getName()));
+
+ // set n_type
+ if ( fOptions.outputKind() == Options::kObjectFile ) {
+ if ( (atom->getScope() == ObjectFile::Atom::scopeLinkageUnit)
+ && (atom->getDefinitionKind() == ObjectFile::Atom::kTentativeDefinition) )
+ entry->set_n_type(N_UNDF | N_EXT | N_PEXT);
+ else
+ entry->set_n_type(N_UNDF | N_EXT);
+ }
+ else {
+ if ( fOptions.prebind() )
+ entry->set_n_type(N_PBUD | N_EXT);
+ else
+ entry->set_n_type(N_UNDF | N_EXT);
+ }
+
+ // set n_sect
+ entry->set_n_sect(0);
+
+ uint16_t desc = 0;
+ if ( fOptions.outputKind() != Options::kObjectFile ) {
+ // set n_desc ( high byte is library ordinal, low byte is reference type )
+ std::map<const ObjectFile::Atom*,ObjectFile::Atom*>::iterator pos = fStubsMap.find(atom);
+ if ( pos != fStubsMap.end() || ( strncmp(atom->getName(), ".objc_class_name_", 17) == 0) )
+ desc = REFERENCE_FLAG_UNDEFINED_LAZY;
+ else
+ desc = REFERENCE_FLAG_UNDEFINED_NON_LAZY;
+ try {
+ uint8_t ordinal = this->ordinalForLibrary(atom->getFile());
+ //fprintf(stderr, "ordinal=%u from reader=%p for symbol=%s\n", ordinal, atom->getFile(), atom->getName());
+ SET_LIBRARY_ORDINAL(desc, ordinal);
+ }
+ catch (const char* msg) {
+ throwf("%s %s from %s", msg, atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ }
+ else if ( atom->getDefinitionKind() == ObjectFile::Atom::kTentativeDefinition ) {
+ uint8_t align = atom->getAlignment().powerOf2;
+ // always record custom alignment of common symbols to match what compiler does
+ SET_COMM_ALIGN(desc, align);
+ }
+ if ( atom->isThumb() )
+ desc |= N_ARM_THUMB_DEF;
+ if ( atom->getSymbolTableInclusion() == ObjectFile::Atom::kSymbolTableInAndNeverStrip )
+ desc |= REFERENCED_DYNAMICALLY;
+ if ( ( fOptions.outputKind() != Options::kObjectFile) && (atom->getDefinitionKind() == ObjectFile::Atom::kExternalWeakDefinition) ) {
+ desc |= N_REF_TO_WEAK;
+ fReferencesWeakImports = true;
+ }
+ // set weak_import attribute
+ if ( fWeakImportMap[atom] )
+ desc |= N_WEAK_REF;
+ entry->set_n_desc(desc);
+
+ // set n_value, zero for import proxy and size for tentative definition
+ entry->set_n_value(atom->getSize());
+}
+
+
+template <typename A>
+void Writer<A>::setLocalNlist(const ObjectFile::Atom* atom, macho_nlist<P>* entry)
+{
+ // set n_strx
+ const char* symbolName = this->symbolTableName(atom);
+ char anonName[32];
+ if ( (fOptions.outputKind() == Options::kObjectFile) && !fOptions.keepLocalSymbol(symbolName) ) {
+ if ( stringsNeedLabelsInObjects() && (atom->getContentType() == ObjectFile::Atom::kCStringType) ) {
+ // don't use 'l' labels for x86_64 strings
+ // <rdar://problem/6605499> x86_64 obj-c runtime confused when static lib is stripped
+ }
+ else {
+ sprintf(anonName, "l%u", fAnonNameIndex++);
+ symbolName = anonName;
+ }
+ }
+ entry->set_n_strx(this->fStringsAtom->add(symbolName));
+
+ // set n_type
+ uint8_t type = N_SECT;
+ if ( atom->getDefinitionKind() == ObjectFile::Atom::kAbsoluteSymbol )
+ type = N_ABS;
+ if ( atom->getScope() == ObjectFile::Atom::scopeLinkageUnit )
+ type |= N_PEXT;
+ entry->set_n_type(type);
+
+ // set n_sect (section number of implementation )
+ uint8_t sectIndex = atom->getSection()->getIndex();
+ if ( sectIndex == 0 ) {
+ // see <mach-o/ldsyms.h> synthesized lable for mach_header needs special section number...
+ if ( strcmp(atom->getSectionName(), "._mach_header") == 0 )
+ sectIndex = 1;
+ }
+ entry->set_n_sect(sectIndex);
+
+ // set n_desc
+ uint16_t desc = 0;
+ if ( atom->dontDeadStrip() && (fOptions.outputKind() == Options::kObjectFile) )
+ desc |= N_NO_DEAD_STRIP;
+ if ( atom->getDefinitionKind() == ObjectFile::Atom::kWeakDefinition )
+ desc |= N_WEAK_DEF;
+ if ( atom->isThumb() )
+ desc |= N_ARM_THUMB_DEF;
+ entry->set_n_desc(desc);
+
+ // set n_value ( address this symbol will be at if this executable is loaded at it preferred address )
+ if ( atom->getDefinitionKind() == ObjectFile::Atom::kAbsoluteSymbol )
+ entry->set_n_value(atom->getSectionOffset());
+ else
+ entry->set_n_value(this->getAtomLoadAddress(atom));
+}
+
+
+template <typename A>
+void Writer<A>::addLocalLabel(ObjectFile::Atom& atom, uint32_t offsetInAtom, const char* name)
+{
+ macho_nlist<P> entry;
+
+ // set n_strx
+ entry.set_n_strx(fStringsAtom->add(name));
+
+ // set n_type
+ entry.set_n_type(N_SECT);
+
+ // set n_sect (section number of implementation )
+ entry.set_n_sect(atom.getSection()->getIndex());
+
+ // set n_desc
+ entry.set_n_desc(0);
+
+ // set n_value ( address this symbol will be at if this executable is loaded at it preferred address )
+ entry.set_n_value(this->getAtomLoadAddress(&atom) + offsetInAtom);
+
+ // add
+ fLocalExtraLabels.push_back(entry);
+}
+
+
+
+template <typename A>
+void Writer<A>::addGlobalLabel(ObjectFile::Atom& atom, uint32_t offsetInAtom, const char* name)
+{
+ macho_nlist<P> entry;
+
+ // set n_strx
+ entry.set_n_strx(fStringsAtom->add(name));
+
+ // set n_type
+ entry.set_n_type(N_SECT|N_EXT);
+
+ // set n_sect (section number of implementation )
+ entry.set_n_sect(atom.getSection()->getIndex());
+
+ // set n_desc
+ entry.set_n_desc(0);
+
+ // set n_value ( address this symbol will be at if this executable is loaded at it preferred address )
+ entry.set_n_value(this->getAtomLoadAddress(&atom) + offsetInAtom);
+
+ // add
+ fGlobalExtraLabels.push_back(entry);
+}
+
+template <typename A>
+void Writer<A>::setNlistRange(std::vector<class ObjectFile::Atom*>& atoms, uint32_t startIndex, uint32_t count)
+{
+ macho_nlist<P>* entry = &fSymbolTable[startIndex];
+ for (uint32_t i=0; i < count; ++i, ++entry) {
+ ObjectFile::Atom* atom = atoms[i];
+ if ( &atoms == &fExportedAtoms ) {
+ this->setExportNlist(atom, entry);
+ }
+ else if ( &atoms == &fImportedAtoms ) {
+ this->setImportNlist(atom, entry);
+ }
+ else {
+ this->setLocalNlist(atom, entry);
+ }
+ }
+}
+
+template <typename A>
+void Writer<A>::copyNlistRange(const std::vector<macho_nlist<P> >& entries, uint32_t startIndex)
+{
+ for ( typename std::vector<macho_nlist<P> >::const_iterator it = entries.begin(); it != entries.end(); ++it)
+ fSymbolTable[startIndex++] = *it;
+}
+
+
+template <typename A>
+struct NListNameSorter
+{
+ NListNameSorter(StringsLinkEditAtom<A>* pool) : fStringPool(pool) {}
+
+ bool operator()(const macho_nlist<typename A::P>& left, const macho_nlist<typename A::P>& right)
+ {
+ return (strcmp(fStringPool->stringForIndex(left.n_strx()), fStringPool->stringForIndex(right.n_strx())) < 0);
+ }
+private:
+ StringsLinkEditAtom<A>* fStringPool;
+};
+
+
+template <typename A>
+void Writer<A>::buildSymbolTable()
+{
+ fSymbolTableStabsStartIndex = 0;
+ fSymbolTableStabsCount = fStabs->size();
+ fSymbolTableLocalStartIndex = fSymbolTableStabsStartIndex + fSymbolTableStabsCount;
+ fSymbolTableLocalCount = fLocalSymbolAtoms.size() + fLocalExtraLabels.size();
+ fSymbolTableExportStartIndex = fSymbolTableLocalStartIndex + fSymbolTableLocalCount;
+ fSymbolTableExportCount = fExportedAtoms.size() + fGlobalExtraLabels.size();
+ fSymbolTableImportStartIndex = fSymbolTableExportStartIndex + fSymbolTableExportCount;
+ fSymbolTableImportCount = fImportedAtoms.size();
+
+ // allocate symbol table
+ fSymbolTableCount = fSymbolTableStabsCount + fSymbolTableLocalCount + fSymbolTableExportCount + fSymbolTableImportCount;
+ fSymbolTable = new macho_nlist<P>[fSymbolTableCount];
+
+ // fill in symbol table and string pool (do stabs last so strings are at end of pool)
+ setNlistRange(fLocalSymbolAtoms, fSymbolTableLocalStartIndex, fLocalSymbolAtoms.size());
+ if ( fLocalExtraLabels.size() != 0 )
+ copyNlistRange(fLocalExtraLabels, fSymbolTableLocalStartIndex+fLocalSymbolAtoms.size());
+ setNlistRange(fExportedAtoms, fSymbolTableExportStartIndex, fExportedAtoms.size());
+ if ( fGlobalExtraLabels.size() != 0 ) {
+ copyNlistRange(fGlobalExtraLabels, fSymbolTableExportStartIndex+fExportedAtoms.size());
+ // re-sort combined range
+ std::sort( &fSymbolTable[fSymbolTableExportStartIndex],
+ &fSymbolTable[fSymbolTableExportStartIndex+fSymbolTableExportCount],
+ NListNameSorter<A>(fStringsAtom) );
+ }
+ setNlistRange(fImportedAtoms, fSymbolTableImportStartIndex, fSymbolTableImportCount);
+ addStabs(fSymbolTableStabsStartIndex);
+
+ // set up module table
+ if ( fModuleInfoAtom != NULL )
+ fModuleInfoAtom->setName();
+
+ // create atom to symbol index map
+ // imports
+ int i = 0;
+ for(std::vector<ObjectFile::Atom*>::iterator it=fImportedAtoms.begin(); it != fImportedAtoms.end(); ++it) {
+ fAtomToSymbolIndex[*it] = i + fSymbolTableImportStartIndex;
+ ++i;
+ }
+ // locals
+ i = 0;
+ for(std::vector<ObjectFile::Atom*>::iterator it=fLocalSymbolAtoms.begin(); it != fLocalSymbolAtoms.end(); ++it) {
+ fAtomToSymbolIndex[*it] = i + fSymbolTableLocalStartIndex;
+ ++i;
+ }
+ // exports
+ i = 0;
+ for(std::vector<ObjectFile::Atom*>::iterator it=fExportedAtoms.begin(); it != fExportedAtoms.end(); ++it) {
+ fAtomToSymbolIndex[*it] = i + fSymbolTableExportStartIndex;
+ ++i;
+ }
+
+}
+
+
+
+template <typename A>
+bool Writer<A>::shouldExport(const ObjectFile::Atom& atom) const
+{
+ switch ( atom.getSymbolTableInclusion() ) {
+ case ObjectFile::Atom::kSymbolTableNotIn:
+ return false;
+ case ObjectFile::Atom::kSymbolTableInAndNeverStrip:
+ return true;
+ case ObjectFile::Atom::kSymbolTableInAsAbsolute:
+ case ObjectFile::Atom::kSymbolTableIn:
+ switch ( atom.getScope() ) {
+ case ObjectFile::Atom::scopeGlobal:
+ return true;
+ case ObjectFile::Atom::scopeLinkageUnit:
+ return ( (fOptions.outputKind() == Options::kObjectFile) && fOptions.keepPrivateExterns() );
+ default:
+ return false;
+ }
+ break;
+ }
+ return false;
+}
+
+template <typename A>
+void Writer<A>::collectExportedAndImportedAndLocalAtoms()
+{
+ const int atomCount = fAllAtoms->size();
+ // guess at sizes of each bucket to minimize re-allocations
+ fImportedAtoms.reserve(100);
+ fExportedAtoms.reserve(atomCount/2);
+ fLocalSymbolAtoms.reserve(atomCount);
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ // only named atoms go in symbol table
+ if ( atom->getName() != NULL ) {
+ // put atom into correct bucket: imports, exports, locals
+ //fprintf(stderr, "collectExportedAndImportedAndLocalAtoms() name=%s\n", atom->getDisplayName());
+ switch ( atom->getDefinitionKind() ) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ fImportedAtoms.push_back(atom);
+ break;
+ case ObjectFile::Atom::kTentativeDefinition:
+ if ( (fOptions.outputKind() == Options::kObjectFile) && !fOptions.readerOptions().fMakeTentativeDefinitionsReal ) {
+ fImportedAtoms.push_back(atom);
+ break;
+ }
+ // else fall into
+ case ObjectFile::Atom::kWeakDefinition:
+ if ( stringsNeedLabelsInObjects()
+ && (fOptions.outputKind() == Options::kObjectFile)
+ && (atom->getSymbolTableInclusion() == ObjectFile::Atom::kSymbolTableIn)
+ && (atom->getScope() == ObjectFile::Atom::scopeLinkageUnit)
+ && (atom->getContentType() == ObjectFile::Atom::kCStringType) ) {
+ fLocalSymbolAtoms.push_back(atom);
+ break;
+ }
+ // else fall into
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ if ( this->shouldExport(*atom) )
+ fExportedAtoms.push_back(atom);
+ else if ( (atom->getSymbolTableInclusion() != ObjectFile::Atom::kSymbolTableNotIn)
+ && ((fOptions.outputKind() == Options::kObjectFile) || fOptions.keepLocalSymbol(atom->getName())) )
+ fLocalSymbolAtoms.push_back(atom);
+ break;
+ }
+ }
+ // when geneating a .o file, dtrace static probes become local labels
+ if ( (fOptions.outputKind() == Options::kObjectFile) && !fOptions.readerOptions().fForStatic ) {
+ std::vector<ObjectFile::Reference*>& references = atom->getReferences();
+ for (std::vector<ObjectFile::Reference*>::iterator rit=references.begin(); rit != references.end(); rit++) {
+ ObjectFile::Reference* ref = *rit;
+ if ( ref->getKind() == A::kDtraceProbe ) {
+ // dtrace probe points to be add back into generated .o file
+ this->addLocalLabel(*atom, ref->getFixUpOffset(), ref->getTargetName());
+ }
+ }
+ }
+ // when linking kernel, old style dtrace static probes become global labels
+ else if ( fOptions.readerOptions().fForStatic ) {
+ std::vector<ObjectFile::Reference*>& references = atom->getReferences();
+ for (std::vector<ObjectFile::Reference*>::iterator rit=references.begin(); rit != references.end(); rit++) {
+ ObjectFile::Reference* ref = *rit;
+ if ( ref->getKind() == A::kDtraceProbe ) {
+ // dtrace probe points to be add back into generated .o file
+ this->addGlobalLabel(*atom, ref->getFixUpOffset(), ref->getTargetName());
+ }
+ }
+ }
+ }
+
+ // sort exported atoms by name
+ std::sort(fExportedAtoms.begin(), fExportedAtoms.end(), AtomByNameSorter());
+ // sort imported atoms by name (not required by runtime, but helps make generated files binary diffable)
+ std::sort(fImportedAtoms.begin(), fImportedAtoms.end(), AtomByNameSorter());
+}
+
+
+template <typename A>
+uint64_t Writer<A>::valueForStab(const ObjectFile::Reader::Stab& stab)
+{
+ switch ( stab.type ) {
+ case N_FUN:
+ if ( (stab.string == NULL) || (strlen(stab.string) == 0) ) {
+ // end of function N_FUN has size
+ return stab.atom->getSize();
+ }
+ else {
+ // start of function N_FUN has address
+ return getAtomLoadAddress(stab.atom);
+ }
+ case N_LBRAC:
+ case N_RBRAC:
+ case N_SLINE:
+ if ( stab.atom == NULL )
+ // some weird assembly files have slines not associated with a function
+ return stab.value;
+ else
+ // all these stab types need their value changed from an offset in the atom to an address
+ return getAtomLoadAddress(stab.atom) + stab.value;
+ case N_STSYM:
+ case N_LCSYM:
+ case N_BNSYM:
+ // all these need address of atom
+ return getAtomLoadAddress(stab.atom);;
+ case N_ENSYM:
+ return stab.atom->getSize();
+ case N_SO:
+ if ( stab.atom == NULL ) {
+ return 0;
+ }
+ else {
+ if ( (stab.string == NULL) || (strlen(stab.string) == 0) ) {
+ // end of translation unit N_SO has address of end of last atom
+ return getAtomLoadAddress(stab.atom) + stab.atom->getSize();
+ }
+ else {
+ // start of translation unit N_SO has address of end of first atom
+ return getAtomLoadAddress(stab.atom);
+ }
+ }
+ break;
+ default:
+ return stab.value;
+ }
+}
+
+template <typename A>
+uint32_t Writer<A>::stringOffsetForStab(const ObjectFile::Reader::Stab& stab)
+{
+ switch (stab.type) {
+ case N_SO:
+ if ( (stab.string == NULL) || stab.string[0] == '\0' ) {
+ return this->fStringsAtom->emptyString();
+ break;
+ }
+ // fall into uniquing case
+ case N_SOL:
+ case N_BINCL:
+ case N_EXCL:
+ return this->fStringsAtom->addUnique(stab.string);
+ break;
+ default:
+ if ( stab.string == NULL )
+ return 0;
+ else if ( stab.string[0] == '\0' )
+ return this->fStringsAtom->emptyString();
+ else
+ return this->fStringsAtom->add(stab.string);
+ }
+ return 0;
+}
+
+template <typename A>
+uint8_t Writer<A>::sectionIndexForStab(const ObjectFile::Reader::Stab& stab)
+{
+ // in FUN stabs, n_sect field is 0 for start FUN and 1 for end FUN
+ if ( stab.type == N_FUN )
+ return stab.other;
+ else if ( stab.atom != NULL )
+ return stab.atom->getSection()->getIndex();
+ else
+ return stab.other;
+}
+
+template <typename A>
+void Writer<A>::addStabs(uint32_t startIndex)
+{
+ macho_nlist<P>* entry = &fSymbolTable[startIndex];
+ for(std::vector<ObjectFile::Reader::Stab>::iterator it = fStabs->begin(); it != fStabs->end(); ++it, ++entry) {
+ const ObjectFile::Reader::Stab& stab = *it;
+ entry->set_n_type(stab.type);
+ entry->set_n_sect(sectionIndexForStab(stab));
+ entry->set_n_desc(stab.desc);
+ entry->set_n_value(valueForStab(stab));
+ entry->set_n_strx(stringOffsetForStab(stab));
+ }
+}
+
+
+
+template <typename A>
+uint32_t Writer<A>::symbolIndex(ObjectFile::Atom& atom)
+{
+ std::map<ObjectFile::Atom*, uint32_t>::iterator pos = fAtomToSymbolIndex.find(&atom);
+ if ( pos != fAtomToSymbolIndex.end() )
+ return pos->second;
+ throwf("atom not found in symbolIndex(%s) for %s", atom.getDisplayName(), atom.getFile()->getPath());
+}
+
+
+template <>
+bool Writer<x86_64>::makesExternalRelocatableReference(ObjectFile::Atom& target) const
+{
+ switch ( target.getSymbolTableInclusion() ) {
+ case ObjectFile::Atom::kSymbolTableNotIn:
+ return false;
+ case ObjectFile::Atom::kSymbolTableInAsAbsolute:
+ case ObjectFile::Atom::kSymbolTableIn:
+ case ObjectFile::Atom::kSymbolTableInAndNeverStrip:
+ return true;
+ };
+ return false;
+}
+
+template <typename A>
+bool Writer<A>::makesExternalRelocatableReference(ObjectFile::Atom& target) const
+{
+ switch ( target.getDefinitionKind() ) {
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ return false;
+ case ObjectFile::Atom::kTentativeDefinition:
+ if ( fOptions.readerOptions().fMakeTentativeDefinitionsReal )
+ return false;
+ else
+ return (target.getScope() != ObjectFile::Atom::scopeTranslationUnit);
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ return shouldExport(target);
+ }
+ return false;
+}
+
+template <typename A>
+void Writer<A>::buildFixups()
+{
+ if ( fOptions.outputKind() == Options::kObjectFile ) {
+ this->buildObjectFileFixups();
+ }
+ else {
+ if ( fOptions.keepRelocations() )
+ this->buildObjectFileFixups();
+ this->buildExecutableFixups();
+ }
+}
+
+template <>
+uint32_t Writer<x86_64>::addObjectRelocs(ObjectFile::Atom* atom, ObjectFile::Reference* ref)
+{
+ ObjectFile::Atom& target = ref->getTarget();
+ bool external = this->makesExternalRelocatableReference(target);
+ uint32_t symbolIndex = external ? this->symbolIndex(target) : target.getSection()->getIndex();
+ uint32_t address = atom->getSectionOffset()+ref->getFixUpOffset();
+ macho_relocation_info<P> reloc1;
+ macho_relocation_info<P> reloc2;
+ x86_64::ReferenceKinds kind = (x86_64::ReferenceKinds)ref->getKind();
+
+ switch ( kind ) {
+ case x86_64::kNoFixUp:
+ case x86_64::kGOTNoFixUp:
+ case x86_64::kFollowOn:
+ case x86_64::kGroupSubordinate:
+ return 0;
+
+ case x86_64::kPointer:
+ case x86_64::kPointerWeakImport:
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(3);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_UNSIGNED);
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86_64::kPointer32:
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_UNSIGNED);
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86_64::kPointerDiff32:
+ case x86_64::kPointerDiff:
+ {
+ ObjectFile::Atom& fromTarget = ref->getFromTarget();
+ bool fromExternal = (fromTarget.getSymbolTableInclusion() != ObjectFile::Atom::kSymbolTableNotIn);
+ uint32_t fromSymbolIndex = fromExternal ? this->symbolIndex(fromTarget) : fromTarget.getSection()->getIndex();
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(kind==x86_64::kPointerDiff32 ? 2 : 3);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_UNSIGNED);
+ reloc2.set_r_address(address);
+ reloc2.set_r_symbolnum(fromSymbolIndex);
+ reloc2.set_r_pcrel(false);
+ reloc2.set_r_length(kind==x86_64::kPointerDiff32 ? 2 : 3);
+ reloc2.set_r_extern(fromExternal);
+ reloc2.set_r_type(X86_64_RELOC_SUBTRACTOR);
+ fSectionRelocs.push_back(reloc1);
+ fSectionRelocs.push_back(reloc2);
+ return 2;
+ }
+
+ case x86_64::kBranchPCRel32:
+ case x86_64::kBranchPCRel32WeakImport:
+ case x86_64::kDtraceProbeSite:
+ case x86_64::kDtraceIsEnabledSite:
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_BRANCH);
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86_64::kPCRel32:
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_SIGNED);
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86_64::kPCRel32_1:
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_SIGNED_1);
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86_64::kPCRel32_2:
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_SIGNED_2);
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86_64::kPCRel32_4:
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_SIGNED_4);
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86_64::kBranchPCRel8:
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(0);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_BRANCH);
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86_64::kPCRel32GOT:
+ case x86_64::kPCRel32GOTWeakImport:
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_GOT);
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86_64::kPCRel32GOTLoad:
+ case x86_64::kPCRel32GOTLoadWeakImport:
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(symbolIndex);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(external);
+ reloc1.set_r_type(X86_64_RELOC_GOT_LOAD);
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86_64::kPointerDiff24:
+ throw "internal linker error, kPointerDiff24 can't be encoded into object files";
+
+ case x86_64::kImageOffset32:
+ throw "internal linker error, kImageOffset32 can't be encoded into object files";
+
+ case x86_64::kSectionOffset24:
+ throw "internal linker error, kSectionOffset24 can't be encoded into object files";
+
+ case x86_64::kDtraceTypeReference:
+ case x86_64::kDtraceProbe:
+ // generates no relocs
+ return 0;
+ }
+ return 0;
+}
+
+
+template <>
+uint32_t Writer<x86>::addObjectRelocs(ObjectFile::Atom* atom, ObjectFile::Reference* ref)
+{
+ ObjectFile::Atom& target = ref->getTarget();
+ bool isExtern = this->makesExternalRelocatableReference(target);
+ uint32_t symbolIndex = 0;
+ if ( isExtern )
+ symbolIndex = this->symbolIndex(target);
+ uint32_t sectionNum = target.getSection()->getIndex();
+ uint32_t address = atom->getSectionOffset()+ref->getFixUpOffset();
+ macho_relocation_info<P> reloc1;
+ macho_relocation_info<P> reloc2;
+ macho_scattered_relocation_info<P>* sreloc1 = (macho_scattered_relocation_info<P>*)&reloc1;
+ macho_scattered_relocation_info<P>* sreloc2 = (macho_scattered_relocation_info<P>*)&reloc2;
+ x86::ReferenceKinds kind = (x86::ReferenceKinds)ref->getKind();
+
+ if ( !isExtern && (sectionNum == 0) && (target.getDefinitionKind() != ObjectFile::Atom::kAbsoluteSymbol) )
+ warning("section index == 0 for %s (kind=%d, scope=%d, inclusion=%d) in %s",
+ target.getDisplayName(), target.getDefinitionKind(), target.getScope(), target.getSymbolTableInclusion(), target.getFile()->getPath());
+
+
+ switch ( kind ) {
+ case x86::kNoFixUp:
+ case x86::kFollowOn:
+ case x86::kGroupSubordinate:
+ return 0;
+
+ case x86::kPointer:
+ case x86::kPointerWeakImport:
+ case x86::kAbsolute32:
+ if ( !isExtern && (ref->getTargetOffset() != 0) ) {
+ // use scattered reloc is target offset is non-zero
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(GENERIC_RELOC_VANILLA);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ else {
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(isExtern ? symbolIndex : sectionNum);
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(isExtern);
+ reloc1.set_r_type(GENERIC_RELOC_VANILLA);
+ }
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86::kPointerDiff16:
+ case x86::kPointerDiff:
+ {
+ //pint_t fromAddr = ref->getFromTarget().getAddress() + ref->getFromTargetOffset();
+ //fprintf(stderr, "addObjectRelocs(): refFromTarget=%s, refTarget=%s, refFromTargetAddr=0x%llX, refFromTargetOffset=0x%llX\n",
+ // ref->getFromTarget().getDisplayName(), ref->getTarget().getDisplayName(),
+ // ref->getFromTarget().getAddress(), ref->getFromTargetOffset());
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length( (kind==x86::kPointerDiff) ? 2 : 1 );
+ if ( ref->getTarget().getScope() == ObjectFile::Atom::scopeTranslationUnit )
+ sreloc1->set_r_type(GENERIC_RELOC_LOCAL_SECTDIFF);
+ else
+ sreloc1->set_r_type(GENERIC_RELOC_SECTDIFF);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+
+ sreloc2->set_r_scattered(true);
+ sreloc2->set_r_pcrel(false);
+ sreloc2->set_r_length( (kind==x86::kPointerDiff) ? 2 : 1 );
+ sreloc2->set_r_type(GENERIC_RELOC_PAIR);
+ sreloc2->set_r_address(0);
+ if ( &ref->getFromTarget() == atom )
+ sreloc2->set_r_value(ref->getFromTarget().getAddress()+ref->getFromTargetOffset());
+ else
+ sreloc2->set_r_value(ref->getFromTarget().getAddress());
+ fSectionRelocs.push_back(reloc2);
+ fSectionRelocs.push_back(reloc1);
+ return 2;
+ }
+
+ case x86::kPCRel32WeakImport:
+ case x86::kPCRel32:
+ case x86::kPCRel16:
+ case x86::kPCRel8:
+ case x86::kDtraceProbeSite:
+ case x86::kDtraceIsEnabledSite:
+ if ( !isExtern && (ref->getTargetOffset() != 0) ) {
+ // use scattered reloc is target offset is non-zero
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(true);
+ sreloc1->set_r_length( (kind==x86::kPCRel8) ? 0 : ((kind==x86::kPCRel16) ? 1 : 2) );
+ sreloc1->set_r_type(GENERIC_RELOC_VANILLA);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ else {
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(isExtern ? symbolIndex : sectionNum);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length( (kind==x86::kPCRel8) ? 0 : ((kind==x86::kPCRel16) ? 1 : 2) );
+ reloc1.set_r_extern(isExtern);
+ reloc1.set_r_type(GENERIC_RELOC_VANILLA);
+ }
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case x86::kPointerDiff24:
+ throw "internal linker error, kPointerDiff24 can't be encoded into object files";
+
+ case x86::kImageOffset32:
+ throw "internal linker error, kImageOffset32 can't be encoded into object files";
+
+ case x86::kSectionOffset24:
+ throw "internal linker error, kSectionOffset24 can't be encoded into object files";
+
+ case x86::kDtraceTypeReference:
+ case x86::kDtraceProbe:
+ // generates no relocs
+ return 0;
+
+ }
+ return 0;
+}
+
+template <>
+uint32_t Writer<arm>::addObjectRelocs(ObjectFile::Atom* atom, ObjectFile::Reference* ref)
+{
+ ObjectFile::Atom& target = ref->getTarget();
+ bool isExtern = this->makesExternalRelocatableReference(target);
+ uint32_t symbolIndex = 0;
+ if ( isExtern )
+ symbolIndex = this->symbolIndex(target);
+ uint32_t sectionNum = target.getSection()->getIndex();
+ uint32_t address = atom->getSectionOffset()+ref->getFixUpOffset();
+ macho_relocation_info<P> reloc1;
+ macho_relocation_info<P> reloc2;
+ macho_scattered_relocation_info<P>* sreloc1 = (macho_scattered_relocation_info<P>*)&reloc1;
+ macho_scattered_relocation_info<P>* sreloc2 = (macho_scattered_relocation_info<P>*)&reloc2;
+ arm::ReferenceKinds kind = (arm::ReferenceKinds)ref->getKind();
+
+ if ( !isExtern && (sectionNum == 0) && (target.getDefinitionKind() != ObjectFile::Atom::kAbsoluteSymbol) )
+ warning("section index == 0 for %s (kind=%d, scope=%d, inclusion=%d) in %s",
+ target.getDisplayName(), target.getDefinitionKind(), target.getScope(), target.getSymbolTableInclusion(), target.getFile()->getPath());
+
+
+ switch ( kind ) {
+ case arm::kNoFixUp:
+ case arm::kFollowOn:
+ case arm::kGroupSubordinate:
+ return 0;
+
+ case arm::kPointer:
+ case arm::kReadOnlyPointer:
+ case arm::kPointerWeakImport:
+ if ( !isExtern && (ref->getTargetOffset() != 0) ) {
+ // use scattered reloc is target offset is non-zero
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(ARM_RELOC_VANILLA);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ else {
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(isExtern ? symbolIndex : sectionNum);
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(isExtern);
+ reloc1.set_r_type(ARM_RELOC_VANILLA);
+ }
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case arm::kPointerDiff:
+ {
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length(2);
+ if ( ref->getTarget().getScope() == ObjectFile::Atom::scopeTranslationUnit )
+ sreloc1->set_r_type(ARM_RELOC_LOCAL_SECTDIFF);
+ else
+ sreloc1->set_r_type(ARM_RELOC_SECTDIFF);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ sreloc2->set_r_scattered(true);
+ sreloc2->set_r_pcrel(false);
+ sreloc2->set_r_length(2);
+ sreloc2->set_r_type(ARM_RELOC_PAIR);
+ sreloc2->set_r_address(0);
+ if ( &ref->getFromTarget() == atom )
+ sreloc2->set_r_value(ref->getFromTarget().getAddress()+ref->getFromTargetOffset());
+ else
+ sreloc2->set_r_value(ref->getFromTarget().getAddress());
+ fSectionRelocs.push_back(reloc2);
+ fSectionRelocs.push_back(reloc1);
+ return 2;
+ }
+
+ case arm::kBranch24WeakImport:
+ case arm::kBranch24:
+ case arm::kDtraceProbeSite:
+ case arm::kDtraceIsEnabledSite:
+ if ( !isExtern && (ref->getTargetOffset() != 0) ) {
+ // use scattered reloc is target offset is non-zero
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(true);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(ARM_RELOC_BR24);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ else {
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(isExtern ? symbolIndex : sectionNum);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(isExtern);
+ reloc1.set_r_type(ARM_RELOC_BR24);
+ }
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case arm::kThumbBranch22WeakImport:
+ case arm::kThumbBranch22:
+ if ( !isExtern && (ref->getTargetOffset() != 0) ) {
+ // use scattered reloc if target offset is non-zero
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(true);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(ARM_THUMB_RELOC_BR22);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ else {
+ reloc1.set_r_address(address);
+ reloc1.set_r_symbolnum(isExtern ? symbolIndex : sectionNum);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(isExtern);
+ reloc1.set_r_type(ARM_THUMB_RELOC_BR22);
+ }
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case arm::kDtraceTypeReference:
+ case arm::kDtraceProbe:
+ // generates no relocs
+ return 0;
+
+ }
+ return 0;
+}
+
+template <> uint64_t Writer<ppc>::maxAddress() { return 0xFFFFFFFFULL; }
+template <> uint64_t Writer<ppc64>::maxAddress() { return 0xFFFFFFFFFFFFFFFFULL; }
+template <> uint64_t Writer<x86>::maxAddress() { return 0xFFFFFFFFULL; }
+template <> uint64_t Writer<x86_64>::maxAddress() { return 0xFFFFFFFFFFFFFFFFULL; }
+template <> uint64_t Writer<arm>::maxAddress() { return 0xFFFFFFFFULL; }
+
+template <>
+uint8_t Writer<ppc>::getRelocPointerSize()
+{
+ return 2;
+}
+
+template <>
+uint8_t Writer<ppc64>::getRelocPointerSize()
+{
+ return 3;
+}
+
+template <>
+uint32_t Writer<ppc>::addObjectRelocs(ObjectFile::Atom* atom, ObjectFile::Reference* ref)
+{
+ return addObjectRelocs_powerpc(atom, ref);
+}
+
+template <>
+uint32_t Writer<ppc64>::addObjectRelocs(ObjectFile::Atom* atom, ObjectFile::Reference* ref)
+{
+ return addObjectRelocs_powerpc(atom, ref);
+}
+
+//
+// addObjectRelocs<ppc> and addObjectRelocs<ppc64> are almost exactly the same, so
+// they use a common addObjectRelocs_powerpc() method.
+//
+template <typename A>
+uint32_t Writer<A>::addObjectRelocs_powerpc(ObjectFile::Atom* atom, ObjectFile::Reference* ref)
+{
+ ObjectFile::Atom& target = ref->getTarget();
+ bool isExtern = this->makesExternalRelocatableReference(target);
+ uint32_t symbolIndex = 0;
+ if ( isExtern )
+ symbolIndex = this->symbolIndex(target);
+ uint32_t sectionNum = target.getSection()->getIndex();
+ uint32_t address = atom->getSectionOffset()+ref->getFixUpOffset();
+ macho_relocation_info<P> reloc1;
+ macho_relocation_info<P> reloc2;
+ macho_scattered_relocation_info<P>* sreloc1 = (macho_scattered_relocation_info<P>*)&reloc1;
+ macho_scattered_relocation_info<P>* sreloc2 = (macho_scattered_relocation_info<P>*)&reloc2;
+ typename A::ReferenceKinds kind = (typename A::ReferenceKinds)ref->getKind();
+
+ switch ( kind ) {
+ case A::kNoFixUp:
+ case A::kFollowOn:
+ case A::kGroupSubordinate:
+ return 0;
+
+ case A::kPointer:
+ case A::kPointerWeakImport:
+ if ( !isExtern && (ref->getTargetOffset() >= target.getSize()) ) {
+ // use scattered reloc is target offset is outside target
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length(getRelocPointerSize());
+ sreloc1->set_r_type(GENERIC_RELOC_VANILLA);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ else {
+ reloc1.set_r_address(address);
+ if ( isExtern )
+ reloc1.set_r_symbolnum(symbolIndex);
+ else
+ reloc1.set_r_symbolnum(sectionNum);
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(getRelocPointerSize());
+ reloc1.set_r_extern(isExtern);
+ reloc1.set_r_type(GENERIC_RELOC_VANILLA);
+ }
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case A::kPointerDiff16:
+ case A::kPointerDiff32:
+ case A::kPointerDiff64:
+ {
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length( (kind == A::kPointerDiff32) ? 2 : ((kind == A::kPointerDiff64) ? 3 : 1));
+ if ( ref->getTarget().getScope() == ObjectFile::Atom::scopeTranslationUnit )
+ sreloc1->set_r_type(PPC_RELOC_LOCAL_SECTDIFF);
+ else
+ sreloc1->set_r_type(PPC_RELOC_SECTDIFF);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ sreloc2->set_r_scattered(true);
+ sreloc2->set_r_pcrel(false);
+ sreloc2->set_r_length(sreloc1->r_length());
+ sreloc2->set_r_type(PPC_RELOC_PAIR);
+ sreloc2->set_r_address(0);
+ sreloc2->set_r_value(ref->getFromTarget().getAddress()+ref->getFromTargetOffset());
+ fSectionRelocs.push_back(reloc2);
+ fSectionRelocs.push_back(reloc1);
+ return 2;
+ }
+
+ case A::kBranch24WeakImport:
+ case A::kBranch24:
+ case A::kDtraceProbeSite:
+ case A::kDtraceIsEnabledSite:
+ if ( (ref->getTargetOffset() == 0) || isExtern ) {
+ reloc1.set_r_address(address);
+ if ( isExtern )
+ reloc1.set_r_symbolnum(symbolIndex);
+ else
+ reloc1.set_r_symbolnum(sectionNum);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_type(PPC_RELOC_BR24);
+ reloc1.set_r_extern(isExtern);
+ }
+ else {
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(true);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(PPC_RELOC_BR24);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case A::kBranch14:
+ if ( (ref->getTargetOffset() == 0) || isExtern ) {
+ reloc1.set_r_address(address);
+ if ( isExtern )
+ reloc1.set_r_symbolnum(symbolIndex);
+ else
+ reloc1.set_r_symbolnum(sectionNum);
+ reloc1.set_r_pcrel(true);
+ reloc1.set_r_length(2);
+ reloc1.set_r_type(PPC_RELOC_BR14);
+ reloc1.set_r_extern(isExtern);
+ }
+ else {
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(true);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(PPC_RELOC_BR14);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ fSectionRelocs.push_back(reloc1);
+ return 1;
+
+ case A::kPICBaseLow16:
+ case A::kPICBaseLow14:
+ {
+ pint_t fromAddr = atom->getAddress() + ref->getFromTargetOffset();
+ pint_t toAddr = target.getAddress() + ref->getTargetOffset();
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(kind == A::kPICBaseLow16 ? PPC_RELOC_LO16_SECTDIFF : PPC_RELOC_LO14_SECTDIFF);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ sreloc2->set_r_scattered(true);
+ sreloc2->set_r_pcrel(false);
+ sreloc2->set_r_length(2);
+ sreloc2->set_r_type(PPC_RELOC_PAIR);
+ sreloc2->set_r_address(((toAddr-fromAddr) >> 16) & 0xFFFF);
+ sreloc2->set_r_value(fromAddr);
+ fSectionRelocs.push_back(reloc2);
+ fSectionRelocs.push_back(reloc1);
+ return 2;
+ }
+
+ case A::kPICBaseHigh16:
+ {
+ pint_t fromAddr = atom->getAddress() + ref->getFromTargetOffset();
+ pint_t toAddr = target.getAddress() + ref->getTargetOffset();
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(PPC_RELOC_HA16_SECTDIFF);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ sreloc2->set_r_scattered(true);
+ sreloc2->set_r_pcrel(false);
+ sreloc2->set_r_length(2);
+ sreloc2->set_r_type(PPC_RELOC_PAIR);
+ sreloc2->set_r_address((toAddr-fromAddr) & 0xFFFF);
+ sreloc2->set_r_value(fromAddr);
+ fSectionRelocs.push_back(reloc2);
+ fSectionRelocs.push_back(reloc1);
+ return 2;
+ }
+
+ case A::kAbsLow14:
+ case A::kAbsLow16:
+ {
+ pint_t toAddr = target.getAddress() + ref->getTargetOffset();
+ if ( (ref->getTargetOffset() == 0) || isExtern ) {
+ reloc1.set_r_address(address);
+ if ( isExtern )
+ reloc1.set_r_symbolnum(symbolIndex);
+ else
+ reloc1.set_r_symbolnum(sectionNum);
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(isExtern);
+ reloc1.set_r_type(kind==A::kAbsLow16 ? PPC_RELOC_LO16 : PPC_RELOC_LO14);
+ }
+ else {
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(kind==A::kAbsLow16 ? PPC_RELOC_LO16 : PPC_RELOC_LO14);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ if ( isExtern )
+ reloc2.set_r_address(ref->getTargetOffset() >> 16);
+ else
+ reloc2.set_r_address(toAddr >> 16);
+ reloc2.set_r_symbolnum(0);
+ reloc2.set_r_pcrel(false);
+ reloc2.set_r_length(2);
+ reloc2.set_r_extern(false);
+ reloc2.set_r_type(PPC_RELOC_PAIR);
+ fSectionRelocs.push_back(reloc2);
+ fSectionRelocs.push_back(reloc1);
+ return 2;
+ }
+
+ case A::kAbsHigh16:
+ {
+ pint_t toAddr = target.getAddress() + ref->getTargetOffset();
+ if ( (ref->getTargetOffset() == 0) || isExtern ) {
+ reloc1.set_r_address(address);
+ if ( isExtern )
+ reloc1.set_r_symbolnum(symbolIndex);
+ else
+ reloc1.set_r_symbolnum(sectionNum);
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(isExtern);
+ reloc1.set_r_type(PPC_RELOC_HI16);
+ }
+ else {
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(PPC_RELOC_HI16);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ if ( isExtern )
+ reloc2.set_r_address(ref->getTargetOffset() & 0xFFFF);
+ else
+ reloc2.set_r_address(toAddr & 0xFFFF);
+ reloc2.set_r_symbolnum(0);
+ reloc2.set_r_pcrel(false);
+ reloc2.set_r_length(2);
+ reloc2.set_r_extern(false);
+ reloc2.set_r_type(PPC_RELOC_PAIR);
+ fSectionRelocs.push_back(reloc2);
+ fSectionRelocs.push_back(reloc1);
+ return 2;
+ }
+
+ case A::kAbsHigh16AddLow:
+ {
+ pint_t toAddr = target.getAddress() + ref->getTargetOffset();
+ uint32_t overflow = 0;
+ if ( (toAddr & 0x00008000) != 0 )
+ overflow = 0x10000;
+ if ( (ref->getTargetOffset() == 0) || isExtern ) {
+ reloc1.set_r_address(address);
+ if ( isExtern )
+ reloc1.set_r_symbolnum(symbolIndex);
+ else
+ reloc1.set_r_symbolnum(sectionNum);
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(isExtern);
+ reloc1.set_r_type(PPC_RELOC_HA16);
+ }
+ else {
+ sreloc1->set_r_scattered(true);
+ sreloc1->set_r_pcrel(false);
+ sreloc1->set_r_length(2);
+ sreloc1->set_r_type(PPC_RELOC_HA16);
+ sreloc1->set_r_address(address);
+ sreloc1->set_r_value(target.getAddress());
+ }
+ if ( isExtern )
+ reloc2.set_r_address(ref->getTargetOffset() & 0xFFFF);
+ else
+ reloc2.set_r_address(toAddr & 0xFFFF);
+ reloc2.set_r_symbolnum(0);
+ reloc2.set_r_pcrel(false);
+ reloc2.set_r_length(2);
+ reloc2.set_r_extern(false);
+ reloc2.set_r_type(PPC_RELOC_PAIR);
+ fSectionRelocs.push_back(reloc2);
+ fSectionRelocs.push_back(reloc1);
+ return 2;
+ }
+
+ case A::kDtraceTypeReference:
+ case A::kDtraceProbe:
+ // generates no relocs
+ return 0;
+ }
+ return 0;
+}
+
+
+
+//
+// There are cases when an entry in the indirect symbol table is the magic value
+// INDIRECT_SYMBOL_LOCAL instead of being a symbol index. When that happens
+// the content of the corresponding part of the __nl_symbol_pointer section
+// must also change.
+//
+template <typename A>
+bool Writer<A>::indirectSymbolInRelocatableIsLocal(const ObjectFile::Reference* ref) const
+{
+ // cannot use INDIRECT_SYMBOL_LOCAL to tentative definitions in object files
+ // because tentative defs don't have addresses
+ if ( ref->getTarget().getDefinitionKind() == ObjectFile::Atom::kTentativeDefinition )
+ return false;
+
+ // must use INDIRECT_SYMBOL_LOCAL if there is an addend
+ if ( ref->getTargetOffset() != 0 )
+ return true;
+
+ // don't use INDIRECT_SYMBOL_LOCAL for external symbols
+ return ! this->shouldExport(ref->getTarget());
+}
+
+
+template <typename A>
+void Writer<A>::buildObjectFileFixups()
+{
+ uint32_t relocIndex = 0;
+ std::vector<SegmentInfo*>& segmentInfos = fSegmentInfos;
+ const int segCount = segmentInfos.size();
+ for(int i=0; i < segCount; ++i) {
+ SegmentInfo* curSegment = segmentInfos[i];
+ std::vector<SectionInfo*>& sectionInfos = curSegment->fSections;
+ const int sectionCount = sectionInfos.size();
+ for(int j=0; j < sectionCount; ++j) {
+ SectionInfo* curSection = sectionInfos[j];
+ //fprintf(stderr, "buildObjectFileFixups(): starting section %s\n", curSection->fSectionName);
+ std::vector<ObjectFile::Atom*>& sectionAtoms = curSection->fAtoms;
+ if ( ! curSection->fAllZeroFill ) {
+ if ( curSection->fAllNonLazyPointers || curSection->fAllLazyPointers
+ || curSection->fAllLazyDylibPointers || curSection->fAllStubs )
+ curSection->fIndirectSymbolOffset = fIndirectTableAtom->fTable.size();
+ curSection->fRelocOffset = relocIndex;
+ const int atomCount = sectionAtoms.size();
+ for (int k=0; k < atomCount; ++k) {
+ ObjectFile::Atom* atom = sectionAtoms[k];
+ //fprintf(stderr, "buildObjectFileFixups(): atom %s has %lu references\n", atom->getDisplayName(), atom->getReferences().size());
+ std::vector<ObjectFile::Reference*>& refs = atom->getReferences();
+ const int refCount = refs.size();
+ for (int l=0; l < refCount; ++l) {
+ ObjectFile::Reference* ref = refs[l];
+ if ( curSection->fAllNonLazyPointers || curSection->fAllLazyPointers
+ || curSection->fAllLazyDylibPointers || curSection->fAllStubs ) {
+ uint32_t offsetInSection = atom->getSectionOffset();
+ uint32_t indexInSection = offsetInSection / atom->getSize();
+ uint32_t undefinedSymbolIndex;
+ if ( curSection->fAllStubs ) {
+ ObjectFile::Atom& stubTarget =ref->getTarget();
+ ObjectFile::Atom& stubTargetTarget = stubTarget.getReferences()[0]->getTarget();
+ undefinedSymbolIndex = this->symbolIndex(stubTargetTarget);
+ //fprintf(stderr, "stub %s ==> %s ==> %s ==> index:%u\n", atom->getDisplayName(), stubTarget.getDisplayName(), stubTargetTarget.getDisplayName(), undefinedSymbolIndex);
+ }
+ else if ( curSection->fAllNonLazyPointers) {
+ // only use INDIRECT_SYMBOL_LOCAL in non-lazy-pointers for atoms that won't be in symbol table or have an addend
+ if ( this->indirectSymbolInRelocatableIsLocal(ref) )
+ undefinedSymbolIndex = INDIRECT_SYMBOL_LOCAL;
+ else
+ undefinedSymbolIndex = this->symbolIndex(ref->getTarget());
+ }
+ else {
+ // should never get here, fAllLazyPointers not used in generated .o files
+ undefinedSymbolIndex = INDIRECT_SYMBOL_LOCAL;
+ }
+ uint32_t indirectTableIndex = indexInSection + curSection->fIndirectSymbolOffset;
+ IndirectEntry entry = { indirectTableIndex, undefinedSymbolIndex };
+ //printf("fIndirectTableAtom->fTable.add(sectionIndex=%u, indirectTableIndex=%u => %u), size=%lld\n", indexInSection, indirectTableIndex, undefinedSymbolIndex, atom->getSize());
+ fIndirectTableAtom->fTable.push_back(entry);
+ if ( curSection->fAllLazyPointers ) {
+ ObjectFile::Atom& target = ref->getTarget();
+ ObjectFile::Atom& fromTarget = ref->getFromTarget();
+ if ( &fromTarget == NULL ) {
+ warning("lazy pointer %s missing initial binding", atom->getDisplayName());
+ }
+ else {
+ bool isExtern = ( ((target.getDefinitionKind() == ObjectFile::Atom::kExternalDefinition)
+ || (target.getDefinitionKind() == ObjectFile::Atom::kExternalWeakDefinition))
+ && (target.getSymbolTableInclusion() != ObjectFile::Atom::kSymbolTableNotIn) );
+ macho_relocation_info<P> reloc1;
+ reloc1.set_r_address(atom->getSectionOffset());
+ reloc1.set_r_symbolnum(isExtern ? this->symbolIndex(target) : target.getSection()->getIndex());
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length();
+ reloc1.set_r_extern(isExtern);
+ reloc1.set_r_type(GENERIC_RELOC_VANILLA);
+ fSectionRelocs.push_back(reloc1);
+ ++relocIndex;
+ }
+ }
+ else if ( curSection->fAllStubs ) {
+ relocIndex += this->addObjectRelocs(atom, ref);
+ }
+ }
+ else if ( (ref->getKind() != A::kNoFixUp) && (ref->getTargetBinding() != ObjectFile::Reference::kDontBind) ) {
+ relocIndex += this->addObjectRelocs(atom, ref);
+ }
+ }
+ }
+ curSection->fRelocCount = relocIndex - curSection->fRelocOffset;
+ }
+ }
+ }
+
+ // reverse the relocs
+ std::reverse(fSectionRelocs.begin(), fSectionRelocs.end());
+
+ // now reverse section reloc offsets
+ for(int i=0; i < segCount; ++i) {
+ SegmentInfo* curSegment = segmentInfos[i];
+ std::vector<SectionInfo*>& sectionInfos = curSegment->fSections;
+ const int sectionCount = sectionInfos.size();
+ for(int j=0; j < sectionCount; ++j) {
+ SectionInfo* curSection = sectionInfos[j];
+ curSection->fRelocOffset = relocIndex - curSection->fRelocOffset - curSection->fRelocCount;
+ }
+ }
+
+}
+
+
+template <>
+uint64_t Writer<x86_64>::relocAddressInFinalLinkedImage(uint64_t address, const ObjectFile::Atom* atom) const
+{
+ uint64_t result;
+ if ( fOptions.outputKind() == Options::kKextBundle ) {
+ // for x86_64 kext bundles, the r_address field in relocs
+ // is the offset from the start address of the first segment
+ result = address - fSegmentInfos[0]->fBaseAddress;
+ if ( result > 0xFFFFFFFF ) {
+ throwf("kext bundle too large: address can't fit in 31-bit r_address field in %s from %s",
+ atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ }
+ else {
+ // for x86_64, the r_address field in relocs for final linked images
+ // is the offset from the start address of the first writable segment
+ result = address - fFirstWritableSegment->fBaseAddress;
+ if ( result > 0xFFFFFFFF ) {
+ if ( strcmp(atom->getSegment().getName(), "__TEXT") == 0 )
+ throwf("text relocs not supported for x86_64 in %s from %s",
+ atom->getDisplayName(), atom->getFile()->getPath());
+ else
+ throwf("image too large: address can't fit in 32-bit r_address field in %s from %s",
+ atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ }
+ return result;
+}
+
+
+template <>
+bool Writer<ppc>::illegalRelocInFinalLinkedImage(const ObjectFile::Reference& ref)
+{
+ switch ( ref.getKind() ) {
+ case ppc::kAbsLow16:
+ case ppc::kAbsLow14:
+ case ppc::kAbsHigh16:
+ case ppc::kAbsHigh16AddLow:
+ if ( fSlideable )
+ return true;
+ }
+ return false;
+}
+
+
+template <>
+bool Writer<ppc64>::illegalRelocInFinalLinkedImage(const ObjectFile::Reference& ref)
+{
+ switch ( ref.getKind() ) {
+ case ppc::kAbsLow16:
+ case ppc::kAbsLow14:
+ case ppc::kAbsHigh16:
+ case ppc::kAbsHigh16AddLow:
+ if ( fSlideable )
+ return true;
+ }
+ return false;
+}
+
+template <>
+bool Writer<x86>::illegalRelocInFinalLinkedImage(const ObjectFile::Reference& ref)
+{
+ if ( ref.getKind() == x86::kAbsolute32 ) {
+ switch ( ref.getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ // illegal in dylibs/bundles, until we support TEXT relocs
+ return fSlideable;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // illegal until we support TEXT relocs
+ return true;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ // absolute symbbols only allowed in static executables
+ return ( fOptions.outputKind() != Options::kStaticExecutable);
+ }
+ }
+ return false;
+}
+
+template <>
+bool Writer<x86_64>::illegalRelocInFinalLinkedImage(const ObjectFile::Reference& ref)
+{
+ if ( fOptions.outputKind() == Options::kKextBundle ) {
+ switch ( ref.getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ return false;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // true means we need a TEXT relocs
+ switch ( ref.getKind() ) {
+ case x86_64::kBranchPCRel32:
+ case x86_64::kBranchPCRel32WeakImport:
+ case x86_64::kPCRel32GOTLoad:
+ case x86_64::kPCRel32GOTLoadWeakImport:
+ case x86_64::kPCRel32GOT:
+ case x86_64::kPCRel32GOTWeakImport:
+ return true;
+ }
+ break;
+ }
+ }
+ return false;
+}
+
+template <>
+bool Writer<arm>::illegalRelocInFinalLinkedImage(const ObjectFile::Reference& ref)
+{
+ if ( ref.getKind() == arm::kReadOnlyPointer ) {
+ switch ( ref.getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ // illegal in dylibs/bundles, until we support TEXT relocs
+ return fSlideable;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // illegal until we support TEXT relocs
+ return true;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ // absolute symbbols only allowed in static executables
+ return ( fOptions.outputKind() != Options::kStaticExecutable);
+ }
+ }
+ return false;
+}
+
+template <>
+bool Writer<x86>::generatesLocalTextReloc(const ObjectFile::Reference& ref, const ObjectFile::Atom& atom, SectionInfo* atomSection)
+{
+ if ( ref.getKind() == x86::kAbsolute32 ) {
+ switch ( ref.getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ // a reference to the absolute address of something in this same linkage unit can be
+ // encoded as a local text reloc in a dylib or bundle
+ if ( fSlideable ) {
+ macho_relocation_info<P> reloc;
+ SectionInfo* sectInfo = (SectionInfo*)(ref.getTarget().getSection());
+ reloc.set_r_address(this->relocAddressInFinalLinkedImage(atom.getAddress() + ref.getFixUpOffset(), &atom));
+ reloc.set_r_symbolnum(sectInfo->getIndex());
+ reloc.set_r_pcrel(false);
+ reloc.set_r_length();
+ reloc.set_r_extern(false);
+ reloc.set_r_type(GENERIC_RELOC_VANILLA);
+ fInternalRelocs.push_back(reloc);
+ atomSection->fHasTextLocalRelocs = true;
+ if ( fOptions.makeCompressedDyldInfo() ) {
+ fRebaseInfo.push_back(RebaseInfo(REBASE_TYPE_TEXT_ABSOLUTE32, atom.getAddress() + ref.getFixUpOffset()));
+ }
+ return true;
+ }
+ return false;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ return false;
+ }
+ }
+ return false;
+}
+
+template <>
+bool Writer<ppc>::generatesLocalTextReloc(const ObjectFile::Reference& ref, const ObjectFile::Atom& atom, SectionInfo* atomSection)
+{
+ macho_relocation_info<P> reloc1;
+ macho_relocation_info<P> reloc2;
+ switch ( ref.getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ switch ( ref.getKind() ) {
+ case ppc::kAbsLow16:
+ case ppc::kAbsLow14:
+ // a reference to the absolute address of something in this same linkage unit can be
+ // encoded as a local text reloc in a dylib or bundle
+ if ( fSlideable ) {
+ SectionInfo* sectInfo = (SectionInfo*)(ref.getTarget().getSection());
+ uint32_t targetAddr = ref.getTarget().getAddress() + ref.getTargetOffset();
+ reloc1.set_r_address(this->relocAddressInFinalLinkedImage(atom.getAddress() + ref.getFixUpOffset(), &atom));
+ reloc1.set_r_symbolnum(sectInfo->getIndex());
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(false);
+ reloc1.set_r_type(ref.getKind()==ppc::kAbsLow16 ? PPC_RELOC_LO16 : PPC_RELOC_LO14);
+ reloc2.set_r_address(targetAddr >> 16);
+ reloc2.set_r_symbolnum(0);
+ reloc2.set_r_pcrel(false);
+ reloc2.set_r_length(2);
+ reloc2.set_r_extern(false);
+ reloc2.set_r_type(PPC_RELOC_PAIR);
+ fInternalRelocs.push_back(reloc1);
+ fInternalRelocs.push_back(reloc2);
+ atomSection->fHasTextLocalRelocs = true;
+ return true;
+ }
+ break;
+ case ppc::kAbsHigh16:
+ case ppc::kAbsHigh16AddLow:
+ if ( fSlideable ) {
+ SectionInfo* sectInfo = (SectionInfo*)(ref.getTarget().getSection());
+ uint32_t targetAddr = ref.getTarget().getAddress() + ref.getTargetOffset();
+ reloc1.set_r_address(this->relocAddressInFinalLinkedImage(atom.getAddress() + ref.getFixUpOffset(), &atom));
+ reloc1.set_r_symbolnum(sectInfo->getIndex());
+ reloc1.set_r_pcrel(false);
+ reloc1.set_r_length(2);
+ reloc1.set_r_extern(false);
+ reloc1.set_r_type(ref.getKind()==ppc::kAbsHigh16AddLow ? PPC_RELOC_HA16 : PPC_RELOC_HI16);
+ reloc2.set_r_address(targetAddr & 0xFFFF);
+ reloc2.set_r_symbolnum(0);
+ reloc2.set_r_pcrel(false);
+ reloc2.set_r_length(2);
+ reloc2.set_r_extern(false);
+ reloc2.set_r_type(PPC_RELOC_PAIR);
+ fInternalRelocs.push_back(reloc1);
+ fInternalRelocs.push_back(reloc2);
+ atomSection->fHasTextLocalRelocs = true;
+ return true;
+ }
+ }
+ break;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ return false;
+ }
+ return false;
+}
+
+template <>
+bool Writer<arm>::generatesLocalTextReloc(const ObjectFile::Reference& ref, const ObjectFile::Atom& atom, SectionInfo* atomSection)
+{
+ if ( ref.getKind() == arm::kReadOnlyPointer ) {
+ switch ( ref.getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ // a reference to the absolute address of something in this same linkage unit can be
+ // encoded as a local text reloc in a dylib or bundle
+ if ( fSlideable ) {
+ macho_relocation_info<P> reloc;
+ SectionInfo* sectInfo = (SectionInfo*)(ref.getTarget().getSection());
+ reloc.set_r_address(this->relocAddressInFinalLinkedImage(atom.getAddress() + ref.getFixUpOffset(), &atom));
+ reloc.set_r_symbolnum(sectInfo->getIndex());
+ reloc.set_r_pcrel(false);
+ reloc.set_r_length();
+ reloc.set_r_extern(false);
+ reloc.set_r_type(GENERIC_RELOC_VANILLA);
+ fInternalRelocs.push_back(reloc);
+ atomSection->fHasTextLocalRelocs = true;
+ return true;
+ }
+ return false;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ return false;
+ }
+ }
+ return false;
+}
+
+
+template <>
+bool Writer<x86_64>::generatesLocalTextReloc(const ObjectFile::Reference&, const ObjectFile::Atom& atom, SectionInfo* curSection)
+{
+ // text relocs not supported (usually never needed because of RIP addressing)
+ return false;
+}
+
+template <>
+bool Writer<ppc64>::generatesLocalTextReloc(const ObjectFile::Reference&, const ObjectFile::Atom& atom, SectionInfo* curSection)
+{
+ // text relocs not supported
+ return false;
+}
+
+template <>
+bool Writer<x86>::generatesExternalTextReloc(const ObjectFile::Reference& ref, const ObjectFile::Atom& atom, SectionInfo* atomSection)
+{
+ if ( ref.getKind() == x86::kAbsolute32 ) {
+ macho_relocation_info<P> reloc;
+ switch ( ref.getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ return false;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // a reference to the absolute address of something in another linkage unit can be
+ // encoded as an external text reloc in a dylib or bundle
+ reloc.set_r_address(this->relocAddressInFinalLinkedImage(atom.getAddress() + ref.getFixUpOffset(), &atom));
+ reloc.set_r_symbolnum(this->symbolIndex(ref.getTarget()));
+ reloc.set_r_pcrel(false);
+ reloc.set_r_length();
+ reloc.set_r_extern(true);
+ reloc.set_r_type(GENERIC_RELOC_VANILLA);
+ fExternalRelocs.push_back(reloc);
+ atomSection->fHasTextExternalRelocs = true;
+ return true;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ return false;
+ }
+ }
+ return false;
+}
+
+template <>
+bool Writer<x86_64>::generatesExternalTextReloc(const ObjectFile::Reference& ref, const ObjectFile::Atom& atom, SectionInfo* atomSection)
+{
+ if ( fOptions.outputKind() == Options::kKextBundle ) {
+ macho_relocation_info<P> reloc;
+ switch ( ref.getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ return false;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ switch ( ref.getKind() ) {
+ case x86_64::kBranchPCRel32:
+ case x86_64::kBranchPCRel32WeakImport:
+ // a branch to something in another linkage unit is
+ // encoded as an external text reloc in a kext bundle
+ reloc.set_r_address(this->relocAddressInFinalLinkedImage(atom.getAddress() + ref.getFixUpOffset(), &atom));
+ reloc.set_r_symbolnum(this->symbolIndex(ref.getTarget()));
+ reloc.set_r_pcrel(true);
+ reloc.set_r_length(2);
+ reloc.set_r_extern(true);
+ reloc.set_r_type(X86_64_RELOC_BRANCH);
+ fExternalRelocs.push_back(reloc);
+ atomSection->fHasTextExternalRelocs = true;
+ return true;
+ case x86_64::kPCRel32GOTLoad:
+ case x86_64::kPCRel32GOTLoadWeakImport:
+ // a load of the GOT entry for a symbol in another linkage unit is
+ // encoded as an external text reloc in a kext bundle
+ reloc.set_r_address(this->relocAddressInFinalLinkedImage(atom.getAddress() + ref.getFixUpOffset(), &atom));
+ reloc.set_r_symbolnum(this->symbolIndex(ref.getTarget()));
+ reloc.set_r_pcrel(true);
+ reloc.set_r_length(2);
+ reloc.set_r_extern(true);
+ reloc.set_r_type(X86_64_RELOC_GOT_LOAD);
+ fExternalRelocs.push_back(reloc);
+ atomSection->fHasTextExternalRelocs = true;
+ return true;
+ case x86_64::kPCRel32GOT:
+ case x86_64::kPCRel32GOTWeakImport:
+ // a use of the GOT entry for a symbol in another linkage unit is
+ // encoded as an external text reloc in a kext bundle
+ reloc.set_r_address(this->relocAddressInFinalLinkedImage(atom.getAddress() + ref.getFixUpOffset(), &atom));
+ reloc.set_r_symbolnum(this->symbolIndex(ref.getTarget()));
+ reloc.set_r_pcrel(true);
+ reloc.set_r_length(2);
+ reloc.set_r_extern(true);
+ reloc.set_r_type(X86_64_RELOC_GOT);
+ fExternalRelocs.push_back(reloc);
+ atomSection->fHasTextExternalRelocs = true;
+ return true;
+ }
+ break;
+ }
+ }
+ return false;
+}
+
+
+template <typename A>
+bool Writer<A>::generatesExternalTextReloc(const ObjectFile::Reference&, const ObjectFile::Atom& atom, SectionInfo* curSection)
+{
+ return false;
+}
+
+
+
+
+template <typename A>
+typename Writer<A>::RelocKind Writer<A>::relocationNeededInFinalLinkedImage(const ObjectFile::Atom& target) const
+{
+ switch ( target.getDefinitionKind() ) {
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ // in main executables, the only way regular symbols are indirected is if -interposable is used
+ if ( fOptions.outputKind() == Options::kDynamicExecutable ) {
+ if ( this->shouldExport(target) && fOptions.interposable(target.getName()) )
+ return kRelocExternal;
+ else if ( fSlideable )
+ return kRelocInternal;
+ else
+ return kRelocNone;
+ }
+ // for flat-namespace or interposable two-level-namespace
+ // all references to exported symbols get indirected
+ else if ( this->shouldExport(target) &&
+ ((fOptions.nameSpace() == Options::kFlatNameSpace)
+ || (fOptions.nameSpace() == Options::kForceFlatNameSpace)
+ || fOptions.interposable(target.getName()))
+ && (target.getName() != NULL)
+ && (strncmp(target.getName(), ".objc_class_", 12) != 0) ) // <rdar://problem/5254468>
+ return kRelocExternal;
+ else if ( fSlideable )
+ return kRelocInternal;
+ else
+ return kRelocNone;
+ case ObjectFile::Atom::kWeakDefinition:
+ // all calls to global weak definitions get indirected
+ if ( this->shouldExport(target) )
+ return kRelocExternal;
+ else if ( fSlideable )
+ return kRelocInternal;
+ else
+ return kRelocNone;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ return kRelocExternal;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ return kRelocNone;
+ }
+ return kRelocNone;
+}
+
+template <typename A>
+uint64_t Writer<A>::relocAddressInFinalLinkedImage(uint64_t address, const ObjectFile::Atom* atom) const
+{
+ // for 32-bit architectures, the r_address field in relocs
+ // for final linked images is the offset from the first segment
+ uint64_t result = address - fSegmentInfos[0]->fBaseAddress;
+ if ( fOptions.outputKind() == Options::kPreload ) {
+ // kPreload uses a virtual __HEADER segment to cover the load commands
+ result = address - fSegmentInfos[1]->fBaseAddress;
+ }
+ // or the offset from the first writable segment if built split-seg
+ if ( fOptions.splitSeg() )
+ result = address - fFirstWritableSegment->fBaseAddress;
+ if ( result > 0x7FFFFFFF ) {
+ throwf("image too large: address can't fit in 31-bit r_address field in %s from %s",
+ atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ return result;
+}
+
+template <>
+uint64_t Writer<ppc64>::relocAddressInFinalLinkedImage(uint64_t address, const ObjectFile::Atom* atom) const
+{
+ // for ppc64, the Mac OS X 10.4 dyld assumes r_address is always the offset from the base address.
+ // the 10.5 dyld, iterprets the r_address as:
+ // 1) an offset from the base address, iff there are no writable segments with a address > 4GB from base address, otherwise
+ // 2) an offset from the base address of the first writable segment
+ // For dyld, r_address is always the offset from the base address
+ uint64_t result;
+ bool badFor10_4 = false;
+ if ( fWritableSegmentPastFirst4GB ) {
+ if ( fOptions.macosxVersionMin() < ObjectFile::ReaderOptions::k10_5 )
+ badFor10_4 = true;
+ result = address - fFirstWritableSegment->fBaseAddress;
+ if ( result > 0xFFFFFFFF ) {
+ throwf("image too large: address can't fit in 32-bit r_address field in %s from %s",
+ atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ }
+ else {
+ result = address - fSegmentInfos[0]->fBaseAddress;
+ if ( (fOptions.macosxVersionMin() < ObjectFile::ReaderOptions::k10_5) && (result > 0x7FFFFFFF) )
+ badFor10_4 = true;
+ }
+ if ( badFor10_4 ) {
+ throwf("image or pagezero_size too large for Mac OS X 10.4: address can't fit in 31-bit r_address field for %s from %s",
+ atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ return result;
+}
+
+
+template <> bool Writer<ppc>::preboundLazyPointerType(uint8_t* type) { *type = PPC_RELOC_PB_LA_PTR; return true; }
+template <> bool Writer<ppc64>::preboundLazyPointerType(uint8_t* type) { throw "prebinding not supported"; }
+template <> bool Writer<x86>::preboundLazyPointerType(uint8_t* type) { *type = GENERIC_RELOC_PB_LA_PTR; return true; }
+template <> bool Writer<x86_64>::preboundLazyPointerType(uint8_t* type) { throw "prebinding not supported"; }
+template <> bool Writer<arm>::preboundLazyPointerType(uint8_t* type) { *type = ARM_RELOC_PB_LA_PTR; return true; }
+
+template <typename A>
+void Writer<A>::buildExecutableFixups()
+{
+ if ( fIndirectTableAtom != NULL )
+ fIndirectTableAtom->fTable.reserve(50); // minimize reallocations
+ std::vector<SegmentInfo*>& segmentInfos = fSegmentInfos;
+ const int segCount = segmentInfos.size();
+ for(int i=0; i < segCount; ++i) {
+ SegmentInfo* curSegment = segmentInfos[i];
+ std::vector<SectionInfo*>& sectionInfos = curSegment->fSections;
+ const int sectionCount = sectionInfos.size();
+ for(int j=0; j < sectionCount; ++j) {
+ SectionInfo* curSection = sectionInfos[j];
+ //fprintf(stderr, "starting section %s\n", curSection->fSectionName);
+ std::vector<ObjectFile::Atom*>& sectionAtoms = curSection->fAtoms;
+ if ( ! curSection->fAllZeroFill ) {
+ if ( curSection->fAllNonLazyPointers || curSection->fAllLazyPointers || curSection->fAllLazyDylibPointers
+ || curSection->fAllStubs || curSection->fAllSelfModifyingStubs ) {
+ if ( fIndirectTableAtom != NULL )
+ curSection->fIndirectSymbolOffset = fIndirectTableAtom->fTable.size();
+ }
+ const int atomCount = sectionAtoms.size();
+ for (int k=0; k < atomCount; ++k) {
+ ObjectFile::Atom* atom = sectionAtoms[k];
+ std::vector<ObjectFile::Reference*>& refs = atom->getReferences();
+ const int refCount = refs.size();
+ //fprintf(stderr, "atom %s has %d references in section %s, %p\n", atom->getDisplayName(), refCount, curSection->fSectionName, atom->getSection());
+ if ( curSection->fAllNonLazyPointers && (refCount == 0) ) {
+ // handle imageloadercache GOT slot
+ uint32_t offsetInSection = atom->getSectionOffset();
+ uint32_t indexInSection = offsetInSection / sizeof(pint_t);
+ uint32_t indirectTableIndex = indexInSection + curSection->fIndirectSymbolOffset;
+ // use INDIRECT_SYMBOL_ABS so 10.5 dyld will leave value as zero
+ IndirectEntry entry = { indirectTableIndex, INDIRECT_SYMBOL_ABS };
+ //fprintf(stderr,"fIndirectTableAtom->fTable.push_back(tableIndex=%d, symIndex=0x%X, section=%s)\n",
+ // indirectTableIndex, INDIRECT_SYMBOL_LOCAL, curSection->fSectionName);
+ fIndirectTableAtom->fTable.push_back(entry);
+ }
+ for (int l=0; l < refCount; ++l) {
+ ObjectFile::Reference* ref = refs[l];
+ if ( (fOptions.outputKind() != Options::kKextBundle) &&
+ (curSection->fAllNonLazyPointers || curSection->fAllLazyPointers || curSection->fAllLazyDylibPointers) ) {
+ // if atom is in (non)lazy_pointer section, this is encoded as an indirect symbol
+ if ( atom->getSize() != sizeof(pint_t) ) {
+ warning("wrong size pointer atom %s from file %s", atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ ObjectFile::Atom* pointerTarget = &(ref->getTarget());
+ if ( curSection->fAllLazyPointers || curSection->fAllLazyDylibPointers ) {
+ pointerTarget = ((LazyPointerAtom<A>*)atom)->getTarget();
+ }
+ uint32_t offsetInSection = atom->getSectionOffset();
+ uint32_t indexInSection = offsetInSection / sizeof(pint_t);
+ uint32_t undefinedSymbolIndex = INDIRECT_SYMBOL_LOCAL;
+ if (atom == fFastStubGOTAtom)
+ undefinedSymbolIndex = INDIRECT_SYMBOL_ABS;
+ else if ( this->relocationNeededInFinalLinkedImage(*pointerTarget) == kRelocExternal )
+ undefinedSymbolIndex = this->symbolIndex(*pointerTarget);
+ uint32_t indirectTableIndex = indexInSection + curSection->fIndirectSymbolOffset;
+ IndirectEntry entry = { indirectTableIndex, undefinedSymbolIndex };
+ //fprintf(stderr,"fIndirectTableAtom->fTable.push_back(tableIndex=%d, symIndex=0x%X, section=%s)\n",
+ // indirectTableIndex, undefinedSymbolIndex, curSection->fSectionName);
+ fIndirectTableAtom->fTable.push_back(entry);
+ if ( curSection->fAllLazyPointers || curSection->fAllLazyDylibPointers ) {
+ uint8_t preboundLazyType;
+ if ( fOptions.prebind() && (fDyldClassicHelperAtom != NULL)
+ && curSection->fAllLazyPointers && preboundLazyPointerType(&preboundLazyType) ) {
+ // this is a prebound image, need special relocs for dyld to reset lazy pointers if prebinding is invalid
+ macho_scattered_relocation_info<P> pblaReloc;
+ pblaReloc.set_r_scattered(true);
+ pblaReloc.set_r_pcrel(false);
+ pblaReloc.set_r_length();
+ pblaReloc.set_r_type(preboundLazyType);
+ pblaReloc.set_r_address(relocAddressInFinalLinkedImage(atom->getAddress(), atom));
+ pblaReloc.set_r_value(fDyldClassicHelperAtom->getAddress());
+ fInternalRelocs.push_back(*((macho_relocation_info<P>*)&pblaReloc));
+ }
+ else if ( fSlideable ) {
+ // this is a non-prebound dylib/bundle, need vanilla internal relocation to fix up binding handler if image slides
+ macho_relocation_info<P> dyldHelperReloc;
+ uint32_t sectionNum = 1;
+ if ( fDyldClassicHelperAtom != NULL )
+ sectionNum = ((SectionInfo*)(fDyldClassicHelperAtom->getSection()))->getIndex();
+ //fprintf(stderr, "lazy pointer reloc, section index=%u, section name=%s\n", sectionNum, curSection->fSectionName);
+ dyldHelperReloc.set_r_address(relocAddressInFinalLinkedImage(atom->getAddress(), atom));
+ dyldHelperReloc.set_r_symbolnum(sectionNum);
+ dyldHelperReloc.set_r_pcrel(false);
+ dyldHelperReloc.set_r_length();
+ dyldHelperReloc.set_r_extern(false);
+ dyldHelperReloc.set_r_type(GENERIC_RELOC_VANILLA);
+ fInternalRelocs.push_back(dyldHelperReloc);
+ if ( fOptions.makeCompressedDyldInfo() ) {
+ fRebaseInfo.push_back(RebaseInfo(REBASE_TYPE_POINTER,atom->getAddress()));
+ }
+ }
+ if ( fOptions.makeCompressedDyldInfo() ) {
+ uint8_t type = BIND_TYPE_POINTER;
+ uint64_t addresss = atom->getAddress() + ref->getFixUpOffset();
+ if ( pointerTarget->getDefinitionKind() == ObjectFile::Atom::kExternalWeakDefinition ) {
+ // This is a referece to a weak def in some dylib (e.g. operator new)
+ // need to bind into to directly bind this
+ // later weak binding info may override
+ int ordinal = compressedOrdinalForImortedAtom(pointerTarget);
+ fBindingInfo.push_back(BindingInfo(type, ordinal, pointerTarget->getName(), false, addresss, 0));
+ }
+ if ( targetRequiresWeakBinding(*pointerTarget) ) {
+ // note: lazy pointers to weak symbols are not bound lazily
+ fWeakBindingInfo.push_back(BindingInfo(type, pointerTarget->getName(), false, addresss, 0));
+ }
+ }
+ }
+ if ( curSection->fAllNonLazyPointers && fOptions.makeCompressedDyldInfo() ) {
+ if ( pointerTarget != NULL ) {
+ switch ( this->relocationNeededInFinalLinkedImage(*pointerTarget) ) {
+ case kRelocNone:
+ // no rebase or binding info needed
+ break;
+ case kRelocInternal:
+ // a non-lazy pointer that has been optimized to LOCAL needs rebasing info
+ // but not the magic fFastStubGOTAtom atom
+ if (atom != fFastStubGOTAtom)
+ fRebaseInfo.push_back(RebaseInfo(REBASE_TYPE_POINTER,atom->getAddress()));
+ break;
+ case kRelocExternal:
+ {
+ uint8_t type = BIND_TYPE_POINTER;
+ uint64_t addresss = atom->getAddress();
+ if ( targetRequiresWeakBinding(ref->getTarget()) ) {
+ fWeakBindingInfo.push_back(BindingInfo(type, ref->getTarget().getName(), false, addresss, 0));
+ // if this is a non-lazy pointer to a weak definition within this linkage unit
+ // the pointer needs to initially point within linkage unit and have
+ // rebase command to slide it.
+ if ( ref->getTarget().getDefinitionKind() == ObjectFile::Atom::kWeakDefinition ) {
+ // unless if this is a hybrid format, in which case the non-lazy pointer
+ // is zero on disk. So use a bind instead of a rebase to set initial value
+ if ( fOptions.makeClassicDyldInfo() )
+ fBindingInfo.push_back(BindingInfo(type, BIND_SPECIAL_DYLIB_SELF, ref->getTarget().getName(), false, addresss, 0));
+ else
+ fRebaseInfo.push_back(RebaseInfo(REBASE_TYPE_POINTER,atom->getAddress()));
+ }
+ // if this is a non-lazy pointer to a weak definition in a dylib,
+ // the pointer needs to initially bind to the dylib
+ else if ( ref->getTarget().getDefinitionKind() == ObjectFile::Atom::kExternalWeakDefinition ) {
+ int ordinal = compressedOrdinalForImortedAtom(pointerTarget);
+ fBindingInfo.push_back(BindingInfo(BIND_TYPE_POINTER, ordinal, pointerTarget->getName(), false, addresss, 0));
+ }
+ }
+ else {
+ int ordinal = compressedOrdinalForImortedAtom(pointerTarget);
+ bool weak_import = fWeakImportMap[pointerTarget];
+ fBindingInfo.push_back(BindingInfo(type, ordinal, ref->getTarget().getName(), weak_import, addresss, 0));
+ }
+ }
+ }
+ }
+ }
+ }
+ else if ( (ref->getKind() == A::kPointer) || (ref->getKind() == A::kPointerWeakImport) ) {
+ if ( fSlideable && ((curSegment->fInitProtection & VM_PROT_WRITE) == 0) ) {
+ if ( fOptions.allowTextRelocs() ) {
+ if ( fOptions.warnAboutTextRelocs() )
+ warning("text reloc in %s to %s", atom->getDisplayName(), ref->getTargetName());
+ }
+ else {
+ throwf("pointer in read-only segment not allowed in slidable image, used in %s from %s",
+ atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ }
+ switch ( this->relocationNeededInFinalLinkedImage(ref->getTarget()) ) {
+ case kRelocNone:
+ // no reloc needed
+ break;
+ case kRelocInternal:
+ {
+ macho_relocation_info<P> internalReloc;
+ SectionInfo* sectInfo = (SectionInfo*)ref->getTarget().getSection();
+ uint32_t sectionNum = sectInfo->getIndex();
+ // special case _mh_dylib_header and friends which are not in any real section
+ if ( (sectionNum ==0) && sectInfo->fVirtualSection && (strcmp(sectInfo->fSectionName, "._mach_header") == 0) )
+ sectionNum = 1;
+ internalReloc.set_r_address(this->relocAddressInFinalLinkedImage(atom->getAddress() + ref->getFixUpOffset(), atom));
+ internalReloc.set_r_symbolnum(sectionNum);
+ internalReloc.set_r_pcrel(false);
+ internalReloc.set_r_length();
+ internalReloc.set_r_extern(false);
+ internalReloc.set_r_type(GENERIC_RELOC_VANILLA);
+ fInternalRelocs.push_back(internalReloc);
+ if ( fOptions.makeCompressedDyldInfo() ) {
+ fRebaseInfo.push_back(RebaseInfo(REBASE_TYPE_POINTER, atom->getAddress() + ref->getFixUpOffset()));
+ }
+ }
+ break;
+ case kRelocExternal:
+ {
+ macho_relocation_info<P> externalReloc;
+ externalReloc.set_r_address(this->relocAddressInFinalLinkedImage(atom->getAddress() + ref->getFixUpOffset(), atom));
+ externalReloc.set_r_symbolnum(this->symbolIndex(ref->getTarget()));
+ externalReloc.set_r_pcrel(false);
+ externalReloc.set_r_length();
+ externalReloc.set_r_extern(true);
+ externalReloc.set_r_type(GENERIC_RELOC_VANILLA);
+ fExternalRelocs.push_back(externalReloc);
+ if ( fOptions.makeCompressedDyldInfo() ) {
+ int64_t addend = ref->getTargetOffset();
+ uint64_t addresss = atom->getAddress() + ref->getFixUpOffset();
+ if ( !fOptions.makeClassicDyldInfo() ) {
+ if ( ref->getTarget().getDefinitionKind() == ObjectFile::Atom::kWeakDefinition ) {
+ // pointers to internal weak defs need a rebase
+ fRebaseInfo.push_back(RebaseInfo(REBASE_TYPE_POINTER, addresss));
+ }
+ }
+ uint8_t type = BIND_TYPE_POINTER;
+ if ( targetRequiresWeakBinding(ref->getTarget()) ) {
+ fWeakBindingInfo.push_back(BindingInfo(type, ref->getTarget().getName(), false, addresss, addend));
+ if ( fOptions.makeClassicDyldInfo() && (ref->getTarget().getDefinitionKind() == ObjectFile::Atom::kWeakDefinition) ) {
+ // hybrid linkedit puts addend in data, so we need bind phase to reset pointer to local definifion
+ fBindingInfo.push_back(BindingInfo(type, BIND_SPECIAL_DYLIB_SELF, ref->getTarget().getName(), false, addresss, addend));
+ }
+ // if this is a pointer to a weak definition in a dylib,
+ // the pointer needs to initially bind to the dylib
+ else if ( ref->getTarget().getDefinitionKind() == ObjectFile::Atom::kExternalWeakDefinition ) {
+ int ordinal = compressedOrdinalForImortedAtom(&ref->getTarget());
+ fBindingInfo.push_back(BindingInfo(BIND_TYPE_POINTER, ordinal, ref->getTarget().getName(), false, addresss, addend));
+ }
+ }
+ else {
+ int ordinal = compressedOrdinalForImortedAtom(&ref->getTarget());
+ bool weak_import = fWeakImportMap[&(ref->getTarget())];
+ fBindingInfo.push_back(BindingInfo(type, ordinal, ref->getTarget().getName(), weak_import, addresss, addend));
+ }
+ }
+ }
+ break;
+ }
+ }
+ else if ( this->illegalRelocInFinalLinkedImage(*ref) ) {
+ // new x86 stubs always require text relocs
+ if ( curSection->fAllStubs || curSection->fAllStubHelpers ) {
+ if ( this->generatesLocalTextReloc(*ref, *atom, curSection) ) {
+ // relocs added to fInternalRelocs
+ }
+ }
+ else if ( fOptions.allowTextRelocs() && !atom->getSegment().isContentWritable() ) {
+ if ( fOptions.warnAboutTextRelocs() )
+ warning("text reloc in %s to %s", atom->getDisplayName(), ref->getTargetName());
+ if ( this->generatesLocalTextReloc(*ref, *atom, curSection) ) {
+ // relocs added to fInternalRelocs
+ }
+ else if ( this->generatesExternalTextReloc(*ref, *atom, curSection) ) {
+ // relocs added to fExternalRelocs
+ }
+ else {
+ throwf("relocation used in %s from %s not allowed in slidable image", atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ }
+ else {
+ throwf("absolute addressing (perhaps -mdynamic-no-pic) used in %s from %s not allowed in slidable image. "
+ "Use '-read_only_relocs suppress' to enable text relocs", atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ }
+ }
+ if ( curSection->fAllSelfModifyingStubs || curSection->fAllStubs ) {
+ ObjectFile::Atom* stubTarget = ((StubAtom<A>*)atom)->getTarget();
+ uint32_t undefinedSymbolIndex = (stubTarget != NULL) ? this->symbolIndex(*stubTarget) : INDIRECT_SYMBOL_ABS;
+ uint32_t offsetInSection = atom->getSectionOffset();
+ uint32_t indexInSection = offsetInSection / atom->getSize();
+ uint32_t indirectTableIndex = indexInSection + curSection->fIndirectSymbolOffset;
+ IndirectEntry entry = { indirectTableIndex, undefinedSymbolIndex };
+ //fprintf(stderr,"for stub: fIndirectTableAtom->fTable.add(%d-%d => 0x%X-%s), size=%lld\n", indexInSection, indirectTableIndex, undefinedSymbolIndex, stubTarget->getName(), atom->getSize());
+ fIndirectTableAtom->fTable.push_back(entry);
+ }
+ }
+ }
+ }
+ }
+ if ( fSplitCodeToDataContentAtom != NULL )
+ fSplitCodeToDataContentAtom->encode();
+ if ( fCompressedRebaseInfoAtom != NULL )
+ fCompressedRebaseInfoAtom->encode();
+ if ( fCompressedBindingInfoAtom != NULL )
+ fCompressedBindingInfoAtom->encode();
+ if ( fCompressedWeakBindingInfoAtom != NULL )
+ fCompressedWeakBindingInfoAtom->encode();
+ if ( fCompressedLazyBindingInfoAtom != NULL )
+ fCompressedLazyBindingInfoAtom->encode();
+ if ( fCompressedExportInfoAtom != NULL )
+ fCompressedExportInfoAtom->encode();
+}
+
+
+template <>
+void Writer<ppc>::addCrossSegmentRef(const ObjectFile::Atom* atom, const ObjectFile::Reference* ref)
+{
+ switch ( (ppc::ReferenceKinds)ref->getKind() ) {
+ case ppc::kPICBaseHigh16:
+ fSplitCodeToDataContentAtom->addPPCHi16Location(atom, ref->getFixUpOffset());
+ break;
+ case ppc::kPointerDiff32:
+ fSplitCodeToDataContentAtom->add32bitPointerLocation(atom, ref->getFixUpOffset());
+ break;
+ case ppc::kPointerDiff64:
+ fSplitCodeToDataContentAtom->add64bitPointerLocation(atom, ref->getFixUpOffset());
+ break;
+ case ppc::kNoFixUp:
+ case ppc::kGroupSubordinate:
+ case ppc::kPointer:
+ case ppc::kPointerWeakImport:
+ case ppc::kPICBaseLow16:
+ case ppc::kPICBaseLow14:
+ // ignore
+ break;
+ default:
+ warning("codegen with reference kind %d in %s prevents image from loading in dyld shared cache", ref->getKind(), atom->getDisplayName());
+ fSplitCodeToDataContentAtom->setCantEncode();
+ }
+}
+
+template <>
+void Writer<ppc64>::addCrossSegmentRef(const ObjectFile::Atom* atom, const ObjectFile::Reference* ref)
+{
+ switch ( (ppc64::ReferenceKinds)ref->getKind() ) {
+ case ppc64::kPICBaseHigh16:
+ fSplitCodeToDataContentAtom->addPPCHi16Location(atom, ref->getFixUpOffset());
+ break;
+ case ppc64::kPointerDiff32:
+ fSplitCodeToDataContentAtom->add32bitPointerLocation(atom, ref->getFixUpOffset());
+ break;
+ case ppc64::kPointerDiff64:
+ fSplitCodeToDataContentAtom->add64bitPointerLocation(atom, ref->getFixUpOffset());
+ break;
+ case ppc64::kNoFixUp:
+ case ppc64::kGroupSubordinate:
+ case ppc64::kPointer:
+ case ppc64::kPointerWeakImport:
+ case ppc64::kPICBaseLow16:
+ case ppc64::kPICBaseLow14:
+ // ignore
+ break;
+ default:
+ warning("codegen with reference kind %d in %s prevents image from loading in dyld shared cache", ref->getKind(), atom->getDisplayName());
+ fSplitCodeToDataContentAtom->setCantEncode();
+ }
+}
+
+template <>
+void Writer<x86>::addCrossSegmentRef(const ObjectFile::Atom* atom, const ObjectFile::Reference* ref)
+{
+ switch ( (x86::ReferenceKinds)ref->getKind() ) {
+ case x86::kPointerDiff:
+ case x86::kImageOffset32:
+ if ( strcmp(ref->getTarget().getSegment().getName(), "__IMPORT") == 0 )
+ fSplitCodeToDataContentAtom->add32bitImportLocation(atom, ref->getFixUpOffset());
+ else
+ fSplitCodeToDataContentAtom->add32bitPointerLocation(atom, ref->getFixUpOffset());
+ break;
+ case x86::kNoFixUp:
+ case x86::kGroupSubordinate:
+ case x86::kPointer:
+ case x86::kPointerWeakImport:
+ // ignore
+ break;
+ case x86::kPCRel32:
+ case x86::kPCRel32WeakImport:
+ if ( (&(ref->getTarget().getSegment()) == &Segment::fgImportSegment)
+ || (&(ref->getTarget().getSegment()) == &Segment::fgROImportSegment) ) {
+ fSplitCodeToDataContentAtom->add32bitImportLocation(atom, ref->getFixUpOffset());
+ break;
+ }
+ // fall into warning case
+ default:
+ if ( fOptions.makeCompressedDyldInfo() && (ref->getKind() == x86::kAbsolute32) ) {
+ // will be encoded in rebase info
+ }
+ else {
+ warning("codegen in %s (offset 0x%08llX) prevents image from loading in dyld shared cache", atom->getDisplayName(), ref->getFixUpOffset());
+ fSplitCodeToDataContentAtom->setCantEncode();
+ }
+ }
+}
+
+template <>
+void Writer<x86_64>::addCrossSegmentRef(const ObjectFile::Atom* atom, const ObjectFile::Reference* ref)
+{
+ switch ( (x86_64::ReferenceKinds)ref->getKind() ) {
+ case x86_64::kPCRel32:
+ case x86_64::kPCRel32_1:
+ case x86_64::kPCRel32_2:
+ case x86_64::kPCRel32_4:
+ case x86_64::kPCRel32GOTLoad:
+ case x86_64::kPCRel32GOTLoadWeakImport:
+ case x86_64::kPCRel32GOT:
+ case x86_64::kPCRel32GOTWeakImport:
+ case x86_64::kPointerDiff32:
+ case x86_64::kImageOffset32:
+ fSplitCodeToDataContentAtom->add32bitPointerLocation(atom, ref->getFixUpOffset());
+ break;
+ case x86_64::kPointerDiff:
+ fSplitCodeToDataContentAtom->add64bitPointerLocation(atom, ref->getFixUpOffset());
+ break;
+ case x86_64::kNoFixUp:
+ case x86_64::kGroupSubordinate:
+ case x86_64::kPointer:
+ case x86_64::kGOTNoFixUp:
+ // ignore
+ break;
+ default:
+ warning("codegen in %s with kind %d prevents image from loading in dyld shared cache", atom->getDisplayName(), ref->getKind());
+ fSplitCodeToDataContentAtom->setCantEncode();
+ }
+}
+
+template <>
+void Writer<arm>::addCrossSegmentRef(const ObjectFile::Atom* atom, const ObjectFile::Reference* ref)
+{
+ switch ( (arm::ReferenceKinds)ref->getKind() ) {
+ case arm::kPointerDiff:
+ fSplitCodeToDataContentAtom->add32bitPointerLocation(atom, ref->getFixUpOffset());
+ break;
+ case arm::kNoFixUp:
+ case arm::kGroupSubordinate:
+ case arm::kPointer:
+ case arm::kPointerWeakImport:
+ case arm::kReadOnlyPointer:
+ // ignore
+ break;
+ default:
+ warning("codegen in %s prevents image from loading in dyld shared cache", atom->getDisplayName());
+ fSplitCodeToDataContentAtom->setCantEncode();
+ }
+}
+
+template <typename A>
+bool Writer<A>::segmentsCanSplitApart(const ObjectFile::Atom& from, const ObjectFile::Atom& to)
+{
+ switch ( to.getDefinitionKind() ) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ return false;
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kTentativeDefinition:
+ // segments with same permissions slide together
+ return ( (from.getSegment().isContentExecutable() != to.getSegment().isContentExecutable())
+ || (from.getSegment().isContentWritable() != to.getSegment().isContentWritable()) );
+ }
+ throw "ld64 internal error";
+}
+
+
+template <>
+void Writer<ppc>::writeNoOps(int fd, uint32_t from, uint32_t to)
+{
+ uint32_t ppcNop;
+ OSWriteBigInt32(&ppcNop, 0, 0x60000000);
+ for (uint32_t p=from; p < to; p += 4)
+ ::pwrite(fd, &ppcNop, 4, p);
+}
+
+template <>
+void Writer<ppc64>::writeNoOps(int fd, uint32_t from, uint32_t to)
+{
+ uint32_t ppcNop;
+ OSWriteBigInt32(&ppcNop, 0, 0x60000000);
+ for (uint32_t p=from; p < to; p += 4)
+ ::pwrite(fd, &ppcNop, 4, p);
+}
+
+template <>
+void Writer<x86>::writeNoOps(int fd, uint32_t from, uint32_t to)
+{
+ uint8_t x86Nop = 0x90;
+ for (uint32_t p=from; p < to; ++p)
+ ::pwrite(fd, &x86Nop, 1, p);
+}
+
+template <>
+void Writer<x86_64>::writeNoOps(int fd, uint32_t from, uint32_t to)
+{
+ uint8_t x86Nop = 0x90;
+ for (uint32_t p=from; p < to; ++p)
+ ::pwrite(fd, &x86Nop, 1, p);
+}
+
+template <>
+void Writer<arm>::writeNoOps(int fd, uint32_t from, uint32_t to)
+{
+ // FIXME: need thumb nop?
+ uint32_t armNop;
+ OSWriteLittleInt32(&armNop, 0, 0xe1a00000);
+ for (uint32_t p=from; p < to; p += 4)
+ ::pwrite(fd, &armNop, 4, p);
+}
+
+template <>
+void Writer<ppc>::copyNoOps(uint8_t* from, uint8_t* to)
+{
+ for (uint8_t* p=from; p < to; p += 4)
+ OSWriteBigInt32((uint32_t*)p, 0, 0x60000000);
+}
+
+template <>
+void Writer<ppc64>::copyNoOps(uint8_t* from, uint8_t* to)
+{
+ for (uint8_t* p=from; p < to; p += 4)
+ OSWriteBigInt32((uint32_t*)p, 0, 0x60000000);
+}
+
+template <>
+void Writer<x86>::copyNoOps(uint8_t* from, uint8_t* to)
+{
+ for (uint8_t* p=from; p < to; ++p)
+ *p = 0x90;
+}
+
+template <>
+void Writer<x86_64>::copyNoOps(uint8_t* from, uint8_t* to)
+{
+ for (uint8_t* p=from; p < to; ++p)
+ *p = 0x90;
+}
+
+template <>
+void Writer<arm>::copyNoOps(uint8_t* from, uint8_t* to)
+{
+ // fixme: need thumb nop?
+ for (uint8_t* p=from; p < to; p += 4)
+ OSWriteBigInt32((uint32_t*)p, 0, 0xe1a00000);
+}
+
+static const char* stringName(const char* str)
+{
+ if ( strncmp(str, "cstring=", 8) == 0) {
+ static char buffer[1024];
+ char* t = buffer;
+ *t++ = '\"';
+ for(const char*s = &str[8]; *s != '\0'; ++s) {
+ switch(*s) {
+ case '\n':
+ *t++ = '\\';
+ *t++ = 'n';
+ break;
+ case '\t':
+ *t++ = '\\';
+ *t++ = 't';
+ break;
+ default:
+ *t++ = *s;
+ break;
+ }
+ if ( t > &buffer[1020] ) {
+ *t++= '\"';
+ *t++= '.';
+ *t++= '.';
+ *t++= '.';
+ *t++= '\0';
+ return buffer;
+ }
+ }
+ *t++= '\"';
+ *t++= '\0';
+ return buffer;
+ }
+ else {
+ return str;
+ }
+}
+
+
+template <> const char* Writer<ppc>::getArchString() { return "ppc"; }
+template <> const char* Writer<ppc64>::getArchString() { return "ppc64"; }
+template <> const char* Writer<x86>::getArchString() { return "i386"; }
+template <> const char* Writer<x86_64>::getArchString() { return "x86_64"; }
+template <> const char* Writer<arm>::getArchString() { return "arm"; }
+
+template <typename A>
+void Writer<A>::writeMap()
+{
+ if ( fOptions.generatedMapPath() != NULL ) {
+ FILE* mapFile = fopen(fOptions.generatedMapPath(), "w");
+ if ( mapFile != NULL ) {
+ // write output path
+ fprintf(mapFile, "# Path: %s\n", fFilePath);
+ // write output architecure
+ fprintf(mapFile, "# Arch: %s\n", getArchString());
+ // write UUID
+ if ( fUUIDAtom != NULL ) {
+ const uint8_t* uuid = fUUIDAtom->getUUID();
+ fprintf(mapFile, "# UUID: %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X \n",
+ uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7],
+ uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15]);
+ }
+ // write table of object files
+ std::map<ObjectFile::Reader*, uint32_t> readerToOrdinal;
+ std::map<uint32_t, ObjectFile::Reader*> ordinalToReader;
+ std::map<ObjectFile::Reader*, uint32_t> readerToFileOrdinal;
+ for (std::vector<SegmentInfo*>::iterator segit = fSegmentInfos.begin(); segit != fSegmentInfos.end(); ++segit) {
+ std::vector<SectionInfo*>& sectionInfos = (*segit)->fSections;
+ for (std::vector<SectionInfo*>::iterator secit = sectionInfos.begin(); secit != sectionInfos.end(); ++secit) {
+ if ( ! (*secit)->fVirtualSection ) {
+ std::vector<ObjectFile::Atom*>& sectionAtoms = (*secit)->fAtoms;
+ for (std::vector<ObjectFile::Atom*>::iterator ait = sectionAtoms.begin(); ait != sectionAtoms.end(); ++ait) {
+ ObjectFile::Reader* reader = (*ait)->getFile();
+ uint32_t readerOrdinal = (*ait)->getOrdinal();
+ std::map<ObjectFile::Reader*, uint32_t>::iterator pos = readerToOrdinal.find(reader);
+ if ( pos == readerToOrdinal.end() ) {
+ readerToOrdinal[reader] = readerOrdinal;
+ ordinalToReader[readerOrdinal] = reader;
+ }
+ }
+ }
+ }
+ }
+ fprintf(mapFile, "# Object files:\n");
+ fprintf(mapFile, "[%3u] %s\n", 0, "linker synthesized");
+ uint32_t fileIndex = 0;
+ readerToFileOrdinal[this] = fileIndex++;
+ for(std::map<uint32_t, ObjectFile::Reader*>::iterator it = ordinalToReader.begin(); it != ordinalToReader.end(); ++it) {
+ if ( it->first != 0 ) {
+ fprintf(mapFile, "[%3u] %s\n", fileIndex, it->second->getPath());
+ readerToFileOrdinal[it->second] = fileIndex++;
+ }
+ }
+ // write table of sections
+ fprintf(mapFile, "# Sections:\n");
+ fprintf(mapFile, "# Address\tSize \tSegment\tSection\n");
+ for (std::vector<SegmentInfo*>::iterator segit = fSegmentInfos.begin(); segit != fSegmentInfos.end(); ++segit) {
+ std::vector<SectionInfo*>& sectionInfos = (*segit)->fSections;
+ for (std::vector<SectionInfo*>::iterator secit = sectionInfos.begin(); secit != sectionInfos.end(); ++secit) {
+ if ( ! (*secit)->fVirtualSection ) {
+ SectionInfo* sect = *secit;
+ fprintf(mapFile, "0x%08llX\t0x%08llX\t%s\t%s\n", sect->getBaseAddress(), sect->fSize,
+ (*segit)->fName, sect->fSectionName);
+ }
+ }
+ }
+ // write table of symbols
+ fprintf(mapFile, "# Symbols:\n");
+ fprintf(mapFile, "# Address\tSize \tFile Name\n");
+ for (std::vector<SegmentInfo*>::iterator segit = fSegmentInfos.begin(); segit != fSegmentInfos.end(); ++segit) {
+ std::vector<SectionInfo*>& sectionInfos = (*segit)->fSections;
+ for (std::vector<SectionInfo*>::iterator secit = sectionInfos.begin(); secit != sectionInfos.end(); ++secit) {
+ if ( ! (*secit)->fVirtualSection ) {
+ std::vector<ObjectFile::Atom*>& sectionAtoms = (*secit)->fAtoms;
+ bool isCstring = (strcmp((*secit)->fSectionName, "__cstring") == 0);
+ for (std::vector<ObjectFile::Atom*>::iterator ait = sectionAtoms.begin(); ait != sectionAtoms.end(); ++ait) {
+ ObjectFile::Atom* atom = *ait;
+ fprintf(mapFile, "0x%08llX\t0x%08llX\t[%3u] %s\n", atom->getAddress(), atom->getSize(),
+ readerToFileOrdinal[atom->getFile()], isCstring ? stringName(atom->getDisplayName()): atom->getDisplayName());
+ }
+ }
+ }
+ }
+ fclose(mapFile);
+ }
+ else {
+ warning("could not write map file: %s\n", fOptions.generatedMapPath());
+ }
+ }
+}
+
+static const char* sCleanupFile = NULL;
+static void cleanup(int sig)
+{
+ ::signal(sig, SIG_DFL);
+ if ( sCleanupFile != NULL ) {
+ ::unlink(sCleanupFile);
+ }
+ if ( sig == SIGINT )
+ ::exit(1);
+}
+
+
+template <typename A>
+uint64_t Writer<A>::writeAtoms()
+{
+ // for UNIX conformance, error if file exists and is not writable
+ if ( (access(fFilePath, F_OK) == 0) && (access(fFilePath, W_OK) == -1) )
+ throwf("can't write output file: %s", fFilePath);
+
+ int permissions = 0777;
+ if ( fOptions.outputKind() == Options::kObjectFile )
+ permissions = 0666;
+ // Calling unlink first assures the file is gone so that open creates it with correct permissions
+ // It also handles the case where fFilePath file is not writable but its directory is
+ // And it means we don't have to truncate the file when done writing (in case new is smaller than old)
+ (void)unlink(fFilePath);
+
+ // try to allocate buffer for entire output file content
+ int fd = -1;
+ SectionInfo* lastSection = fSegmentInfos.back()->fSections.back();
+ uint64_t fileBufferSize = (lastSection->fFileOffset + lastSection->fSize + 4095) & (-4096);
+ uint8_t* wholeBuffer = (uint8_t*)calloc(fileBufferSize, 1);
+ uint8_t* atomBuffer = NULL;
+ bool streaming = false;
+ if ( wholeBuffer == NULL ) {
+ fd = open(fFilePath, O_CREAT | O_WRONLY | O_TRUNC, permissions);
+ if ( fd == -1 )
+ throwf("can't open output file for writing: %s, errno=%d", fFilePath, errno);
+ atomBuffer = new uint8_t[(fLargestAtomSize+4095) & (-4096)];
+ streaming = true;
+ // install signal handlers to delete output file if program is killed
+ sCleanupFile = fFilePath;
+ ::signal(SIGINT, cleanup);
+ ::signal(SIGBUS, cleanup);
+ ::signal(SIGSEGV, cleanup);
+ }
+ uint32_t size = 0;
+ uint32_t end = 0;
+ try {
+ for (std::vector<SegmentInfo*>::iterator segit = fSegmentInfos.begin(); segit != fSegmentInfos.end(); ++segit) {
+ SegmentInfo* curSegment = *segit;
+ std::vector<SectionInfo*>& sectionInfos = curSegment->fSections;
+ for (std::vector<SectionInfo*>::iterator secit = sectionInfos.begin(); secit != sectionInfos.end(); ++secit) {
+ SectionInfo* curSection = *secit;
+ std::vector<ObjectFile::Atom*>& sectionAtoms = curSection->fAtoms;
+ //printf("writing with max atom size 0x%X\n", fLargestAtomSize);
+ //fprintf(stderr, "writing %lu atoms for section %p %s at file offset 0x%08llX\n", sectionAtoms.size(), curSection, curSection->fSectionName, curSection->fFileOffset);
+ if ( ! curSection->fAllZeroFill ) {
+ bool needsNops = ((strcmp(curSection->fSegmentName, "__TEXT") == 0) && (strncmp(curSection->fSectionName, "__text", 6) == 0));
+ for (std::vector<ObjectFile::Atom*>::iterator ait = sectionAtoms.begin(); ait != sectionAtoms.end(); ++ait) {
+ ObjectFile::Atom* atom = *ait;
+ if ( (atom->getDefinitionKind() != ObjectFile::Atom::kExternalDefinition)
+ && (atom->getDefinitionKind() != ObjectFile::Atom::kExternalWeakDefinition)
+ && (atom->getDefinitionKind() != ObjectFile::Atom::kAbsoluteSymbol) ) {
+ uint32_t fileOffset = curSection->fFileOffset + atom->getSectionOffset();
+ if ( fileOffset != end ) {
+ //fprintf(stderr, "writing %d pad bytes, needsNops=%d\n", fileOffset-end, needsNops);
+ if ( needsNops ) {
+ // fill gaps with no-ops
+ if ( streaming )
+ writeNoOps(fd, end, fileOffset);
+ else
+ copyNoOps(&wholeBuffer[end], &wholeBuffer[fileOffset]);
+ }
+ else if ( streaming ) {
+ // zero fill gaps
+ if ( (fileOffset-end) == 4 ) {
+ uint32_t zero = 0;
+ ::pwrite(fd, &zero, 4, end);
+ }
+ else {
+ uint8_t zero = 0x00;
+ for (uint32_t p=end; p < fileOffset; ++p)
+ ::pwrite(fd, &zero, 1, p);
+ }
+ }
+ }
+ uint64_t atomSize = atom->getSize();
+ if ( streaming ) {
+ if ( atomSize > fLargestAtomSize )
+ throwf("ld64 internal error: atom \"%s\"is larger than expected 0x%X > 0x%llX",
+ atom->getDisplayName(), atomSize, fLargestAtomSize);
+ }
+ else {
+ if ( fileOffset > fileBufferSize )
+ throwf("ld64 internal error: atom \"%s\" has file offset greater thatn expceted 0x%X > 0x%llX",
+ atom->getDisplayName(), fileOffset, fileBufferSize);
+ }
+ uint8_t* buffer = streaming ? atomBuffer : &wholeBuffer[fileOffset];
+ end = fileOffset+atomSize;
+ // copy raw bytes
+ atom->copyRawContent(buffer);
+ // apply any fix-ups
+ try {
+ std::vector<ObjectFile::Reference*>& references = atom->getReferences();
+ for (std::vector<ObjectFile::Reference*>::iterator it=references.begin(); it != references.end(); it++) {
+ ObjectFile::Reference* ref = *it;
+ if ( fOptions.outputKind() == Options::kObjectFile ) {
+ // doing ld -r
+ // skip fix-ups for undefined targets
+ if ( &(ref->getTarget()) != NULL )
+ this->fixUpReferenceRelocatable(ref, atom, buffer);
+ }
+ else {
+ // producing final linked image
+ this->fixUpReferenceFinal(ref, atom, buffer);
+ }
+ }
+ }
+ catch (const char* msg) {
+ throwf("%s in %s from %s", msg, atom->getDisplayName(), atom->getFile()->getPath());
+ }
+ //fprintf(stderr, "writing 0x%08X -> 0x%08X (addr=0x%llX, size=0x%llX), atom %p %s from %s\n",
+ // fileOffset, end, atom->getAddress(), atom->getSize(), atom, atom->getDisplayName(), atom->getFile()->getPath());
+ if ( streaming ) {
+ // write out
+ ::pwrite(fd, buffer, atomSize, fileOffset);
+ }
+ else {
+ if ( (fileOffset + atomSize) > size )
+ size = fileOffset + atomSize;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // update content based UUID
+ if ( fOptions.getUUIDMode() == Options::kUUIDContent ) {
+ uint8_t digest[CC_MD5_DIGEST_LENGTH];
+ if ( streaming ) {
+ // if output file file did not fit in memory, re-read file to generate md5 hash
+ uint32_t kMD5BufferSize = 16*1024;
+ uint8_t* md5Buffer = (uint8_t*)::malloc(kMD5BufferSize);
+ if ( md5Buffer != NULL ) {
+ CC_MD5_CTX md5State;
+ CC_MD5_Init(&md5State);
+ ::lseek(fd, 0, SEEK_SET);
+ ssize_t len;
+ while ( (len = ::read(fd, md5Buffer, kMD5BufferSize)) > 0 )
+ CC_MD5_Update(&md5State, md5Buffer, len);
+ CC_MD5_Final(digest, &md5State);
+ ::free(md5Buffer);
+ }
+ else {
+ // if malloc fails, fall back to random uuid
+ ::uuid_generate_random(digest);
+ }
+ fUUIDAtom->setContent(digest);
+ uint32_t uuidOffset = ((SectionInfo*)fUUIDAtom->getSection())->fFileOffset + fUUIDAtom->getSectionOffset();
+ fUUIDAtom->copyRawContent(atomBuffer);
+ ::pwrite(fd, atomBuffer, fUUIDAtom->getSize(), uuidOffset);
+ }
+ else {
+ // if output file fit in memory, just genrate an md5 hash in memory
+ #if 1
+ // temp hack for building on Tiger
+ CC_MD5_CTX md5State;
+ CC_MD5_Init(&md5State);
+ CC_MD5_Update(&md5State, wholeBuffer, size);
+ CC_MD5_Final(digest, &md5State);
+ #else
+ CC_MD5(wholeBuffer, size, digest);
+ #endif
+ fUUIDAtom->setContent(digest);
+ uint32_t uuidOffset = ((SectionInfo*)fUUIDAtom->getSection())->fFileOffset + fUUIDAtom->getSectionOffset();
+ fUUIDAtom->copyRawContent(&wholeBuffer[uuidOffset]);
+ }
+ }
+ }
+ catch (...) {
+ if ( sCleanupFile != NULL )
+ ::unlink(sCleanupFile);
+ throw;
+ }
+
+ // finish up
+ if ( streaming ) {
+ delete [] atomBuffer;
+ close(fd);
+ // restore default signal handlers
+ sCleanupFile = NULL;
+ ::signal(SIGINT, SIG_DFL);
+ ::signal(SIGBUS, SIG_DFL);
+ ::signal(SIGSEGV, SIG_DFL);
+ }
+ else {
+ // write whole output file in one chunk
+ fd = open(fFilePath, O_CREAT | O_WRONLY | O_TRUNC, permissions);
+ if ( fd == -1 )
+ throwf("can't open output file for writing: %s, errno=%d", fFilePath, errno);
+ ::pwrite(fd, wholeBuffer, size, 0);
+ close(fd);
+ delete [] wholeBuffer;
+ }
+
+ return end;
+}
+
+template <>
+void Writer<arm>::fixUpReferenceFinal(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const
+{
+ int64_t displacement;
+ int64_t baseAddr;
+ uint32_t instruction;
+ uint32_t newInstruction;
+ uint64_t targetAddr = 0;
+ uint32_t firstDisp;
+ uint32_t nextDisp;
+ uint32_t opcode = 0;
+ bool relocateableExternal = false;
+ bool is_bl;
+ bool is_blx;
+ bool targetIsThumb;
+
+ if ( ref->getTargetBinding() != ObjectFile::Reference::kDontBind ) {
+ targetAddr = ref->getTarget().getAddress() + ref->getTargetOffset();
+ relocateableExternal = (relocationNeededInFinalLinkedImage(ref->getTarget()) == kRelocExternal);
+ }
+
+ uint32_t* fixUp = (uint32_t*)&buffer[ref->getFixUpOffset()];
+ switch ( (arm::ReferenceKinds)(ref->getKind()) ) {
+ case arm::kNoFixUp:
+ case arm::kFollowOn:
+ case arm::kGroupSubordinate:
+ // do nothing
+ break;
+ case arm::kPointerWeakImport:
+ case arm::kPointer:
+ // If this is the lazy pointers section, then set all lazy pointers to
+ // point to the dyld stub binding helper.
+ if ( ((SectionInfo*)inAtom->getSection())->fAllLazyPointers
+ || ((SectionInfo*)inAtom->getSection())->fAllLazyDylibPointers ) {
+ switch (ref->getTarget().getDefinitionKind()) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // prebound lazy pointer to another dylib ==> pointer contains zero
+ LittleEndian::set32(*fixUp, 0);
+ break;
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ // prebound lazy pointer to withing this dylib ==> pointer contains address
+ if ( ref->getTarget().isThumb() && (ref->getTargetOffset() == 0) )
+ targetAddr |= 1;
+ LittleEndian::set32(*fixUp, targetAddr);
+ break;
+ }
+ }
+ else if ( relocateableExternal ) {
+ if ( fOptions.prebind() ) {
+ switch (ref->getTarget().getDefinitionKind()) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // prebound external relocation ==> pointer contains addend
+ LittleEndian::set32(*fixUp, ref->getTargetOffset());
+ break;
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ // prebound external relocation to internal atom ==> pointer contains target address + addend
+ if ( ref->getTarget().isThumb() && (ref->getTargetOffset() == 0) )
+ targetAddr |= 1;
+ LittleEndian::set32(*fixUp, targetAddr);
+ break;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ break;
+ }
+ }
+ else {
+ // external relocation ==> pointer contains addend
+ LittleEndian::set32(*fixUp, ref->getTargetOffset());
+ }
+ }
+ else {
+ // pointer contains target address
+ if ( ref->getTarget().isThumb() && (ref->getTargetOffset() == 0))
+ targetAddr |= 1;
+ LittleEndian::set32(*fixUp, targetAddr);
+ }
+ break;
+ case arm::kPointerDiff:
+ LittleEndian::set32(*fixUp,
+ (ref->getTarget().getAddress() + ref->getTargetOffset()) - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset()) );
+ break;
+ case arm::kReadOnlyPointer:
+ if ( ref->getTarget().isThumb() && (ref->getTargetOffset() == 0))
+ targetAddr |= 1;
+ switch ( ref->getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kTentativeDefinition:
+ // pointer contains target address
+ LittleEndian::set32(*fixUp, targetAddr);
+ break;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // external relocation ==> pointer contains addend
+ LittleEndian::set32(*fixUp, ref->getTargetOffset());
+ break;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ // pointer contains target address
+ LittleEndian::set32(*fixUp, targetAddr);
+ break;
+ }
+ break;
+ case arm::kBranch24WeakImport:
+ case arm::kBranch24:
+ displacement = targetAddr - (inAtom->getAddress() + ref->getFixUpOffset());
+ // The pc added will be +8 from the pc
+ displacement -= 8;
+ // fprintf(stderr, "bl/blx fixup to %s at 0x%08llX, displacement = 0x%08llX\n", ref->getTarget().getDisplayName(), ref->getTarget().getAddress(), displacement);
+ // max positive displacement is 0x007FFFFF << 2
+ // max negative displacement is 0xFF800000 << 2
+ if ( (displacement > 33554428LL) || (displacement < (-33554432LL)) ) {
+ throwf("b/bl/blx out of range (%lld max is +/-32M) from %s in %s to %s in %s",
+ displacement, inAtom->getDisplayName(), inAtom->getFile()->getPath(),
+ ref->getTarget().getDisplayName(), ref->getTarget().getFile()->getPath());
+ }
+ instruction = LittleEndian::get32(*fixUp);
+ // Make sure we are calling arm with bl, thumb with blx
+ is_bl = ((instruction & 0xFF000000) == 0xEB000000);
+ is_blx = ((instruction & 0xFE000000) == 0xFA000000);
+ if ( is_bl && ref->getTarget().isThumb() ) {
+ uint32_t opcode = 0xFA000000;
+ uint32_t disp = (uint32_t)(displacement >> 2) & 0x00FFFFFF;
+ uint32_t h_bit = (uint32_t)(displacement << 23) & 0x01000000;
+ newInstruction = opcode | h_bit | disp;
+ }
+ else if ( is_blx && !ref->getTarget().isThumb() ) {
+ uint32_t opcode = 0xEB000000;
+ uint32_t disp = (uint32_t)(displacement >> 2) & 0x00FFFFFF;
+ newInstruction = opcode | disp;
+ }
+ else if ( !is_bl && !is_blx && ref->getTarget().isThumb() ) {
+ throwf("don't know how to convert instruction %x referencing %s to thumb",
+ instruction, ref->getTarget().getDisplayName());
+ }
+ else {
+ newInstruction = (instruction & 0xFF000000) | ((uint32_t)(displacement >> 2) & 0x00FFFFFF);
+ }
+ LittleEndian::set32(*fixUp, newInstruction);
+ break;
+ case arm::kThumbBranch22WeakImport:
+ case arm::kThumbBranch22:
+ instruction = LittleEndian::get32(*fixUp);
+ is_bl = ((instruction & 0xD000F800) == 0xD000F000);
+ is_blx = ((instruction & 0xD000F800) == 0xC000F000);
+ targetIsThumb = ref->getTarget().isThumb();
+
+ // The pc added will be +4 from the pc
+ baseAddr = inAtom->getAddress() + ref->getFixUpOffset() + 4;
+ // If the target is not thumb, we will be generating a blx instruction
+ // Since blx cannot have the low bit set, set bit[1] of the target to
+ // bit[1] of the base address, so that the difference is a multiple of
+ // 4 bytes.
+ if ( !targetIsThumb ) {
+ targetAddr &= -3ULL;
+ targetAddr |= (baseAddr & 2LL);
+ }
+ displacement = targetAddr - baseAddr;
+
+ // max positive displacement is 0x003FFFFE
+ // max negative displacement is 0xFFC00000
+ if ( (displacement > 4194302LL) || (displacement < (-4194304LL)) ) {
+ // armv7 supports a larger displacement
+ if ( fOptions.preferSubArchitecture() && fOptions.subArchitecture() == CPU_SUBTYPE_ARM_V7 ) {
+ if ( (displacement > 16777214) || (displacement < (-16777216LL)) ) {
+ throwf("thumb bl/blx out of range (%lld max is +/-16M) from %s in %s to %s in %s",
+ displacement, inAtom->getDisplayName(), inAtom->getFile()->getPath(),
+ ref->getTarget().getDisplayName(), ref->getTarget().getFile()->getPath());
+ }
+ else {
+ // The instruction is really two instructions:
+ // The lower 16 bits are the first instruction, which contains the high
+ // 11 bits of the displacement.
+ // The upper 16 bits are the second instruction, which contains the low
+ // 11 bits of the displacement, as well as differentiating bl and blx.
+ uint32_t s = (uint32_t)(displacement >> 24) & 0x1;
+ uint32_t i1 = (uint32_t)(displacement >> 23) & 0x1;
+ uint32_t i2 = (uint32_t)(displacement >> 22) & 0x1;
+ uint32_t imm10 = (uint32_t)(displacement >> 12) & 0x3FF;
+ uint32_t imm11 = (uint32_t)(displacement >> 1) & 0x7FF;
+ uint32_t j1 = (i1 == s);
+ uint32_t j2 = (i2 == s);
+ if ( is_bl ) {
+ if ( targetIsThumb )
+ opcode = 0xD000F000; // keep bl
+ else
+ opcode = 0xC000F000; // change to blx
+ }
+ else if ( is_blx ) {
+ if ( targetIsThumb )
+ opcode = 0xD000F000; // change to bl
+ else
+ opcode = 0xC000F000; // keep blx
+ }
+ else if ( !is_bl && !is_blx && !targetIsThumb ) {
+ throwf("don't know how to convert instruction %x referencing %s to arm",
+ instruction, ref->getTarget().getDisplayName());
+ }
+ nextDisp = (j1 << 13) | (j2 << 11) | imm11;
+ firstDisp = (s << 10) | imm10;
+ newInstruction = opcode | (nextDisp << 16) | firstDisp;
+ //warning("s=%d, j1=%d, j2=%d, imm10=0x%0X, imm11=0x%0X, opcode=0x%08X, first=0x%04X, next=0x%04X, new=0x%08X, disp=0x%llX for %s to %s\n",
+ // s, j1, j2, imm10, imm11, opcode, firstDisp, nextDisp, newInstruction, displacement, inAtom->getDisplayName(), ref->getTarget().getDisplayName());
+ LittleEndian::set32(*fixUp, newInstruction);
+ }
+ }
+ else {
+ throwf("thumb bl/blx out of range (%lld max is +/-4M) from %s in %s to %s in %s",
+ displacement, inAtom->getDisplayName(), inAtom->getFile()->getPath(),
+ ref->getTarget().getDisplayName(), ref->getTarget().getFile()->getPath());
+ }
+ }
+ else {
+ // The instruction is really two instructions:
+ // The lower 16 bits are the first instruction, which contains the high
+ // 11 bits of the displacement.
+ // The upper 16 bits are the second instruction, which contains the low
+ // 11 bits of the displacement, as well as differentiating bl and blx.
+ firstDisp = (uint32_t)(displacement >> 12) & 0x7FF;
+ nextDisp = (uint32_t)(displacement >> 1) & 0x7FF;
+ if ( is_bl && !targetIsThumb ) {
+ opcode = 0xE800F000;
+ }
+ else if ( is_blx && targetIsThumb ) {
+ opcode = 0xF800F000;
+ }
+ else if ( !is_bl && !is_blx && !targetIsThumb ) {
+ throwf("don't know how to convert instruction %x referencing %s to arm",
+ instruction, ref->getTarget().getDisplayName());
+ }
+ else {
+ opcode = instruction & 0xF800F800;
+ }
+ newInstruction = opcode | (nextDisp << 16) | firstDisp;
+ LittleEndian::set32(*fixUp, newInstruction);
+ }
+ break;
+ case arm::kDtraceProbeSite:
+ if ( inAtom->isThumb() ) {
+ // change 32-bit blx call site to two thumb NOPs
+ LittleEndian::set32(*fixUp, 0x46C046C0);
+ }
+ else {
+ // change call site to a NOP
+ LittleEndian::set32(*fixUp, 0xE1A00000);
+ }
+ break;
+ case arm::kDtraceIsEnabledSite:
+ if ( inAtom->isThumb() ) {
+ // change 32-bit blx call site to 'nop', 'eor r0, r0'
+ LittleEndian::set32(*fixUp, 0x46C04040);
+ }
+ else {
+ // change call site to 'eor r0, r0, r0'
+ LittleEndian::set32(*fixUp, 0xE0200000);
+ }
+ break;
+ case arm::kDtraceTypeReference:
+ case arm::kDtraceProbe:
+ // nothing to fix up
+ break;
+ default:
+ throw "boom shaka laka";
+ }
+}
+
+template <>
+void Writer<arm>::fixUpReferenceRelocatable(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const
+{
+ int64_t displacement;
+ uint32_t instruction;
+ uint32_t newInstruction;
+ uint64_t targetAddr = 0;
+ int64_t baseAddr;
+ uint32_t firstDisp;
+ uint32_t nextDisp;
+ uint32_t opcode = 0;
+ bool relocateableExternal = false;
+ bool is_bl;
+ bool is_blx;
+ bool targetIsThumb;
+
+ if ( ref->getTargetBinding() != ObjectFile::Reference::kDontBind ) {
+ targetAddr = ref->getTarget().getAddress() + ref->getTargetOffset();
+ relocateableExternal = this->makesExternalRelocatableReference(ref->getTarget());
+ }
+
+ uint32_t* fixUp = (uint32_t*)&buffer[ref->getFixUpOffset()];
+ switch ( (arm::ReferenceKinds)(ref->getKind()) ) {
+ case arm::kNoFixUp:
+ case arm::kFollowOn:
+ case arm::kGroupSubordinate:
+ // do nothing
+ break;
+ case arm::kPointer:
+ case arm::kReadOnlyPointer:
+ case arm::kPointerWeakImport:
+ {
+ if ( ((SectionInfo*)inAtom->getSection())->fAllNonLazyPointers ) {
+ // indirect symbol table has INDIRECT_SYMBOL_LOCAL, so we must put address in content
+ if ( this->indirectSymbolInRelocatableIsLocal(ref) )
+ LittleEndian::set32(*fixUp, targetAddr);
+ else
+ LittleEndian::set32(*fixUp, 0);
+ }
+ else if ( relocateableExternal ) {
+ if ( fOptions.prebind() ) {
+ switch (ref->getTarget().getDefinitionKind()) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // prebound external relocation ==> pointer contains addend
+ LittleEndian::set32(*fixUp, ref->getTargetOffset());
+ break;
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ // prebound external relocation to internal atom ==> pointer contains target address + addend
+ LittleEndian::set32(*fixUp, targetAddr);
+ break;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ break;
+ }
+ }
+ }
+ else {
+ // internal relocation
+ if ( ref->getTarget().getDefinitionKind() != ObjectFile::Atom::kTentativeDefinition ) {
+ // pointer contains target address
+ if ( ref->getTarget().isThumb() && (ref->getTargetOffset() == 0))
+ targetAddr |= 1;
+ LittleEndian::set32(*fixUp, targetAddr);
+ }
+ else {
+ // pointer contains addend
+ LittleEndian::set32(*fixUp, ref->getTargetOffset());
+ }
+ }
+ }
+ break;
+ case arm::kPointerDiff:
+ LittleEndian::set32(*fixUp,
+ (ref->getTarget().getAddress() + ref->getTargetOffset()) - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset()) );
+ break;
+ case arm::kDtraceProbeSite:
+ case arm::kDtraceIsEnabledSite:
+ case arm::kBranch24WeakImport:
+ case arm::kBranch24:
+ displacement = targetAddr - (inAtom->getAddress() + ref->getFixUpOffset());
+ // The pc added will be +8 from the pc
+ displacement -= 8;
+ // fprintf(stderr, "b/bl/blx fixup to %s at 0x%08llX, displacement = 0x%08llX\n", ref->getTarget().getDisplayName(), ref->getTarget().getAddress(), displacement);
+ if ( relocateableExternal ) {
+ // doing "ld -r" to an external symbol
+ // the mach-o way of encoding this is that the bl instruction's target addr is the offset into the target
+ displacement -= ref->getTarget().getAddress();
+ }
+ else {
+ // max positive displacement is 0x007FFFFF << 2
+ // max negative displacement is 0xFF800000 << 2
+ if ( (displacement > 33554428LL) || (displacement < (-33554432LL)) ) {
+ throwf("arm b/bl/blx out of range (%lld max is +/-32M) from %s in %s to %s in %s",
+ displacement, inAtom->getDisplayName(), inAtom->getFile()->getPath(),
+ ref->getTarget().getDisplayName(), ref->getTarget().getFile()->getPath());
+ }
+ }
+ instruction = LittleEndian::get32(*fixUp);
+ // Make sure we are calling arm with bl, thumb with blx
+ is_bl = ((instruction & 0xFF000000) == 0xEB000000);
+ is_blx = ((instruction & 0xFE000000) == 0xFA000000);
+ if ( is_bl && ref->getTarget().isThumb() ) {
+ uint32_t opcode = 0xFA000000;
+ uint32_t disp = (uint32_t)(displacement >> 2) & 0x00FFFFFF;
+ uint32_t h_bit = (uint32_t)(displacement << 23) & 0x01000000;
+ newInstruction = opcode | h_bit | disp;
+ }
+ else if ( is_blx && !ref->getTarget().isThumb() ) {
+ uint32_t opcode = 0xEB000000;
+ uint32_t disp = (uint32_t)(displacement >> 2) & 0x00FFFFFF;
+ newInstruction = opcode | disp;
+ }
+ else if ( !is_bl && !is_blx && ref->getTarget().isThumb() ) {
+ throwf("don't know how to convert instruction %x referencing %s to thumb",
+ instruction, ref->getTarget().getDisplayName());
+ }
+ else {
+ newInstruction = (instruction & 0xFF000000) | ((uint32_t)(displacement >> 2) & 0x00FFFFFF);
+ }
+ LittleEndian::set32(*fixUp, newInstruction);
+ break;
+ case arm::kThumbBranch22WeakImport:
+ case arm::kThumbBranch22:
+ instruction = LittleEndian::get32(*fixUp);
+ is_bl = ((instruction & 0xF8000000) == 0xF8000000);
+ is_blx = ((instruction & 0xF8000000) == 0xE8000000);
+ targetIsThumb = ref->getTarget().isThumb();
+
+ // The pc added will be +4 from the pc
+ baseAddr = inAtom->getAddress() + ref->getFixUpOffset() + 4;
+ // If the target is not thumb, we will be generating a blx instruction
+ // Since blx cannot have the low bit set, set bit[1] of the target to
+ // bit[1] of the base address, so that the difference is a multiple of
+ // 4 bytes.
+ if (!targetIsThumb) {
+ targetAddr &= -3ULL;
+ targetAddr |= (baseAddr & 2LL);
+ }
+ displacement = targetAddr - baseAddr;
+
+ //fprintf(stderr, "thumb %s fixup to %s at 0x%08llX, baseAddr = 0x%08llX, displacement = 0x%08llX, %d\n", is_blx ? "blx" : "bl", ref->getTarget().getDisplayName(), targetAddr, baseAddr, displacement, targetIsThumb);
+ if ( relocateableExternal ) {
+ // doing "ld -r" to an external symbol
+ // the mach-o way of encoding this is that the bl instruction's target addr is the offset into the target
+ displacement -= ref->getTarget().getAddress();
+ }
+
+ if ( (displacement > 4194302LL) || (displacement < (-4194304LL)) ) {
+ // armv7 supports a larger displacement
+ if ( fOptions.preferSubArchitecture() && fOptions.subArchitecture() == CPU_SUBTYPE_ARM_V7 ) {
+ if ( (displacement > 16777214) || (displacement < (-16777216LL)) ) {
+ throwf("thumb bl/blx out of range (%lld max is +/-16M) from %s in %s to %s in %s",
+ displacement, inAtom->getDisplayName(), inAtom->getFile()->getPath(),
+ ref->getTarget().getDisplayName(), ref->getTarget().getFile()->getPath());
+ }
+ else {
+ // The instruction is really two instructions:
+ // The lower 16 bits are the first instruction, which contains the high
+ // 11 bits of the displacement.
+ // The upper 16 bits are the second instruction, which contains the low
+ // 11 bits of the displacement, as well as differentiating bl and blx.
+ uint32_t s = (uint32_t)(displacement >> 24) & 0x1;
+ uint32_t i1 = (uint32_t)(displacement >> 23) & 0x1;
+ uint32_t i2 = (uint32_t)(displacement >> 22) & 0x1;
+ uint32_t imm10 = (uint32_t)(displacement >> 12) & 0x3FF;
+ uint32_t imm11 = (uint32_t)(displacement >> 1) & 0x7FF;
+ uint32_t j1 = (i1 == s);
+ uint32_t j2 = (i2 == s);
+ if ( is_bl ) {
+ if ( targetIsThumb )
+ opcode = 0xD000F000; // keep bl
+ else
+ opcode = 0xC000F000; // change to blx
+ }
+ else if ( is_blx ) {
+ if ( targetIsThumb )
+ opcode = 0xD000F000; // change to bl
+ else
+ opcode = 0xC000F000; // keep blx
+ }
+ else if ( !is_bl && !is_blx && !targetIsThumb ) {
+ throwf("don't know how to convert instruction %x referencing %s to arm",
+ instruction, ref->getTarget().getDisplayName());
+ }
+ nextDisp = (j1 << 13) | (j2 << 11) | imm11;
+ firstDisp = (s << 10) | imm10;
+ newInstruction = opcode | (nextDisp << 16) | firstDisp;
+ //warning("s=%d, j1=%d, j2=%d, imm10=0x%0X, imm11=0x%0X, opcode=0x%08X, first=0x%04X, next=0x%04X, new=0x%08X, disp=0x%llX for %s to %s\n",
+ // s, j1, j2, imm10, imm11, opcode, firstDisp, nextDisp, newInstruction, displacement, inAtom->getDisplayName(), ref->getTarget().getDisplayName());
+ LittleEndian::set32(*fixUp, newInstruction);
+ break;
+ }
+ }
+ else {
+ throwf("thumb bl/blx out of range (%lld max is +/-4M) from %s in %s to %s in %s",
+ displacement, inAtom->getDisplayName(), inAtom->getFile()->getPath(),
+ ref->getTarget().getDisplayName(), ref->getTarget().getFile()->getPath());
+ }
+ }
+ // The instruction is really two instructions:
+ // The lower 16 bits are the first instruction, which contains the first
+ // 11 bits of the displacement.
+ // The upper 16 bits are the second instruction, which contains the next
+ // 11 bits of the displacement, as well as differentiating bl and blx.
+ firstDisp = (uint32_t)(displacement >> 12) & 0x7FF;
+ nextDisp = (uint32_t)(displacement >> 1) & 0x7FF;
+ if ( is_bl && !targetIsThumb ) {
+ opcode = 0xE800F000;
+ }
+ else if ( is_blx && targetIsThumb ) {
+ opcode = 0xF800F000;
+ }
+ else if ( !is_bl && !is_blx && !targetIsThumb ) {
+ throwf("don't know how to convert instruction %x referencing %s to arm",
+ instruction, ref->getTarget().getDisplayName());
+ }
+ else {
+ opcode = instruction & 0xF800F800;
+ }
+ newInstruction = opcode | (nextDisp << 16) | firstDisp;
+ LittleEndian::set32(*fixUp, newInstruction);
+ break;
+ case arm::kDtraceProbe:
+ case arm::kDtraceTypeReference:
+ // nothing to fix up
+ break;
+ }
+}
+
+template <>
+void Writer<x86>::fixUpReferenceFinal(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const
+{
+ uint32_t* fixUp = (uint32_t*)&buffer[ref->getFixUpOffset()];
+ uint8_t* dtraceProbeSite;
+ const int64_t kTwoGigLimit = 0x7FFFFFFF;
+ const int64_t kSixteenMegLimit = 0x00FFFFFF;
+ const int64_t kSixtyFourKiloLimit = 0x7FFF;
+ const int64_t kOneTwentyEightLimit = 0x7F;
+ int64_t displacement;
+ uint32_t temp;
+ x86::ReferenceKinds kind = (x86::ReferenceKinds)(ref->getKind());
+ switch ( kind ) {
+ case x86::kNoFixUp:
+ case x86::kFollowOn:
+ case x86::kGroupSubordinate:
+ // do nothing
+ break;
+ case x86::kPointerWeakImport:
+ case x86::kPointer:
+ {
+ if ( this->relocationNeededInFinalLinkedImage(ref->getTarget()) == kRelocExternal ) {
+ if ( fOptions.prebind() ) {
+ switch (ref->getTarget().getDefinitionKind()) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // prebound external relocation ==> pointer contains addend
+ LittleEndian::set32(*fixUp, ref->getTargetOffset());
+ break;
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ // prebound external relocation to internal atom ==> pointer contains target address + addend
+ LittleEndian::set32(*fixUp, ref->getTarget().getAddress() + ref->getTargetOffset());
+ break;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ break;
+ }
+ }
+ else if ( !fOptions.makeClassicDyldInfo()
+ && (ref->getTarget().getDefinitionKind() == ObjectFile::Atom::kWeakDefinition) ) {
+ // when using only compressed dyld info, pointer is initially set to point directly to weak definition
+ LittleEndian::set32(*fixUp, ref->getTarget().getAddress() + ref->getTargetOffset());
+ }
+ else {
+ // external relocation ==> pointer contains addend
+ LittleEndian::set32(*fixUp, ref->getTargetOffset());
+ }
+ }
+ else {
+ // pointer contains target address
+ //printf("Atom::fixUpReferenceFinal() target.name=%s, target.address=0x%08llX\n", target.getDisplayName(), target.getAddress());
+ LittleEndian::set32(*fixUp, ref->getTarget().getAddress() + ref->getTargetOffset());
+ }
+ }
+ break;
+ case x86::kPointerDiff:
+ displacement = (ref->getTarget().getAddress() + ref->getTargetOffset()) - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset());
+ LittleEndian::set32(*fixUp, (uint32_t)displacement);
+ break;
+ case x86::kPointerDiff16:
+ displacement = (ref->getTarget().getAddress() + ref->getTargetOffset()) - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset());
+ if ( (displacement > kSixtyFourKiloLimit) || (displacement < -(kSixtyFourKiloLimit)) )
+ throwf("16-bit pointer diff out of range in %s", inAtom->getDisplayName());
+ LittleEndian::set16(*((uint16_t*)fixUp), (uint16_t)displacement);
+ break;
+ case x86::kPointerDiff24:
+ displacement = (ref->getTarget().getAddress() + ref->getTargetOffset()) - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset());
+ if ( (displacement > kSixteenMegLimit) || (displacement < 0) )
+ throwf("24-bit pointer diff out of range in %s", inAtom->getDisplayName());
+ temp = LittleEndian::get32(*fixUp);
+ temp &= 0xFF000000;
+ temp |= (displacement & 0x00FFFFFF);
+ LittleEndian::set32(*fixUp, temp);
+ break;
+ case x86::kSectionOffset24:
+ displacement = ref->getTarget().getSectionOffset();
+ if ( (displacement > kSixteenMegLimit) || (displacement < 0) )
+ throwf("24-bit pointer diff out of range in %s", inAtom->getDisplayName());
+ temp = LittleEndian::get32(*fixUp);
+ temp &= 0xFF000000;
+ temp |= (displacement & 0x00FFFFFF);
+ LittleEndian::set32(*fixUp, temp);
+ break;
+ case x86::kDtraceProbeSite:
+ // change call site to a NOP
+ dtraceProbeSite = (uint8_t*)fixUp;
+ dtraceProbeSite[-1] = 0x90; // 1-byte nop
+ dtraceProbeSite[0] = 0x0F; // 4-byte nop
+ dtraceProbeSite[1] = 0x1F;
+ dtraceProbeSite[2] = 0x40;
+ dtraceProbeSite[3] = 0x00;
+ break;
+ case x86::kDtraceIsEnabledSite:
+ // change call site to a clear eax
+ dtraceProbeSite = (uint8_t*)fixUp;
+ dtraceProbeSite[-1] = 0x33; // xorl eax,eax
+ dtraceProbeSite[0] = 0xC0;
+ dtraceProbeSite[1] = 0x90; // 1-byte nop
+ dtraceProbeSite[2] = 0x90; // 1-byte nop
+ dtraceProbeSite[3] = 0x90; // 1-byte nop
+ break;
+ case x86::kPCRel32WeakImport:
+ case x86::kPCRel32:
+ case x86::kPCRel16:
+ case x86::kPCRel8:
+ displacement = 0;
+ switch ( ref->getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ displacement = (ref->getTarget().getAddress() + ref->getTargetOffset()) - (inAtom->getAddress() + ref->getFixUpOffset() + 4);
+ break;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ throw "codegen problem, can't use rel32 to external symbol";
+ case ObjectFile::Atom::kTentativeDefinition:
+ displacement = 0;
+ break;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ displacement = (ref->getTarget().getSectionOffset() + ref->getTargetOffset()) - (inAtom->getAddress() + ref->getFixUpOffset() + 4);
+ break;
+ }
+ if ( kind == x86::kPCRel8 ) {
+ displacement += 3;
+ if ( (displacement > kOneTwentyEightLimit) || (displacement < -(kOneTwentyEightLimit)) ) {
+ //fprintf(stderr, "call out of range from %s in %s to %s in %s\n", this->getDisplayName(), this->getFile()->getPath(), target.getDisplayName(), target.getFile()->getPath());
+ throwf("rel8 out of range in %s", inAtom->getDisplayName());
+ }
+ *(int8_t*)fixUp = (int8_t)displacement;
+ }
+ else if ( kind == x86::kPCRel16 ) {
+ displacement += 2;
+ if ( (displacement > kSixtyFourKiloLimit) || (displacement < -(kSixtyFourKiloLimit)) ) {
+ //fprintf(stderr, "call out of range from %s in %s to %s in %s\n", this->getDisplayName(), this->getFile()->getPath(), target.getDisplayName(), target.getFile()->getPath());
+ throwf("rel16 out of range in %s", inAtom->getDisplayName());
+ }
+ LittleEndian::set16(*((uint16_t*)fixUp), (uint16_t)displacement);
+ }
+ else {
+ if ( (displacement > kTwoGigLimit) || (displacement < (-kTwoGigLimit)) ) {
+ //fprintf(stderr, "call out of range from %s in %s to %s in %s\n", this->getDisplayName(), this->getFile()->getPath(), target.getDisplayName(), target.getFile()->getPath());
+ throwf("rel32 out of range in %s", inAtom->getDisplayName());
+ }
+ LittleEndian::set32(*fixUp, (int32_t)displacement);
+ }
+ break;
+ case x86::kAbsolute32:
+ switch ( ref->getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kTentativeDefinition:
+ // pointer contains target address
+ LittleEndian::set32(*fixUp, ref->getTarget().getAddress() + ref->getTargetOffset());
+ break;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // external relocation ==> pointer contains addend
+ LittleEndian::set32(*fixUp, ref->getTargetOffset());
+ break;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ // pointer contains target address
+ LittleEndian::set32(*fixUp, ref->getTarget().getSectionOffset() + ref->getTargetOffset());
+ break;
+ }
+ break;
+ case x86::kImageOffset32:
+ // offset of target atom from mach_header
+ displacement = ref->getTarget().getAddress() + ref->getTargetOffset() - fMachHeaderAtom->getAddress();
+ LittleEndian::set32(*fixUp, (int32_t)displacement);
+ break;
+ case x86::kDtraceTypeReference:
+ case x86::kDtraceProbe:
+ // nothing to fix up
+ break;
+ }
+}
+
+
+
+template <>
+void Writer<x86>::fixUpReferenceRelocatable(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const
+{
+ const int64_t kTwoGigLimit = 0x7FFFFFFF;
+ const int64_t kSixtyFourKiloLimit = 0x7FFF;
+ const int64_t kOneTwentyEightLimit = 0x7F;
+ uint32_t* fixUp = (uint32_t*)&buffer[ref->getFixUpOffset()];
+ bool isExtern = this->makesExternalRelocatableReference(ref->getTarget());
+ int64_t displacement;
+ x86::ReferenceKinds kind = (x86::ReferenceKinds)(ref->getKind());
+ switch ( kind ) {
+ case x86::kNoFixUp:
+ case x86::kFollowOn:
+ case x86::kGroupSubordinate:
+ // do nothing
+ break;
+ case x86::kPointer:
+ case x86::kPointerWeakImport:
+ case x86::kAbsolute32:
+ {
+ if ( ((SectionInfo*)inAtom->getSection())->fAllNonLazyPointers ) {
+ // if INDIRECT_SYMBOL_LOCAL the content is pointer, else it is zero
+ if ( this->indirectSymbolInRelocatableIsLocal(ref) )
+ LittleEndian::set32(*fixUp, ref->getTarget().getAddress() + ref->getTargetOffset());
+ else
+ LittleEndian::set32(*fixUp, 0);
+ }
+ else if ( isExtern ) {
+ // external relocation ==> pointer contains addend
+ LittleEndian::set32(*fixUp, ref->getTargetOffset());
+ }
+ else if ( ref->getTarget().getDefinitionKind() != ObjectFile::Atom::kTentativeDefinition ) {
+ // internal relocation => pointer contains target address
+ LittleEndian::set32(*fixUp, ref->getTarget().getAddress() + ref->getTargetOffset());
+ }
+ else {
+ // internal relocation to tentative ==> pointer contains addend
+ LittleEndian::set32(*fixUp, ref->getTargetOffset());
+ }
+ }
+ break;
+ case x86::kPointerDiff:
+ displacement = (ref->getTarget().getAddress() + ref->getTargetOffset()) - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset());
+ LittleEndian::set32(*fixUp, (uint32_t)displacement);
+ break;
+ case x86::kPointerDiff16:
+ displacement = (ref->getTarget().getAddress() + ref->getTargetOffset()) - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset());
+ if ( (displacement > kSixtyFourKiloLimit) || (displacement < -(kSixtyFourKiloLimit)) )
+ throwf("16-bit pointer diff out of range in %s", inAtom->getDisplayName());
+ LittleEndian::set16(*((uint16_t*)fixUp), (uint16_t)displacement);
+ break;
+ case x86::kPCRel8:
+ case x86::kPCRel16:
+ case x86::kPCRel32:
+ case x86::kPCRel32WeakImport:
+ case x86::kDtraceProbeSite:
+ case x86::kDtraceIsEnabledSite:
+ {
+ if ( isExtern )
+ displacement = ref->getTargetOffset() - (inAtom->getAddress() + ref->getFixUpOffset() + 4);
+ else
+ displacement = (ref->getTarget().getAddress() + ref->getTargetOffset()) - (inAtom->getAddress() + ref->getFixUpOffset() + 4);
+ if ( kind == x86::kPCRel8 ) {
+ displacement += 3;
+ if ( (displacement > kOneTwentyEightLimit) || (displacement < -(kOneTwentyEightLimit)) ) {
+ //fprintf(stderr, "call out of range from %s in %s to %s in %s\n", this->getDisplayName(), this->getFile()->getPath(), target.getDisplayName(), target.getFile()->getPath());
+ throwf("rel8 out of range (%lld)in %s", displacement, inAtom->getDisplayName());
+ }
+ int8_t byte = (int8_t)displacement;
+ *((int8_t*)fixUp) = byte;
+ }
+ else if ( kind == x86::kPCRel16 ) {
+ displacement += 2;
+ if ( (displacement > kSixtyFourKiloLimit) || (displacement < -(kSixtyFourKiloLimit)) ) {
+ //fprintf(stderr, "call out of range from %s in %s to %s in %s\n", this->getDisplayName(), this->getFile()->getPath(), target.getDisplayName(), target.getFile()->getPath());
+ throwf("rel16 out of range in %s", inAtom->getDisplayName());
+ }
+ int16_t word = (int16_t)displacement;
+ LittleEndian::set16(*((uint16_t*)fixUp), word);
+ }
+ else {
+ if ( (displacement > kTwoGigLimit) || (displacement < (-kTwoGigLimit)) ) {
+ //fprintf(stderr, "call out of range, displacement=ox%llX, from %s in %s to %s in %s\n", displacement,
+ // inAtom->getDisplayName(), inAtom->getFile()->getPath(), ref->getTarget().getDisplayName(), ref->getTarget().getFile()->getPath());
+ throwf("rel32 out of range in %s", inAtom->getDisplayName());
+ }
+ LittleEndian::set32(*fixUp, (int32_t)displacement);
+ }
+ }
+ break;
+ case x86::kPointerDiff24:
+ throw "internal linker error, kPointerDiff24 can't be encoded into object files";
+ case x86::kImageOffset32:
+ throw "internal linker error, kImageOffset32 can't be encoded into object files";
+ case x86::kSectionOffset24:
+ throw "internal linker error, kSectionOffset24 can't be encoded into object files";
+ case x86::kDtraceProbe:
+ case x86::kDtraceTypeReference:
+ // nothing to fix up
+ break;
+ }
+}
+
+template <>
+void Writer<x86_64>::fixUpReferenceFinal(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const
+{
+ const int64_t twoGigLimit = 0x7FFFFFFF;
+ const int64_t kSixteenMegLimit = 0x00FFFFFF;
+ uint64_t* fixUp = (uint64_t*)&buffer[ref->getFixUpOffset()];
+ uint8_t* dtraceProbeSite;
+ int64_t displacement = 0;
+ uint32_t temp;
+ switch ( (x86_64::ReferenceKinds)(ref->getKind()) ) {
+ case x86_64::kNoFixUp:
+ case x86_64::kGOTNoFixUp:
+ case x86_64::kFollowOn:
+ case x86_64::kGroupSubordinate:
+ // do nothing
+ break;
+ case x86_64::kPointerWeakImport:
+ case x86_64::kPointer:
+ {
+ if ( &ref->getTarget() != NULL ) {
+ //fprintf(stderr, "fixUpReferenceFinal: %s reference to %s\n", this->getDisplayName(), target.getDisplayName());
+ if ( this->relocationNeededInFinalLinkedImage(ref->getTarget()) == kRelocExternal) {
+ if ( !fOptions.makeClassicDyldInfo()
+ && (ref->getTarget().getDefinitionKind() == ObjectFile::Atom::kWeakDefinition) ) {
+ // when using only compressed dyld info, pointer is initially set to point directly to weak definition
+ LittleEndian::set64(*fixUp, ref->getTarget().getAddress() + ref->getTargetOffset());
+ }
+ else {
+ // external relocation ==> pointer contains addend
+ LittleEndian::set64(*fixUp, ref->getTargetOffset());
+ }
+ }
+ else {
+ // internal relocation
+ // pointer contains target address
+ //printf("Atom::fixUpReferenceFinal) target.name=%s, target.address=0x%08llX\n", target.getDisplayName(), target.getAddress());
+ LittleEndian::set64(*fixUp, ref->getTarget().getAddress() + ref->getTargetOffset());
+ }
+ }
+ }
+ break;
+ case x86_64::kPointer32:
+ {
+ //fprintf(stderr, "fixUpReferenceFinal: %s reference to %s\n", this->getDisplayName(), target.getDisplayName());
+ if ( this->relocationNeededInFinalLinkedImage(ref->getTarget()) == kRelocExternal ) {
+ // external relocation
+ throwf("32-bit pointer to dylib or weak symbol %s not supported for x86_64",ref->getTarget().getDisplayName());
+ }
+ else {
+ // internal relocation
+ // pointer contains target address
+ //printf("Atom::fixUpReferenceFinal) target.name=%s, target.address=0x%08llX\n", target.getDisplayName(), target.getAddress());
+ displacement = ref->getTarget().getAddress() + ref->getTargetOffset();
+ switch ( fOptions.outputKind() ) {
+ case Options::kObjectFile:
+ case Options::kPreload:
+ case Options::kDyld:
+ case Options::kDynamicLibrary:
+ case Options::kDynamicBundle:
+ case Options::kKextBundle:
+ throwf("32-bit pointer to symbol %s not supported for x86_64",ref->getTarget().getDisplayName());
+ case Options::kDynamicExecutable:
+ // <rdar://problem/5855588> allow x86_64 main executables to use 32-bit pointers if program loads in load 2GB
+ if ( (displacement > twoGigLimit) || (displacement < (-twoGigLimit)) )
+ throw "32-bit pointer out of range";
+ break;
+ case Options::kStaticExecutable:
+ // <rdar://problem/5855588> allow x86_64 mach_kernel to truncate pointers
+ break;
+ }
+ LittleEndian::set32(*((uint32_t*)fixUp), (uint32_t)displacement);
+ }
+ }
+ break;
+ case x86_64::kPointerDiff32:
+ displacement = (ref->getTarget().getAddress() + ref->getTargetOffset()) - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset());
+ if ( (displacement > twoGigLimit) || (displacement < (-twoGigLimit)) )
+ throw "32-bit pointer difference out of range";
+ LittleEndian::set32(*((uint32_t*)fixUp), (uint32_t)displacement);
+ break;
+ case x86_64::kPointerDiff:
+ LittleEndian::set64(*fixUp,
+ (ref->getTarget().getAddress() + ref->getTargetOffset()) - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset()) );
+ break;
+ case x86_64::kPointerDiff24:
+ displacement = (ref->getTarget().getAddress() + ref->getTargetOffset()) - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset());
+ if ( (displacement > kSixteenMegLimit) || (displacement < 0) )
+ throwf("24-bit pointer diff out of range in %s", inAtom->getDisplayName());
+ temp = LittleEndian::get32(*((uint32_t*)fixUp));
+ temp &= 0xFF000000;
+ temp |= (displacement & 0x00FFFFFF);
+ LittleEndian::set32(*((uint32_t*)fixUp), temp);
+ break;
+ case x86_64::kSectionOffset24:
+ displacement = ref->getTarget().getSectionOffset();
+ if ( (displacement > kSixteenMegLimit) || (displacement < 0) )
+ throwf("24-bit pointer diff out of range in %s", inAtom->getDisplayName());
+ temp = LittleEndian::get32(*((uint32_t*)fixUp));
+ temp &= 0xFF000000;
+ temp |= (displacement & 0x00FFFFFF);
+ LittleEndian::set32(*((uint32_t*)fixUp), temp);
+ break;
+ case x86_64::kPCRel32GOTLoad:
+ case x86_64::kPCRel32GOTLoadWeakImport:
+ // if GOT entry was optimized away, change movq instruction to a leaq
+ if ( std::find(fAllSynthesizedNonLazyPointers.begin(), fAllSynthesizedNonLazyPointers.end(), &(ref->getTarget())) == fAllSynthesizedNonLazyPointers.end() ) {
+ //fprintf(stderr, "GOT for %s optimized away\n", ref->getTarget().getDisplayName());
+ uint8_t* opcodes = (uint8_t*)fixUp;
+ if ( opcodes[-2] != 0x8B )
+ throw "GOT load reloc does not point to a movq instruction";
+ opcodes[-2] = 0x8D;
+ }
+ // fall into general rel32 case
+ case x86_64::kBranchPCRel32WeakImport:
+ case x86_64::kBranchPCRel32:
+ case x86_64::kBranchPCRel8:
+ case x86_64::kPCRel32:
+ case x86_64::kPCRel32_1:
+ case x86_64::kPCRel32_2:
+ case x86_64::kPCRel32_4:
+ case x86_64::kPCRel32GOT:
+ case x86_64::kPCRel32GOTWeakImport:
+ switch ( ref->getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kTentativeDefinition:
+ displacement = (ref->getTarget().getAddress() + (int32_t)ref->getTargetOffset()) - (inAtom->getAddress() + ref->getFixUpOffset() + 4);
+ break;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ displacement = (ref->getTarget().getSectionOffset() + (int32_t)ref->getTargetOffset()) - (inAtom->getAddress() + ref->getFixUpOffset() + 4);
+ break;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ if ( fOptions.outputKind() == Options::kKextBundle )
+ displacement = 0;
+ else
+ throwf("codegen problem, can't use rel32 to external symbol %s", ref->getTarget().getDisplayName());
+ break;
+ }
+ switch ( ref->getKind() ) {
+ case x86_64::kPCRel32_1:
+ displacement -= 1;
+ break;
+ case x86_64::kPCRel32_2:
+ displacement -= 2;
+ break;
+ case x86_64::kPCRel32_4:
+ displacement -= 4;
+ break;
+ case x86_64::kBranchPCRel8:
+ displacement += 3;
+ break;
+ }
+ if ( ref->getKind() == x86_64::kBranchPCRel8 ) {
+ if ( (displacement > 127) || (displacement < (-128)) ) {
+ fprintf(stderr, "branch out of range from %s (%llX) in %s to %s (%llX) in %s\n",
+ inAtom->getDisplayName(), inAtom->getAddress(), inAtom->getFile()->getPath(), ref->getTarget().getDisplayName(), ref->getTarget().getAddress(), ref->getTarget().getFile()->getPath());
+ throw "rel8 out of range";
+ }
+ *((int8_t*)fixUp) = (int8_t)displacement;
+ }
+ else {
+ if ( (displacement > twoGigLimit) || (displacement < (-twoGigLimit)) ) {
+ fprintf(stderr, "call out of range from %s (%llX) in %s to %s (%llX) in %s\n",
+ inAtom->getDisplayName(), inAtom->getAddress(), inAtom->getFile()->getPath(), ref->getTarget().getDisplayName(), ref->getTarget().getAddress(), ref->getTarget().getFile()->getPath());
+ throw "rel32 out of range";
+ }
+ LittleEndian::set32(*((uint32_t*)fixUp), (int32_t)displacement);
+ }
+ break;
+ case x86_64::kImageOffset32:
+ // offset of target atom from mach_header
+ displacement = ref->getTarget().getAddress() + ref->getTargetOffset() - fMachHeaderAtom->getAddress();
+ LittleEndian::set32(*((uint32_t*)fixUp), (int32_t)displacement);
+ break;
+ case x86_64::kDtraceProbeSite:
+ // change call site to a NOP
+ dtraceProbeSite = (uint8_t*)fixUp;
+ dtraceProbeSite[-1] = 0x90; // 1-byte nop
+ dtraceProbeSite[0] = 0x0F; // 4-byte nop
+ dtraceProbeSite[1] = 0x1F;
+ dtraceProbeSite[2] = 0x40;
+ dtraceProbeSite[3] = 0x00;
+ break;
+ case x86_64::kDtraceIsEnabledSite:
+ // change call site to a clear eax
+ dtraceProbeSite = (uint8_t*)fixUp;
+ dtraceProbeSite[-1] = 0x48; // xorq eax,eax
+ dtraceProbeSite[0] = 0x33;
+ dtraceProbeSite[1] = 0xC0;
+ dtraceProbeSite[2] = 0x90; // 1-byte nop
+ dtraceProbeSite[3] = 0x90; // 1-byte nop
+ break;
+ case x86_64::kDtraceTypeReference:
+ case x86_64::kDtraceProbe:
+ // nothing to fix up
+ break;
+ }
+}
+
+template <>
+void Writer<x86_64>::fixUpReferenceRelocatable(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const
+{
+ const int64_t twoGigLimit = 0x7FFFFFFF;
+ bool external = this->makesExternalRelocatableReference(ref->getTarget());
+ uint64_t* fixUp = (uint64_t*)&buffer[ref->getFixUpOffset()];
+ int64_t displacement = 0;
+ int32_t temp32;
+ switch ( (x86_64::ReferenceKinds)(ref->getKind()) ) {
+ case x86_64::kNoFixUp:
+ case x86_64::kGOTNoFixUp:
+ case x86_64::kFollowOn:
+ case x86_64::kGroupSubordinate:
+ // do nothing
+ break;
+ case x86_64::kPointer:
+ case x86_64::kPointerWeakImport:
+ {
+ if ( external ) {
+ // external relocation ==> pointer contains addend
+ LittleEndian::set64(*fixUp, ref->getTargetOffset());
+ }
+ else {
+ // internal relocation ==> pointer contains target address
+ LittleEndian::set64(*fixUp, ref->getTarget().getAddress() + ref->getTargetOffset());
+ }
+ }
+ break;
+ case x86_64::kPointer32:
+ {
+ if ( external ) {
+ // external relocation ==> pointer contains addend
+ LittleEndian::set32(*((uint32_t*)fixUp), ref->getTargetOffset());
+ }
+ else {
+ // internal relocation ==> pointer contains target address
+ LittleEndian::set32(*((uint32_t*)fixUp), ref->getTarget().getAddress() + ref->getTargetOffset());
+ }
+ }
+ break;
+ case x86_64::kPointerDiff32:
+ displacement = ref->getTargetOffset() - ref->getFromTargetOffset();
+ if ( ref->getTarget().getSymbolTableInclusion() == ObjectFile::Atom::kSymbolTableNotIn )
+ displacement += ref->getTarget().getAddress();
+ if ( ref->getFromTarget().getSymbolTableInclusion() == ObjectFile::Atom::kSymbolTableNotIn )
+ displacement -= ref->getFromTarget().getAddress();
+ LittleEndian::set32(*((uint32_t*)fixUp), displacement);
+ break;
+ case x86_64::kPointerDiff:
+ displacement = ref->getTargetOffset() - ref->getFromTargetOffset();
+ if ( ref->getTarget().getSymbolTableInclusion() == ObjectFile::Atom::kSymbolTableNotIn )
+ displacement += ref->getTarget().getAddress();
+ if ( ref->getFromTarget().getSymbolTableInclusion() == ObjectFile::Atom::kSymbolTableNotIn )
+ displacement -= ref->getFromTarget().getAddress();
+ LittleEndian::set64(*fixUp, displacement);
+ break;
+ case x86_64::kBranchPCRel32:
+ case x86_64::kBranchPCRel32WeakImport:
+ case x86_64::kDtraceProbeSite:
+ case x86_64::kDtraceIsEnabledSite:
+ case x86_64::kPCRel32:
+ case x86_64::kPCRel32_1:
+ case x86_64::kPCRel32_2:
+ case x86_64::kPCRel32_4:
+ // turn unsigned 64-bit target offset in signed 32-bit offset, since that is what source originally had
+ temp32 = ref->getTargetOffset();
+ if ( external ) {
+ // extern relocation contains addend
+ displacement = temp32;
+ }
+ else {
+ // internal relocations contain delta to target address
+ displacement = (ref->getTarget().getAddress() + temp32) - (inAtom->getAddress() + ref->getFixUpOffset() + 4);
+ }
+ switch ( ref->getKind() ) {
+ case x86_64::kPCRel32_1:
+ displacement -= 1;
+ break;
+ case x86_64::kPCRel32_2:
+ displacement -= 2;
+ break;
+ case x86_64::kPCRel32_4:
+ displacement -= 4;
+ break;
+ }
+ if ( (displacement > twoGigLimit) || (displacement < (-twoGigLimit)) ) {
+ //fprintf(stderr, "call out of range from %s in %s to %s in %s\n", this->getDisplayName(), this->getFile()->getPath(), target.getDisplayName(), target.getFile()->getPath());
+ throw "rel32 out of range";
+ }
+ LittleEndian::set32(*((uint32_t*)fixUp), (int32_t)displacement);
+ break;
+ case x86_64::kBranchPCRel8:
+ // turn unsigned 64-bit target offset in signed 32-bit offset, since that is what source originally had
+ temp32 = ref->getTargetOffset();
+ if ( external ) {
+ // extern relocation contains addend
+ displacement = temp32;
+ }
+ else {
+ // internal relocations contain delta to target address
+ displacement = (ref->getTarget().getAddress() + temp32) - (inAtom->getAddress() + ref->getFixUpOffset() + 1);
+ }
+ if ( (displacement > 127) || (displacement < (-128)) ) {
+ //fprintf(stderr, "call out of range from %s in %s to %s in %s\n", this->getDisplayName(), this->getFile()->getPath(), target.getDisplayName(), target.getFile()->getPath());
+ throw "rel8 out of range";
+ }
+ *((int8_t*)fixUp) = (int8_t)displacement;
+ break;
+ case x86_64::kPCRel32GOT:
+ case x86_64::kPCRel32GOTLoad:
+ case x86_64::kPCRel32GOTWeakImport:
+ case x86_64::kPCRel32GOTLoadWeakImport:
+ // contains addend (usually zero)
+ LittleEndian::set32(*((uint32_t*)fixUp), (uint32_t)(ref->getTargetOffset()));
+ break;
+ case x86_64::kPointerDiff24:
+ throw "internal linker error, kPointerDiff24 can't be encoded into object files";
+ case x86_64::kImageOffset32:
+ throw "internal linker error, kImageOffset32 can't be encoded into object files";
+ case x86_64::kSectionOffset24:
+ throw "internal linker error, kSectionOffset24 can't be encoded into object files";
+ case x86_64::kDtraceTypeReference:
+ case x86_64::kDtraceProbe:
+ // nothing to fix up
+ break;
+ }
+}
+
+template <>
+void Writer<ppc>::fixUpReferenceFinal(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const
+{
+ fixUpReference_powerpc(ref, inAtom, buffer, true);
+}
+
+template <>
+void Writer<ppc64>::fixUpReferenceFinal(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const
+{
+ fixUpReference_powerpc(ref, inAtom, buffer, true);
+}
+
+template <>
+void Writer<ppc>::fixUpReferenceRelocatable(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const
+{
+ fixUpReference_powerpc(ref, inAtom, buffer, false);
+}
+
+template <>
+void Writer<ppc64>::fixUpReferenceRelocatable(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[]) const
+{
+ fixUpReference_powerpc(ref, inAtom, buffer, false);
+}
+
+//
+// ppc and ppc64 are mostly the same, so they share a template specialzation
+//
+template <typename A>
+void Writer<A>::fixUpReference_powerpc(const ObjectFile::Reference* ref, const ObjectFile::Atom* inAtom, uint8_t buffer[], bool finalLinkedImage) const
+{
+ uint32_t instruction;
+ uint32_t newInstruction;
+ int64_t displacement;
+ uint64_t targetAddr = 0;
+ uint64_t picBaseAddr;
+ uint16_t instructionLowHalf;
+ uint16_t instructionHighHalf;
+ uint32_t* fixUp = (uint32_t*)&buffer[ref->getFixUpOffset()];
+ pint_t* fixUpPointer = (pint_t*)&buffer[ref->getFixUpOffset()];
+ bool relocateableExternal = false;
+ const int64_t picbase_twoGigLimit = 0x80000000;
+
+ if ( ref->getTargetBinding() != ObjectFile::Reference::kDontBind ) {
+ targetAddr = ref->getTarget().getAddress() + ref->getTargetOffset();
+ if ( finalLinkedImage )
+ relocateableExternal = (relocationNeededInFinalLinkedImage(ref->getTarget()) == kRelocExternal);
+ else
+ relocateableExternal = this->makesExternalRelocatableReference(ref->getTarget());
+ }
+
+ switch ( (typename A::ReferenceKinds)(ref->getKind()) ) {
+ case A::kNoFixUp:
+ case A::kFollowOn:
+ case A::kGroupSubordinate:
+ // do nothing
+ break;
+ case A::kPointerWeakImport:
+ case A::kPointer:
+ {
+ //fprintf(stderr, "fixUpReferenceFinal: %s reference to %s\n", this->getDisplayName(), target.getDisplayName());
+ if ( finalLinkedImage && (((SectionInfo*)inAtom->getSection())->fAllLazyPointers
+ || ((SectionInfo*)inAtom->getSection())->fAllLazyDylibPointers) ) {
+ switch (ref->getTarget().getDefinitionKind()) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // prebound lazy pointer to another dylib ==> pointer contains zero
+ P::setP(*fixUpPointer, 0);
+ break;
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ // prebound lazy pointer to withing this dylib ==> pointer contains address
+ P::setP(*fixUpPointer, targetAddr);
+ break;
+ }
+ }
+ else if ( !finalLinkedImage && ((SectionInfo*)inAtom->getSection())->fAllNonLazyPointers ) {
+ // if INDIRECT_SYMBOL_LOCAL the content is pointer, else it is zero
+ if ( this->indirectSymbolInRelocatableIsLocal(ref) )
+ P::setP(*fixUpPointer, targetAddr);
+ else
+ P::setP(*fixUpPointer, 0);
+ }
+ else if ( relocateableExternal ) {
+ if ( fOptions.prebind() ) {
+ switch (ref->getTarget().getDefinitionKind()) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // prebound external relocation ==> pointer contains addend
+ P::setP(*fixUpPointer, ref->getTargetOffset());
+ break;
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ // prebound external relocation to internal atom ==> pointer contains target address + addend
+ P::setP(*fixUpPointer, targetAddr);
+ break;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ break;
+ }
+ }
+ else {
+ // external relocation ==> pointer contains addend
+ P::setP(*fixUpPointer, ref->getTargetOffset());
+ }
+ }
+ else {
+ // internal relocation
+ if ( finalLinkedImage || (ref->getTarget().getDefinitionKind() != ObjectFile::Atom::kTentativeDefinition) ) {
+ // pointer contains target address
+ //printf("Atom::fixUpReference_powerpc() target.name=%s, target.address=0x%08llX\n", ref->getTarget().getDisplayName(), targetAddr);
+ P::setP(*fixUpPointer, targetAddr);
+ }
+ else {
+ // pointer contains addend
+ P::setP(*fixUpPointer, ref->getTargetOffset());
+ }
+ }
+ }
+ break;
+ case A::kPointerDiff64:
+ P::setP(*fixUpPointer, targetAddr - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset()) );
+ break;
+ case A::kPointerDiff32:
+ P::E::set32(*fixUp, targetAddr - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset()) );
+ break;
+ case A::kPointerDiff16:
+ P::E::set16(*((uint16_t*)fixUp), targetAddr - (ref->getFromTarget().getAddress() + ref->getFromTargetOffset()) );
+ break;
+ case A::kDtraceProbeSite:
+ if ( finalLinkedImage ) {
+ // change call site to a NOP
+ BigEndian::set32(*fixUp, 0x60000000);
+ }
+ else {
+ // set bl instuction to branch to address zero in .o file
+ int64_t displacement = ref->getTargetOffset() - (inAtom->getAddress() + ref->getFixUpOffset());
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFC000003) | ((uint32_t)displacement & 0x03FFFFFC);
+ BigEndian::set32(*fixUp, newInstruction);
+ }
+ break;
+ case A::kDtraceIsEnabledSite:
+ if ( finalLinkedImage ) {
+ // change call site to a li r3,0
+ BigEndian::set32(*fixUp, 0x38600000);
+ }
+ else {
+ // set bl instuction to branch to address zero in .o file
+ int64_t displacement = ref->getTargetOffset() - (inAtom->getAddress() + ref->getFixUpOffset());
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFC000003) | ((uint32_t)displacement & 0x03FFFFFC);
+ BigEndian::set32(*fixUp, newInstruction);
+ }
+ break;
+ case A::kBranch24WeakImport:
+ case A::kBranch24:
+ {
+ //fprintf(stderr, "bl fixup to %s at 0x%08llX, ", target.getDisplayName(), target.getAddress());
+ int64_t displacement = targetAddr - (inAtom->getAddress() + ref->getFixUpOffset());
+ if ( relocateableExternal ) {
+ // doing "ld -r" to an external symbol
+ // the mach-o way of encoding this is that the bl instruction's target addr is the offset into the target
+ displacement -= ref->getTarget().getAddress();
+ }
+ else {
+ const int64_t bl_eightMegLimit = 0x00FFFFFF;
+ if ( (displacement > bl_eightMegLimit) || (displacement < (-bl_eightMegLimit)) ) {
+ //fprintf(stderr, "bl out of range (%lld max is +/-16M) from %s in %s to %s in %s\n", displacement, this->getDisplayName(), this->getFile()->getPath(), target.getDisplayName(), target.getFile()->getPath());
+ throwf("bl out of range (%lld max is +/-16M) from %s at 0x%08llX in %s of %s to %s at 0x%08llX in %s of %s",
+ displacement, inAtom->getDisplayName(), inAtom->getAddress(), inAtom->getSectionName(), inAtom->getFile()->getPath(),
+ ref->getTarget().getDisplayName(), ref->getTarget().getAddress(), ref->getTarget().getSectionName(), ref->getTarget().getFile()->getPath());
+ }
+ }
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFC000003) | ((uint32_t)displacement & 0x03FFFFFC);
+ //fprintf(stderr, "bl fixup: 0x%08X -> 0x%08X\n", instruction, newInstruction);
+ BigEndian::set32(*fixUp, newInstruction);
+ }
+ break;
+ case A::kBranch14:
+ {
+ int64_t displacement = targetAddr - (inAtom->getAddress() + ref->getFixUpOffset());
+ if ( relocateableExternal ) {
+ // doing "ld -r" to an external symbol
+ // the mach-o way of encoding this is that the bl instruction's target addr is the offset into the target
+ displacement -= ref->getTarget().getAddress();
+ }
+ const int64_t b_sixtyFourKiloLimit = 0x0000FFFF;
+ if ( (displacement > b_sixtyFourKiloLimit) || (displacement < (-b_sixtyFourKiloLimit)) ) {
+ //fprintf(stderr, "bl out of range (%lld max is +/-16M) from %s in %s to %s in %s\n", displacement, this->getDisplayName(), this->getFile()->getPath(), target.getDisplayName(), target.getFile()->getPath());
+ throwf("bcc out of range (%lld max is +/-64K) from %s in %s to %s in %s",
+ displacement, inAtom->getDisplayName(), inAtom->getFile()->getPath(),
+ ref->getTarget().getDisplayName(), ref->getTarget().getFile()->getPath());
+ }
+
+ //fprintf(stderr, "bcc fixup displacement=0x%08llX, atom.addr=0x%08llX, atom.offset=0x%08X\n", displacement, inAtom->getAddress(), (uint32_t)ref->getFixUpOffset());
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFFFF0003) | ((uint32_t)displacement & 0x0000FFFC);
+ //fprintf(stderr, "bc fixup: 0x%08X -> 0x%08X\n", instruction, newInstruction);
+ BigEndian::set32(*fixUp, newInstruction);
+ }
+ break;
+ case A::kPICBaseLow16:
+ picBaseAddr = ref->getFromTarget().getAddress() + ref->getFromTargetOffset();
+ displacement = targetAddr - picBaseAddr;
+ if ( (displacement > picbase_twoGigLimit) || (displacement < (-picbase_twoGigLimit)) )
+ throw "32-bit pic-base out of range";
+ instructionLowHalf = (displacement & 0xFFFF);
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFFFF0000) | instructionLowHalf;
+ BigEndian::set32(*fixUp, newInstruction);
+ break;
+ case A::kPICBaseLow14:
+ picBaseAddr = ref->getFromTarget().getAddress() + ref->getFromTargetOffset();
+ displacement = targetAddr - picBaseAddr;
+ if ( (displacement > picbase_twoGigLimit) || (displacement < (-picbase_twoGigLimit)) )
+ throw "32-bit pic-base out of range";
+ if ( (displacement & 0x3) != 0 )
+ throwf("bad offset (0x%08X) for lo14 instruction pic-base fix-up", (uint32_t)displacement);
+ instructionLowHalf = (displacement & 0xFFFC);
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFFFF0003) | instructionLowHalf;
+ BigEndian::set32(*fixUp, newInstruction);
+ break;
+ case A::kPICBaseHigh16:
+ picBaseAddr = ref->getFromTarget().getAddress() + ref->getFromTargetOffset();
+ displacement = targetAddr - picBaseAddr;
+ if ( (displacement > picbase_twoGigLimit) || (displacement < (-picbase_twoGigLimit)) )
+ throw "32-bit pic-base out of range";
+ instructionLowHalf = displacement >> 16;
+ if ( (displacement & 0x00008000) != 0 )
+ ++instructionLowHalf;
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFFFF0000) | instructionLowHalf;
+ BigEndian::set32(*fixUp, newInstruction);
+ break;
+ case A::kAbsLow16:
+ if ( relocateableExternal && !finalLinkedImage )
+ targetAddr -= ref->getTarget().getAddress();
+ instructionLowHalf = (targetAddr & 0xFFFF);
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFFFF0000) | instructionLowHalf;
+ BigEndian::set32(*fixUp, newInstruction);
+ break;
+ case A::kAbsLow14:
+ if ( relocateableExternal && !finalLinkedImage )
+ targetAddr -= ref->getTarget().getAddress();
+ if ( (targetAddr & 0x3) != 0 )
+ throw "bad address for absolute lo14 instruction fix-up";
+ instructionLowHalf = (targetAddr & 0xFFFF);
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFFFF0003) | instructionLowHalf;
+ BigEndian::set32(*fixUp, newInstruction);
+ break;
+ case A::kAbsHigh16:
+ if ( relocateableExternal ) {
+ if ( finalLinkedImage ) {
+ switch (ref->getTarget().getDefinitionKind()) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ throwf("absolute address to symbol %s in a different linkage unit not supported", ref->getTargetName());
+ break;
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ // use target address
+ break;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ targetAddr = ref->getTarget().getSectionOffset();
+ break;
+ }
+ }
+ else {
+ targetAddr -= ref->getTarget().getAddress();
+ }
+ }
+ instructionHighHalf = (targetAddr >> 16);
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFFFF0000) | instructionHighHalf;
+ BigEndian::set32(*fixUp, newInstruction);
+ break;
+ case A::kAbsHigh16AddLow:
+ if ( relocateableExternal ) {
+ if ( finalLinkedImage ) {
+ switch (ref->getTarget().getDefinitionKind()) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ throwf("absolute address to symbol %s in a different linkage unit not supported", ref->getTargetName());
+ break;
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ // use target address
+ break;
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ targetAddr = ref->getTarget().getSectionOffset();
+ break;
+ }
+ }
+ else {
+ targetAddr -= ref->getTarget().getAddress();
+ }
+ }
+ if ( targetAddr & 0x00008000 )
+ targetAddr += 0x00010000;
+ instruction = BigEndian::get32(*fixUp);
+ newInstruction = (instruction & 0xFFFF0000) | (targetAddr >> 16);
+ BigEndian::set32(*fixUp, newInstruction);
+ break;
+ case A::kDtraceTypeReference:
+ case A::kDtraceProbe:
+ // nothing to fix up
+ break;
+ }
+}
+
+template <>
+bool Writer<ppc>::stubableReference(const ObjectFile::Atom* inAtom, const ObjectFile::Reference* ref)
+{
+ uint8_t kind = ref->getKind();
+ switch ( (ppc::ReferenceKinds)kind ) {
+ case ppc::kNoFixUp:
+ case ppc::kFollowOn:
+ case ppc::kGroupSubordinate:
+ case ppc::kPointer:
+ case ppc::kPointerWeakImport:
+ case ppc::kPointerDiff16:
+ case ppc::kPointerDiff32:
+ case ppc::kPointerDiff64:
+ case ppc::kDtraceProbe:
+ case ppc::kDtraceProbeSite:
+ case ppc::kDtraceIsEnabledSite:
+ case ppc::kDtraceTypeReference:
+ // these are never used to call external functions
+ return false;
+ case ppc::kBranch24:
+ case ppc::kBranch24WeakImport:
+ case ppc::kBranch14:
+ // these are used to call external functions
+ return true;
+ case ppc::kPICBaseLow16:
+ case ppc::kPICBaseLow14:
+ case ppc::kPICBaseHigh16:
+ case ppc::kAbsLow16:
+ case ppc::kAbsLow14:
+ case ppc::kAbsHigh16:
+ case ppc::kAbsHigh16AddLow:
+ // these are only used to call external functions
+ // in -mlong-branch stubs
+ switch ( ref->getTarget().getDefinitionKind() ) {
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ // if the .o file this atom came from has long-branch stubs,
+ // then assume these instructions in a stub.
+ // Otherwise, these are a direct reference to something (maybe a runtime text reloc)
+ return ( inAtom->getFile()->hasLongBranchStubs() );
+ case ObjectFile::Atom::kTentativeDefinition:
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ return false;
+ }
+ break;
+ }
+ return false;
+}
+
+template <>
+bool Writer<arm>::stubableReference(const ObjectFile::Atom* inAtom, const ObjectFile::Reference* ref)
+{
+ uint8_t kind = ref->getKind();
+ switch ( (arm::ReferenceKinds)kind ) {
+ case arm::kBranch24:
+ case arm::kBranch24WeakImport:
+ case arm::kThumbBranch22:
+ case arm::kThumbBranch22WeakImport:
+ return true;
+ case arm::kNoFixUp:
+ case arm::kFollowOn:
+ case arm::kGroupSubordinate:
+ case arm::kPointer:
+ case arm::kReadOnlyPointer:
+ case arm::kPointerWeakImport:
+ case arm::kPointerDiff:
+ case arm::kDtraceProbe:
+ case arm::kDtraceProbeSite:
+ case arm::kDtraceIsEnabledSite:
+ case arm::kDtraceTypeReference:
+ return false;
+ }
+ return false;
+}
+
+template <>
+bool Writer<ppc64>::stubableReference(const ObjectFile::Atom* inAtom, const ObjectFile::Reference* ref)
+{
+ uint8_t kind = ref->getKind();
+ switch ( (ppc64::ReferenceKinds)kind ) {
+ case ppc::kNoFixUp:
+ case ppc::kFollowOn:
+ case ppc::kGroupSubordinate:
+ case ppc::kPointer:
+ case ppc::kPointerWeakImport:
+ case ppc::kPointerDiff16:
+ case ppc::kPointerDiff32:
+ case ppc::kPointerDiff64:
+ case ppc::kPICBaseLow16:
+ case ppc::kPICBaseLow14:
+ case ppc::kPICBaseHigh16:
+ case ppc::kAbsLow16:
+ case ppc::kAbsLow14:
+ case ppc::kAbsHigh16:
+ case ppc::kAbsHigh16AddLow:
+ case ppc::kDtraceProbe:
+ case ppc::kDtraceProbeSite:
+ case ppc::kDtraceIsEnabledSite:
+ case ppc::kDtraceTypeReference:
+ // these are never used to call external functions
+ return false;
+ case ppc::kBranch24:
+ case ppc::kBranch24WeakImport:
+ case ppc::kBranch14:
+ // these are used to call external functions
+ return true;
+ }
+ return false;
+}
+
+template <>
+bool Writer<x86>::stubableReference(const ObjectFile::Atom* inAtom, const ObjectFile::Reference* ref)
+{
+ uint8_t kind = ref->getKind();
+ return (kind == x86::kPCRel32 || kind == x86::kPCRel32WeakImport);
+}
+
+template <>
+bool Writer<x86_64>::stubableReference(const ObjectFile::Atom* inAtom, const ObjectFile::Reference* ref)
+{
+ uint8_t kind = ref->getKind();
+ return (kind == x86_64::kBranchPCRel32 || kind == x86_64::kBranchPCRel32WeakImport);
+}
+
+
+template <>
+bool Writer<ppc>::weakImportReferenceKind(uint8_t kind)
+{
+ return (kind == ppc::kBranch24WeakImport || kind == ppc::kPointerWeakImport);
+}
+
+template <>
+bool Writer<ppc64>::weakImportReferenceKind(uint8_t kind)
+{
+ return (kind == ppc64::kBranch24WeakImport || kind == ppc64::kPointerWeakImport);
+}
+
+template <>
+bool Writer<x86>::weakImportReferenceKind(uint8_t kind)
+{
+ return (kind == x86::kPCRel32WeakImport || kind == x86::kPointerWeakImport);
+}
+
+template <>
+bool Writer<x86_64>::weakImportReferenceKind(uint8_t kind)
+{
+ switch ( kind ) {
+ case x86_64::kPointerWeakImport:
+ case x86_64::kBranchPCRel32WeakImport:
+ case x86_64::kPCRel32GOTWeakImport:
+ case x86_64::kPCRel32GOTLoadWeakImport:
+ return true;
+ }
+ return false;
+}
+
+template <>
+bool Writer<arm>::weakImportReferenceKind(uint8_t kind)
+{
+ return (kind == arm::kBranch24WeakImport || kind == arm::kThumbBranch22WeakImport ||
+ kind == arm::kPointerWeakImport);
+}
+
+template <>
+bool Writer<ppc>::GOTReferenceKind(uint8_t kind)
+{
+ return false;
+}
+
+template <>
+bool Writer<ppc64>::GOTReferenceKind(uint8_t kind)
+{
+ return false;
+}
+
+template <>
+bool Writer<x86>::GOTReferenceKind(uint8_t kind)
+{
+ return false;
+}
+
+template <>
+bool Writer<x86_64>::GOTReferenceKind(uint8_t kind)
+{
+ switch ( kind ) {
+ case x86_64::kPCRel32GOT:
+ case x86_64::kPCRel32GOTWeakImport:
+ case x86_64::kPCRel32GOTLoad:
+ case x86_64::kPCRel32GOTLoadWeakImport:
+ case x86_64::kGOTNoFixUp:
+ return true;
+ }
+ return false;
+}
+
+template <>
+bool Writer<arm>::GOTReferenceKind(uint8_t kind)
+{
+ return false;
+}
+
+template <>
+bool Writer<ppc>::optimizableGOTReferenceKind(uint8_t kind)
+{
+ return false;
+}
+
+template <>
+bool Writer<ppc64>::optimizableGOTReferenceKind(uint8_t kind)
+{
+ return false;
+}
+
+template <>
+bool Writer<x86>::optimizableGOTReferenceKind(uint8_t kind)
+{
+ return false;
+}
+
+template <>
+bool Writer<x86_64>::optimizableGOTReferenceKind(uint8_t kind)
+{
+ switch ( kind ) {
+ case x86_64::kPCRel32GOTLoad:
+ case x86_64::kPCRel32GOTLoadWeakImport:
+ return true;
+ }
+ return false;
+}
+
+template <>
+bool Writer<arm>::optimizableGOTReferenceKind(uint8_t kind)
+{
+ return false;
+}
+
+// 64-bit architectures never need module table, 32-bit sometimes do for backwards compatiblity
+template <typename A> bool Writer<A>::needsModuleTable() {return fOptions.needsModuleTable(); }
+template <> bool Writer<ppc64>::needsModuleTable() { return false; }
+template <> bool Writer<x86_64>::needsModuleTable() { return false; }
+
+
+template <typename A>
+void Writer<A>::optimizeDylibReferences()
+{
+ //fprintf(stderr, "original ordinals table:\n");
+ //for (std::map<class ObjectFile::Reader*, uint32_t>::iterator it = fLibraryToOrdinal.begin(); it != fLibraryToOrdinal.end(); ++it) {
+ // fprintf(stderr, "%u <== %p/%s\n", it->second, it->first, it->first->getPath());
+ //}
+ // find unused dylibs that can be removed
+ std::map<uint32_t, ObjectFile::Reader*> ordinalToReader;
+ std::map<ObjectFile::Reader*, ObjectFile::Reader*> readerAliases;
+ for (std::map<ObjectFile::Reader*, uint32_t>::iterator it = fLibraryToOrdinal.begin(); it != fLibraryToOrdinal.end(); ++it) {
+ ObjectFile::Reader* reader = it->first;
+ std::map<ObjectFile::Reader*, ObjectFile::Reader*>::iterator aliasPos = fLibraryAliases.find(reader);
+ if ( aliasPos != fLibraryAliases.end() ) {
+ // already noticed that this reader has same install name as another reader
+ readerAliases[reader] = aliasPos->second;
+ }
+ else if ( !reader->providedExportAtom() && (reader->implicitlyLinked() || reader->deadStrippable() || fOptions.deadStripDylibs()) ) {
+ // this reader can be optimized away
+ it->second = 0xFFFFFFFF;
+ typename std::map<class ObjectFile::Reader*, class DylibLoadCommandsAtom<A>* >::iterator pos = fLibraryToLoadCommand.find(reader);
+ if ( pos != fLibraryToLoadCommand.end() )
+ pos->second->optimizeAway();
+ }
+ else {
+ // mark this reader as using it ordinal
+ std::map<uint32_t, ObjectFile::Reader*>::iterator pos = ordinalToReader.find(it->second);
+ if ( pos == ordinalToReader.end() )
+ ordinalToReader[it->second] = reader;
+ else
+ readerAliases[reader] = pos->second;
+ }
+ }
+ // renumber ordinals (depends on iterator walking in ordinal order)
+ // all LC_LAZY_LOAD_DYLIB load commands must have highest ordinals
+ uint32_t newOrdinal = 0;
+ for (std::map<uint32_t, ObjectFile::Reader*>::iterator it = ordinalToReader.begin(); it != ordinalToReader.end(); ++it) {
+ if ( it->first <= fLibraryToOrdinal.size() ) {
+ if ( ! it->second->isLazyLoadedDylib() )
+ fLibraryToOrdinal[it->second] = ++newOrdinal;
+ }
+ }
+ for (std::map<uint32_t, ObjectFile::Reader*>::iterator it = ordinalToReader.begin(); it != ordinalToReader.end(); ++it) {
+ if ( it->first <= fLibraryToOrdinal.size() ) {
+ if ( it->second->isLazyLoadedDylib() ) {
+ fLibraryToOrdinal[it->second] = ++newOrdinal;
+ }
+ }
+ }
+
+ // <rdar://problem/5504954> linker does not error when dylib ordinal exceeds 250
+ if ( (newOrdinal >= MAX_LIBRARY_ORDINAL) && (fOptions.nameSpace() == Options::kTwoLevelNameSpace) )
+ throwf("two level namespace mach-o files can link with at most %d dylibs, this link would use %d dylibs", MAX_LIBRARY_ORDINAL, newOrdinal);
+
+ // add aliases (e.g. -lm points to libSystem.dylib)
+ for (std::map<ObjectFile::Reader*, ObjectFile::Reader*>::iterator it = readerAliases.begin(); it != readerAliases.end(); ++it) {
+ fLibraryToOrdinal[it->first] = fLibraryToOrdinal[it->second];
+ }
+
+ //fprintf(stderr, "new ordinals table:\n");
+ //for (std::map<class ObjectFile::Reader*, uint32_t>::iterator it = fLibraryToOrdinal.begin(); it != fLibraryToOrdinal.end(); ++it) {
+ // fprintf(stderr, "%u <== %p/%s\n", it->second, it->first, it->first->getPath());
+ //}
+}
+
+
+template <>
+void Writer<arm>::scanForAbsoluteReferences()
+{
+ // arm codegen never has absolute references. FIXME: Is this correct?
+}
+
+template <>
+void Writer<x86_64>::scanForAbsoluteReferences()
+{
+ // x86_64 codegen never has absolute references
+}
+
+template <>
+void Writer<x86>::scanForAbsoluteReferences()
+{
+ // when linking -pie verify there are no absolute addressing, unless -read_only_relocs is also used
+ if ( fOptions.positionIndependentExecutable() && !fOptions.allowTextRelocs() ) {
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ std::vector<ObjectFile::Reference*>& references = atom->getReferences();
+ for (std::vector<ObjectFile::Reference*>::iterator rit=references.begin(); rit != references.end(); rit++) {
+ ObjectFile::Reference* ref = *rit;
+ switch (ref->getKind()) {
+ case x86::kAbsolute32:
+ throwf("cannot link -pie: -mdynamic-no-pic codegen found in %s from %s", atom->getDisplayName(), atom->getFile()->getPath());
+ return;
+ }
+ }
+ }
+ }
+}
+
+template <>
+void Writer<ppc>::scanForAbsoluteReferences()
+{
+ // when linking -pie verify there are no absolute addressing, unless -read_only_relocs is also used
+ if ( fOptions.positionIndependentExecutable() && !fOptions.allowTextRelocs() ) {
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ std::vector<ObjectFile::Reference*>& references = atom->getReferences();
+ for (std::vector<ObjectFile::Reference*>::iterator rit=references.begin(); rit != references.end(); rit++) {
+ ObjectFile::Reference* ref = *rit;
+ switch (ref->getKind()) {
+ case ppc::kAbsLow16:
+ case ppc::kAbsLow14:
+ case ppc::kAbsHigh16:
+ case ppc::kAbsHigh16AddLow:
+ throwf("cannot link -pie: -mdynamic-no-pic codegen found in %s from %s", atom->getDisplayName(), atom->getFile()->getPath());
+ return;
+ }
+ }
+ }
+ }
+}
+
+
+// for ppc64 look for any -mdynamic-no-pic codegen
+template <>
+void Writer<ppc64>::scanForAbsoluteReferences()
+{
+ // only do this for main executable
+ if ( mightNeedPadSegment() && (fPageZeroAtom != NULL) ) {
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ std::vector<ObjectFile::Reference*>& references = atom->getReferences();
+ for (std::vector<ObjectFile::Reference*>::iterator rit=references.begin(); rit != references.end(); rit++) {
+ ObjectFile::Reference* ref = *rit;
+ switch (ref->getKind()) {
+ case ppc64::kAbsLow16:
+ case ppc64::kAbsLow14:
+ case ppc64::kAbsHigh16:
+ case ppc64::kAbsHigh16AddLow:
+ //fprintf(stderr, "found -mdynamic-no-pic codegen in %s in %s\n", atom->getDisplayName(), atom->getFile()->getPath());
+ // shrink page-zero and add pad segment to compensate
+ fPadSegmentInfo = new SegmentInfo(4096);
+ strcpy(fPadSegmentInfo->fName, "__4GBFILL");
+ fPageZeroAtom->setSize(0x1000);
+ return;
+ }
+ }
+ }
+ }
+}
+
+
+template <typename A>
+void Writer<A>::insertDummyStubs()
+{
+ // only needed for x86
+}
+
+template <>
+void Writer<x86>::insertDummyStubs()
+{
+ // any 5-byte stubs that cross a 32-byte cache line may update incorrectly
+ std::vector<class StubAtom<x86>*> betterStubs;
+ for (std::vector<class StubAtom<x86>*>::iterator it=fAllSynthesizedStubs.begin(); it != fAllSynthesizedStubs.end(); it++) {
+ switch (betterStubs.size() % 64 ) {
+ case 12:// stub would occupy 0x3C->0x41
+ case 25:// stub would occupy 0x7D->0x82
+ case 38:// stub would occupy 0xBE->0xC3
+ case 51:// stub would occupy 0xFF->0x04
+ betterStubs.push_back(new StubAtom<x86>(*this, *((ObjectFile::Atom*)NULL), false)); //pad with dummy stub
+ break;
+ }
+ betterStubs.push_back(*it);
+ }
+ // replace
+ fAllSynthesizedStubs.clear();
+ fAllSynthesizedStubs.insert(fAllSynthesizedStubs.begin(), betterStubs.begin(), betterStubs.end());
+}
+
+
+template <typename A>
+void Writer<A>::synthesizeKextGOT()
+{
+ // walk every atom and reference
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ std::vector<ObjectFile::Reference*>& references = atom->getReferences();
+ for (std::vector<ObjectFile::Reference*>::iterator rit=references.begin(); rit != references.end(); rit++) {
+ ObjectFile::Reference* ref = *rit;
+ switch ( ref->getTargetBinding()) {
+ case ObjectFile::Reference::kUnboundByName:
+ case ObjectFile::Reference::kDontBind:
+ break;
+ case ObjectFile::Reference::kBoundByName:
+ case ObjectFile::Reference::kBoundDirectly:
+ ObjectFile::Atom& target = ref->getTarget();
+ // create GOT slots (non-lazy pointers) as needed
+ if ( this->GOTReferenceKind(ref->getKind()) ) {
+ bool useGOT = ( this->relocationNeededInFinalLinkedImage(ref->getTarget()) == kRelocExternal );
+ // if this GOT usage cannot be optimized away then make a GOT enry
+ if ( ! this->optimizableGOTReferenceKind(ref->getKind()) )
+ useGOT = true;
+ if ( useGOT ) {
+ ObjectFile::Atom* nlp = NULL;
+ std::map<ObjectFile::Atom*,ObjectFile::Atom*>::iterator pos = fGOTMap.find(&target);
+ if ( pos == fGOTMap.end() ) {
+ nlp = new NonLazyPointerAtom<A>(*this, target);
+ fGOTMap[&target] = nlp;
+ }
+ else {
+ nlp = pos->second;
+ }
+ // alter reference to use non lazy pointer instead
+ ref->setTarget(*nlp, ref->getTargetOffset());
+ }
+ }
+ // build map of which symbols need weak importing
+ if ( (target.getDefinitionKind() == ObjectFile::Atom::kExternalDefinition)
+ || (target.getDefinitionKind() == ObjectFile::Atom::kExternalWeakDefinition) ) {
+ if ( this->weakImportReferenceKind(ref->getKind()) ) {
+ fWeakImportMap[&target] = true;
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ // add non-lazy pointers to fAllAtoms
+ if ( fAllSynthesizedNonLazyPointers.size() != 0 ) {
+ ObjectFile::Section* curSection = NULL;
+ ObjectFile::Atom* prevAtom = NULL;
+ bool inserted = false;
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ ObjectFile::Section* nextSection = atom->getSection();
+ if ( nextSection != curSection ) {
+ if ( (prevAtom != NULL) && (strcmp(prevAtom->getSectionName(), "__data") == 0) ) {
+ // found end of __data section, insert lazy pointers here
+ fAllAtoms->insert(it, fAllSynthesizedNonLazyPointers.begin(), fAllSynthesizedNonLazyPointers.end());
+ inserted = true;
+ break;
+ }
+ curSection = nextSection;
+ }
+ prevAtom = atom;
+ }
+ if ( !inserted ) {
+ throw "can't insert non-lazy pointers, __data section not found";
+ }
+ }
+
+}
+
+
+template <typename A>
+void Writer<A>::synthesizeStubs()
+{
+ switch ( fOptions.outputKind() ) {
+ case Options::kObjectFile:
+ case Options::kPreload:
+ // these output kinds never have stubs
+ return;
+ case Options::kKextBundle:
+ // new kext need a synthesized GOT only
+ synthesizeKextGOT();
+ return;
+ case Options::kStaticExecutable:
+ case Options::kDyld:
+ case Options::kDynamicLibrary:
+ case Options::kDynamicBundle:
+ case Options::kDynamicExecutable:
+ // try to synthesize stubs for these
+ break;
+ }
+
+ // walk every atom and reference
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ std::vector<ObjectFile::Reference*>& references = atom->getReferences();
+ for (std::vector<ObjectFile::Reference*>::iterator rit=references.begin(); rit != references.end(); rit++) {
+ ObjectFile::Reference* ref = *rit;
+ switch ( ref->getTargetBinding()) {
+ case ObjectFile::Reference::kUnboundByName:
+ case ObjectFile::Reference::kDontBind:
+ break;
+ case ObjectFile::Reference::kBoundByName:
+ case ObjectFile::Reference::kBoundDirectly:
+ ObjectFile::Atom& target = ref->getTarget();
+ // build map of which symbols need weak importing
+ if ( (target.getDefinitionKind() == ObjectFile::Atom::kExternalDefinition)
+ || (target.getDefinitionKind() == ObjectFile::Atom::kExternalWeakDefinition) ) {
+ bool weakImport = this->weakImportReferenceKind(ref->getKind());
+ // <rdar://problem/5633081> Obj-C Symbols in Leopard Can't Be Weak Linked
+ // dyld in Mac OS X 10.3 and earlier need N_WEAK_REF bit set on undefines to objc symbols
+ // in dylibs that are weakly linked.
+ if ( (ref->getKind() == A::kNoFixUp) && (strncmp(target.getName(), ".objc_class_name_", 17) == 0) ) {
+ typename std::map<class ObjectFile::Reader*, class DylibLoadCommandsAtom<A>* >::iterator pos;
+ pos = fLibraryToLoadCommand.find(target.getFile());
+ if ( pos != fLibraryToLoadCommand.end() ) {
+ if ( pos->second->linkedWeak() )
+ weakImport = true;
+ }
+ }
+ // <rdar://problem/6186838> -weak_library no longer forces uses to be weak_import
+ if ( fForcedWeakImportReaders.count(target.getFile()) != 0 ) {
+ fWeakImportMap[&target] = true;
+ weakImport = true;
+ }
+
+ std::map<const ObjectFile::Atom*,bool>::iterator pos = fWeakImportMap.find(&target);
+ if ( pos == fWeakImportMap.end() ) {
+ // target not in fWeakImportMap, so add
+ fWeakImportMap[&target] = weakImport;
+ }
+ else {
+ // target in fWeakImportMap, check for weakness mismatch
+ if ( pos->second != weakImport ) {
+ // found mismatch
+ switch ( fOptions.weakReferenceMismatchTreatment() ) {
+ case Options::kWeakReferenceMismatchError:
+ throwf("mismatching weak references for symbol: %s", target.getName());
+ case Options::kWeakReferenceMismatchWeak:
+ pos->second = true;
+ break;
+ case Options::kWeakReferenceMismatchNonWeak:
+ pos->second = false;
+ break;
+ }
+ }
+ }
+ // update if we use a weak_import or a strong import from this dylib
+ if ( fWeakImportMap[&target] )
+ fDylibReadersWithWeakImports.insert(target.getFile());
+ else
+ fDylibReadersWithNonWeakImports.insert(target.getFile());
+ }
+ // create stubs as needed
+ if ( this->stubableReference(atom, ref)
+ && (ref->getTargetOffset() == 0)
+ && this->relocationNeededInFinalLinkedImage(target) == kRelocExternal ) {
+ ObjectFile::Atom* stub = NULL;
+ std::map<const ObjectFile::Atom*,ObjectFile::Atom*>::iterator pos = fStubsMap.find(&target);
+ if ( pos == fStubsMap.end() ) {
+ bool forLazyDylib = false;
+ switch ( target.getDefinitionKind() ) {
+ case ObjectFile::Atom::kRegularDefinition:
+ case ObjectFile::Atom::kWeakDefinition:
+ case ObjectFile::Atom::kAbsoluteSymbol:
+ case ObjectFile::Atom::kTentativeDefinition:
+ break;
+ case ObjectFile::Atom::kExternalDefinition:
+ case ObjectFile::Atom::kExternalWeakDefinition:
+ if ( target.getFile()->isLazyLoadedDylib() )
+ forLazyDylib = true;
+ break;
+ }
+ // just-in-time, create GOT slot to dyld_stub_binder
+ if ( fOptions.makeCompressedDyldInfo() && (fFastStubGOTAtom == NULL) ) {
+ if ( fDyldCompressedHelperAtom == NULL )
+ throw "missing symbol dyld_stub_binder";
+ fFastStubGOTAtom = new NonLazyPointerAtom<A>(*this, *fDyldCompressedHelperAtom);
+ }
+ stub = new StubAtom<A>(*this, target, forLazyDylib);
+ fStubsMap[&target] = stub;
+ }
+ else {
+ stub = pos->second;
+ }
+ // alter reference to use stub instead
+ ref->setTarget(*stub, 0);
+ }
+ else if ( fOptions.usingLazyDylibLinking() && target.getFile()->isLazyLoadedDylib() ) {
+ throwf("illegal reference to %s in lazy loaded dylib from %s in %s",
+ target.getDisplayName(), atom->getDisplayName(),
+ atom->getFile()->getPath());
+ }
+ // create GOT slots (non-lazy pointers) as needed
+ else if ( this->GOTReferenceKind(ref->getKind()) ) {
+ //
+ bool mustUseGOT = ( this->relocationNeededInFinalLinkedImage(ref->getTarget()) == kRelocExternal );
+ bool useGOT;
+ if ( fBiggerThanTwoGigs ) {
+ // in big images use GOT for all zero fill atoms
+ // this is just a heuristic and may need to be re-examined
+ useGOT = mustUseGOT || ref->getTarget().isZeroFill();
+ }
+ else {
+ // < 2GB image so remove all GOT entries that we can
+ useGOT = mustUseGOT;
+ }
+ // if this GOT usage cannot be optimized away then make a GOT enry
+ if ( ! this->optimizableGOTReferenceKind(ref->getKind()) )
+ useGOT = true;
+ if ( useGOT ) {
+ ObjectFile::Atom* nlp = NULL;
+ std::map<ObjectFile::Atom*,ObjectFile::Atom*>::iterator pos = fGOTMap.find(&target);
+ if ( pos == fGOTMap.end() ) {
+ nlp = new NonLazyPointerAtom<A>(*this, target);
+ fGOTMap[&target] = nlp;
+ }
+ else {
+ nlp = pos->second;
+ }
+ // alter reference to use non lazy pointer instead
+ ref->setTarget(*nlp, ref->getTargetOffset());
+ }
+ }
+ }
+ }
+ }
+
+ // sort stubs
+ std::sort(fAllSynthesizedStubs.begin(), fAllSynthesizedStubs.end(), AtomByNameSorter());
+ std::sort(fAllSynthesizedStubHelpers.begin(), fAllSynthesizedStubHelpers.end(), AtomByNameSorter());
+
+ // add dummy self-modifying stubs (x86 only)
+ if ( ! fOptions.makeCompressedDyldInfo() )
+ this->insertDummyStubs();
+
+ // sort lazy pointers
+ std::sort(fAllSynthesizedLazyPointers.begin(), fAllSynthesizedLazyPointers.end(), AtomByNameSorter());
+ std::sort(fAllSynthesizedLazyDylibPointers.begin(), fAllSynthesizedLazyDylibPointers.end(), AtomByNameSorter());
+
+
+ // add stubs to fAllAtoms
+ if ( fAllSynthesizedStubs.size() != 0 ) {
+ std::vector<ObjectFile::Atom*> textStubs;
+ std::vector<ObjectFile::Atom*> importStubs;
+ for (typename std::vector<class StubAtom<A>*>::iterator sit=fAllSynthesizedStubs.begin(); sit != fAllSynthesizedStubs.end(); ++sit) {
+ ObjectFile::Atom* stubAtom = *sit;
+ if ( strcmp(stubAtom->getSegment().getName(), "__TEXT") == 0 )
+ textStubs.push_back(stubAtom);
+ else
+ importStubs.push_back(stubAtom);
+ }
+ // any helper stubs go right after regular stubs
+ if ( fAllSynthesizedStubHelpers.size() != 0 )
+ textStubs.insert(textStubs.end(), fAllSynthesizedStubHelpers.begin(), fAllSynthesizedStubHelpers.end());
+ // insert text stubs right after __text section
+ ObjectFile::Section* curSection = NULL;
+ ObjectFile::Atom* prevAtom = NULL;
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ ObjectFile::Section* nextSection = atom->getSection();
+ if ( nextSection != curSection ) {
+ if ( (prevAtom != NULL) && (strcmp(prevAtom->getSectionName(), "__text") == 0) ) {
+ // found end of __text section, insert stubs here
+ fAllAtoms->insert(it, textStubs.begin(), textStubs.end());
+ break;
+ }
+ curSection = nextSection;
+ }
+ prevAtom = atom;
+ }
+ if ( importStubs.size() != 0 ) {
+ // insert __IMPORTS stubs right before __LINKEDIT
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ ObjectFile::Section* nextSection = atom->getSection();
+ if ( nextSection != curSection ) {
+ // for i386 where stubs are not in __TEXT segment
+ if ( ((prevAtom != NULL) && (strcmp(prevAtom->getSegment().getName(), "__IMPORT") == 0))
+ || (strcmp(atom->getSegment().getName(), "__LINKEDIT") == 0) ) {
+ // insert stubs at end of __IMPORT segment, or before __LINKEDIT
+ fAllAtoms->insert(it, importStubs.begin(), importStubs.end());
+ break;
+ }
+ curSection = nextSection;
+ }
+ prevAtom = atom;
+ }
+ }
+ }
+
+
+ // add non-lazy pointers to fAllAtoms
+ if ( fAllSynthesizedNonLazyPointers.size() != 0 ) {
+ ObjectFile::Section* curSection = NULL;
+ ObjectFile::Atom* prevAtom = NULL;
+ bool inserted = false;
+ // first try to insert at end of __nl_symbol_ptr
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ ObjectFile::Section* nextSection = atom->getSection();
+ if ( nextSection != curSection ) {
+ if ( (prevAtom != NULL) && (strcmp(prevAtom->getSectionName(), "__nl_symbol_ptr") == 0) ) {
+ // found end of __nl_symbol_ptr section, insert non-lazy pointers at end of it
+ fAllAtoms->insert(it, fAllSynthesizedNonLazyPointers.begin(), fAllSynthesizedNonLazyPointers.end());
+ inserted = true;
+ break;
+ }
+ curSection = nextSection;
+ }
+ prevAtom = atom;
+ }
+ if ( !inserted ) {
+ // next try to insert after __dyld section
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ ObjectFile::Section* nextSection = atom->getSection();
+ if ( nextSection != curSection ) {
+ if ( strcmp(atom->getSegment().getName(), "__DATA") == 0 ) {
+ const char* prevSectionName = (prevAtom != NULL) ? prevAtom->getSectionName() : "";
+ if ( (strcmp(prevSectionName, "__dyld") != 0)
+ && (strcmp(prevSectionName, "__program_vars") != 0)
+ && (strcmp(prevSectionName, "__mod_init_func") != 0) ) {
+ // found end of __dyld section, insert non-lazy pointers here
+ fAllAtoms->insert(it, fAllSynthesizedNonLazyPointers.begin(), fAllSynthesizedNonLazyPointers.end());
+ inserted = true;
+ break;
+ }
+ }
+ }
+ prevAtom = atom;
+ }
+ if ( !inserted ) {
+ // might not be any __DATA sections, insert after end of __TEXT
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ ObjectFile::Section* nextSection = atom->getSection();
+ if ( nextSection != curSection ) {
+ if ( (prevAtom != NULL) && (strcmp(prevAtom->getSegment().getName(), "__TEXT") == 0) && (strcmp(atom->getSegment().getName(), "__TEXT") != 0)) {
+ // found end of __TEXT segment, insert non-lazy pointers at end of it
+ fAllAtoms->insert(it, fAllSynthesizedNonLazyPointers.begin(), fAllSynthesizedNonLazyPointers.end());
+ inserted = true;
+ break;
+ }
+ curSection = nextSection;
+ }
+ prevAtom = atom;
+ }
+ }
+ if ( !inserted )
+ throw "can't insert non-lazy pointers, __dyld section not found";
+ }
+ }
+
+ // add lazy dylib pointers to fAllAtoms
+ if ( fAllSynthesizedLazyDylibPointers.size() != 0 ) {
+ ObjectFile::Section* curSection = NULL;
+ ObjectFile::Atom* prevAtom = NULL;
+ bool inserted = false;
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ ObjectFile::Section* nextSection = atom->getSection();
+ if ( nextSection != curSection ) {
+ if ( (prevAtom != NULL) &&
+ ( (strcmp(prevAtom->getSectionName(), "__dyld") == 0)
+ || (strcmp(prevAtom->getSectionName(), "__program_vars") == 0)
+ || (strcmp(prevAtom->getSectionName(), "__nl_symbol_ptr") == 0) ) ) {
+ // found end of __dyld section, insert lazy pointers here
+ fAllAtoms->insert(it, fAllSynthesizedLazyDylibPointers.begin(), fAllSynthesizedLazyDylibPointers.end());
+ inserted = true;
+ break;
+ }
+ curSection = nextSection;
+ }
+ prevAtom = atom;
+ }
+ if ( !inserted ) {
+ throw "can't insert lazy pointers, __dyld section not found";
+ }
+ }
+
+ // add lazy pointers to fAllAtoms
+ if ( fAllSynthesizedLazyPointers.size() != 0 ) {
+ ObjectFile::Section* curSection = NULL;
+ ObjectFile::Atom* prevAtom = NULL;
+ bool inserted = false;
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ ObjectFile::Section* nextSection = atom->getSection();
+ if ( nextSection != curSection ) {
+ if ( (prevAtom != NULL) &&
+ ( (strcmp(prevAtom->getSectionName(), "__dyld") == 0)
+ || (strcmp(prevAtom->getSectionName(), "__program_vars") == 0)
+ || (strcmp(prevAtom->getSectionName(), "__nl_symbol_ptr") == 0) ) ) {
+ // found end of __dyld section, insert lazy pointers here
+ fAllAtoms->insert(it, fAllSynthesizedLazyPointers.begin(), fAllSynthesizedLazyPointers.end());
+ inserted = true;
+ break;
+ }
+ curSection = nextSection;
+ }
+ prevAtom = atom;
+ }
+ if ( !inserted ) {
+ throw "can't insert lazy pointers, __dyld section not found";
+ }
+ }
+
+
+}
+
+template <typename A>
+void Writer<A>::createSplitSegContent()
+{
+ // build LC_SEGMENT_SPLIT_INFO once all atoms exist
+ if ( fSplitCodeToDataContentAtom != NULL ) {
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ std::vector<ObjectFile::Reference*>& references = atom->getReferences();
+ for (std::vector<ObjectFile::Reference*>::iterator rit=references.begin(); rit != references.end(); rit++) {
+ ObjectFile::Reference* ref = *rit;
+ switch ( ref->getTargetBinding()) {
+ case ObjectFile::Reference::kUnboundByName:
+ case ObjectFile::Reference::kDontBind:
+ break;
+ case ObjectFile::Reference::kBoundByName:
+ case ObjectFile::Reference::kBoundDirectly:
+ if ( this->segmentsCanSplitApart(*atom, ref->getTarget()) ) {
+ this->addCrossSegmentRef(atom, ref);
+ }
+ break;
+ }
+ }
+ }
+ // bad codegen may cause LC_SEGMENT_SPLIT_INFO to be removed
+ adjustLoadCommandsAndPadding();
+ }
+
+}
+
+
+template <typename A>
+void Writer<A>::synthesizeUnwindInfoTable()
+{
+ if ( fUnwindInfoAtom != NULL ) {
+ // walk every atom and gets its unwind info
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ if ( atom->beginUnwind() == atom->endUnwind() ) {
+ // be sure to mark that we have no unwind info for stuff in the TEXT segment without unwind info
+ if ( strcmp(atom->getSegment().getName(), "__TEXT") == 0 )
+ fUnwindInfoAtom->addUnwindInfo(atom, 0, 0, NULL, NULL, NULL);
+ }
+ else {
+ // atom has unwind
+ for ( ObjectFile::UnwindInfo::iterator uit = atom->beginUnwind(); uit != atom->endUnwind(); ++uit ) {
+ fUnwindInfoAtom->addUnwindInfo(atom, uit->startOffset, uit->unwindInfo, atom->getFDE(), atom->getLSDA(), atom->getPersonalityPointer());
+ }
+ }
+ }
+ }
+}
+
+
+
+template <typename A>
+void Writer<A>::partitionIntoSections()
+{
+ const bool oneSegmentCommand = (fOptions.outputKind() == Options::kObjectFile);
+
+ // for every atom, set its sectionInfo object and section offset
+ // build up fSegmentInfos along the way
+ ObjectFile::Section* curSection = (ObjectFile::Section*)(-1);
+ SectionInfo* currentSectionInfo = NULL;
+ SegmentInfo* currentSegmentInfo = NULL;
+ SectionInfo* cstringSectionInfo = NULL;
+ unsigned int sectionIndex = 1;
+ fSegmentInfos.reserve(8);
+ for (unsigned int i=0; i < fAllAtoms->size(); ++i) {
+ ObjectFile::Atom* atom = (*fAllAtoms)[i];
+ if ( ((atom->getSection() != curSection) || (curSection==NULL))
+ && ((currentSectionInfo == NULL)
+ || (strcmp(atom->getSectionName(),currentSectionInfo->fSectionName) != 0)
+ || (strcmp(atom->getSegment().getName(),currentSectionInfo->fSegmentName) != 0)) ) {
+ if ( oneSegmentCommand ) {
+ if ( currentSegmentInfo == NULL ) {
+ currentSegmentInfo = new SegmentInfo(fOptions.segmentAlignment());
+ currentSegmentInfo->fInitProtection = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
+ currentSegmentInfo->fMaxProtection = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
+ this->fSegmentInfos.push_back(currentSegmentInfo);
+ }
+ currentSectionInfo = new SectionInfo();
+ strcpy(currentSectionInfo->fSectionName, atom->getSectionName());
+ strcpy(currentSectionInfo->fSegmentName, atom->getSegment().getName());
+ currentSectionInfo->fAlignment = atom->getAlignment().powerOf2;
+ currentSectionInfo->fAllZeroFill = atom->isZeroFill();
+ currentSectionInfo->fVirtualSection = (currentSectionInfo->fSectionName[0] == '.');
+ if ( !currentSectionInfo->fVirtualSection || fEmitVirtualSections )
+ currentSectionInfo->setIndex(sectionIndex++);
+ currentSegmentInfo->fSections.push_back(currentSectionInfo);
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__TEXT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__cstring") == 0) )
+ cstringSectionInfo = currentSectionInfo;
+ }
+ else {
+ if ( (currentSegmentInfo == NULL) || (strcmp(currentSegmentInfo->fName, atom->getSegment().getName()) != 0) ) {
+ currentSegmentInfo = new SegmentInfo(fOptions.segmentAlignment());
+ strcpy(currentSegmentInfo->fName, atom->getSegment().getName());
+ uint32_t initprot = 0;
+ if ( atom->getSegment().isContentReadable() )
+ initprot |= VM_PROT_READ;
+ if ( atom->getSegment().isContentWritable() )
+ initprot |= VM_PROT_WRITE;
+ if ( atom->getSegment().isContentExecutable() )
+ initprot |= VM_PROT_EXECUTE;
+ if ( fOptions.readOnlyx86Stubs() && (strcmp(atom->getSegment().getName(), "__IMPORT") == 0) )
+ initprot &= ~VM_PROT_WRITE; // hack until i386 __pointers section is synthesized by linker
+ currentSegmentInfo->fInitProtection = initprot;
+ if ( initprot == 0 )
+ currentSegmentInfo->fMaxProtection = 0; // pagezero should have maxprot==initprot==0
+ else if ( fOptions.architecture() == CPU_TYPE_ARM )
+ currentSegmentInfo->fMaxProtection = currentSegmentInfo->fInitProtection; // iPhoneOS wants max==init
+ else
+ currentSegmentInfo->fMaxProtection = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
+ std::vector<Options::SegmentProtect>& customSegProtections = fOptions.customSegmentProtections();
+ for(std::vector<Options::SegmentProtect>::iterator it = customSegProtections.begin(); it != customSegProtections.end(); ++it) {
+ if ( strcmp(it->name, currentSegmentInfo->fName) == 0 ) {
+ currentSegmentInfo->fInitProtection = it->init;
+ currentSegmentInfo->fMaxProtection = it->max;
+ }
+ }
+ currentSegmentInfo->fBaseAddress = atom->getSegment().getBaseAddress();
+ currentSegmentInfo->fFixedAddress = atom->getSegment().hasFixedAddress();
+ if ( currentSegmentInfo->fFixedAddress && (&(atom->getSegment()) == &Segment::fgStackSegment) )
+ currentSegmentInfo->fIndependentAddress = true;
+ if ( (fOptions.outputKind() == Options::kPreload) && (strcmp(currentSegmentInfo->fName, "__LINKEDIT")==0) )
+ currentSegmentInfo->fHasLoadCommand = false;
+ if ( strcmp(currentSegmentInfo->fName, "__HEADER")==0 )
+ currentSegmentInfo->fHasLoadCommand = false;
+ this->fSegmentInfos.push_back(currentSegmentInfo);
+ }
+ currentSectionInfo = new SectionInfo();
+ currentSectionInfo->fAtoms.reserve(fAllAtoms->size()/4); // reduce reallocations by starting large
+ strcpy(currentSectionInfo->fSectionName, atom->getSectionName());
+ strcpy(currentSectionInfo->fSegmentName, atom->getSegment().getName());
+ currentSectionInfo->fAlignment = atom->getAlignment().powerOf2;
+ // check for -sectalign override
+ std::vector<Options::SectionAlignment>& alignmentOverrides = fOptions.sectionAlignments();
+ for(std::vector<Options::SectionAlignment>::iterator it=alignmentOverrides.begin(); it != alignmentOverrides.end(); ++it) {
+ if ( (strcmp(it->segmentName, currentSectionInfo->fSegmentName) == 0) && (strcmp(it->sectionName, currentSectionInfo->fSectionName) == 0) )
+ currentSectionInfo->fAlignment = it->alignment;
+ }
+ currentSectionInfo->fAllZeroFill = atom->isZeroFill();
+ currentSectionInfo->fVirtualSection = ( currentSectionInfo->fSectionName[0] == '.');
+ if ( !currentSectionInfo->fVirtualSection || fEmitVirtualSections )
+ currentSectionInfo->setIndex(sectionIndex++);
+ currentSegmentInfo->fSections.push_back(currentSectionInfo);
+ }
+ //fprintf(stderr, "new section %s for atom %s\n", atom->getSectionName(), atom->getDisplayName());
+ if ( strcmp(currentSectionInfo->fSectionName, "._load_commands") == 0 ) {
+ fLoadCommandsSection = currentSectionInfo;
+ fLoadCommandsSegment = currentSegmentInfo;
+ }
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__DATA") == 0) && (strcmp(currentSectionInfo->fSectionName, "__la_symbol_ptr") == 0) )
+ currentSectionInfo->fAllLazyPointers = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__DATA") == 0) && (strcmp(currentSectionInfo->fSectionName, "__la_sym_ptr2") == 0) )
+ currentSectionInfo->fAllLazyPointers = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__DATA") == 0) && (strcmp(currentSectionInfo->fSectionName, "__ld_symbol_ptr") == 0) )
+ currentSectionInfo->fAllLazyDylibPointers = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__DATA") == 0) && (strcmp(currentSectionInfo->fSectionName, "__nl_symbol_ptr") == 0) )
+ currentSectionInfo->fAllNonLazyPointers = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__IMPORT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__pointers") == 0) )
+ currentSectionInfo->fAllNonLazyPointers = true;
+ if ( (fOptions.outputKind() == Options::kDyld) && (strcmp(currentSectionInfo->fSegmentName, "__DATA") == 0) && (strcmp(currentSectionInfo->fSectionName, "__pointers") == 0) )
+ currentSectionInfo->fAllNonLazyPointers = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__TEXT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__picsymbolstub1") == 0) )
+ currentSectionInfo->fAllStubs = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__TEXT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__symbol_stub1") == 0) )
+ currentSectionInfo->fAllStubs = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__TEXT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__picsymbolstub2") == 0) )
+ currentSectionInfo->fAllStubs = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__TEXT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__symbol_stub") == 0) )
+ currentSectionInfo->fAllStubs = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__TEXT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__picsymbolstub4") == 0) )
+ currentSectionInfo->fAllStubs = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__TEXT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__symbol_stub4") == 0) )
+ currentSectionInfo->fAllStubs = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__IMPORT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__jump_table") == 0) ) {
+ currentSectionInfo->fAllSelfModifyingStubs = true;
+ currentSectionInfo->fAlignment = 6; // force x86 fast stubs to start on 64-byte boundary
+ }
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__TEXT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__stub_helper") == 0) )
+ currentSectionInfo->fAllStubHelpers = true;
+ if ( (strcmp(currentSectionInfo->fSegmentName, "__TEXT") == 0) && (strcmp(currentSectionInfo->fSectionName, "__eh_frame") == 0) )
+ currentSectionInfo->fAlignment = __builtin_ctz(sizeof(pint_t)); // always start CFI info pointer aligned
+ curSection = atom->getSection();
+ if ( currentSectionInfo->fAllNonLazyPointers || currentSectionInfo->fAllLazyPointers || currentSectionInfo->fAllLazyDylibPointers
+ || currentSectionInfo->fAllStubs || currentSectionInfo->fAllSelfModifyingStubs ) {
+ fSymbolTableCommands->needDynamicTable();
+ }
+ }
+ // any non-zero fill atoms make whole section marked not-zero-fill
+ if ( currentSectionInfo->fAllZeroFill && ! atom->isZeroFill() )
+ currentSectionInfo->fAllZeroFill = false;
+ // change section object to be Writer's SectionInfo object
+ atom->setSection(currentSectionInfo);
+ // section alignment is that of a contained atom with the greatest alignment
+ uint8_t atomAlign = atom->getAlignment().powerOf2;
+ if ( currentSectionInfo->fAlignment < atomAlign )
+ currentSectionInfo->fAlignment = atomAlign;
+ // calculate section offset for this atom
+ uint64_t offset = currentSectionInfo->fSize;
+ uint64_t alignment = 1 << atomAlign;
+ uint64_t currentModulus = (offset % alignment);
+ uint64_t requiredModulus = atom->getAlignment().modulus;
+ if ( currentModulus != requiredModulus ) {
+ if ( requiredModulus > currentModulus )
+ offset += requiredModulus-currentModulus;
+ else
+ offset += requiredModulus+alignment-currentModulus;
+ }
+ atom->setSectionOffset(offset);
+ uint64_t curAtomSize = atom->getSize();
+ currentSectionInfo->fSize = offset + curAtomSize;
+ // add atom to section vector
+ currentSectionInfo->fAtoms.push_back(atom);
+ //fprintf(stderr, " adding atom %p %s size=0x%0llX to section %p %s from %s\n", atom, atom->getDisplayName(), atom->getSize(),
+ // currentSectionInfo, currentSectionInfo->fSectionName, atom->getFile()->getPath());
+ // update largest size
+ if ( !currentSectionInfo->fAllZeroFill && (curAtomSize > fLargestAtomSize) )
+ fLargestAtomSize = curAtomSize;
+ }
+ if ( (cstringSectionInfo != NULL) && (cstringSectionInfo->fAlignment > 0) ) {
+ // when merging cstring sections in .o files, all strings need to use the max alignment
+ uint64_t offset = 0;
+ uint64_t cstringAlignment = 1 << cstringSectionInfo->fAlignment;
+ for (std::vector<ObjectFile::Atom*>::iterator it=cstringSectionInfo->fAtoms.begin(); it != cstringSectionInfo->fAtoms.end(); it++) {
+ offset = (offset + (cstringAlignment-1)) & (-cstringAlignment);
+ ObjectFile::Atom* atom = *it;
+ atom->setSectionOffset(offset);
+ offset += atom->getSize();
+ }
+ cstringSectionInfo->fSize = offset;
+ }
+}
+
+
+struct TargetAndOffset { ObjectFile::Atom* atom; uint32_t offset; };
+class TargetAndOffsetComparor
+{
+public:
+ bool operator()(const TargetAndOffset& left, const TargetAndOffset& right) const
+ {
+ if ( left.atom != right.atom )
+ return ( left.atom < right.atom );
+ return ( left.offset < right.offset );
+ }
+};
+
+template <>
+bool Writer<ppc>::addBranchIslands()
+{
+ return this->addPPCBranchIslands();
+}
+
+template <>
+bool Writer<ppc64>::addBranchIslands()
+{
+ return this->addPPCBranchIslands();
+}
+
+template <>
+bool Writer<x86>::addBranchIslands()
+{
+ // x86 branches can reach entire 4G address space, so no need for branch islands
+ return false;
+}
+
+template <>
+bool Writer<x86_64>::addBranchIslands()
+{
+ // x86 branches can reach entire 4G size of largest image
+ return false;
+}
+
+template <>
+bool Writer<arm>::addBranchIslands()
+{
+ // arm branch islands not (yet) supported
+ // you can instead compile with -mlong-call
+ return false;
+}
+
+template <>
+bool Writer<ppc>::isBranch24Reference(uint8_t kind)
+{
+ switch (kind) {
+ case ppc::kBranch24:
+ case ppc::kBranch24WeakImport:
+ return true;
+ }
+ return false;
+}
+
+template <>
+bool Writer<ppc64>::isBranch24Reference(uint8_t kind)
+{
+ switch (kind) {
+ case ppc64::kBranch24:
+ case ppc64::kBranch24WeakImport:
+ return true;
+ }
+ return false;
+}
+
+//
+// PowerPC can do PC relative branches as far as +/-16MB.
+// If a branch target is >16MB then we insert one or more
+// "branch islands" between the branch and its target that
+// allows island hoping to the target.
+//
+// Branch Island Algorithm
+//
+// If the __TEXT segment < 16MB, then no branch islands needed
+// Otherwise, every 14MB into the __TEXT segment a region is
+// added which can contain branch islands. Every out of range
+// bl instruction is checked. If it crosses a region, an island
+// is added to that region with the same target and the bl is
+// adjusted to target the island instead.
+//
+// In theory, if too many islands are added to one region, it
+// could grow the __TEXT enough that other previously in-range
+// bl branches could be pushed out of range. We reduce the
+// probability this could happen by placing the ranges every
+// 15MB which means the region would have to be 1MB (256K islands)
+// before any branches could be pushed out of range.
+//
+template <typename A>
+bool Writer<A>::addPPCBranchIslands()
+{
+ bool log = false;
+ bool result = false;
+ // Can only possibly need branch islands if __TEXT segment > 16M
+ if ( fLoadCommandsSegment->fSize > 16000000 ) {
+ if ( log) fprintf(stderr, "ld: checking for branch islands, __TEXT segment size=%llu\n", fLoadCommandsSegment->fSize);
+ const uint32_t kBetweenRegions = 14*1024*1024; // place regions of islands every 14MB in __text section
+ SectionInfo* textSection = NULL;
+ for (std::vector<SectionInfo*>::iterator it=fLoadCommandsSegment->fSections.begin(); it != fLoadCommandsSegment->fSections.end(); it++) {
+ if ( strcmp((*it)->fSectionName, "__text") == 0 ) {
+ textSection = *it;
+ if ( log) fprintf(stderr, "ld: checking for branch islands, __text section size=%llu\n", textSection->fSize);
+ break;
+ }
+ }
+ const int kIslandRegionsCount = fLoadCommandsSegment->fSize / kBetweenRegions;
+ typedef std::map<TargetAndOffset,ObjectFile::Atom*, TargetAndOffsetComparor> AtomToIsland;
+ AtomToIsland regionsMap[kIslandRegionsCount];
+ std::vector<ObjectFile::Atom*> regionsIslands[kIslandRegionsCount];
+ unsigned int islandCount = 0;
+ if ( log) fprintf(stderr, "ld: will use %u branch island regions\n", kIslandRegionsCount);
+
+ // create islands for branch references that are out of range
+ for (std::vector<ObjectFile::Atom*>::iterator it=fAllAtoms->begin(); it != fAllAtoms->end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ std::vector<ObjectFile::Reference*>& references = atom->getReferences();
+ for (std::vector<ObjectFile::Reference*>::iterator rit=references.begin(); rit != references.end(); rit++) {
+ ObjectFile::Reference* ref = *rit;
+ if ( this->isBranch24Reference(ref->getKind()) ) {
+ ObjectFile::Atom& target = ref->getTarget();
+ int64_t srcAddr = atom->getAddress() + ref->getFixUpOffset();
+ int64_t dstAddr = target.getAddress() + ref->getTargetOffset();
+ int64_t displacement = dstAddr - srcAddr;
+ TargetAndOffset finalTargetAndOffset = { &target, ref->getTargetOffset() };
+ const int64_t kFifteenMegLimit = kBetweenRegions;
+ if ( displacement > kFifteenMegLimit ) {
+ // create forward branch chain
+ ObjectFile::Atom* nextTarget = ⌖
+ uint64_t nextTargetOffset = ref->getTargetOffset();
+ for (int i=kIslandRegionsCount-1; i >=0 ; --i) {
+ AtomToIsland* region = ®ionsMap[i];
+ int64_t islandRegionAddr = kBetweenRegions * (i+1) + textSection->getBaseAddress();
+ if ( (srcAddr < islandRegionAddr) && (islandRegionAddr <= dstAddr) ) {
+ AtomToIsland::iterator pos = region->find(finalTargetAndOffset);
+ if ( pos == region->end() ) {
+ BranchIslandAtom<A>* island = new BranchIslandAtom<A>(*this, target.getDisplayName(), i, *nextTarget, nextTargetOffset);
+ island->setSection(textSection);
+ (*region)[finalTargetAndOffset] = island;
+ if (log) fprintf(stderr, "added island %s to region %d for %s\n", island->getDisplayName(), i, atom->getDisplayName());
+ regionsIslands[i].push_back(island);
+ ++islandCount;
+ nextTarget = island;
+ nextTargetOffset = 0;
+ }
+ else {
+ nextTarget = pos->second;
+ nextTargetOffset = 0;
+ }
+ }
+ }
+ if (log) fprintf(stderr, "using island %s for branch to %s from %s\n", nextTarget->getDisplayName(), target.getDisplayName(), atom->getDisplayName());
+ ref->setTarget(*nextTarget, nextTargetOffset);
+ }
+ else if ( displacement < (-kFifteenMegLimit) ) {
+ // create back branching chain
+ ObjectFile::Atom* prevTarget = ⌖
+ uint64_t prevTargetOffset = ref->getTargetOffset();
+ for (int i=0; i < kIslandRegionsCount ; ++i) {
+ AtomToIsland* region = ®ionsMap[i];
+ int64_t islandRegionAddr = kBetweenRegions * (i+1);
+ if ( (dstAddr <= islandRegionAddr) && (islandRegionAddr < srcAddr) ) {
+ AtomToIsland::iterator pos = region->find(finalTargetAndOffset);
+ if ( pos == region->end() ) {
+ BranchIslandAtom<A>* island = new BranchIslandAtom<A>(*this, target.getDisplayName(), i, *prevTarget, prevTargetOffset);
+ island->setSection(textSection);
+ (*region)[finalTargetAndOffset] = island;
+ if (log) fprintf(stderr, "added back island %s to region %d for %s\n", island->getDisplayName(), i, atom->getDisplayName());
+ regionsIslands[i].push_back(island);
+ ++islandCount;
+ prevTarget = island;
+ prevTargetOffset = 0;
+ }
+ else {
+ prevTarget = pos->second;
+ prevTargetOffset = 0;
+ }
+ }
+ }
+ if (log) fprintf(stderr, "using back island %s for %s\n", prevTarget->getDisplayName(), atom->getDisplayName());
+ ref->setTarget(*prevTarget, prevTargetOffset);
+ }
+ }
+ }
+ }
+
+ // insert islands into __text section and adjust section offsets
+ if ( islandCount > 0 ) {
+ if ( log ) fprintf(stderr, "ld: %u branch islands required in %u regions\n", islandCount, kIslandRegionsCount);
+ std::vector<ObjectFile::Atom*> newAtomList;
+ newAtomList.reserve(textSection->fAtoms.size()+islandCount);
+ uint64_t islandRegionAddr = kBetweenRegions + textSection->getBaseAddress();
+ uint64_t textSectionAlignment = (1 << textSection->fAlignment);
+ int regionIndex = 0;
+ uint64_t atomSlide = 0;
+ uint64_t sectionOffset = 0;
+ for (std::vector<ObjectFile::Atom*>::iterator it=textSection->fAtoms.begin(); it != textSection->fAtoms.end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ if ( (atom->getAddress()+atom->getSize()) > islandRegionAddr ) {
+ uint64_t islandStartOffset = atom->getSectionOffset() + atomSlide;
+ sectionOffset = islandStartOffset;
+ std::vector<ObjectFile::Atom*>* regionIslands = ®ionsIslands[regionIndex];
+ for (std::vector<ObjectFile::Atom*>::iterator rit=regionIslands->begin(); rit != regionIslands->end(); rit++) {
+ ObjectFile::Atom* islandAtom = *rit;
+ newAtomList.push_back(islandAtom);
+ uint64_t alignment = 1 << (islandAtom->getAlignment().powerOf2);
+ sectionOffset = ( (sectionOffset+alignment-1) & (-alignment) );
+ islandAtom->setSectionOffset(sectionOffset);
+ sectionOffset += islandAtom->getSize();
+ }
+ ++regionIndex;
+ islandRegionAddr += kBetweenRegions;
+ uint64_t islandRegionAlignmentBlocks = (sectionOffset - islandStartOffset + textSectionAlignment - 1) / textSectionAlignment;
+ atomSlide += (islandRegionAlignmentBlocks * textSectionAlignment);
+ }
+ newAtomList.push_back(atom);
+ if ( atomSlide != 0 )
+ atom->setSectionOffset(atom->getSectionOffset()+atomSlide);
+ }
+ sectionOffset = textSection->fSize+atomSlide;
+ // put any remaining islands at end of __text section
+ if ( regionIndex < kIslandRegionsCount ) {
+ std::vector<ObjectFile::Atom*>* regionIslands = ®ionsIslands[regionIndex];
+ for (std::vector<ObjectFile::Atom*>::iterator rit=regionIslands->begin(); rit != regionIslands->end(); rit++) {
+ ObjectFile::Atom* islandAtom = *rit;
+ newAtomList.push_back(islandAtom);
+ uint64_t alignment = 1 << (islandAtom->getAlignment().powerOf2);
+ sectionOffset = ( (sectionOffset+alignment-1) & (-alignment) );
+ islandAtom->setSectionOffset(sectionOffset);
+ sectionOffset += islandAtom->getSize();
+ }
+ }
+
+ textSection->fAtoms = newAtomList;
+ textSection->fSize = sectionOffset;
+ result = true;
+ }
+
+ }
+ return result;
+}
+
+
+template <typename A>
+void Writer<A>::adjustLoadCommandsAndPadding()
+{
+ fSegmentCommands->computeSize();
+
+ // recompute load command section offsets
+ uint64_t offset = 0;
+ std::vector<class ObjectFile::Atom*>& loadCommandAtoms = fLoadCommandsSection->fAtoms;
+ const unsigned int atomCount = loadCommandAtoms.size();
+ for (unsigned int i=0; i < atomCount; ++i) {
+ ObjectFile::Atom* atom = loadCommandAtoms[i];
+ uint64_t alignment = 1 << atom->getAlignment().powerOf2;
+ offset = ( (offset+alignment-1) & (-alignment) );
+ atom->setSectionOffset(offset);
+ uint32_t atomSize = atom->getSize();
+ if ( atomSize > fLargestAtomSize )
+ fLargestAtomSize = atomSize;
+ offset += atomSize;
+ fLoadCommandsSection->fSize = offset;
+ }
+
+ std::vector<SectionInfo*>& sectionInfos = fLoadCommandsSegment->fSections;
+ const int sectionCount = sectionInfos.size();
+ uint32_t totalSizeOfTEXTLessHeaderAndLoadCommands = 0;
+ for(int j=0; j < sectionCount; ++j) {
+ SectionInfo* curSection = sectionInfos[j];
+ if ( strcmp(curSection->fSectionName, fHeaderPadding->getSectionName()) == 0 )
+ break;
+ totalSizeOfTEXTLessHeaderAndLoadCommands += curSection->fSize;
+ }
+ uint64_t paddingSize = 0;
+ if ( fOptions.outputKind() == Options::kDyld ) {
+ // dyld itself has special padding requirements. We want the beginning __text section to start at a stable address
+ paddingSize = 4096 - (totalSizeOfTEXTLessHeaderAndLoadCommands % 4096);
+ }
+ else if ( fOptions.outputKind() == Options::kObjectFile ) {
+ // mach-o .o files need no padding between load commands and first section
+ // but leave enough room that the object file could be signed
+ paddingSize = 32;
+ }
+ else if ( fOptions.outputKind() == Options::kPreload ) {
+ // mach-o MH_PRELOAD files need no padding between load commands and first section
+ paddingSize = 0;
+ }
+ else if ( fOptions.makeEncryptable() ) {
+ // want load commands to end on a page boundary, so __text starts on page boundary
+ paddingSize = 4096 - ((totalSizeOfTEXTLessHeaderAndLoadCommands+fOptions.minimumHeaderPad()) % 4096) + fOptions.minimumHeaderPad();
+ fEncryptionLoadCommand->setStartEncryptionOffset(totalSizeOfTEXTLessHeaderAndLoadCommands+paddingSize);
+ }
+ else {
+ // work backwards from end of segment and lay out sections so that extra room goes to padding atom
+ uint64_t addr = 0;
+ for(int j=sectionCount-1; j >=0; --j) {
+ SectionInfo* curSection = sectionInfos[j];
+ if ( strcmp(curSection->fSectionName, fHeaderPadding->getSectionName()) == 0 ) {
+ addr -= (fLoadCommandsSection->fSize+fMachHeaderAtom->getSize());
+ paddingSize = addr % fOptions.segmentAlignment();
+ break;
+ }
+ addr -= curSection->fSize;
+ addr = addr & (0 - (1 << curSection->fAlignment));
+ }
+
+ // if command line requires more padding than this
+ uint32_t minPad = fOptions.minimumHeaderPad();
+ if ( fOptions.maxMminimumHeaderPad() ) {
+ // -headerpad_max_install_names means there should be room for every path load command to grow to 1204 bytes
+ uint32_t altMin = fLibraryToOrdinal.size() * MAXPATHLEN;
+ if ( fOptions.outputKind() == Options::kDynamicLibrary )
+ altMin += MAXPATHLEN;
+ if ( altMin > minPad )
+ minPad = altMin;
+ }
+ if ( paddingSize < minPad ) {
+ int extraPages = (minPad - paddingSize + fOptions.segmentAlignment() - 1)/fOptions.segmentAlignment();
+ paddingSize += extraPages * fOptions.segmentAlignment();
+ }
+ }
+
+ // adjust atom size and update section size
+ fHeaderPadding->setSize(paddingSize);
+ for(int j=0; j < sectionCount; ++j) {
+ SectionInfo* curSection = sectionInfos[j];
+ if ( strcmp(curSection->fSectionName, fHeaderPadding->getSectionName()) == 0 )
+ curSection->fSize = paddingSize;
+ }
+}
+
+static uint64_t segmentAlign(uint64_t addr, uint64_t alignment)
+{
+ return ((addr+alignment-1) & (-alignment));
+}
+
+// assign file offsets and logical address to all segments
+template <typename A>
+void Writer<A>::assignFileOffsets()
+{
+ const bool virtualSectionOccupyAddressSpace = ((fOptions.outputKind() != Options::kObjectFile)
+ && (fOptions.outputKind() != Options::kPreload));
+ bool haveFixedSegments = false;
+ uint64_t fileOffset = 0;
+ uint64_t nextContiguousAddress = fOptions.baseAddress();
+ uint64_t nextReadOnlyAddress = fOptions.baseAddress();
+ uint64_t nextWritableAddress = fOptions.baseWritableAddress();
+
+ // process segments with fixed addresses (-segaddr)
+ for (std::vector<Options::SegmentStart>::iterator it = fOptions.customSegmentAddresses().begin(); it != fOptions.customSegmentAddresses().end(); ++it) {
+ for (std::vector<SegmentInfo*>::iterator segit = fSegmentInfos.begin(); segit != fSegmentInfos.end(); ++segit) {
+ SegmentInfo* curSegment = *segit;
+ if ( strcmp(curSegment->fName, it->name) == 0 ) {
+ curSegment->fBaseAddress = it->address;
+ curSegment->fFixedAddress = true;
+ break;
+ }
+ }
+ }
+
+ // process segments with fixed addresses (-seg_page_size)
+ for (std::vector<Options::SegmentSize>::iterator it = fOptions.customSegmentSizes().begin(); it != fOptions.customSegmentSizes().end(); ++it) {
+ for (std::vector<SegmentInfo*>::iterator segit = fSegmentInfos.begin(); segit != fSegmentInfos.end(); ++segit) {
+ SegmentInfo* curSegment = *segit;
+ if ( strcmp(curSegment->fName, it->name) == 0 ) {
+ curSegment->fPageSize = it->size;
+ break;
+ }
+ }
+ }
+
+ // Run through the segments and each segment's sections to assign addresses
+ for (std::vector<SegmentInfo*>::iterator segit = fSegmentInfos.begin(); segit != fSegmentInfos.end(); ++segit) {
+ SegmentInfo* curSegment = *segit;
+
+ if ( fOptions.splitSeg() ) {
+ if ( curSegment->fInitProtection & VM_PROT_WRITE )
+ nextContiguousAddress = nextWritableAddress;
+ else
+ nextContiguousAddress = nextReadOnlyAddress;
+ }
+
+ if ( fOptions.outputKind() == Options::kPreload ) {
+ if ( strcmp(curSegment->fName, "__HEADER") == 0 )
+ nextContiguousAddress = 0;
+ else if ( strcmp(curSegment->fName, "__TEXT") == 0 )
+ nextContiguousAddress = fOptions.baseAddress();
+ }
+
+ fileOffset = segmentAlign(fileOffset, curSegment->fPageSize);
+ curSegment->fFileOffset = fileOffset;
+
+ // Set the segment base address
+ if ( curSegment->fFixedAddress )
+ haveFixedSegments = true;
+ else
+ curSegment->fBaseAddress = segmentAlign(nextContiguousAddress, curSegment->fPageSize);
+
+ // We've set the segment address, now run through each section.
+ uint64_t address = curSegment->fBaseAddress;
+ SectionInfo* firstZeroFillSection = NULL;
+ SectionInfo* prevSection = NULL;
+
+ std::vector<SectionInfo*>& sectionInfos = curSegment->fSections;
+
+ for (std::vector<SectionInfo*>::iterator it = sectionInfos.begin(); it != sectionInfos.end(); ++it) {
+ SectionInfo* curSection = *it;
+
+ // adjust section address based on alignment
+ uint64_t alignment = 1 << curSection->fAlignment;
+ if ( curSection->fAtoms.size() == 1 ) {
+ // if there is only one atom in section, use modulus for even better layout
+ ObjectFile::Alignment atomAlign = curSection->fAtoms[0]->getAlignment();
+ uint64_t atomAlignP2 = (1 << atomAlign.powerOf2);
+ uint64_t currentModulus = (address % atomAlignP2);
+ if ( currentModulus != atomAlign.modulus ) {
+ if ( atomAlign.modulus > currentModulus )
+ address += atomAlign.modulus-currentModulus;
+ else
+ address += atomAlign.modulus+atomAlignP2-currentModulus;
+ }
+ }
+ else {
+ address = ( (address+alignment-1) & (-alignment) );
+ }
+
+ // adjust file offset to match address
+ if ( prevSection != NULL ) {
+ if ( virtualSectionOccupyAddressSpace || !prevSection->fVirtualSection )
+ fileOffset = (address - prevSection->getBaseAddress()) + prevSection->fFileOffset;
+ else
+ fileOffset = ( (fileOffset+alignment-1) & (-alignment) );
+ }
+
+ // update section info
+ curSection->fFileOffset = fileOffset;
+ curSection->setBaseAddress(address);
+ //fprintf(stderr, "%s %s addr=0x%llX, fileoffset=0x%llX, size=0x%llX\n", curSegment->fName, curSection->fSectionName, address, fileOffset, curSection->fSize);
+
+ // keep track of trailing zero fill sections
+ if ( curSection->fAllZeroFill && (firstZeroFillSection == NULL) )
+ firstZeroFillSection = curSection;
+ if ( !curSection->fAllZeroFill && (firstZeroFillSection != NULL) && (fOptions.outputKind() != Options::kObjectFile) )
+ throwf("zero-fill section %s not at end of segment", curSection->fSectionName);
+
+ // update running pointers
+ if ( virtualSectionOccupyAddressSpace || !curSection->fVirtualSection )
+ address += curSection->fSize;
+ fileOffset += curSection->fSize;
+
+ // sanity check size of 32-bit binaries
+ if ( address > maxAddress() )
+ throwf("section %s exceeds 4GB limit", curSection->fSectionName);
+
+ // update segment info
+ curSegment->fFileSize = fileOffset - curSegment->fFileOffset;
+ curSegment->fSize = curSegment->fFileSize;
+ prevSection = curSection;
+ }
+
+ if ( fOptions.outputKind() == Options::kObjectFile ) {
+ // don't page align .o files
+ }
+ else {
+ // optimize trailing zero-fill sections to not occupy disk space
+ if ( firstZeroFillSection != NULL ) {
+ curSegment->fFileSize = firstZeroFillSection->fFileOffset - curSegment->fFileOffset;
+ fileOffset = firstZeroFillSection->fFileOffset;
+ }
+ // page align segment size
+ curSegment->fFileSize = segmentAlign(curSegment->fFileSize, curSegment->fPageSize);
+ curSegment->fSize = segmentAlign(curSegment->fSize, curSegment->fPageSize);
+ if ( !curSegment->fIndependentAddress && (curSegment->fBaseAddress >= nextContiguousAddress) ) {
+ nextContiguousAddress = segmentAlign(curSegment->fBaseAddress+curSegment->fSize, curSegment->fPageSize);
+ fileOffset = segmentAlign(fileOffset, curSegment->fPageSize);
+ if ( curSegment->fInitProtection & VM_PROT_WRITE )
+ nextWritableAddress = nextContiguousAddress;
+ else
+ nextReadOnlyAddress = nextContiguousAddress;
+ }
+ }
+ //fprintf(stderr, "end of seg %s, fileoffset=0x%llX, nextContiguousAddress=0x%llX\n", curSegment->fName, fileOffset, nextContiguousAddress);
+ }
+
+ // check for segment overlaps caused by user specified fixed segments (e.g. __PAGEZERO, __UNIXSTACK)
+ if ( haveFixedSegments ) {
+ int segCount = fSegmentInfos.size();
+ for(int i=0; i < segCount; ++i) {
+ SegmentInfo* segment1 = fSegmentInfos[i];
+
+ for(int j=0; j < segCount; ++j) {
+ if ( i != j ) {
+ SegmentInfo* segment2 = fSegmentInfos[j];
+
+ if ( segment1->fBaseAddress < segment2->fBaseAddress ) {
+ if ( (segment1->fBaseAddress+segment1->fSize) > segment2->fBaseAddress )
+ throwf("segments overlap: %s (0x%08llX + 0x%08llX) and %s (0x%08llX + 0x%08llX)",
+ segment1->fName, segment1->fBaseAddress, segment1->fSize, segment2->fName, segment2->fBaseAddress, segment2->fSize);
+ }
+ else if ( segment1->fBaseAddress > segment2->fBaseAddress ) {
+ if ( (segment2->fBaseAddress+segment2->fSize) > segment1->fBaseAddress )
+ throwf("segments overlap: %s (0x%08llX + 0x%08llX) and %s (0x%08llX + 0x%08llX)",
+ segment1->fName, segment1->fBaseAddress, segment1->fSize, segment2->fName, segment2->fBaseAddress, segment2->fSize);
+ }
+ else if ( (segment1->fSize != 0) && (segment2->fSize != 0) ) {
+ throwf("segments overlap: %s (0x%08llX + 0x%08llX) and %s (0x%08llX + 0x%08llX)",
+ segment1->fName, segment1->fBaseAddress, segment1->fSize, segment2->fName, segment2->fBaseAddress, segment2->fSize);
+ }
+ }
+ }
+ }
+ }
+
+ // set up fFirstWritableSegment and fWritableSegmentPastFirst4GB
+ for (std::vector<SegmentInfo*>::iterator segit = fSegmentInfos.begin(); segit != fSegmentInfos.end(); ++segit) {
+ SegmentInfo* curSegment = *segit;
+ if ( (curSegment->fInitProtection & VM_PROT_WRITE) != 0 ) {
+ if ( fFirstWritableSegment == NULL )
+ fFirstWritableSegment = curSegment;
+ if ( (curSegment->fBaseAddress + curSegment->fSize - fOptions.baseAddress()) >= 0x100000000LL )
+ fWritableSegmentPastFirst4GB = true;
+ }
+ }
+
+ // record size of encrypted part of __TEXT segment
+ if ( fOptions.makeEncryptable() ) {
+ for (std::vector<SegmentInfo*>::iterator segit = fSegmentInfos.begin(); segit != fSegmentInfos.end(); ++segit) {
+ SegmentInfo* curSegment = *segit;
+ if ( strcmp(curSegment->fName, "__TEXT") == 0 ) {
+ fEncryptionLoadCommand->setEndEncryptionOffset(curSegment->fFileSize);
+ break;
+ }
+ }
+ }
+
+}
+
+template <typename A>
+void Writer<A>::adjustLinkEditSections()
+{
+ // link edit content is always in last segment
+ SegmentInfo* lastSeg = fSegmentInfos[fSegmentInfos.size()-1];
+ unsigned int firstLinkEditSectionIndex = 0;
+ while ( strcmp(lastSeg->fSections[firstLinkEditSectionIndex]->fSegmentName, "__LINKEDIT") != 0 )
+ ++firstLinkEditSectionIndex;
+
+ const unsigned int linkEditSectionCount = lastSeg->fSections.size();
+ uint64_t fileOffset = lastSeg->fSections[firstLinkEditSectionIndex]->fFileOffset;
+ uint64_t address = lastSeg->fSections[firstLinkEditSectionIndex]->getBaseAddress();
+ if ( fPadSegmentInfo != NULL ) {
+ // insert __4GBFILL segment into segments vector before LINKEDIT
+ for(std::vector<SegmentInfo*>::iterator it = fSegmentInfos.begin(); it != fSegmentInfos.end(); ++it) {
+ if ( *it == lastSeg ) {
+ fSegmentInfos.insert(it, fPadSegmentInfo);
+ break;
+ }
+ }
+ // adjust __4GBFILL segment to span from end of last segment to zeroPageSize
+ fPadSegmentInfo->fSize = fOptions.zeroPageSize() - address;
+ fPadSegmentInfo->fBaseAddress = address;
+ // adjust LINKEDIT to start at zeroPageSize
+ address = fOptions.zeroPageSize();
+ lastSeg->fBaseAddress = fOptions.zeroPageSize();
+ }
+ for (unsigned int i=firstLinkEditSectionIndex; i < linkEditSectionCount; ++i) {
+ std::vector<class ObjectFile::Atom*>& atoms = lastSeg->fSections[i]->fAtoms;
+ // adjust section address based on alignment
+ uint64_t sectionAlignment = 1 << lastSeg->fSections[i]->fAlignment;
+ uint64_t pad = ((address+sectionAlignment-1) & (-sectionAlignment)) - address;
+ address += pad;
+ fileOffset += pad; // adjust file offset to match address
+ lastSeg->fSections[i]->setBaseAddress(address);
+ if ( strcmp(lastSeg->fSections[i]->fSectionName, "._absolute") == 0 )
+ lastSeg->fSections[i]->setBaseAddress(0);
+ lastSeg->fSections[i]->fFileOffset = fileOffset;
+ uint64_t sectionOffset = 0;
+ for (unsigned int j=0; j < atoms.size(); ++j) {
+ ObjectFile::Atom* atom = atoms[j];
+ uint64_t alignment = 1 << atom->getAlignment().powerOf2;
+ sectionOffset = ( (sectionOffset+alignment-1) & (-alignment) );
+ atom->setSectionOffset(sectionOffset);
+ uint64_t size = atom->getSize();
+ sectionOffset += size;
+ if ( size > fLargestAtomSize )
+ fLargestAtomSize = size;
+ }
+ //fprintf(stderr, "setting: lastSeg->fSections[%d]->fSize = 0x%08llX\n", i, sectionOffset);
+ lastSeg->fSections[i]->fSize = sectionOffset;
+ fileOffset += sectionOffset;
+ address += sectionOffset;
+ }
+ if ( fOptions.outputKind() == Options::kObjectFile ) {
+ //lastSeg->fBaseAddress = 0;
+ //lastSeg->fSize = lastSeg->fSections[firstLinkEditSectionIndex]->
+ //lastSeg->fFileOffset = 0;
+ //lastSeg->fFileSize =
+ }
+ else {
+ lastSeg->fFileSize = fileOffset - lastSeg->fFileOffset;
+ lastSeg->fSize = (address - lastSeg->fBaseAddress+4095) & (-4096);
+ }
+}
+
+
+template <typename A>
+ObjectFile::Atom::Scope MachHeaderAtom<A>::getScope() const
+{
+ switch ( fWriter.fOptions.outputKind() ) {
+ case Options::kDynamicExecutable:
+ case Options::kStaticExecutable:
+ return ObjectFile::Atom::scopeGlobal;
+ case Options::kDynamicLibrary:
+ case Options::kDynamicBundle:
+ case Options::kDyld:
+ case Options::kObjectFile:
+ case Options::kPreload:
+ case Options::kKextBundle:
+ return ObjectFile::Atom::scopeLinkageUnit;
+ }
+ throw "unknown header type";
+}
+
+template <typename A>
+ObjectFile::Atom::SymbolTableInclusion MachHeaderAtom<A>::getSymbolTableInclusion() const
+{
+ switch ( fWriter.fOptions.outputKind() ) {
+ case Options::kDynamicExecutable:
+ return ObjectFile::Atom::kSymbolTableInAndNeverStrip;
+ case Options::kStaticExecutable:
+ return ObjectFile::Atom::kSymbolTableInAsAbsolute;
+ case Options::kDynamicLibrary:
+ case Options::kDynamicBundle:
+ case Options::kDyld:
+ return ObjectFile::Atom::kSymbolTableIn;
+ case Options::kObjectFile:
+ case Options::kPreload:
+ case Options::kKextBundle:
+ return ObjectFile::Atom::kSymbolTableNotIn;
+ }
+ throw "unknown header type";
+}
+
+template <typename A>
+const char* MachHeaderAtom<A>::getName() const
+{
+ switch ( fWriter.fOptions.outputKind() ) {
+ case Options::kDynamicExecutable:
+ case Options::kStaticExecutable:
+ return "__mh_execute_header";
+ case Options::kDynamicLibrary:
+ return "__mh_dylib_header";
+ case Options::kDynamicBundle:
+ return "__mh_bundle_header";
+ case Options::kObjectFile:
+ case Options::kPreload:
+ case Options::kKextBundle:
+ return NULL;
+ case Options::kDyld:
+ return "__mh_dylinker_header";
+ }
+ throw "unknown header type";
+}
+
+template <typename A>
+const char* MachHeaderAtom<A>::getDisplayName() const
+{
+ switch ( fWriter.fOptions.outputKind() ) {
+ case Options::kDynamicExecutable:
+ case Options::kStaticExecutable:
+ case Options::kDynamicLibrary:
+ case Options::kDynamicBundle:
+ case Options::kDyld:
+ return this->getName();
+ case Options::kObjectFile:
+ case Options::kPreload:
+ case Options::kKextBundle:
+ return "mach header";
+ }
+ throw "unknown header type";
+}
+
+template <typename A>
+void MachHeaderAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ // get file type
+ uint32_t fileType = 0;
+ switch ( fWriter.fOptions.outputKind() ) {
+ case Options::kDynamicExecutable:
+ case Options::kStaticExecutable:
+ fileType = MH_EXECUTE;
+ break;
+ case Options::kDynamicLibrary:
+ fileType = MH_DYLIB;
+ break;
+ case Options::kDynamicBundle:
+ fileType = MH_BUNDLE;
+ break;
+ case Options::kObjectFile:
+ fileType = MH_OBJECT;
+ break;
+ case Options::kDyld:
+ fileType = MH_DYLINKER;
+ break;
+ case Options::kPreload:
+ fileType = MH_PRELOAD;
+ break;
+ case Options::kKextBundle:
+ fileType = MH_KEXT_BUNDLE;
+ break;
+ }
+
+ // get flags
+ uint32_t flags = 0;
+ if ( fWriter.fOptions.outputKind() == Options::kObjectFile ) {
+ if ( fWriter.fCanScatter )
+ flags = MH_SUBSECTIONS_VIA_SYMBOLS;
+ }
+ else {
+ if ( fWriter.fOptions.outputKind() == Options::kStaticExecutable ) {
+ flags |= MH_NOUNDEFS;
+ }
+ else if ( fWriter.fOptions.outputKind() == Options::kPreload ) {
+ flags |= MH_NOUNDEFS;
+ if ( fWriter.fOptions.positionIndependentExecutable() )
+ flags |= MH_PIE;
+ }
+ else {
+ flags = MH_DYLDLINK;
+ if ( fWriter.fOptions.bindAtLoad() )
+ flags |= MH_BINDATLOAD;
+ switch ( fWriter.fOptions.nameSpace() ) {
+ case Options::kTwoLevelNameSpace:
+ flags |= MH_TWOLEVEL | MH_NOUNDEFS;
+ break;
+ case Options::kFlatNameSpace:
+ break;
+ case Options::kForceFlatNameSpace:
+ flags |= MH_FORCE_FLAT;
+ break;
+ }
+ bool hasWeakDefines = fWriter.fHasWeakExports;
+ if ( fWriter.fRegularDefAtomsThatOverrideADylibsWeakDef->size() != 0 ) {
+ for(std::set<const ObjectFile::Atom*>::iterator it = fWriter.fRegularDefAtomsThatOverrideADylibsWeakDef->begin();
+ it != fWriter.fRegularDefAtomsThatOverrideADylibsWeakDef->end(); ++it) {
+ if ( fWriter.shouldExport(**it) ) {
+ hasWeakDefines = true;
+ break;
+ }
+ }
+ }
+ if ( hasWeakDefines )
+ flags |= MH_WEAK_DEFINES;
+ if ( fWriter.fReferencesWeakImports || fWriter.fHasWeakExports )
+ flags |= MH_BINDS_TO_WEAK;
+ if ( fWriter.fOptions.prebind() )
+ flags |= MH_PREBOUND;
+ if ( fWriter.fOptions.splitSeg() )
+ flags |= MH_SPLIT_SEGS;
+ if ( (fWriter.fOptions.outputKind() == Options::kDynamicLibrary) && fWriter.fNoReExportedDylibs )
+ flags |= MH_NO_REEXPORTED_DYLIBS;
+ if ( fWriter.fOptions.positionIndependentExecutable() )
+ flags |= MH_PIE;
+ if ( fWriter.fOptions.markAutoDeadStripDylib() )
+ flags |= MH_DEAD_STRIPPABLE_DYLIB;
+ }
+ if ( fWriter.fOptions.hasExecutableStack() )
+ flags |= MH_ALLOW_STACK_EXECUTION;
+ if ( fWriter.fOptions.readerOptions().fRootSafe )
+ flags |= MH_ROOT_SAFE;
+ if ( fWriter.fOptions.readerOptions().fSetuidSafe )
+ flags |= MH_SETUID_SAFE;
+ }
+
+ // get commands info
+ uint32_t commandsSize = 0;
+ uint32_t commandsCount = 0;
+
+ std::vector<class ObjectFile::Atom*>& loadCommandAtoms = fWriter.fLoadCommandsSection->fAtoms;
+ for (std::vector<ObjectFile::Atom*>::iterator it=loadCommandAtoms.begin(); it != loadCommandAtoms.end(); it++) {
+ ObjectFile::Atom* atom = *it;
+ commandsSize += atom->getSize();
+ // segment and symbol table atoms can contain more than one load command
+ if ( atom == fWriter.fSegmentCommands )
+ commandsCount += fWriter.fSegmentCommands->commandCount();
+ else if ( atom == fWriter.fSymbolTableCommands )
+ commandsCount += fWriter.fSymbolTableCommands->commandCount();
+ else if ( atom->getSize() != 0 )
+ ++commandsCount;
+ }
+
+ // fill out mach_header
+ macho_header<typename A::P>* mh = (macho_header<typename A::P>*)buffer;
+ setHeaderInfo(*mh);
+ mh->set_filetype(fileType);
+ mh->set_ncmds(commandsCount);
+ mh->set_sizeofcmds(commandsSize);
+ mh->set_flags(flags);
+}
+
+template <>
+void MachHeaderAtom<ppc>::setHeaderInfo(macho_header<ppc::P>& header) const
+{
+ header.set_magic(MH_MAGIC);
+ header.set_cputype(CPU_TYPE_POWERPC);
+ header.set_cpusubtype(fWriter.fCpuConstraint);
+}
+
+template <>
+void MachHeaderAtom<ppc64>::setHeaderInfo(macho_header<ppc64::P>& header) const
+{
+ header.set_magic(MH_MAGIC_64);
+ header.set_cputype(CPU_TYPE_POWERPC64);
+ if ( (fWriter.fOptions.outputKind() == Options::kDynamicExecutable) && (fWriter.fOptions.macosxVersionMin() >= ObjectFile::ReaderOptions::k10_5) )
+ header.set_cpusubtype(CPU_SUBTYPE_POWERPC_ALL | 0x80000000);
+ else
+ header.set_cpusubtype(CPU_SUBTYPE_POWERPC_ALL);
+ header.set_reserved(0);
+}
+
+template <>
+void MachHeaderAtom<x86>::setHeaderInfo(macho_header<x86::P>& header) const
+{
+ header.set_magic(MH_MAGIC);
+ header.set_cputype(CPU_TYPE_I386);
+ header.set_cpusubtype(CPU_SUBTYPE_I386_ALL);
+}
+
+template <>
+void MachHeaderAtom<x86_64>::setHeaderInfo(macho_header<x86_64::P>& header) const
+{
+ header.set_magic(MH_MAGIC_64);
+ header.set_cputype(CPU_TYPE_X86_64);
+ if ( (fWriter.fOptions.outputKind() == Options::kDynamicExecutable) && (fWriter.fOptions.macosxVersionMin() >= ObjectFile::ReaderOptions::k10_5) )
+ header.set_cpusubtype(CPU_SUBTYPE_X86_64_ALL | 0x80000000);
+ else
+ header.set_cpusubtype(CPU_SUBTYPE_X86_64_ALL);
+ header.set_reserved(0);
+}
+
+template <>
+void MachHeaderAtom<arm>::setHeaderInfo(macho_header<arm::P>& header) const
+{
+ header.set_magic(MH_MAGIC);
+ header.set_cputype(CPU_TYPE_ARM);
+ header.set_cpusubtype(fWriter.fCpuConstraint);
+}
+
+template <typename A>
+CustomStackAtom<A>::CustomStackAtom(Writer<A>& writer)
+ : WriterAtom<A>(writer, Segment::fgStackSegment)
+{
+ if ( stackGrowsDown() )
+ Segment::fgStackSegment.setBaseAddress(writer.fOptions.customStackAddr() - writer.fOptions.customStackSize());
+ else
+ Segment::fgStackSegment.setBaseAddress(writer.fOptions.customStackAddr());
+}
+
+
+template <> bool CustomStackAtom<ppc>::stackGrowsDown() { return true; }
+template <> bool CustomStackAtom<ppc64>::stackGrowsDown() { return true; }
+template <> bool CustomStackAtom<x86>::stackGrowsDown() { return true; }
+template <> bool CustomStackAtom<x86_64>::stackGrowsDown() { return true; }
+template <> bool CustomStackAtom<arm>::stackGrowsDown() { return true; }
+
+template <typename A>
+void SegmentLoadCommandsAtom<A>::computeSize()
+{
+ uint64_t size = 0;
+ std::vector<SegmentInfo*>& segmentInfos = fWriter.fSegmentInfos;
+ int segCount = 0;
+ for(std::vector<SegmentInfo*>::iterator it = segmentInfos.begin(); it != segmentInfos.end(); ++it) {
+ SegmentInfo* seg = *it;
+ if ( seg->fHasLoadCommand ) {
+ ++segCount;
+ size += sizeof(macho_segment_command<P>);
+ std::vector<SectionInfo*>& sectionInfos = seg->fSections;
+ const int sectionCount = sectionInfos.size();
+ for(int j=0; j < sectionCount; ++j) {
+ if ( fWriter.fEmitVirtualSections || ! sectionInfos[j]->fVirtualSection )
+ size += sizeof(macho_section<P>);
+ }
+ }
+ }
+ fSize = size;
+ fCommandCount = segCount;
+ if ( fWriter.fPadSegmentInfo != NULL ) {
+ ++fCommandCount;
+ fSize += sizeof(macho_segment_command<P>);
+ }
+}
+
+template <>
+uint64_t LoadCommandAtom<ppc>::alignedSize(uint64_t size)
+{
+ return ((size+3) & (-4)); // 4-byte align all load commands for 32-bit mach-o
+}
+
+template <>
+uint64_t LoadCommandAtom<ppc64>::alignedSize(uint64_t size)
+{
+ return ((size+7) & (-8)); // 8-byte align all load commands for 64-bit mach-o
+}
+
+template <>
+uint64_t LoadCommandAtom<x86>::alignedSize(uint64_t size)
+{
+ return ((size+3) & (-4)); // 4-byte align all load commands for 32-bit mach-o
+}
+
+template <>
+uint64_t LoadCommandAtom<x86_64>::alignedSize(uint64_t size)
+{
+ return ((size+7) & (-8)); // 8-byte align all load commands for 64-bit mach-o
+}
+
+template <>
+uint64_t LoadCommandAtom<arm>::alignedSize(uint64_t size)
+{
+ return ((size+3) & (-4)); // 4-byte align all load commands for 32-bit mach-o
+}
+
+template <typename A>
+void SegmentLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ const bool oneSegment =( fWriter.fOptions.outputKind() == Options::kObjectFile );
+ bzero(buffer, size);
+ uint8_t* p = buffer;
+ typename std::vector<SegmentInfo*>& segmentInfos = fWriter.fSegmentInfos;
+ for(std::vector<SegmentInfo*>::iterator it = segmentInfos.begin(); it != segmentInfos.end(); ++it) {
+ SegmentInfo* segInfo = *it;
+ if ( ! segInfo->fHasLoadCommand )
+ continue;
+ const int sectionCount = segInfo->fSections.size();
+ macho_segment_command<P>* cmd = (macho_segment_command<P>*)p;
+ cmd->set_cmd(macho_segment_command<P>::CMD);
+ cmd->set_segname(segInfo->fName);
+ cmd->set_vmaddr(segInfo->fBaseAddress);
+ cmd->set_vmsize(oneSegment ? 0 : segInfo->fSize);
+ cmd->set_fileoff(segInfo->fFileOffset);
+ cmd->set_filesize(oneSegment ? 0 : segInfo->fFileSize);
+ cmd->set_maxprot(segInfo->fMaxProtection);
+ cmd->set_initprot(segInfo->fInitProtection);
+ // add sections array
+ macho_section<P>* const sections = (macho_section<P>*)&p[sizeof(macho_segment_command<P>)];
+ unsigned int sectionsEmitted = 0;
+ for (int j=0; j < sectionCount; ++j) {
+ SectionInfo* sectInfo = segInfo->fSections[j];
+ if ( fWriter.fEmitVirtualSections || !sectInfo->fVirtualSection ) {
+ macho_section<P>* sect = §ions[sectionsEmitted++];
+ if ( oneSegment ) {
+ // .o file segment does not cover load commands, so recalc at first real section
+ if ( sectionsEmitted == 1 ) {
+ cmd->set_vmaddr(sectInfo->getBaseAddress());
+ cmd->set_fileoff(sectInfo->fFileOffset);
+ }
+ cmd->set_filesize((sectInfo->fFileOffset+sectInfo->fSize)-cmd->fileoff());
+ cmd->set_vmsize(sectInfo->getBaseAddress() + sectInfo->fSize);
+ }
+ sect->set_sectname(sectInfo->fSectionName);
+ sect->set_segname(sectInfo->fSegmentName);
+ sect->set_addr(sectInfo->getBaseAddress());
+ sect->set_size(sectInfo->fSize);
+ sect->set_offset(sectInfo->fFileOffset);
+ sect->set_align(sectInfo->fAlignment);
+ if ( sectInfo->fRelocCount != 0 ) {
+ sect->set_reloff(sectInfo->fRelocOffset * sizeof(macho_relocation_info<P>) + fWriter.fSectionRelocationsAtom->getFileOffset());
+ sect->set_nreloc(sectInfo->fRelocCount);
+ }
+ if ( sectInfo->fAllZeroFill ) {
+ sect->set_flags(S_ZEROFILL);
+ sect->set_offset(0);
+ }
+ else if ( sectInfo->fAllLazyPointers ) {
+ sect->set_flags(S_LAZY_SYMBOL_POINTERS);
+ sect->set_reserved1(sectInfo->fIndirectSymbolOffset);
+ }
+ else if ( sectInfo->fAllLazyDylibPointers ) {
+ sect->set_flags(S_LAZY_DYLIB_SYMBOL_POINTERS);
+ sect->set_reserved1(sectInfo->fIndirectSymbolOffset);
+ }
+ else if ( sectInfo->fAllNonLazyPointers ) {
+ sect->set_flags(S_NON_LAZY_SYMBOL_POINTERS);
+ sect->set_reserved1(sectInfo->fIndirectSymbolOffset);
+ }
+ else if ( sectInfo->fAllStubs ) {
+ sect->set_flags(S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS);
+ sect->set_reserved1(sectInfo->fIndirectSymbolOffset);
+ sect->set_reserved2(sectInfo->fSize / sectInfo->fAtoms.size());
+ if ( sectInfo->fHasTextLocalRelocs )
+ sect->set_flags(sect->flags() | S_ATTR_LOC_RELOC);
+ }
+ else if ( sectInfo->fAllSelfModifyingStubs ) {
+ sect->set_flags(S_SYMBOL_STUBS | S_ATTR_SELF_MODIFYING_CODE);
+ sect->set_reserved1(sectInfo->fIndirectSymbolOffset);
+ sect->set_reserved2(sectInfo->fSize / sectInfo->fAtoms.size());
+ }
+ else if ( sectInfo->fAllStubHelpers ) {
+ sect->set_flags(S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS);
+ if ( sectInfo->fHasTextLocalRelocs )
+ sect->set_flags(sect->flags() | S_ATTR_LOC_RELOC);
+ }
+ else if ( sectInfo->fAtoms.at(0)->getContentType() == ObjectFile::Atom::kCStringType ) {
+ sect->set_flags(S_CSTRING_LITERALS);
+ }
+ else if ( sectInfo->fAtoms.at(0)->getContentType() == ObjectFile::Atom::kCFIType ) {
+ sect->set_flags(S_COALESCED | S_ATTR_NO_TOC | S_ATTR_STRIP_STATIC_SYMS);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__mod_init_func") == 0) && (strcmp(sectInfo->fSegmentName, "__DATA") == 0) ) {
+ sect->set_flags(S_MOD_INIT_FUNC_POINTERS);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__mod_term_func") == 0) && (strcmp(sectInfo->fSegmentName, "__DATA") == 0) ) {
+ sect->set_flags(S_MOD_TERM_FUNC_POINTERS);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__textcoal_nt") == 0) && (strcmp(sectInfo->fSegmentName, "__TEXT") == 0) ) {
+ sect->set_flags(S_COALESCED);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__const_coal") == 0) && (strcmp(sectInfo->fSegmentName, "__DATA") == 0) ) {
+ sect->set_flags(S_COALESCED);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__interpose") == 0) && (strcmp(sectInfo->fSegmentName, "__DATA") == 0) ) {
+ sect->set_flags(S_INTERPOSING);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__literal4") == 0) && (strcmp(sectInfo->fSegmentName, "__TEXT") == 0) ) {
+ sect->set_flags(S_4BYTE_LITERALS);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__literal8") == 0) && (strcmp(sectInfo->fSegmentName, "__TEXT") == 0) ) {
+ sect->set_flags(S_8BYTE_LITERALS);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__literal16") == 0) && (strcmp(sectInfo->fSegmentName, "__TEXT") == 0) ) {
+ sect->set_flags(S_16BYTE_LITERALS);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__message_refs") == 0) && (strcmp(sectInfo->fSegmentName, "__OBJC") == 0) ) {
+ sect->set_flags(S_LITERAL_POINTERS);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__objc_selrefs") == 0) && (strcmp(sectInfo->fSegmentName, "__DATA") == 0) ) {
+ sect->set_flags(S_LITERAL_POINTERS);
+ }
+ else if ( (strcmp(sectInfo->fSectionName, "__cls_refs") == 0) && (strcmp(sectInfo->fSegmentName, "__OBJC") == 0) ) {
+ sect->set_flags(S_LITERAL_POINTERS);
+ }
+ else if ( (strncmp(sectInfo->fSectionName, "__dof_", 6) == 0) && (strcmp(sectInfo->fSegmentName, "__TEXT") == 0) ) {
+ sect->set_flags(S_DTRACE_DOF);
+ }
+ else if ( (strncmp(sectInfo->fSectionName, "__dof_", 6) == 0) && (strcmp(sectInfo->fSegmentName, "__DATA") == 0) ) {
+ sect->set_flags(S_DTRACE_DOF);
+ }
+ else if ( (strncmp(sectInfo->fSectionName, "__text", 6) == 0) && (strcmp(sectInfo->fSegmentName, "__TEXT") == 0) ) {
+ sect->set_flags(S_REGULAR | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS);
+ if ( sectInfo->fHasTextLocalRelocs )
+ sect->set_flags(sect->flags() | S_ATTR_LOC_RELOC);
+ if ( sectInfo->fHasTextExternalRelocs )
+ sect->set_flags(sect->flags() | S_ATTR_EXT_RELOC);
+ }
+ //fprintf(stderr, "section %s flags=0x%08X\n", sectInfo->fSectionName, sect->flags());
+ }
+ }
+ p = &p[sizeof(macho_segment_command<P>) + sectionsEmitted*sizeof(macho_section<P>)];
+ cmd->set_cmdsize(sizeof(macho_segment_command<P>) + sectionsEmitted*sizeof(macho_section<P>));
+ cmd->set_nsects(sectionsEmitted);
+ }
+}
+
+
+template <typename A>
+SymbolTableLoadCommandsAtom<A>::SymbolTableLoadCommandsAtom(Writer<A>& writer)
+ : LoadCommandAtom<A>(writer), fNeedsDynamicSymbolTable(false)
+{
+ bzero(&fSymbolTable, sizeof(macho_symtab_command<P>));
+ bzero(&fDynamicSymbolTable, sizeof(macho_dysymtab_command<P>));
+ switch ( fWriter.fOptions.outputKind() ) {
+ case Options::kDynamicExecutable:
+ case Options::kDynamicLibrary:
+ case Options::kDynamicBundle:
+ case Options::kDyld:
+ case Options::kKextBundle:
+ fNeedsDynamicSymbolTable = true;
+ break;
+ case Options::kObjectFile:
+ case Options::kStaticExecutable:
+ fNeedsDynamicSymbolTable = false;
+ case Options::kPreload:
+ fNeedsDynamicSymbolTable = fWriter.fOptions.positionIndependentExecutable();
+ break;
+ }
+ writer.fSymbolTableCommands = this;
+}
+
+
+
+template <typename A>
+void SymbolTableLoadCommandsAtom<A>::needDynamicTable()
+{
+ fNeedsDynamicSymbolTable = true;
+}
+
+
+template <typename A>
+uint64_t SymbolTableLoadCommandsAtom<A>::getSize() const
+{
+ if ( fNeedsDynamicSymbolTable )
+ return this->alignedSize(sizeof(macho_symtab_command<P>) + sizeof(macho_dysymtab_command<P>));
+ else
+ return this->alignedSize(sizeof(macho_symtab_command<P>));
+}
+
+template <typename A>
+void SymbolTableLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ // build LC_SYMTAB command
+ macho_symtab_command<P>* symbolTableCmd = (macho_symtab_command<P>*)buffer;
+ bzero(symbolTableCmd, sizeof(macho_symtab_command<P>));
+ symbolTableCmd->set_cmd(LC_SYMTAB);
+ symbolTableCmd->set_cmdsize(sizeof(macho_symtab_command<P>));
+ symbolTableCmd->set_nsyms(fWriter.fSymbolTableCount);
+ symbolTableCmd->set_symoff(fWriter.fSymbolTableCount == 0 ? 0 : fWriter.fSymbolTableAtom->getFileOffset());
+ symbolTableCmd->set_stroff(fWriter.fStringsAtom->getSize() == 0 ? 0 : fWriter.fStringsAtom->getFileOffset());
+ symbolTableCmd->set_strsize(fWriter.fStringsAtom->getSize());
+
+ // build LC_DYSYMTAB command
+ if ( fNeedsDynamicSymbolTable ) {
+ macho_dysymtab_command<P>* dynamicSymbolTableCmd = (macho_dysymtab_command<P>*)&buffer[sizeof(macho_symtab_command<P>)];
+ bzero(dynamicSymbolTableCmd, sizeof(macho_dysymtab_command<P>));
+ dynamicSymbolTableCmd->set_cmd(LC_DYSYMTAB);
+ dynamicSymbolTableCmd->set_cmdsize(sizeof(macho_dysymtab_command<P>));
+ dynamicSymbolTableCmd->set_ilocalsym(fWriter.fSymbolTableStabsStartIndex);
+ dynamicSymbolTableCmd->set_nlocalsym(fWriter.fSymbolTableStabsCount + fWriter.fSymbolTableLocalCount);
+ dynamicSymbolTableCmd->set_iextdefsym(fWriter.fSymbolTableExportStartIndex);
+ dynamicSymbolTableCmd->set_nextdefsym(fWriter.fSymbolTableExportCount);
+ dynamicSymbolTableCmd->set_iundefsym(fWriter.fSymbolTableImportStartIndex);
+ dynamicSymbolTableCmd->set_nundefsym(fWriter.fSymbolTableImportCount);
+ if ( fWriter.fModuleInfoAtom != NULL ) {
+ dynamicSymbolTableCmd->set_tocoff(fWriter.fModuleInfoAtom->getTableOfContentsFileOffset());
+ dynamicSymbolTableCmd->set_ntoc(fWriter.fSymbolTableExportCount);
+ dynamicSymbolTableCmd->set_modtaboff(fWriter.fModuleInfoAtom->getModuleTableFileOffset());
+ dynamicSymbolTableCmd->set_nmodtab(1);
+ dynamicSymbolTableCmd->set_extrefsymoff(fWriter.fModuleInfoAtom->getReferencesFileOffset());
+ dynamicSymbolTableCmd->set_nextrefsyms(fWriter.fModuleInfoAtom->getReferencesCount());
+ }
+ dynamicSymbolTableCmd->set_indirectsymoff((fWriter.fIndirectTableAtom == NULL) ? 0 : fWriter.fIndirectTableAtom->getFileOffset());
+ dynamicSymbolTableCmd->set_nindirectsyms((fWriter.fIndirectTableAtom == NULL) ? 0 : fWriter.fIndirectTableAtom->fTable.size());
+ if ( fWriter.fOptions.outputKind() != Options::kObjectFile ) {
+ if ( fWriter.fExternalRelocationsAtom != 0 ) {
+ dynamicSymbolTableCmd->set_extreloff((fWriter.fExternalRelocs.size()==0) ? 0 : fWriter.fExternalRelocationsAtom->getFileOffset());
+ dynamicSymbolTableCmd->set_nextrel(fWriter.fExternalRelocs.size());
+ }
+ if ( fWriter.fLocalRelocationsAtom != 0 ) {
+ dynamicSymbolTableCmd->set_locreloff((fWriter.fInternalRelocs.size()==0) ? 0 : fWriter.fLocalRelocationsAtom->getFileOffset());
+ dynamicSymbolTableCmd->set_nlocrel(fWriter.fInternalRelocs.size());
+ }
+ }
+ }
+}
+
+
+template <typename A>
+unsigned int SymbolTableLoadCommandsAtom<A>::commandCount()
+{
+ return fNeedsDynamicSymbolTable ? 2 : 1;
+}
+
+template <typename A>
+uint64_t DyldLoadCommandsAtom<A>::getSize() const
+{
+ return this->alignedSize(sizeof(macho_dylinker_command<P>) + strlen("/usr/lib/dyld") + 1);
+}
+
+template <typename A>
+void DyldLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ macho_dylinker_command<P>* cmd = (macho_dylinker_command<P>*)buffer;
+ if ( fWriter.fOptions.outputKind() == Options::kDyld )
+ cmd->set_cmd(LC_ID_DYLINKER);
+ else
+ cmd->set_cmd(LC_LOAD_DYLINKER);
+ cmd->set_cmdsize(this->getSize());
+ cmd->set_name_offset();
+ strcpy((char*)&buffer[sizeof(macho_dylinker_command<P>)], "/usr/lib/dyld");
+}
+
+template <typename A>
+uint64_t AllowableClientLoadCommandsAtom<A>::getSize() const
+{
+ return this->alignedSize(sizeof(macho_sub_client_command<P>) + strlen(this->clientString) + 1);
+}
+
+template <typename A>
+void AllowableClientLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+
+ bzero(buffer, size);
+ macho_sub_client_command<P>* cmd = (macho_sub_client_command<P>*)buffer;
+ cmd->set_cmd(LC_SUB_CLIENT);
+ cmd->set_cmdsize(size);
+ cmd->set_client_offset();
+ strcpy((char*)&buffer[sizeof(macho_sub_client_command<P>)], this->clientString);
+
+}
+
+template <typename A>
+uint64_t DylibLoadCommandsAtom<A>::getSize() const
+{
+ if ( fOptimizedAway ) {
+ return 0;
+ }
+ else {
+ const char* path = fInfo.reader->getInstallPath();
+ return this->alignedSize(sizeof(macho_dylib_command<P>) + strlen(path) + 1);
+ }
+}
+
+template <typename A>
+void DylibLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ if ( fOptimizedAway )
+ return;
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ const char* path = fInfo.reader->getInstallPath();
+ macho_dylib_command<P>* cmd = (macho_dylib_command<P>*)buffer;
+ // <rdar://problem/5529626> If only weak_import symbols are used, linker should use LD_LOAD_WEAK_DYLIB
+ bool autoWeakLoadDylib = ( (fWriter.fDylibReadersWithWeakImports.count(fInfo.reader) > 0)
+ && (fWriter.fDylibReadersWithNonWeakImports.count(fInfo.reader) == 0) );
+ if ( fInfo.options.fLazyLoad )
+ cmd->set_cmd(LC_LAZY_LOAD_DYLIB);
+ else if ( fInfo.options.fWeakImport || autoWeakLoadDylib )
+ cmd->set_cmd(LC_LOAD_WEAK_DYLIB);
+ else if ( fInfo.options.fReExport && (fWriter.fOptions.macosxVersionMin() >= ObjectFile::ReaderOptions::k10_5) )
+ cmd->set_cmd(LC_REEXPORT_DYLIB);
+ else
+ cmd->set_cmd(LC_LOAD_DYLIB);
+ cmd->set_cmdsize(this->getSize());
+ cmd->set_timestamp(2); // needs to be some constant value that is different than DylibIDLoadCommandsAtom uses
+ cmd->set_current_version(fInfo.reader->getCurrentVersion());
+ cmd->set_compatibility_version(fInfo.reader->getCompatibilityVersion());
+ cmd->set_name_offset();
+ strcpy((char*)&buffer[sizeof(macho_dylib_command<P>)], path);
+}
+
+
+
+template <typename A>
+uint64_t DylibIDLoadCommandsAtom<A>::getSize() const
+{
+ return this->alignedSize(sizeof(macho_dylib_command<P>) + strlen(fWriter.fOptions.installPath()) + 1);
+}
+
+template <typename A>
+void DylibIDLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ macho_dylib_command<P>* cmd = (macho_dylib_command<P>*)buffer;
+ cmd->set_cmd(LC_ID_DYLIB);
+ cmd->set_cmdsize(this->getSize());
+ cmd->set_name_offset();
+ cmd->set_timestamp(1); // needs to be some constant value that is different than DylibLoadCommandsAtom uses
+ cmd->set_current_version(fWriter.fOptions.currentVersion());
+ cmd->set_compatibility_version(fWriter.fOptions.compatibilityVersion());
+ strcpy((char*)&buffer[sizeof(macho_dylib_command<P>)], fWriter.fOptions.installPath());
+}
+
+
+template <typename A>
+void RoutinesLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t initAddr = fWriter.getAtomLoadAddress(fWriter.fEntryPoint);
+ if (fWriter.fEntryPoint->isThumb())
+ initAddr |= 1ULL;
+ bzero(buffer, sizeof(macho_routines_command<P>));
+ macho_routines_command<P>* cmd = (macho_routines_command<P>*)buffer;
+ cmd->set_cmd(macho_routines_command<P>::CMD);
+ cmd->set_cmdsize(this->getSize());
+ cmd->set_init_address(initAddr);
+}
+
+
+template <typename A>
+uint64_t SubUmbrellaLoadCommandsAtom<A>::getSize() const
+{
+ return this->alignedSize(sizeof(macho_sub_umbrella_command<P>) + strlen(fName) + 1);
+}
+
+template <typename A>
+void SubUmbrellaLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ macho_sub_umbrella_command<P>* cmd = (macho_sub_umbrella_command<P>*)buffer;
+ cmd->set_cmd(LC_SUB_UMBRELLA);
+ cmd->set_cmdsize(this->getSize());
+ cmd->set_sub_umbrella_offset();
+ strcpy((char*)&buffer[sizeof(macho_sub_umbrella_command<P>)], fName);
+}
+
+template <typename A>
+void UUIDLoadCommandAtom<A>::generate()
+{
+ switch ( fWriter.fOptions.getUUIDMode() ) {
+ case Options::kUUIDNone:
+ fEmit = false;
+ break;
+ case Options::kUUIDRandom:
+ ::uuid_generate_random(fUUID);
+ fEmit = true;
+ break;
+ case Options::kUUIDContent:
+ bzero(fUUID, 16);
+ fEmit = true;
+ break;
+ }
+}
+
+template <typename A>
+void UUIDLoadCommandAtom<A>::setContent(const uint8_t uuid[16])
+{
+ memcpy(fUUID, uuid, 16);
+}
+
+template <typename A>
+void UUIDLoadCommandAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ if (fEmit) {
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ macho_uuid_command<P>* cmd = (macho_uuid_command<P>*)buffer;
+ cmd->set_cmd(LC_UUID);
+ cmd->set_cmdsize(this->getSize());
+ cmd->set_uuid((uint8_t*)fUUID);
+ }
+}
+
+
+template <typename A>
+uint64_t SubLibraryLoadCommandsAtom<A>::getSize() const
+{
+ return this->alignedSize(sizeof(macho_sub_library_command<P>) + fNameLength + 1);
+}
+
+template <typename A>
+void SubLibraryLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ macho_sub_library_command<P>* cmd = (macho_sub_library_command<P>*)buffer;
+ cmd->set_cmd(LC_SUB_LIBRARY);
+ cmd->set_cmdsize(this->getSize());
+ cmd->set_sub_library_offset();
+ strncpy((char*)&buffer[sizeof(macho_sub_library_command<P>)], fNameStart, fNameLength);
+ buffer[sizeof(macho_sub_library_command<P>)+fNameLength] = '\0';
+}
+
+template <typename A>
+uint64_t UmbrellaLoadCommandsAtom<A>::getSize() const
+{
+ return this->alignedSize(sizeof(macho_sub_framework_command<P>) + strlen(fName) + 1);
+}
+
+template <typename A>
+void UmbrellaLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ macho_sub_framework_command<P>* cmd = (macho_sub_framework_command<P>*)buffer;
+ cmd->set_cmd(LC_SUB_FRAMEWORK);
+ cmd->set_cmdsize(this->getSize());
+ cmd->set_umbrella_offset();
+ strcpy((char*)&buffer[sizeof(macho_sub_framework_command<P>)], fName);
+}
+
+template <>
+uint64_t ThreadsLoadCommandsAtom<ppc>::getSize() const
+{
+ return this->alignedSize(16 + 40*4); // base size + PPC_THREAD_STATE_COUNT * 4
+}
+
+template <>
+uint64_t ThreadsLoadCommandsAtom<ppc64>::getSize() const
+{
+ return this->alignedSize(16 + 76*4); // base size + PPC_THREAD_STATE64_COUNT * 4
+}
+
+template <>
+uint64_t ThreadsLoadCommandsAtom<x86>::getSize() const
+{
+ return this->alignedSize(16 + 16*4); // base size + i386_THREAD_STATE_COUNT * 4
+}
+
+template <>
+uint64_t ThreadsLoadCommandsAtom<x86_64>::getSize() const
+{
+ return this->alignedSize(16 + x86_THREAD_STATE64_COUNT * 4);
+}
+
+// We should be picking it up from a header
+template <>
+uint64_t ThreadsLoadCommandsAtom<arm>::getSize() const
+{
+ return this->alignedSize(16 + 17 * 4); // base size + ARM_THREAD_STATE_COUNT * 4
+}
+
+template <>
+void ThreadsLoadCommandsAtom<ppc>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ uint64_t start = fWriter.getAtomLoadAddress(fWriter.fEntryPoint);
+ bzero(buffer, size);
+ macho_thread_command<ppc::P>* cmd = (macho_thread_command<ppc::P>*)buffer;
+ cmd->set_cmd(LC_UNIXTHREAD);
+ cmd->set_cmdsize(size);
+ cmd->set_flavor(1); // PPC_THREAD_STATE
+ cmd->set_count(40); // PPC_THREAD_STATE_COUNT;
+ cmd->set_thread_register(0, start);
+ if ( fWriter.fOptions.hasCustomStack() )
+ cmd->set_thread_register(3, fWriter.fOptions.customStackAddr()); // r1
+}
+
+
+template <>
+void ThreadsLoadCommandsAtom<ppc64>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ uint64_t start = fWriter.getAtomLoadAddress(fWriter.fEntryPoint);
+ bzero(buffer, size);
+ macho_thread_command<ppc64::P>* cmd = (macho_thread_command<ppc64::P>*)buffer;
+ cmd->set_cmd(LC_UNIXTHREAD);
+ cmd->set_cmdsize(size);
+ cmd->set_flavor(5); // PPC_THREAD_STATE64
+ cmd->set_count(76); // PPC_THREAD_STATE64_COUNT;
+ cmd->set_thread_register(0, start);
+ if ( fWriter.fOptions.hasCustomStack() )
+ cmd->set_thread_register(3, fWriter.fOptions.customStackAddr()); // r1
+}
+
+template <>
+void ThreadsLoadCommandsAtom<x86>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ uint64_t start = fWriter.getAtomLoadAddress(fWriter.fEntryPoint);
+ bzero(buffer, size);
+ macho_thread_command<x86::P>* cmd = (macho_thread_command<x86::P>*)buffer;
+ cmd->set_cmd(LC_UNIXTHREAD);
+ cmd->set_cmdsize(size);
+ cmd->set_flavor(1); // i386_THREAD_STATE
+ cmd->set_count(16); // i386_THREAD_STATE_COUNT;
+ cmd->set_thread_register(10, start);
+ if ( fWriter.fOptions.hasCustomStack() )
+ cmd->set_thread_register(7, fWriter.fOptions.customStackAddr()); // esp
+}
+
+template <>
+void ThreadsLoadCommandsAtom<x86_64>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ uint64_t start = fWriter.getAtomLoadAddress(fWriter.fEntryPoint);
+ bzero(buffer, size);
+ macho_thread_command<x86_64::P>* cmd = (macho_thread_command<x86_64::P>*)buffer;
+ cmd->set_cmd(LC_UNIXTHREAD);
+ cmd->set_cmdsize(size);
+ cmd->set_flavor(x86_THREAD_STATE64);
+ cmd->set_count(x86_THREAD_STATE64_COUNT);
+ cmd->set_thread_register(16, start); // rip
+ if ( fWriter.fOptions.hasCustomStack() )
+ cmd->set_thread_register(7, fWriter.fOptions.customStackAddr()); // uesp
+}
+
+template <>
+void ThreadsLoadCommandsAtom<arm>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ uint64_t start = fWriter.getAtomLoadAddress(fWriter.fEntryPoint);
+ if ( fWriter.fEntryPoint->isThumb() )
+ start |= 1ULL;
+ bzero(buffer, size);
+ macho_thread_command<arm::P>* cmd = (macho_thread_command<arm::P>*)buffer;
+ cmd->set_cmd(LC_UNIXTHREAD);
+ cmd->set_cmdsize(size);
+ cmd->set_flavor(1);
+ cmd->set_count(17);
+ cmd->set_thread_register(15, start); // pc
+ if ( fWriter.fOptions.hasCustomStack() )
+ cmd->set_thread_register(13, fWriter.fOptions.customStackAddr()); // FIXME: sp?
+}
+
+template <typename A>
+uint64_t RPathLoadCommandsAtom<A>::getSize() const
+{
+ return this->alignedSize(sizeof(macho_rpath_command<P>) + strlen(fPath) + 1);
+}
+
+template <typename A>
+void RPathLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ macho_rpath_command<P>* cmd = (macho_rpath_command<P>*)buffer;
+ cmd->set_cmd(LC_RPATH);
+ cmd->set_cmdsize(this->getSize());
+ cmd->set_path_offset();
+ strcpy((char*)&buffer[sizeof(macho_rpath_command<P>)], fPath);
+}
+
+
+
+template <typename A>
+void EncryptionLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ macho_encryption_info_command<P>* cmd = (macho_encryption_info_command<P>*)buffer;
+ cmd->set_cmd(LC_ENCRYPTION_INFO);
+ cmd->set_cmdsize(this->getSize());
+ cmd->set_cryptoff(fStartOffset);
+ cmd->set_cryptsize(fEndOffset-fStartOffset);
+ cmd->set_cryptid(0);
+}
+
+
+
+template <typename A>
+void LoadCommandsPaddingAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ bzero(buffer, fSize);
+}
+
+template <typename A>
+void LoadCommandsPaddingAtom<A>::setSize(uint64_t newSize)
+{
+ fSize = newSize;
+ // this resizing by-passes the way fLargestAtomSize is set, so re-check here
+ if ( fWriter.fLargestAtomSize < newSize )
+ fWriter.fLargestAtomSize = newSize;
+}
+
+template <typename A>
+void UnwindInfoAtom<A>::addUnwindInfo(ObjectFile::Atom* func, uint32_t offset, uint32_t encoding,
+ ObjectFile::Reference* fdeRef, ObjectFile::Reference* lsdaRef,
+ ObjectFile::Atom* personalityPointer)
+{
+ Info info;
+ info.func = func;
+ if ( fdeRef != NULL )
+ info.fde = &fdeRef->getTarget();
+ else
+ info.fde = NULL;
+ if ( lsdaRef != NULL ) {
+ info.lsda = &lsdaRef->getTarget();
+ info.lsdaOffset = lsdaRef->getTargetOffset();
+ }
+ else {
+ info.lsda = NULL;
+ info.lsdaOffset = 0;
+ }
+ info.personalityPointer = personalityPointer;
+ info.encoding = encoding;
+ fInfos.push_back(info);
+ //fprintf(stderr, "addUnwindInfo() encoding=0x%08X, lsda=%p, lsdaOffset=%d, person=%p, func=%s\n",
+ // encoding, info.lsda, info.lsdaOffset, personalityPointer, func->getDisplayName());
+}
+
+template <>
+bool UnwindInfoAtom<x86>::encodingMeansUseDwarf(compact_unwind_encoding_t encoding)
+{
+ return ( (encoding & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF);
+}
+
+template <>
+bool UnwindInfoAtom<x86_64>::encodingMeansUseDwarf(compact_unwind_encoding_t encoding)
+{
+ return ( (encoding & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF);
+}
+
+template <typename A>
+bool UnwindInfoAtom<A>::encodingMeansUseDwarf(compact_unwind_encoding_t encoding)
+{
+ return false;
+}
+
+
+template <typename A>
+void UnwindInfoAtom<A>::compressDuplicates(std::vector<Info>& uniqueInfos)
+{
+ // build new list removing entries where next function has same encoding
+ uniqueInfos.reserve(fInfos.size());
+ Info last;
+ last.func = NULL;
+ last.lsda = NULL;
+ last.lsdaOffset = 0;
+ last.personalityPointer = NULL;
+ last.encoding = 0xFFFFFFFF;
+ for(typename std::vector<Info>::iterator it=fInfos.begin(); it != fInfos.end(); ++it) {
+ Info& newInfo = *it;
+ bool newNeedsDwarf = encodingMeansUseDwarf(newInfo.encoding);
+ // remove infos which have same encoding and personalityPointer as last one
+ if ( newNeedsDwarf || (newInfo.encoding != last.encoding) || (newInfo.personalityPointer != last.personalityPointer)
+ || (newInfo.lsda != NULL) || (last.lsda != NULL) ) {
+ uniqueInfos.push_back(newInfo);
+ }
+ last = newInfo;
+ }
+ //fprintf(stderr, "compressDuplicates() fInfos.size()=%lu, uniqueInfos.size()=%lu\n", fInfos.size(), uniqueInfos.size());
+}
+
+template <typename A>
+void UnwindInfoAtom<A>::findCommonEncoding(const std::vector<Info>& uniqueInfos, std::map<uint32_t, unsigned int>& commonEncodings)
+{
+ // scan infos to get frequency counts for each encoding
+ std::map<uint32_t, unsigned int> encodingsUsed;
+ unsigned int mostCommonEncodingUsageCount = 0;
+ for(typename std::vector<Info>::const_iterator it=uniqueInfos.begin(); it != uniqueInfos.end(); ++it) {
+ // never put dwarf into common table
+ if ( encodingMeansUseDwarf(it->encoding) )
+ continue;
+ std::map<uint32_t, unsigned int>::iterator pos = encodingsUsed.find(it->encoding);
+ if ( pos == encodingsUsed.end() ) {
+ encodingsUsed[it->encoding] = 1;
+ }
+ else {
+ encodingsUsed[it->encoding] += 1;
+ if ( mostCommonEncodingUsageCount < encodingsUsed[it->encoding] )
+ mostCommonEncodingUsageCount = encodingsUsed[it->encoding];
+ }
+ }
+ // put the most common encodings into the common table, but at most 127 of them
+ for(unsigned int usages=mostCommonEncodingUsageCount; usages > 1; --usages) {
+ for (std::map<uint32_t, unsigned int>::iterator euit=encodingsUsed.begin(); euit != encodingsUsed.end(); ++euit) {
+ if ( euit->second == usages ) {
+ unsigned int size = commonEncodings.size();
+ if ( size < 127 ) {
+ commonEncodings[euit->first] = size;
+ }
+ }
+ }
+ }
+}
+
+template <typename A>
+void UnwindInfoAtom<A>::makeLsdaIndex(const std::vector<Info>& uniqueInfos, std::map<ObjectFile::Atom*, uint32_t>& lsdaIndexOffsetMap)
+{
+ for(typename std::vector<Info>::const_iterator it=uniqueInfos.begin(); it != uniqueInfos.end(); ++it) {
+ lsdaIndexOffsetMap[it->func] = fLSDAIndex.size() * sizeof(macho_unwind_info_section_header_lsda_index_entry<P>);
+ if ( it->lsda != NULL ) {
+ LSDAEntry entry;
+ entry.func = it->func;
+ entry.lsda = it->lsda;
+ entry.lsdaOffset = it->lsdaOffset;
+ fLSDAIndex.push_back(entry);
+ }
+ }
+}
+
+template <typename A>
+void UnwindInfoAtom<A>::makePersonalityIndex(std::vector<Info>& uniqueInfos)
+{
+ for(typename std::vector<Info>::iterator it=uniqueInfos.begin(); it != uniqueInfos.end(); ++it) {
+ if ( it->personalityPointer != NULL ) {
+ std::map<ObjectFile::Atom*, uint32_t>::iterator pos = fPersonalityIndexMap.find(it->personalityPointer);
+ if ( pos == fPersonalityIndexMap.end() ) {
+ const uint32_t nextIndex = fPersonalityIndexMap.size() + 1;
+ fPersonalityIndexMap[it->personalityPointer] = nextIndex;
+ }
+ uint32_t personalityIndex = fPersonalityIndexMap[it->personalityPointer];
+ it->encoding |= (personalityIndex << (__builtin_ctz(UNWIND_PERSONALITY_MASK)) );
+ }
+ }
+}
+
+template <typename A>
+unsigned int UnwindInfoAtom<A>::makeRegularSecondLevelPage(const std::vector<Info>& uniqueInfos, uint32_t pageSize,
+ unsigned int endIndex, uint8_t*& pageEnd)
+{
+ const unsigned int maxEntriesPerPage = (pageSize - sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry);
+ const unsigned int entriesToAdd = ((endIndex > maxEntriesPerPage) ? maxEntriesPerPage : endIndex);
+ uint8_t* pageStart = pageEnd
+ - entriesToAdd*sizeof(unwind_info_regular_second_level_entry)
+ - sizeof(unwind_info_regular_second_level_page_header);
+ macho_unwind_info_regular_second_level_page_header<P>* page = (macho_unwind_info_regular_second_level_page_header<P>*)pageStart;
+ page->set_kind(UNWIND_SECOND_LEVEL_REGULAR);
+ page->set_entryPageOffset(sizeof(macho_unwind_info_regular_second_level_page_header<P>));
+ page->set_entryCount(entriesToAdd);
+ macho_unwind_info_regular_second_level_entry<P>* entryTable = (macho_unwind_info_regular_second_level_entry<P>*)(pageStart + page->entryPageOffset());
+ for (unsigned int i=0; i < entriesToAdd; ++i) {
+ const Info& info = uniqueInfos[endIndex-entriesToAdd+i];
+ entryTable[i].set_functionOffset(0);
+ entryTable[i].set_encoding(info.encoding);
+ RegFixUp fixup;
+ fixup.contentPointer = (uint8_t*)(&entryTable[i]);
+ fixup.func = info.func;
+ fixup.fde = ( encodingMeansUseDwarf(info.encoding) ? info.fde : NULL );
+ fRegFixUps.push_back(fixup);
+ }
+ //fprintf(stderr, "regular page with %u entries\n", entriesToAdd);
+ pageEnd = pageStart;
+ return endIndex - entriesToAdd;
+}
+
+
+template <typename A>
+unsigned int UnwindInfoAtom<A>::makeCompressedSecondLevelPage(const std::vector<Info>& uniqueInfos,
+ const std::map<uint32_t,unsigned int> commonEncodings,
+ uint32_t pageSize, unsigned int endIndex, uint8_t*& pageEnd)
+{
+ const bool log = false;
+ if (log) fprintf(stderr, "makeCompressedSecondLevelPage(pageSize=%u, endIndex=%u)\n", pageSize, endIndex);
+ // first pass calculates how many compressed entries we could fit in this sized page
+ // keep adding entries to page until:
+ // 1) encoding table plus entry table plus header exceed page size
+ // 2) the file offset delta from the first to last function > 24 bits
+ // 3) custom encoding index reachs 255
+ // 4) run out of uniqueInfos to encode
+ std::map<uint32_t, unsigned int> pageSpecificEncodings;
+ uint32_t space4 = (pageSize - sizeof(unwind_info_compressed_second_level_page_header))/sizeof(uint32_t);
+ std::vector<uint8_t> encodingIndexes;
+ int index = endIndex-1;
+ int entryCount = 0;
+ uint64_t lastEntryAddress = uniqueInfos[index].func->getAddress();
+ bool canDo = true;
+ while ( canDo && (index >= 0) ) {
+ const Info& info = uniqueInfos[index--];
+ // compute encoding index
+ unsigned int encodingIndex;
+ std::map<uint32_t, unsigned int>::const_iterator pos = commonEncodings.find(info.encoding);
+ if ( pos != commonEncodings.end() ) {
+ encodingIndex = pos->second;
+ }
+ else {
+ // no commmon entry, so add one on this page
+ uint32_t encoding = info.encoding;
+ if ( encodingMeansUseDwarf(encoding) ) {
+ // make unique pseudo encoding so this dwarf will gets is own encoding entry slot
+ encoding += (index+1);
+ }
+ std::map<uint32_t, unsigned int>::iterator ppos = pageSpecificEncodings.find(encoding);
+ if ( ppos != pageSpecificEncodings.end() ) {
+ encodingIndex = pos->second;
+ }
+ else {
+ encodingIndex = commonEncodings.size() + pageSpecificEncodings.size();
+ if ( encodingIndex <= 255 ) {
+ pageSpecificEncodings[encoding] = encodingIndex;
+ }
+ else {
+ canDo = false; // case 3)
+ if (log) fprintf(stderr, "end of compressed page with %u entries, %lu custom encodings because too many custom encodings\n",
+ entryCount, pageSpecificEncodings.size());
+ }
+ }
+ }
+ if ( canDo )
+ encodingIndexes.push_back(encodingIndex);
+ // compute function offset
+ uint32_t funcOffsetWithInPage = lastEntryAddress - info.func->getAddress();
+ if ( funcOffsetWithInPage > 0x00FFFF00 ) {
+ // don't use 0x00FFFFFF because addresses may vary after atoms are laid out again
+ canDo = false; // case 2)
+ if (log) fprintf(stderr, "can't use compressed page with %u entries because function offset too big\n", entryCount);
+ }
+ else {
+ ++entryCount;
+ }
+ // check room for entry
+ if ( (pageSpecificEncodings.size()+entryCount) >= space4 ) {
+ canDo = false; // case 1)
+ --entryCount;
+ if (log) fprintf(stderr, "end of compressed page with %u entries because full\n", entryCount);
+ }
+ //if (log) fprintf(stderr, "space4=%d, pageSpecificEncodings.size()=%ld, entryCount=%d\n", space4, pageSpecificEncodings.size(), entryCount);
+ }
+
+ // check for cases where it would be better to use a regular (non-compressed) page
+ const unsigned int compressPageUsed = sizeof(unwind_info_compressed_second_level_page_header)
+ + pageSpecificEncodings.size()*sizeof(uint32_t)
+ + entryCount*sizeof(uint32_t);
+ if ( (compressPageUsed < (pageSize-4) && (index >= 0) ) ) {
+ const int regularEntriesPerPage = (pageSize - sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry);
+ if ( entryCount < regularEntriesPerPage ) {
+ return makeRegularSecondLevelPage(uniqueInfos, pageSize, endIndex, pageEnd);
+ }
+ }
+
+ // check if we need any padding because adding another entry would take 8 bytes but only have room for 4
+ uint32_t pad = 0;
+ if ( compressPageUsed == (pageSize-4) )
+ pad = 4;
+
+ // second pass fills in page
+ uint8_t* pageStart = pageEnd - compressPageUsed - pad;
+ macho_unwind_info_compressed_second_level_page_header<P>* page = (macho_unwind_info_compressed_second_level_page_header<P>*)pageStart;
+ page->set_kind(UNWIND_SECOND_LEVEL_COMPRESSED);
+ page->set_entryPageOffset(sizeof(macho_unwind_info_compressed_second_level_page_header<P>));
+ page->set_entryCount(entryCount);
+ page->set_encodingsPageOffset(page->entryPageOffset()+entryCount*sizeof(uint32_t));
+ page->set_encodingsCount(pageSpecificEncodings.size());
+ uint32_t* const encodingsArray = (uint32_t*)&pageStart[page->encodingsPageOffset()];
+ // fill in entry table
+ uint32_t* const entiresArray = (uint32_t*)&pageStart[page->entryPageOffset()];
+ ObjectFile::Atom* firstFunc = uniqueInfos[endIndex-entryCount].func;
+ for(unsigned int i=endIndex-entryCount; i < endIndex; ++i) {
+ const Info& info = uniqueInfos[i];
+ uint8_t encodingIndex;
+ if ( encodingMeansUseDwarf(info.encoding) ) {
+ // dwarf entries are always in page specific encodings
+ encodingIndex = pageSpecificEncodings[info.encoding+i];
+ }
+ else {
+ std::map<uint32_t, unsigned int>::const_iterator pos = commonEncodings.find(info.encoding);
+ if ( pos != commonEncodings.end() )
+ encodingIndex = pos->second;
+ else
+ encodingIndex = pageSpecificEncodings[info.encoding];
+ }
+ uint32_t entryIndex = i - endIndex + entryCount;
+ A::P::E::set32(entiresArray[entryIndex], encodingIndex << 24);
+ CompressedFixUp funcStartFixUp;
+ funcStartFixUp.contentPointer = (uint8_t*)(&entiresArray[entryIndex]);
+ funcStartFixUp.func = info.func;
+ funcStartFixUp.fromFunc = firstFunc;
+ fCompressedFixUps.push_back(funcStartFixUp);
+ if ( encodingMeansUseDwarf(info.encoding) ) {
+ CompressedEncodingFixUp dwarfStartFixup;
+ dwarfStartFixup.contentPointer = (uint8_t*)(&encodingsArray[encodingIndex-commonEncodings.size()]);
+ dwarfStartFixup.fde = info.fde;
+ fCompressedEncodingFixUps.push_back(dwarfStartFixup);
+ }
+ }
+ // fill in encodings table
+ for(std::map<uint32_t, unsigned int>::const_iterator it = pageSpecificEncodings.begin(); it != pageSpecificEncodings.end(); ++it) {
+ A::P::E::set32(encodingsArray[it->second-commonEncodings.size()], it->first);
+ }
+
+ if (log) fprintf(stderr, "compressed page with %u entries, %lu custom encodings\n", entryCount, pageSpecificEncodings.size());
+
+ // update pageEnd;
+ pageEnd = pageStart;
+ return endIndex-entryCount; // endIndex for next page
+}
+
+template <> void UnwindInfoAtom<ppc>::generate() { }
+template <> void UnwindInfoAtom<ppc64>::generate() { }
+template <> void UnwindInfoAtom<arm>::generate() { }
+
+
+template <typename A>
+void UnwindInfoAtom<A>::generate()
+{
+ // only generate table if there are functions with unwind info
+ if ( fInfos.size() > 0 ) {
+ // find offset of end of __unwind_info section
+ SectionInfo* unwindSectionInfo = (SectionInfo*)this->getSection();
+
+ // build new list that has proper offsetInImage and remove entries where next function has same encoding
+ std::vector<Info> uniqueInfos;
+ this->compressDuplicates(uniqueInfos);
+
+ // build personality index, update encodings with personality index
+ this->makePersonalityIndex(uniqueInfos);
+ if ( fPersonalityIndexMap.size() > 3 )
+ throw "too many personality routines for compact unwind to encode";
+
+ // put the most common encodings into the common table, but at most 127 of them
+ std::map<uint32_t, unsigned int> commonEncodings;
+ this->findCommonEncoding(uniqueInfos, commonEncodings);
+
+ // build lsda index
+ std::map<ObjectFile::Atom*, uint32_t> lsdaIndexOffsetMap;
+ this->makeLsdaIndex(uniqueInfos, lsdaIndexOffsetMap);
+
+ // calculate worst case size for all unwind info pages when allocating buffer
+ const unsigned int entriesPerRegularPage = (4096-sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry);
+ const unsigned int pageCount = ((uniqueInfos.size() - 1)/entriesPerRegularPage) + 1;
+ fPagesContentForDelete = (uint8_t*)calloc(pageCount,4096);
+ fPagesSize = 0;
+ if ( fPagesContentForDelete == NULL )
+ throw "could not allocate space for compact unwind info";
+ ObjectFile::Atom* secondLevelFirstFuncs[pageCount*3];
+ uint8_t* secondLevelPagesStarts[pageCount*3];
+
+ // make last second level page smaller so that all other second level pages can be page aligned
+ uint32_t maxLastPageSize = unwindSectionInfo->fFileOffset % 4096;
+ uint32_t tailPad = 0;
+ if ( maxLastPageSize < 128 ) {
+ tailPad = maxLastPageSize;
+ maxLastPageSize = 4096;
+ }
+
+ // fill in pages in reverse order
+ unsigned int endIndex = uniqueInfos.size();
+ unsigned int secondLevelPageCount = 0;
+ uint8_t* pageEnd = &fPagesContentForDelete[pageCount*4096];
+ uint32_t pageSize = maxLastPageSize;
+ while ( endIndex > 0 ) {
+ endIndex = makeCompressedSecondLevelPage(uniqueInfos, commonEncodings, pageSize, endIndex, pageEnd);
+ secondLevelPagesStarts[secondLevelPageCount] = pageEnd;
+ secondLevelFirstFuncs[secondLevelPageCount] = uniqueInfos[endIndex].func;
+ ++secondLevelPageCount;
+ pageSize = 4096; // last page can be odd size, make rest up to 4096 bytes in size
+ }
+ fPagesContent = pageEnd;
+ fPagesSize = &fPagesContentForDelete[pageCount*4096] - pageEnd;
+
+ // calculate section layout
+ const uint32_t commonEncodingsArraySectionOffset = sizeof(macho_unwind_info_section_header<P>);
+ const uint32_t commonEncodingsArrayCount = commonEncodings.size();
+ const uint32_t commonEncodingsArraySize = commonEncodingsArrayCount * sizeof(compact_unwind_encoding_t);
+ const uint32_t personalityArraySectionOffset = commonEncodingsArraySectionOffset + commonEncodingsArraySize;
+ const uint32_t personalityArrayCount = fPersonalityIndexMap.size();
+ const uint32_t personalityArraySize = personalityArrayCount * sizeof(uint32_t);
+ const uint32_t indexSectionOffset = personalityArraySectionOffset + personalityArraySize;
+ const uint32_t indexCount = secondLevelPageCount+1;
+ const uint32_t indexSize = indexCount * sizeof(macho_unwind_info_section_header_index_entry<P>);
+ const uint32_t lsdaIndexArraySectionOffset = indexSectionOffset + indexSize;
+ const uint32_t lsdaIndexArrayCount = fLSDAIndex.size();
+ const uint32_t lsdaIndexArraySize = lsdaIndexArrayCount * sizeof(macho_unwind_info_section_header_lsda_index_entry<P>);
+ const uint32_t headerEndSectionOffset = lsdaIndexArraySectionOffset + lsdaIndexArraySize;
+
+
+ // allocate and fill in section header
+ fHeaderSize = headerEndSectionOffset;
+ fHeaderContent = new uint8_t[fHeaderSize];
+ bzero(fHeaderContent, fHeaderSize);
+ macho_unwind_info_section_header<P>* sectionHeader = (macho_unwind_info_section_header<P>*)fHeaderContent;
+ sectionHeader->set_version(UNWIND_SECTION_VERSION);
+ sectionHeader->set_commonEncodingsArraySectionOffset(commonEncodingsArraySectionOffset);
+ sectionHeader->set_commonEncodingsArrayCount(commonEncodingsArrayCount);
+ sectionHeader->set_personalityArraySectionOffset(personalityArraySectionOffset);
+ sectionHeader->set_personalityArrayCount(personalityArrayCount);
+ sectionHeader->set_indexSectionOffset(indexSectionOffset);
+ sectionHeader->set_indexCount(indexCount);
+
+ // copy common encodings
+ uint32_t* commonEncodingsTable = (uint32_t*)&fHeaderContent[commonEncodingsArraySectionOffset];
+ for (std::map<uint32_t, unsigned int>::iterator it=commonEncodings.begin(); it != commonEncodings.end(); ++it)
+ A::P::E::set32(commonEncodingsTable[it->second], it->first);
+
+ // make references for personality entries
+ uint32_t* personalityArray = (uint32_t*)&fHeaderContent[sectionHeader->personalityArraySectionOffset()];
+ for (std::map<ObjectFile::Atom*, unsigned int>::iterator it=fPersonalityIndexMap.begin(); it != fPersonalityIndexMap.end(); ++it) {
+ uint32_t offset = (uint8_t*)&personalityArray[it->second-1] - fHeaderContent;
+ fReferences.push_back(new WriterReference<A>(offset, A::kImageOffset32, it->first));
+ }
+
+ // build first level index and references
+ macho_unwind_info_section_header_index_entry<P>* indexTable = (macho_unwind_info_section_header_index_entry<P>*)&fHeaderContent[indexSectionOffset];
+ for (unsigned int i=0; i < secondLevelPageCount; ++i) {
+ unsigned int reverseIndex = secondLevelPageCount - 1 - i;
+ indexTable[i].set_functionOffset(0);
+ indexTable[i].set_secondLevelPagesSectionOffset(secondLevelPagesStarts[reverseIndex]-fPagesContent+headerEndSectionOffset);
+ indexTable[i].set_lsdaIndexArraySectionOffset(lsdaIndexOffsetMap[secondLevelFirstFuncs[reverseIndex]]+lsdaIndexArraySectionOffset);
+ uint32_t refOffset = (uint8_t*)&indexTable[i] - fHeaderContent;
+ fReferences.push_back(new WriterReference<A>(refOffset, A::kImageOffset32, secondLevelFirstFuncs[reverseIndex]));
+ }
+ indexTable[secondLevelPageCount].set_functionOffset(0);
+ indexTable[secondLevelPageCount].set_secondLevelPagesSectionOffset(0);
+ indexTable[secondLevelPageCount].set_lsdaIndexArraySectionOffset(lsdaIndexArraySectionOffset+lsdaIndexArraySize);
+ fReferences.push_back(new WriterReference<A>((uint8_t*)&indexTable[secondLevelPageCount] - fHeaderContent, A::kImageOffset32,
+ fInfos.back().func, fInfos.back().func->getSize()+1));
+
+ // build lsda references
+ uint32_t lsdaEntrySectionOffset = lsdaIndexArraySectionOffset;
+ for (typename std::vector<LSDAEntry>::iterator it = fLSDAIndex.begin(); it != fLSDAIndex.end(); ++it) {
+ fReferences.push_back(new WriterReference<A>(lsdaEntrySectionOffset, A::kImageOffset32, it->func));
+ fReferences.push_back(new WriterReference<A>(lsdaEntrySectionOffset+4, A::kImageOffset32, it->lsda, it->lsdaOffset));
+ lsdaEntrySectionOffset += sizeof(unwind_info_section_header_lsda_index_entry);
+ }
+
+ // make references for regular second level entries
+ for (typename std::vector<RegFixUp>::iterator it = fRegFixUps.begin(); it != fRegFixUps.end(); ++it) {
+ uint32_t offset = (it->contentPointer - fPagesContent) + fHeaderSize;
+ fReferences.push_back(new WriterReference<A>(offset, A::kImageOffset32, it->func));
+ if ( it->fde != NULL )
+ fReferences.push_back(new WriterReference<A>(offset+4, A::kSectionOffset24, it->fde));
+ }
+ // make references for compressed second level entries
+ for (typename std::vector<CompressedFixUp>::iterator it = fCompressedFixUps.begin(); it != fCompressedFixUps.end(); ++it) {
+ uint32_t offset = (it->contentPointer - fPagesContent) + fHeaderSize;
+ fReferences.push_back(new WriterReference<A>(offset, A::kPointerDiff24, it->func, 0, it->fromFunc, 0));
+ }
+ for (typename std::vector<CompressedEncodingFixUp>::iterator it = fCompressedEncodingFixUps.begin(); it != fCompressedEncodingFixUps.end(); ++it) {
+ uint32_t offset = (it->contentPointer - fPagesContent) + fHeaderSize;
+ fReferences.push_back(new WriterReference<A>(offset, A::kSectionOffset24, it->fde));
+ }
+
+ // update section record with new size
+ unwindSectionInfo->fSize = this->getSize();
+
+ // alter alignment so this section lays out so second level tables are page aligned
+ if ( secondLevelPageCount > 2 )
+ fAlignment = ObjectFile::Alignment(12, (unwindSectionInfo->fFileOffset - this->getSize()) % 4096);
+ }
+
+}
+
+
+
+
+template <typename A>
+void UnwindInfoAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ memcpy(buffer, fHeaderContent, fHeaderSize);
+ memcpy(&buffer[fHeaderSize], fPagesContent, fPagesSize);
+}
+
+
+
+template <typename A>
+uint64_t LinkEditAtom<A>::getFileOffset() const
+{
+ return ((SectionInfo*)this->getSection())->fFileOffset + this->getSectionOffset();
+}
+
+
+template <typename A>
+uint64_t SectionRelocationsLinkEditAtom<A>::getSize() const
+{
+ return fWriter.fSectionRelocs.size() * sizeof(macho_relocation_info<P>);
+}
+
+template <typename A>
+void SectionRelocationsLinkEditAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ memcpy(buffer, &fWriter.fSectionRelocs[0], this->getSize());
+}
+
+
+template <typename A>
+uint64_t LocalRelocationsLinkEditAtom<A>::getSize() const
+{
+ return fWriter.fInternalRelocs.size() * sizeof(macho_relocation_info<P>);
+}
+
+template <typename A>
+void LocalRelocationsLinkEditAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ memcpy(buffer, &fWriter.fInternalRelocs[0], this->getSize());
+}
+
+
+
+template <typename A>
+uint64_t SymbolTableLinkEditAtom<A>::getSize() const
+{
+ return fWriter.fSymbolTableCount * sizeof(macho_nlist<P>);
+}
+
+template <typename A>
+void SymbolTableLinkEditAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ memcpy(buffer, fWriter.fSymbolTable, this->getSize());
+}
+
+template <typename A>
+uint64_t ExternalRelocationsLinkEditAtom<A>::getSize() const
+{
+ return fWriter.fExternalRelocs.size() * sizeof(macho_relocation_info<P>);
+}
+
+template <typename A>
+void ExternalRelocationsLinkEditAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ std::sort(fWriter.fExternalRelocs.begin(), fWriter.fExternalRelocs.end(), ExternalRelocSorter<P>());
+ memcpy(buffer, &fWriter.fExternalRelocs[0], this->getSize());
+}
+
+
+
+template <typename A>
+uint64_t IndirectTableLinkEditAtom<A>::getSize() const
+{
+ return fTable.size() * sizeof(uint32_t);
+}
+
+template <typename A>
+void IndirectTableLinkEditAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ const uint32_t indirectTableSize = fTable.size();
+ uint32_t* indirectTable = (uint32_t*)buffer;
+ for(std::vector<IndirectEntry>::const_iterator it = fTable.begin(); it != fTable.end(); ++it) {
+ if ( it->indirectIndex < indirectTableSize )
+ A::P::E::set32(indirectTable[it->indirectIndex], it->symbolIndex);
+ else
+ throwf("malformed indirect table. size=%d, index=%d", indirectTableSize, it->indirectIndex);
+ }
+}
+
+
+
+template <typename A>
+uint64_t ModuleInfoLinkEditAtom<A>::getSize() const
+{
+ return fWriter.fSymbolTableExportCount*sizeof(macho_dylib_table_of_contents<P>)
+ + sizeof(macho_dylib_module<P>)
+ + this->getReferencesCount()*sizeof(uint32_t);
+}
+
+template <typename A>
+uint32_t ModuleInfoLinkEditAtom<A>::getTableOfContentsFileOffset() const
+{
+ return this->getFileOffset();
+}
+
+template <typename A>
+uint32_t ModuleInfoLinkEditAtom<A>::getModuleTableFileOffset() const
+{
+ return this->getFileOffset() + fWriter.fSymbolTableExportCount*sizeof(macho_dylib_table_of_contents<P>);
+}
+
+template <typename A>
+uint32_t ModuleInfoLinkEditAtom<A>::getReferencesFileOffset() const
+{
+ return this->getModuleTableFileOffset() + sizeof(macho_dylib_module<P>);
+}
+
+template <typename A>
+uint32_t ModuleInfoLinkEditAtom<A>::getReferencesCount() const
+{
+ return fWriter.fSymbolTableExportCount + fWriter.fSymbolTableImportCount;
+}
+
+template <typename A>
+void ModuleInfoLinkEditAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ bzero(buffer, size);
+ // create toc. The symbols are already sorted, they are all in the smae module
+ macho_dylib_table_of_contents<P>* p = (macho_dylib_table_of_contents<P>*)buffer;
+ for(uint32_t i=0; i < fWriter.fSymbolTableExportCount; ++i, ++p) {
+ p->set_symbol_index(fWriter.fSymbolTableExportStartIndex+i);
+ p->set_module_index(0);
+ }
+ // create module table (one entry)
+ pint_t objcModuleSectionStart = 0;
+ pint_t objcModuleSectionSize = 0;
+ uint16_t numInits = 0;
+ uint16_t numTerms = 0;
+ std::vector<SegmentInfo*>& segmentInfos = fWriter.fSegmentInfos;
+ for (std::vector<SegmentInfo*>::iterator segit = segmentInfos.begin(); segit != segmentInfos.end(); ++segit) {
+ std::vector<SectionInfo*>& sectionInfos = (*segit)->fSections;
+ if ( strcmp((*segit)->fName, "__DATA") == 0 ) {
+ for (std::vector<SectionInfo*>::iterator sectit = sectionInfos.begin(); sectit != sectionInfos.end(); ++sectit) {
+ if ( strcmp((*sectit)->fSectionName, "__mod_init_func") == 0 )
+ numInits = (*sectit)->fSize / sizeof(typename A::P::uint_t);
+ else if ( strcmp((*sectit)->fSectionName, "__mod_term_func") == 0 )
+ numTerms = (*sectit)->fSize / sizeof(typename A::P::uint_t);
+ }
+ }
+ else if ( strcmp((*segit)->fName, "__OBJC") == 0 ) {
+ for (std::vector<SectionInfo*>::iterator sectit = sectionInfos.begin(); sectit != sectionInfos.end(); ++sectit) {
+ SectionInfo* sectInfo = (*sectit);
+ if ( strcmp(sectInfo->fSectionName, "__module_info") == 0 ) {
+ objcModuleSectionStart = sectInfo->getBaseAddress();
+ objcModuleSectionSize = sectInfo->fSize;
+ }
+ }
+ }
+ }
+ macho_dylib_module<P>* module = (macho_dylib_module<P>*)&buffer[fWriter.fSymbolTableExportCount*sizeof(macho_dylib_table_of_contents<P>)];
+ module->set_module_name(fModuleNameOffset);
+ module->set_iextdefsym(fWriter.fSymbolTableExportStartIndex);
+ module->set_nextdefsym(fWriter.fSymbolTableExportCount);
+ module->set_irefsym(0);
+ module->set_nrefsym(this->getReferencesCount());
+ module->set_ilocalsym(fWriter.fSymbolTableStabsStartIndex);
+ module->set_nlocalsym(fWriter.fSymbolTableStabsCount+fWriter.fSymbolTableLocalCount);
+ module->set_iextrel(0);
+ module->set_nextrel(fWriter.fExternalRelocs.size());
+ module->set_iinit_iterm(0,0);
+ module->set_ninit_nterm(numInits,numTerms);
+ module->set_objc_module_info_addr(objcModuleSectionStart);
+ module->set_objc_module_info_size(objcModuleSectionSize);
+ // create reference table
+ macho_dylib_reference<P>* ref = (macho_dylib_reference<P>*)((uint8_t*)module + sizeof(macho_dylib_module<P>));
+ for(uint32_t i=0; i < fWriter.fSymbolTableExportCount; ++i, ++ref) {
+ ref->set_isym(fWriter.fSymbolTableExportStartIndex+i);
+ ref->set_flags(REFERENCE_FLAG_DEFINED);
+ }
+ for(uint32_t i=0; i < fWriter.fSymbolTableImportCount; ++i, ++ref) {
+ ref->set_isym(fWriter.fSymbolTableImportStartIndex+i);
+ std::map<const ObjectFile::Atom*,ObjectFile::Atom*>::iterator pos = fWriter.fStubsMap.find(fWriter.fImportedAtoms[i]);
+ if ( pos != fWriter.fStubsMap.end() )
+ ref->set_flags(REFERENCE_FLAG_UNDEFINED_LAZY);
+ else
+ ref->set_flags(REFERENCE_FLAG_UNDEFINED_NON_LAZY);
+ }
+}
+
+
+
+template <typename A>
+StringsLinkEditAtom<A>::StringsLinkEditAtom(Writer<A>& writer)
+ : LinkEditAtom<A>(writer), fCurrentBuffer(NULL), fCurrentBufferUsed(0)
+{
+ fCurrentBuffer = new char[kBufferSize];
+ // burn first byte of string pool (so zero is never a valid string offset)
+ fCurrentBuffer[fCurrentBufferUsed++] = ' ';
+ // make offset 1 always point to an empty string
+ fCurrentBuffer[fCurrentBufferUsed++] = '\0';
+}
+
+template <typename A>
+uint64_t StringsLinkEditAtom<A>::getSize() const
+{
+ // align size
+ return (kBufferSize * fFullBuffers.size() + fCurrentBufferUsed + sizeof(typename A::P::uint_t) - 1) & (-sizeof(typename A::P::uint_t));
+}
+
+template <typename A>
+void StringsLinkEditAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t offset = 0;
+ for (unsigned int i=0; i < fFullBuffers.size(); ++i) {
+ memcpy(&buffer[offset], fFullBuffers[i], kBufferSize);
+ offset += kBufferSize;
+ }
+ memcpy(&buffer[offset], fCurrentBuffer, fCurrentBufferUsed);
+ // zero fill end to align
+ offset += fCurrentBufferUsed;
+ while ( (offset % sizeof(typename A::P::uint_t)) != 0 )
+ buffer[offset++] = 0;
+}
+
+template <typename A>
+int32_t StringsLinkEditAtom<A>::add(const char* name)
+{
+ int32_t offset = kBufferSize * fFullBuffers.size() + fCurrentBufferUsed;
+ int lenNeeded = strlcpy(&fCurrentBuffer[fCurrentBufferUsed], name, kBufferSize-fCurrentBufferUsed)+1;
+ if ( (fCurrentBufferUsed+lenNeeded) < kBufferSize ) {
+ fCurrentBufferUsed += lenNeeded;
+ }
+ else {
+ int copied = kBufferSize-fCurrentBufferUsed-1;
+ // change trailing '\0' that strlcpy added to real char
+ fCurrentBuffer[kBufferSize-1] = name[copied];
+ // alloc next buffer
+ fFullBuffers.push_back(fCurrentBuffer);
+ fCurrentBuffer = new char[kBufferSize];
+ fCurrentBufferUsed = 0;
+ // append rest of string
+ this->add(&name[copied+1]);
+ }
+ return offset;
+}
+
+
+template <typename A>
+int32_t StringsLinkEditAtom<A>::addUnique(const char* name)
+{
+ StringToOffset::iterator pos = fUniqueStrings.find(name);
+ if ( pos != fUniqueStrings.end() ) {
+ return pos->second;
+ }
+ else {
+ int32_t offset = this->add(name);
+ fUniqueStrings[name] = offset;
+ return offset;
+ }
+}
+
+
+template <typename A>
+const char* StringsLinkEditAtom<A>::stringForIndex(int32_t index) const
+{
+ int32_t currentBufferStartIndex = kBufferSize * fFullBuffers.size();
+ int32_t maxIndex = currentBufferStartIndex + fCurrentBufferUsed;
+ // check for out of bounds
+ if ( index > maxIndex )
+ return "";
+ // check for index in fCurrentBuffer
+ if ( index > currentBufferStartIndex )
+ return &fCurrentBuffer[index-currentBufferStartIndex];
+ // otherwise index is in a full buffer
+ uint32_t fullBufferIndex = index/kBufferSize;
+ return &fFullBuffers[fullBufferIndex][index-(kBufferSize*fullBufferIndex)];
+}
+
+
+
+template <typename A>
+BranchIslandAtom<A>::BranchIslandAtom(Writer<A>& writer, const char* name, int islandRegion, ObjectFile::Atom& target, uint32_t targetOffset)
+ : WriterAtom<A>(writer, Segment::fgTextSegment), fTarget(target), fTargetOffset(targetOffset)
+{
+ char* buf = new char[strlen(name)+32];
+ if ( targetOffset == 0 ) {
+ if ( islandRegion == 0 )
+ sprintf(buf, "%s$island", name);
+ else
+ sprintf(buf, "%s$island_%d", name, islandRegion);
+ }
+ else {
+ sprintf(buf, "%s_plus_%d$island_%d", name, targetOffset, islandRegion);
+ }
+ fName = buf;
+}
+
+
+template <>
+void BranchIslandAtom<ppc>::copyRawContent(uint8_t buffer[]) const
+{
+ int64_t displacement = fTarget.getAddress() + fTargetOffset - this->getAddress();
+ int32_t branchInstruction = 0x48000000 | ((uint32_t)displacement & 0x03FFFFFC);
+ OSWriteBigInt32(buffer, 0, branchInstruction);
+}
+
+template <>
+void BranchIslandAtom<ppc64>::copyRawContent(uint8_t buffer[]) const
+{
+ int64_t displacement = fTarget.getAddress() + fTargetOffset - this->getAddress();
+ int32_t branchInstruction = 0x48000000 | ((uint32_t)displacement & 0x03FFFFFC);
+ OSWriteBigInt32(buffer, 0, branchInstruction);
+}
+
+template <>
+uint64_t BranchIslandAtom<ppc>::getSize() const
+{
+ return 4;
+}
+
+template <>
+uint64_t BranchIslandAtom<ppc64>::getSize() const
+{
+ return 4;
+}
+
+
+
+template <typename A>
+uint64_t SegmentSplitInfoLoadCommandsAtom<A>::getSize() const
+{
+ if ( fWriter.fSplitCodeToDataContentAtom->canEncode() )
+ return this->alignedSize(sizeof(macho_linkedit_data_command<P>));
+ else
+ return 0; // a zero size causes the load command to be suppressed
+}
+
+template <typename A>
+void SegmentSplitInfoLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ uint64_t size = this->getSize();
+ if ( size > 0 ) {
+ bzero(buffer, size);
+ macho_linkedit_data_command<P>* cmd = (macho_linkedit_data_command<P>*)buffer;
+ cmd->set_cmd(LC_SEGMENT_SPLIT_INFO);
+ cmd->set_cmdsize(size);
+ cmd->set_dataoff(fWriter.fSplitCodeToDataContentAtom->getFileOffset());
+ cmd->set_datasize(fWriter.fSplitCodeToDataContentAtom->getSize());
+ }
+}
+
+
+template <typename A>
+uint64_t SegmentSplitInfoContentAtom<A>::getSize() const
+{
+ return fEncodedData.size();
+}
+
+template <typename A>
+void SegmentSplitInfoContentAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ memcpy(buffer, &fEncodedData[0], fEncodedData.size());
+}
+
+
+template <typename A>
+void SegmentSplitInfoContentAtom<A>::uleb128EncodeAddresses(const std::vector<SegmentSplitInfoContentAtom<A>::AtomAndOffset>& locations)
+{
+ pint_t addr = fWriter.fOptions.baseAddress();
+ for(typename std::vector<AtomAndOffset>::const_iterator it = locations.begin(); it != locations.end(); ++it) {
+ pint_t nextAddr = it->atom->getAddress() + it->offset;
+ //fprintf(stderr, "\t0x%0llX\n", (uint64_t)nextAddr);
+ uint64_t delta = nextAddr - addr;
+ if ( delta == 0 )
+ throw "double split seg info for same address";
+ // uleb128 encode
+ uint8_t byte;
+ do {
+ byte = delta & 0x7F;
+ delta &= ~0x7F;
+ if ( delta != 0 )
+ byte |= 0x80;
+ fEncodedData.push_back(byte);
+ delta = delta >> 7;
+ }
+ while( byte >= 0x80 );
+ addr = nextAddr;
+ }
+}
+
+template <typename A>
+void SegmentSplitInfoContentAtom<A>::encode()
+{
+ if ( ! fCantEncode ) {
+ fEncodedData.reserve(8192);
+
+ if ( fKind1Locations.size() != 0 ) {
+ fEncodedData.push_back(1);
+ //fprintf(stderr, "type 1:\n");
+ this->uleb128EncodeAddresses(fKind1Locations);
+ fEncodedData.push_back(0);
+ }
+
+ if ( fKind2Locations.size() != 0 ) {
+ fEncodedData.push_back(2);
+ //fprintf(stderr, "type 2:\n");
+ this->uleb128EncodeAddresses(fKind2Locations);
+ fEncodedData.push_back(0);
+ }
+
+ if ( fKind3Locations.size() != 0 ) {
+ fEncodedData.push_back(3);
+ //fprintf(stderr, "type 3:\n");
+ this->uleb128EncodeAddresses(fKind3Locations);
+ fEncodedData.push_back(0);
+ }
+
+ if ( fKind4Locations.size() != 0 ) {
+ fEncodedData.push_back(4);
+ //fprintf(stderr, "type 4:\n");
+ this->uleb128EncodeAddresses(fKind4Locations);
+ fEncodedData.push_back(0);
+ }
+
+ // always add zero byte to mark end
+ fEncodedData.push_back(0);
+
+ // add zeros to end to align size
+ while ( (fEncodedData.size() % sizeof(pint_t)) != 0 )
+ fEncodedData.push_back(0);
+ }
+}
+
+
+template <typename A>
+ObjCInfoAtom<A>::ObjCInfoAtom(Writer<A>& writer, ObjectFile::Reader::ObjcConstraint objcConstraint, bool objcReplacementClasses)
+ : WriterAtom<A>(writer, getInfoSegment())
+{
+ fContent[0] = 0;
+ uint32_t value = 0;
+ // struct objc_image_info {
+ // uint32_t version; // initially 0
+ // uint32_t flags;
+ // };
+ // #define OBJC_IMAGE_SUPPORTS_GC 2
+ // #define OBJC_IMAGE_GC_ONLY 4
+ //
+ if ( objcReplacementClasses )
+ value = 1;
+ switch ( objcConstraint ) {
+ case ObjectFile::Reader::kObjcNone:
+ case ObjectFile::Reader::kObjcRetainRelease:
+ break;
+ case ObjectFile::Reader::kObjcRetainReleaseOrGC:
+ value |= 2;
+ break;
+ case ObjectFile::Reader::kObjcGC:
+ value |= 6;
+ break;
+ }
+ A::P::E::set32(fContent[1], value);
+}
+
+template <typename A>
+void ObjCInfoAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ memcpy(buffer, &fContent[0], 8);
+}
+
+
+// objc info section is in a different segment and section for 32 vs 64 bit runtimes
+template <> const char* ObjCInfoAtom<ppc>::getSectionName() const { return "__image_info"; }
+template <> const char* ObjCInfoAtom<x86>::getSectionName() const { return "__image_info"; }
+template <> const char* ObjCInfoAtom<arm>::getSectionName() const { return "__objc_imageinfo"; }
+template <> const char* ObjCInfoAtom<ppc64>::getSectionName() const { return "__objc_imageinfo"; }
+template <> const char* ObjCInfoAtom<x86_64>::getSectionName() const { return "__objc_imageinfo"; }
+
+template <> Segment& ObjCInfoAtom<ppc>::getInfoSegment() const { return Segment::fgObjCSegment; }
+template <> Segment& ObjCInfoAtom<x86>::getInfoSegment() const { return Segment::fgObjCSegment; }
+template <> Segment& ObjCInfoAtom<ppc64>::getInfoSegment() const { return Segment::fgDataSegment; }
+template <> Segment& ObjCInfoAtom<x86_64>::getInfoSegment() const { return Segment::fgDataSegment; }
+template <> Segment& ObjCInfoAtom<arm>::getInfoSegment() const { return Segment::fgDataSegment; }
+
+
+
+
+template <typename A>
+void DyldInfoLoadCommandsAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ // build LC_DYLD_INFO command
+ macho_dyld_info_command<P>* cmd = (macho_dyld_info_command<P>*)buffer;
+ bzero(cmd, sizeof(macho_dyld_info_command<P>));
+
+ cmd->set_cmd( fWriter.fOptions.makeClassicDyldInfo() ? LC_DYLD_INFO : LC_DYLD_INFO_ONLY);
+ cmd->set_cmdsize(sizeof(macho_dyld_info_command<P>));
+ if ( (fWriter.fCompressedRebaseInfoAtom != NULL) && (fWriter.fCompressedRebaseInfoAtom->getSize() != 0) ) {
+ cmd->set_rebase_off(fWriter.fCompressedRebaseInfoAtom->getFileOffset());
+ cmd->set_rebase_size(fWriter.fCompressedRebaseInfoAtom->getSize());
+ }
+ if ( (fWriter.fCompressedBindingInfoAtom != NULL) && (fWriter.fCompressedBindingInfoAtom->getSize() != 0) ) {
+ cmd->set_bind_off(fWriter.fCompressedBindingInfoAtom->getFileOffset());
+ cmd->set_bind_size(fWriter.fCompressedBindingInfoAtom->getSize());
+ }
+ if ( (fWriter.fCompressedWeakBindingInfoAtom != NULL) && (fWriter.fCompressedWeakBindingInfoAtom->getSize() != 0) ) {
+ cmd->set_weak_bind_off(fWriter.fCompressedWeakBindingInfoAtom->getFileOffset());
+ cmd->set_weak_bind_size(fWriter.fCompressedWeakBindingInfoAtom->getSize());
+ }
+ if ( (fWriter.fCompressedLazyBindingInfoAtom != NULL) && (fWriter.fCompressedLazyBindingInfoAtom->getSize() != 0) ) {
+ cmd->set_lazy_bind_off(fWriter.fCompressedLazyBindingInfoAtom->getFileOffset());
+ cmd->set_lazy_bind_size(fWriter.fCompressedLazyBindingInfoAtom->getSize());
+ }
+ if ( (fWriter.fCompressedExportInfoAtom != NULL) && (fWriter.fCompressedExportInfoAtom->getSize() != 0) ) {
+ cmd->set_export_off(fWriter.fCompressedExportInfoAtom->getFileOffset());
+ cmd->set_export_size(fWriter.fCompressedExportInfoAtom->getSize());
+ }
+}
+
+
+struct rebase_tmp
+{
+ rebase_tmp(uint8_t op, uint64_t p1, uint64_t p2=0) : opcode(op), operand1(p1), operand2(p2) {}
+ uint8_t opcode;
+ uint64_t operand1;
+ uint64_t operand2;
+};
+
+
+template <typename A>
+void CompressedRebaseInfoLinkEditAtom<A>::encode()
+{
+ // sort rebase info by type, then address
+ const std::vector<SegmentInfo*>& segments = fWriter.fSegmentInfos;
+ std::vector<RebaseInfo>& info = fWriter.fRebaseInfo;
+ std::sort(info.begin(), info.end());
+
+ // convert to temp encoding that can be more easily optimized
+ std::vector<rebase_tmp> mid;
+ const SegmentInfo* currentSegment = NULL;
+ unsigned int segIndex = 0;
+ uint8_t type = 0;
+ uint64_t address = (uint64_t)(-1);
+ for (std::vector<RebaseInfo>::iterator it = info.begin(); it != info.end(); ++it) {
+ if ( type != it->fType ) {
+ mid.push_back(rebase_tmp(REBASE_OPCODE_SET_TYPE_IMM, it->fType));
+ type = it->fType;
+ }
+ if ( address != it->fAddress ) {
+ if ( (currentSegment == NULL) || (it->fAddress < currentSegment->fBaseAddress)
+ || ((currentSegment->fBaseAddress+currentSegment->fSize) <= it->fAddress) ) {
+ segIndex = 0;
+ for (std::vector<SegmentInfo*>::const_iterator segit = segments.begin(); segit != segments.end(); ++segit) {
+ if ( ((*segit)->fBaseAddress <= it->fAddress) && (it->fAddress < ((*segit)->fBaseAddress+(*segit)->fSize)) ) {
+ currentSegment = *segit;
+ break;
+ }
+ ++segIndex;
+ }
+ mid.push_back(rebase_tmp(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB, segIndex, it->fAddress - currentSegment->fBaseAddress));
+ }
+ else {
+ mid.push_back(rebase_tmp(REBASE_OPCODE_ADD_ADDR_ULEB, it->fAddress-address));
+ }
+ address = it->fAddress;
+ }
+ mid.push_back(rebase_tmp(REBASE_OPCODE_DO_REBASE_ULEB_TIMES, 1));
+ address += sizeof(pint_t);
+ }
+ mid.push_back(rebase_tmp(REBASE_OPCODE_DONE, 0));
+
+ // optimize phase 1, compress packed runs of pointers
+ rebase_tmp* dst = &mid[0];
+ for (const rebase_tmp* src = &mid[0]; src->opcode != REBASE_OPCODE_DONE; ++src) {
+ if ( (src->opcode == REBASE_OPCODE_DO_REBASE_ULEB_TIMES) && (src->operand1 == 1) ) {
+ *dst = *src++;
+ while (src->opcode == REBASE_OPCODE_DO_REBASE_ULEB_TIMES ) {
+ dst->operand1 += src->operand1;
+ ++src;
+ }
+ --src;
+ ++dst;
+ }
+ else {
+ *dst++ = *src;
+ }
+ }
+ dst->opcode = REBASE_OPCODE_DONE;
+
+ // optimize phase 2, combine rebase/add pairs
+ dst = &mid[0];
+ for (const rebase_tmp* src = &mid[0]; src->opcode != REBASE_OPCODE_DONE; ++src) {
+ if ( (src->opcode == REBASE_OPCODE_DO_REBASE_ULEB_TIMES)
+ && (src->operand1 == 1)
+ && (src[1].opcode == REBASE_OPCODE_ADD_ADDR_ULEB)) {
+ dst->opcode = REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB;
+ dst->operand1 = src[1].operand1;
+ ++src;
+ ++dst;
+ }
+ else {
+ *dst++ = *src;
+ }
+ }
+ dst->opcode = REBASE_OPCODE_DONE;
+
+ // optimize phase 3, compress packed runs of REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB with
+ // same addr delta into one REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB
+ dst = &mid[0];
+ for (const rebase_tmp* src = &mid[0]; src->opcode != REBASE_OPCODE_DONE; ++src) {
+ uint64_t delta = src->operand1;
+ if ( (src->opcode == REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB)
+ && (src[1].opcode == REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB)
+ && (src[2].opcode == REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB)
+ && (src[1].operand1 == delta)
+ && (src[2].operand1 == delta) ) {
+ // found at least three in a row, this is worth compressing
+ dst->opcode = REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB;
+ dst->operand1 = 1;
+ dst->operand2 = delta;
+ ++src;
+ while ( (src->opcode == REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB)
+ && (src->operand1 == delta) ) {
+ dst->operand1++;
+ ++src;
+ }
+ --src;
+ ++dst;
+ }
+ else {
+ *dst++ = *src;
+ }
+ }
+ dst->opcode = REBASE_OPCODE_DONE;
+
+ // optimize phase 4, use immediate encodings
+ for (rebase_tmp* p = &mid[0]; p->opcode != REBASE_OPCODE_DONE; ++p) {
+ if ( (p->opcode == REBASE_OPCODE_ADD_ADDR_ULEB)
+ && (p->operand1 < (15*sizeof(pint_t)))
+ && ((p->operand1 % sizeof(pint_t)) == 0) ) {
+ p->opcode = REBASE_OPCODE_ADD_ADDR_IMM_SCALED;
+ p->operand1 = p->operand1/sizeof(pint_t);
+ }
+ else if ( (p->opcode == REBASE_OPCODE_DO_REBASE_ULEB_TIMES) && (p->operand1 < 15) ) {
+ p->opcode = REBASE_OPCODE_DO_REBASE_IMM_TIMES;
+ }
+ }
+
+ // convert to compressed encoding
+ const static bool log = false;
+ fEncodedData.reserve(info.size()*2);
+ bool done = false;
+ for (std::vector<rebase_tmp>::iterator it = mid.begin(); !done && it != mid.end() ; ++it) {
+ switch ( it->opcode ) {
+ case REBASE_OPCODE_DONE:
+ if ( log ) fprintf(stderr, "REBASE_OPCODE_DONE()\n");
+ done = true;
+ break;
+ case REBASE_OPCODE_SET_TYPE_IMM:
+ if ( log ) fprintf(stderr, "REBASE_OPCODE_SET_TYPE_IMM(%lld)\n", it->operand1);
+ fEncodedData.append_byte(REBASE_OPCODE_SET_TYPE_IMM | it->operand1);
+ break;
+ case REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
+ if ( log ) fprintf(stderr, "REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(%lld, 0x%llX)\n", it->operand1, it->operand2);
+ fEncodedData.append_byte(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | it->operand1);
+ fEncodedData.append_uleb128(it->operand2);
+ break;
+ case REBASE_OPCODE_ADD_ADDR_ULEB:
+ if ( log ) fprintf(stderr, "REBASE_OPCODE_ADD_ADDR_ULEB(0x%llX)\n", it->operand1);
+ fEncodedData.append_byte(REBASE_OPCODE_ADD_ADDR_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ break;
+ case REBASE_OPCODE_ADD_ADDR_IMM_SCALED:
+ if ( log ) fprintf(stderr, "REBASE_OPCODE_ADD_ADDR_IMM_SCALED(%lld=0x%llX)\n", it->operand1, it->operand1*sizeof(pint_t));
+ fEncodedData.append_byte(REBASE_OPCODE_ADD_ADDR_IMM_SCALED | it->operand1 );
+ break;
+ case REBASE_OPCODE_DO_REBASE_IMM_TIMES:
+ if ( log ) fprintf(stderr, "REBASE_OPCODE_DO_REBASE_IMM_TIMES(%lld)\n", it->operand1);
+ fEncodedData.append_byte(REBASE_OPCODE_DO_REBASE_IMM_TIMES | it->operand1);
+ break;
+ case REBASE_OPCODE_DO_REBASE_ULEB_TIMES:
+ if ( log ) fprintf(stderr, "REBASE_OPCODE_DO_REBASE_ULEB_TIMES(%lld)\n", it->operand1);
+ fEncodedData.append_byte(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
+ fEncodedData.append_uleb128(it->operand1);
+ break;
+ case REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB:
+ if ( log ) fprintf(stderr, "REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB(0x%llX)\n", it->operand1);
+ fEncodedData.append_byte(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ break;
+ case REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB:
+ if ( log ) fprintf(stderr, "REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB(%lld, %lld)\n", it->operand1, it->operand2);
+ fEncodedData.append_byte(REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ fEncodedData.append_uleb128(it->operand2);
+ break;
+ }
+ }
+
+
+ // align to pointer size
+ fEncodedData.pad_to_size(sizeof(pint_t));
+
+ if (log) fprintf(stderr, "total rebase info size = %ld\n", fEncodedData.size());
+}
+
+
+struct binding_tmp
+{
+ binding_tmp(uint8_t op, uint64_t p1, uint64_t p2=0, const char* s=NULL)
+ : opcode(op), operand1(p1), operand2(p2), name(s) {}
+ uint8_t opcode;
+ uint64_t operand1;
+ uint64_t operand2;
+ const char* name;
+};
+
+
+
+template <typename A>
+void CompressedBindingInfoLinkEditAtom<A>::encode()
+{
+ // sort by library, symbol, type, then address
+ const std::vector<SegmentInfo*>& segments = fWriter.fSegmentInfos;
+ std::vector<BindingInfo>& info = fWriter.fBindingInfo;
+ std::sort(info.begin(), info.end());
+
+ // convert to temp encoding that can be more easily optimized
+ std::vector<binding_tmp> mid;
+ const SegmentInfo* currentSegment = NULL;
+ unsigned int segIndex = 0;
+ int ordinal = 0x80000000;
+ const char* symbolName = NULL;
+ uint8_t type = 0;
+ uint64_t address = (uint64_t)(-1);
+ int64_t addend = 0;
+ for (std::vector<BindingInfo>::iterator it = info.begin(); it != info.end(); ++it) {
+ if ( ordinal != it->fLibraryOrdinal ) {
+ if ( it->fLibraryOrdinal <= 0 ) {
+ // special lookups are encoded as negative numbers in BindingInfo
+ mid.push_back(binding_tmp(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM, it->fLibraryOrdinal));
+ }
+ else {
+ mid.push_back(binding_tmp(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB, it->fLibraryOrdinal));
+ }
+ ordinal = it->fLibraryOrdinal;
+ }
+ if ( symbolName != it->fSymbolName ) {
+ mid.push_back(binding_tmp(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM, it->fFlags, 0, it->fSymbolName));
+ symbolName = it->fSymbolName;
+ }
+ if ( type != it->fType ) {
+ mid.push_back(binding_tmp(BIND_OPCODE_SET_TYPE_IMM, it->fType));
+ type = it->fType;
+ }
+ if ( address != it->fAddress ) {
+ if ( (currentSegment == NULL) || (it->fAddress < currentSegment->fBaseAddress)
+ || ((currentSegment->fBaseAddress+currentSegment->fSize) <=it->fAddress)
+ || (it->fAddress < address) ) {
+ segIndex = 0;
+ for (std::vector<SegmentInfo*>::const_iterator segit = segments.begin(); segit != segments.end(); ++segit) {
+ if ( ((*segit)->fBaseAddress <= it->fAddress) && (it->fAddress < ((*segit)->fBaseAddress+(*segit)->fSize)) ) {
+ currentSegment = *segit;
+ break;
+ }
+ ++segIndex;
+ }
+ mid.push_back(binding_tmp(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB, segIndex, it->fAddress - currentSegment->fBaseAddress));
+ }
+ else {
+ mid.push_back(binding_tmp(BIND_OPCODE_ADD_ADDR_ULEB, it->fAddress-address));
+ }
+ address = it->fAddress;
+ }
+ if ( addend != it->fAddend ) {
+ mid.push_back(binding_tmp(BIND_OPCODE_SET_ADDEND_SLEB, it->fAddend));
+ addend = it->fAddend;
+ }
+ mid.push_back(binding_tmp(BIND_OPCODE_DO_BIND, 0));
+ address += sizeof(pint_t);
+ }
+ mid.push_back(binding_tmp(BIND_OPCODE_DONE, 0));
+
+
+ // optimize phase 1, combine bind/add pairs
+ binding_tmp* dst = &mid[0];
+ for (const binding_tmp* src = &mid[0]; src->opcode != BIND_OPCODE_DONE; ++src) {
+ if ( (src->opcode == BIND_OPCODE_DO_BIND)
+ && (src[1].opcode == BIND_OPCODE_ADD_ADDR_ULEB) ) {
+ dst->opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
+ dst->operand1 = src[1].operand1;
+ ++src;
+ ++dst;
+ }
+ else {
+ *dst++ = *src;
+ }
+ }
+ dst->opcode = BIND_OPCODE_DONE;
+
+ // optimize phase 2, compress packed runs of BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB with
+ // same addr delta into one BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB
+ dst = &mid[0];
+ for (const binding_tmp* src = &mid[0]; src->opcode != BIND_OPCODE_DONE; ++src) {
+ uint64_t delta = src->operand1;
+ if ( (src->opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB)
+ && (src[1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB)
+ && (src[1].operand1 == delta) ) {
+ // found at least two in a row, this is worth compressing
+ dst->opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
+ dst->operand1 = 1;
+ dst->operand2 = delta;
+ ++src;
+ while ( (src->opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB)
+ && (src->operand1 == delta) ) {
+ dst->operand1++;
+ ++src;
+ }
+ --src;
+ ++dst;
+ }
+ else {
+ *dst++ = *src;
+ }
+ }
+ dst->opcode = BIND_OPCODE_DONE;
+
+ // optimize phase 3, use immediate encodings
+ for (binding_tmp* p = &mid[0]; p->opcode != REBASE_OPCODE_DONE; ++p) {
+ if ( (p->opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB)
+ && (p->operand1 < (15*sizeof(pint_t)))
+ && ((p->operand1 % sizeof(pint_t)) == 0) ) {
+ p->opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
+ p->operand1 = p->operand1/sizeof(pint_t);
+ }
+ else if ( (p->opcode == BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB) && (p->operand1 <= 15) ) {
+ p->opcode = BIND_OPCODE_SET_DYLIB_ORDINAL_IMM;
+ }
+ }
+ dst->opcode = BIND_OPCODE_DONE;
+
+ // convert to compressed encoding
+ const static bool log = false;
+ fEncodedData.reserve(info.size()*2);
+ bool done = false;
+ for (std::vector<binding_tmp>::iterator it = mid.begin(); !done && it != mid.end() ; ++it) {
+ switch ( it->opcode ) {
+ case BIND_OPCODE_DONE:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_DONE()\n");
+ done = true;
+ break;
+ case BIND_OPCODE_SET_DYLIB_ORDINAL_IMM:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(%lld)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | it->operand1);
+ break;
+ case BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB(%lld)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ break;
+ case BIND_OPCODE_SET_DYLIB_SPECIAL_IMM:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_DYLIB_SPECIAL_IMM(%lld)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | (it->operand1 & BIND_IMMEDIATE_MASK));
+ break;
+ case BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM(0x%0llX, %s)\n", it->operand1, it->name);
+ fEncodedData.append_byte(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | it->operand1);
+ fEncodedData.append_string(it->name);
+ break;
+ case BIND_OPCODE_SET_TYPE_IMM:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_TYPE_IMM(%lld)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_SET_TYPE_IMM | it->operand1);
+ break;
+ case BIND_OPCODE_SET_ADDEND_SLEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_ADDEND_SLEB(%lld)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_SET_ADDEND_SLEB);
+ fEncodedData.append_sleb128(it->operand1);
+ break;
+ case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(%lld, 0x%llX)\n", it->operand1, it->operand2);
+ fEncodedData.append_byte(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | it->operand1);
+ fEncodedData.append_uleb128(it->operand2);
+ break;
+ case BIND_OPCODE_ADD_ADDR_ULEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_ADD_ADDR_ULEB(0x%llX)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_ADD_ADDR_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ break;
+ case BIND_OPCODE_DO_BIND:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_DO_BIND()\n");
+ fEncodedData.append_byte(BIND_OPCODE_DO_BIND);
+ break;
+ case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB(0x%llX)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ break;
+ case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED(%lld=0x%llX)\n", it->operand1, it->operand1*sizeof(pint_t));
+ fEncodedData.append_byte(BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED | it->operand1 );
+ break;
+ case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB(%lld, %lld)\n", it->operand1, it->operand2);
+ fEncodedData.append_byte(BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ fEncodedData.append_uleb128(it->operand2);
+ break;
+ }
+ }
+
+ // align to pointer size
+ fEncodedData.pad_to_size(sizeof(pint_t));
+
+ if (log) fprintf(stderr, "total binding info size = %ld\n", fEncodedData.size());
+
+}
+
+
+
+struct WeakBindingSorter
+{
+ bool operator()(const BindingInfo& left, const BindingInfo& right)
+ {
+ // sort by symbol, type, address
+ if ( left.fSymbolName != right.fSymbolName )
+ return ( strcmp(left.fSymbolName, right.fSymbolName) < 0 );
+ if ( left.fType != right.fType )
+ return (left.fType < right.fType);
+ return (left.fAddress < right.fAddress);
+ }
+};
+
+
+
+template <typename A>
+void CompressedWeakBindingInfoLinkEditAtom<A>::encode()
+{
+ // add regular atoms that override a dylib's weak definitions
+ for(std::set<const class ObjectFile::Atom*>::iterator it = fWriter.fRegularDefAtomsThatOverrideADylibsWeakDef->begin();
+ it != fWriter.fRegularDefAtomsThatOverrideADylibsWeakDef->end(); ++it) {
+ if ( fWriter.shouldExport(**it) )
+ fWriter.fWeakBindingInfo.push_back(BindingInfo(0, (*it)->getName(), true, 0, 0));
+ }
+
+ // add all exported weak definitions
+ for(std::vector<class ObjectFile::Atom*>::iterator it = fWriter.fAllAtoms->begin(); it != fWriter.fAllAtoms->end(); ++it) {
+ ObjectFile::Atom* atom = *it;
+ if ( (atom->getDefinitionKind() == ObjectFile::Atom::kWeakDefinition) && fWriter.shouldExport(*atom) ) {
+ fWriter.fWeakBindingInfo.push_back(BindingInfo(0, atom->getName(), false, 0, 0));
+ }
+ }
+
+ // sort by symbol, type, address
+ const std::vector<SegmentInfo*>& segments = fWriter.fSegmentInfos;
+ std::vector<BindingInfo>& info = fWriter.fWeakBindingInfo;
+ if ( info.size() == 0 )
+ return;
+ std::sort(info.begin(), info.end(), WeakBindingSorter());
+
+ // convert to temp encoding that can be more easily optimized
+ std::vector<binding_tmp> mid;
+ mid.reserve(info.size());
+ const SegmentInfo* currentSegment = NULL;
+ unsigned int segIndex = 0;
+ const char* symbolName = NULL;
+ uint8_t type = 0;
+ uint64_t address = (uint64_t)(-1);
+ int64_t addend = 0;
+ for (std::vector<BindingInfo>::iterator it = info.begin(); it != info.end(); ++it) {
+ if ( symbolName != it->fSymbolName ) {
+ mid.push_back(binding_tmp(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM, it->fFlags, 0, it->fSymbolName));
+ symbolName = it->fSymbolName;
+ }
+ if ( it->fType != 0 ) {
+ if ( type != it->fType ) {
+ mid.push_back(binding_tmp(BIND_OPCODE_SET_TYPE_IMM, it->fType));
+ type = it->fType;
+ }
+ if ( address != it->fAddress ) {
+ // non weak symbols just have BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM
+ // weak symbols have SET_SEG, ADD_ADDR, SET_ADDED, DO_BIND
+ if ( (currentSegment == NULL) || (it->fAddress < currentSegment->fBaseAddress)
+ || ((currentSegment->fBaseAddress+currentSegment->fSize) <=it->fAddress) ) {
+ segIndex = 0;
+ for (std::vector<SegmentInfo*>::const_iterator segit = segments.begin(); segit != segments.end(); ++segit) {
+ if ( ((*segit)->fBaseAddress <= it->fAddress) && (it->fAddress < ((*segit)->fBaseAddress+(*segit)->fSize)) ) {
+ currentSegment = *segit;
+ break;
+ }
+ ++segIndex;
+ }
+ mid.push_back(binding_tmp(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB, segIndex, it->fAddress - currentSegment->fBaseAddress));
+ }
+ else {
+ mid.push_back(binding_tmp(BIND_OPCODE_ADD_ADDR_ULEB, it->fAddress-address));
+ }
+ address = it->fAddress;
+ }
+ if ( addend != it->fAddend ) {
+ mid.push_back(binding_tmp(BIND_OPCODE_SET_ADDEND_SLEB, it->fAddend));
+ addend = it->fAddend;
+ }
+ mid.push_back(binding_tmp(BIND_OPCODE_DO_BIND, 0));
+ address += sizeof(pint_t);
+ }
+ }
+ mid.push_back(binding_tmp(BIND_OPCODE_DONE, 0));
+
+
+ // optimize phase 1, combine bind/add pairs
+ binding_tmp* dst = &mid[0];
+ for (const binding_tmp* src = &mid[0]; src->opcode != BIND_OPCODE_DONE; ++src) {
+ if ( (src->opcode == BIND_OPCODE_DO_BIND)
+ && (src[1].opcode == BIND_OPCODE_ADD_ADDR_ULEB) ) {
+ dst->opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
+ dst->operand1 = src[1].operand1;
+ ++src;
+ ++dst;
+ }
+ else {
+ *dst++ = *src;
+ }
+ }
+ dst->opcode = BIND_OPCODE_DONE;
+
+ // optimize phase 2, compress packed runs of BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB with
+ // same addr delta into one BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB
+ dst = &mid[0];
+ for (const binding_tmp* src = &mid[0]; src->opcode != BIND_OPCODE_DONE; ++src) {
+ uint64_t delta = src->operand1;
+ if ( (src->opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB)
+ && (src[1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB)
+ && (src[1].operand1 == delta) ) {
+ // found at least two in a row, this is worth compressing
+ dst->opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
+ dst->operand1 = 1;
+ dst->operand2 = delta;
+ ++src;
+ while ( (src->opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB)
+ && (src->operand1 == delta) ) {
+ dst->operand1++;
+ ++src;
+ }
+ --src;
+ ++dst;
+ }
+ else {
+ *dst++ = *src;
+ }
+ }
+ dst->opcode = BIND_OPCODE_DONE;
+
+ // optimize phase 3, use immediate encodings
+ for (binding_tmp* p = &mid[0]; p->opcode != REBASE_OPCODE_DONE; ++p) {
+ if ( (p->opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB)
+ && (p->operand1 < (15*sizeof(pint_t)))
+ && ((p->operand1 % sizeof(pint_t)) == 0) ) {
+ p->opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
+ p->operand1 = p->operand1/sizeof(pint_t);
+ }
+ }
+ dst->opcode = BIND_OPCODE_DONE;
+
+
+ // convert to compressed encoding
+ const static bool log = false;
+ fEncodedData.reserve(info.size()*2);
+ bool done = false;
+ for (std::vector<binding_tmp>::iterator it = mid.begin(); !done && it != mid.end() ; ++it) {
+ switch ( it->opcode ) {
+ case BIND_OPCODE_DONE:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_DONE()\n");
+ fEncodedData.append_byte(BIND_OPCODE_DONE);
+ done = true;
+ break;
+ case BIND_OPCODE_SET_DYLIB_ORDINAL_IMM:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(%lld)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | it->operand1);
+ break;
+ case BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB(%lld)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ break;
+ case BIND_OPCODE_SET_DYLIB_SPECIAL_IMM:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_DYLIB_SPECIAL_IMM(%lld)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | (it->operand1 & BIND_IMMEDIATE_MASK));
+ break;
+ case BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM(0x%0llX, %s)\n", it->operand1, it->name);
+ fEncodedData.append_byte(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | it->operand1);
+ fEncodedData.append_string(it->name);
+ break;
+ case BIND_OPCODE_SET_TYPE_IMM:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_TYPE_IMM(%lld)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_SET_TYPE_IMM | it->operand1);
+ break;
+ case BIND_OPCODE_SET_ADDEND_SLEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_ADDEND_SLEB(%lld)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_SET_ADDEND_SLEB);
+ fEncodedData.append_sleb128(it->operand1);
+ break;
+ case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(%lld, 0x%llX)\n", it->operand1, it->operand2);
+ fEncodedData.append_byte(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | it->operand1);
+ fEncodedData.append_uleb128(it->operand2);
+ break;
+ case BIND_OPCODE_ADD_ADDR_ULEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_ADD_ADDR_ULEB(0x%llX)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_ADD_ADDR_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ break;
+ case BIND_OPCODE_DO_BIND:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_DO_BIND()\n");
+ fEncodedData.append_byte(BIND_OPCODE_DO_BIND);
+ break;
+ case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB(0x%llX)\n", it->operand1);
+ fEncodedData.append_byte(BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ break;
+ case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED(%lld=0x%llX)\n", it->operand1, it->operand1*sizeof(pint_t));
+ fEncodedData.append_byte(BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED | it->operand1 );
+ break;
+ case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
+ if ( log ) fprintf(stderr, "BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB(%lld, %lld)\n", it->operand1, it->operand2);
+ fEncodedData.append_byte(BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB);
+ fEncodedData.append_uleb128(it->operand1);
+ fEncodedData.append_uleb128(it->operand2);
+ break;
+ }
+ }
+
+ // align to pointer size
+ fEncodedData.pad_to_size(sizeof(pint_t));
+
+ if (log) fprintf(stderr, "total weak binding info size = %ld\n", fEncodedData.size());
+
+}
+
+template <typename A>
+void CompressedLazyBindingInfoLinkEditAtom<A>::encode()
+{
+ // stream all lazy bindings and record start offsets
+ const SegmentInfo* currentSegment = NULL;
+ uint8_t segIndex = 0;
+ const std::vector<SegmentInfo*>& segments = fWriter.fSegmentInfos;
+ std::vector<class LazyPointerAtom<A>*>& allLazys = fWriter.fAllSynthesizedLazyPointers;
+ for (typename std::vector<class LazyPointerAtom<A>*>::iterator it = allLazys.begin(); it != allLazys.end(); ++it) {
+ LazyPointerAtom<A>* lazyPointerAtom = *it;
+ ObjectFile::Atom* lazyPointerTargetAtom = lazyPointerAtom->getTarget();
+
+ // skip lazy pointers that are bound non-lazily because they are coalesced
+ if ( ! fWriter.targetRequiresWeakBinding(*lazyPointerTargetAtom) ) {
+ // record start offset for use by stub helper
+ lazyPointerAtom->setLazyBindingInfoOffset(fEncodedData.size());
+
+ // write address to bind
+ pint_t address = lazyPointerAtom->getAddress();
+ if ( (currentSegment == NULL) || (address < currentSegment->fBaseAddress)
+ || ((currentSegment->fBaseAddress+currentSegment->fSize) <= address) ) {
+ segIndex = 0;
+ for (std::vector<SegmentInfo*>::const_iterator segit = segments.begin(); segit != segments.end(); ++segit) {
+ if ( ((*segit)->fBaseAddress <= address) && (address < ((*segit)->fBaseAddress+(*segit)->fSize)) ) {
+ currentSegment = *segit;
+ break;
+ }
+ ++segIndex;
+ }
+ }
+ fEncodedData.append_byte(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | segIndex);
+ fEncodedData.append_uleb128(lazyPointerAtom->getAddress() - currentSegment->fBaseAddress);
+
+ // write ordinal
+ int ordinal = fWriter.compressedOrdinalForImortedAtom(lazyPointerTargetAtom);
+ if ( ordinal <= 0 ) {
+ // special lookups are encoded as negative numbers in BindingInfo
+ fEncodedData.append_byte(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | (ordinal & BIND_IMMEDIATE_MASK) );
+ }
+ else if ( ordinal <= 15 ) {
+ // small ordinals are encoded in opcode
+ fEncodedData.append_byte(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
+ }
+ else {
+ fEncodedData.append_byte(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
+ fEncodedData.append_uleb128(ordinal);
+ }
+ // write symbol name
+ bool weak_import = fWriter.fWeakImportMap[lazyPointerTargetAtom];
+ if ( weak_import )
+ fEncodedData.append_byte(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | BIND_SYMBOL_FLAGS_WEAK_IMPORT);
+ else
+ fEncodedData.append_byte(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM);
+ fEncodedData.append_string(lazyPointerTargetAtom->getName());
+ // write do bind
+ fEncodedData.append_byte(BIND_OPCODE_DO_BIND);
+ fEncodedData.append_byte(BIND_OPCODE_DONE);
+ }
+ }
+ // align to pointer size
+ fEncodedData.pad_to_size(sizeof(pint_t));
+
+ //fprintf(stderr, "lazy binding info size = %ld, for %ld entries\n", fEncodedData.size(), allLazys.size());
+}
+
+struct TrieEntriesSorter
+{
+ TrieEntriesSorter(Options& o) : fOptions(o) {}
+
+ bool operator()(const mach_o::trie::Entry& left, const mach_o::trie::Entry& right)
+ {
+ unsigned int leftOrder;
+ unsigned int rightOrder;
+ fOptions.exportedSymbolOrder(left.name, &leftOrder);
+ fOptions.exportedSymbolOrder(right.name, &rightOrder);
+ if ( leftOrder != rightOrder )
+ return (leftOrder < rightOrder);
+ else
+ return (left.address < right.address);
+ }
+private:
+ Options& fOptions;
+};
+
+
+template <typename A>
+void CompressedExportInfoLinkEditAtom<A>::encode()
+{
+ // make vector of mach_o::trie::Entry for all exported symbols
+ std::vector<class ObjectFile::Atom*>& exports = fWriter.fExportedAtoms;
+ uint64_t imageBaseAddress = fWriter.fMachHeaderAtom->getAddress();
+ std::vector<mach_o::trie::Entry> entries;
+ entries.reserve(exports.size());
+ for (std::vector<ObjectFile::Atom*>::iterator it = exports.begin(); it != exports.end(); ++it) {
+ ObjectFile::Atom* atom = *it;
+ uint64_t flags = 0;
+ if ( atom->getDefinitionKind() == ObjectFile::Atom::kWeakDefinition )
+ flags |= EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
+ uint64_t address = atom->getAddress() - imageBaseAddress;
+ if ( atom->isThumb() )
+ address |= 1;
+ mach_o::trie::Entry entry;
+ entry.name = atom->getName();
+ entry.flags = flags;
+ entry.address = address;
+ entries.push_back(entry);
+ }
+
+ // sort vector by -exported_symbols_order, and any others by address
+ std::sort(entries.begin(), entries.end(), TrieEntriesSorter(fWriter.fOptions));
+
+ // create trie
+ mach_o::trie::makeTrie(entries, fEncodedData.bytes());
+
+ // align to pointer size
+ fEncodedData.pad_to_size(sizeof(pint_t));
+}
+
+
+
+
+
+}; // namespace executable
+}; // namespace mach_o
+
+
+#endif // __EXECUTABLE_MACH_O__