1 /* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-
3 * Copyright (c) 2005-2007 Apple Inc. All rights reserved.
5 * @APPLE_LICENSE_HEADER_START@
7 * This file contains Original Code and/or Modifications of Original Code
8 * as defined in and that are subject to the Apple Public Source License
9 * Version 2.0 (the 'License'). You may not use this file except in
10 * compliance with the License. Please obtain a copy of the License at
11 * http://www.opensource.apple.com/apsl/ and read it before using this
14 * The Original Code and all software distributed under the License are
15 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
19 * Please see the License for the specific language governing rights and
20 * limitations under the License.
22 * @APPLE_LICENSE_HEADER_END@
26 #ifndef __OBJECTFILE__
27 #define __OBJECTFILE__
36 // These classes represent the abstract Atoms and References that are the basis of the linker.
37 // An Atom and a Reference correspond to a Node and Edge in graph theory.
39 // A Reader is a class which parses an object file and presents it as Atoms and References.
40 // All linking operations are done on Atoms and References. This makes the linker file
41 // format independent.
43 // A Writer takes a vector of Atoms with all References resolved and produces an executable file.
49 namespace ObjectFile
{
63 ReaderOptions() : fFullyLoadArchives(false), fLoadAllObjcObjectsFromArchives(false), fFlatNamespace(false),
64 fLinkingMainExecutable(false), fSlowx86Stubs(false),
65 fForFinalLinkedImage(false), fForStatic(false), fForDyld(false), fMakeTentativeDefinitionsReal(false),
66 fWhyLoad(false), fRootSafe(false), fSetuidSafe(false),fDebugInfoStripping(kDebugInfoFull
),
67 fImplicitlyLinkPublicDylibs(true), fLogObjectFiles(false), fLogAllFiles(false),
68 fTraceDylibs(false), fTraceIndirectDylibs(false), fTraceArchives(false),
69 fTraceOutputFile(NULL
), fVersionMin(kMinUnset
) {}
70 enum DebugInfoStripping
{ kDebugInfoNone
, kDebugInfoMinimal
, kDebugInfoFull
};
71 enum VersionMin
{ kMinUnset
, k10_1
, k10_2
, k10_3
, k10_4
, k10_5
, k10_6
};
78 bool fFullyLoadArchives
;
79 bool fLoadAllObjcObjectsFromArchives
;
81 bool fLinkingMainExecutable
;
83 bool fForFinalLinkedImage
;
86 bool fMakeTentativeDefinitionsReal
;
90 DebugInfoStripping fDebugInfoStripping
;
91 bool fImplicitlyLinkPublicDylibs
;
95 bool fTraceIndirectDylibs
;
97 const char* fTraceOutputFile
;
98 VersionMin fVersionMin
;
99 std::vector
<AliasPair
> fAliases
;
106 enum DebugInfoKind
{ kDebugInfoNone
=0, kDebugInfoStabs
=1, kDebugInfoDwarf
=2, kDebugInfoStabsUUID
=3 };
116 enum ObjcConstraint
{ kObjcNone
, kObjcRetainRelease
, kObjcRetainReleaseOrGC
, kObjcGC
};
117 enum CpuConstraint
{ kCpuAny
= 0 };
122 virtual ~DylibHander() {}
123 virtual Reader
* findDylib(const char* installPath
, const char* fromPath
) = 0;
127 static Reader
* createReader(const char* path
, const ReaderOptions
& options
);
129 virtual const char* getPath() = 0;
130 virtual time_t getModificationTime() = 0;
131 virtual DebugInfoKind
getDebugInfoKind() = 0;
132 virtual std::vector
<class Atom
*>& getAtoms() = 0;
133 virtual std::vector
<class Atom
*>* getJustInTimeAtomsFor(const char* name
) = 0;
134 virtual std::vector
<Stab
>* getStabs() = 0;
135 virtual ObjcConstraint
getObjCConstraint() { return kObjcNone
; }
136 virtual uint32_t updateCpuConstraint(uint32_t current
) { return current
; }
137 virtual bool objcReplacementClasses() { return false; }
139 // For relocatable object files only
140 virtual bool canScatterAtoms() { return true; }
141 virtual void optimize(std::vector
<ObjectFile::Atom
*>&, std::vector
<ObjectFile::Atom
*>&,
142 std::vector
<const char*>&, uint32_t, ObjectFile::Reader
* writer
,
143 bool allGlobalsAReDeadStripRoots
, int okind
,
144 bool verbose
, bool saveTemps
, const char* outputFilePath
,
145 bool pie
, bool allowTextRelocs
) { }
146 virtual bool hasLongBranchStubs() { return false; }
148 // For Dynamic Libraries only
149 virtual const char* getInstallPath() { return NULL
; }
150 virtual uint32_t getTimestamp() { return 0; }
151 virtual uint32_t getCurrentVersion() { return 0; }
152 virtual uint32_t getCompatibilityVersion() { return 0; }
153 virtual void processIndirectLibraries(DylibHander
* handler
) { }
154 virtual void setExplicitlyLinked() { }
155 virtual bool explicitlyLinked() { return false; }
156 virtual bool implicitlyLinked() { return false; }
157 virtual bool providedExportAtom() { return false; }
158 virtual const char* parentUmbrella() { return NULL
; }
159 virtual std::vector
<const char*>* getAllowableClients() { return NULL
; }
160 virtual bool hasWeakExternals() { return false; }
161 virtual bool isLazyLoadedDylib() { return false; }
171 virtual const char* getName() const = 0;
172 virtual bool isContentReadable() const = 0;
173 virtual bool isContentWritable() const = 0;
174 virtual bool isContentExecutable() const = 0;
176 uint64_t getBaseAddress() const { return fBaseAddress
; }
177 void setBaseAddress(uint64_t addr
) { fBaseAddress
= addr
; }
178 virtual bool hasFixedAddress() const { return false; }
181 Segment() : fBaseAddress(0) {}
182 virtual ~Segment() {}
183 uint64_t fBaseAddress
;
191 unsigned int getIndex() { return fIndex
; }
192 uint64_t getBaseAddress() { return fBaseAddress
; }
193 void setBaseAddress(uint64_t addr
) { fBaseAddress
= addr
; }
197 Section() : fOther(NULL
), fBaseAddress(0), fIndex(0) {}
198 uint64_t fBaseAddress
;
205 Alignment(int p2
, int m
=0) : powerOf2(p2
), modulus(m
) {}
206 uint8_t trailingZeros() const { return (modulus
==0) ? powerOf2
: __builtin_ctz(modulus
); }
212 // An atom is the fundamental unit of linking. A C function or global variable is an atom.
213 // An atom has content and some attributes. The content of a function atom is the instructions
214 // that implement the function. The content of a global variable atom is its initial bits.
217 // The name of an atom is the label name generated by the compiler. A C compiler names foo()
218 // as _foo. A C++ compiler names foo() as __Z3foov.
219 // The name refers to the first byte of the content. An atom cannot have multiple entry points.
220 // Such code is modeled as multiple atoms, each having a "follow on" reference to the next.
221 // A "follow on" reference is a contraint to the linker to the atoms must be laid out contiguously.
224 // An atom is in one of three scopes: translation-unit, linkage-unit, or global. These correspond
225 // to the C visibility of static, hidden, default.
228 // An atom is one of five defintion kinds:
229 // regular Most atoms.
230 // weak C++ compiler makes some functions weak if there might be multiple copies
231 // that the linker needs to coalesce.
232 // tentative A straggler from ancient C when the extern did not exist. "int foo;" is ambiguous.
233 // It could be a prototype or it could be a definition.
234 // external This is a "proxy" atom produced by a dylib reader. It has no content. It exists
235 // so that all References can be resolved.
236 // external-weak Same as external, but the definition in the dylib is weak.
238 // SymbolTableInclusion:
239 // An atom may or may not be in the symbol table in an object file.
240 // in Most atoms for functions or global data
241 // not-in Anonymous atoms such literal c-strings, or other compiler generated data
242 // in-never-strip Atom whose name the strip tool should never remove (e.g. REFERENCED_DYNAMICALLY in mach-o)
245 // When a reader is created it is given a base ordinal number. All atoms created by the reader
246 // should return a contiguous range of ordinal values that start at the base ordinal. The ordinal
247 // values are used by the linker to sort the atom graph when producing the output file.
252 enum Scope
{ scopeTranslationUnit
, scopeLinkageUnit
, scopeGlobal
};
253 enum DefinitionKind
{ kRegularDefinition
, kWeakDefinition
, kTentativeDefinition
, kExternalDefinition
, kExternalWeakDefinition
, kAbsoluteSymbol
};
254 enum SymbolTableInclusion
{ kSymbolTableNotIn
, kSymbolTableIn
, kSymbolTableInAndNeverStrip
, kSymbolTableInAsAbsolute
};
256 virtual Reader
* getFile() const = 0;
257 virtual bool getTranslationUnitSource(const char** dir
, const char** name
) const = 0;
258 virtual const char* getName() const = 0;
259 virtual const char* getDisplayName() const = 0;
260 virtual Scope
getScope() const = 0;
261 virtual DefinitionKind
getDefinitionKind() const = 0;
262 virtual SymbolTableInclusion
getSymbolTableInclusion() const = 0;
263 virtual bool dontDeadStrip() const = 0;
264 virtual bool isZeroFill() const = 0;
265 virtual bool isThumb() const = 0;
266 virtual uint64_t getSize() const = 0;
267 virtual std::vector
<ObjectFile::Reference
*>& getReferences() const = 0;
268 virtual bool mustRemainInSection() const = 0;
269 virtual const char* getSectionName() const = 0;
270 virtual Segment
& getSegment() const = 0;
271 virtual Atom
& getFollowOnAtom() const = 0;
272 virtual uint32_t getOrdinal() const = 0;
273 virtual std::vector
<LineInfo
>* getLineInfo() const = 0;
274 virtual Alignment
getAlignment() const = 0;
275 virtual void copyRawContent(uint8_t buffer
[]) const = 0;
276 virtual void setScope(Scope
) = 0;
279 uint64_t getSectionOffset() const { return fSectionOffset
; }
280 uint64_t getAddress() const { return fSection
->getBaseAddress() + fSectionOffset
; }
281 class Section
* getSection() const { return fSection
; }
283 virtual void setSectionOffset(uint64_t offset
) { fSectionOffset
= offset
; }
284 virtual void setSection(class Section
* sect
) { fSection
= sect
; }
287 Atom() : fSectionOffset(0), fSection(NULL
) {}
290 uint64_t fSectionOffset
;
291 class Section
* fSection
;
296 // A Reference is a directed edge to another Atom. When an instruction in
297 // the content of an Atom refers to another Atom, that is represented by a
300 // There are two kinds of references: direct and by-name. With a direct Reference,
301 // the target is bound by the Reader that created it. For instance a reference to a
302 // static would produce a direct reference. A by-name reference requires the linker
303 // to find the target Atom with the required name in order to be bound.
305 // For a link to succeed all References must be bound.
307 // A Reference has an optional "from" target. This is used when the content to fix-up
308 // is the difference of two Atom address. For instance, if a pointer sized data Atom
309 // is to contain A - B, then the Atom would have on Reference with a target of "A" and
310 // a from-target of "B".
312 // A Reference also has a fix-up-offset. This is the offset into the content of the
313 // Atom holding the reference where the fix-up (relocation) will be applied.
320 enum TargetBinding
{ kUnboundByName
, kBoundDirectly
, kBoundByName
, kDontBind
};
322 virtual TargetBinding
getTargetBinding() const = 0;
323 virtual TargetBinding
getFromTargetBinding() const = 0;
324 virtual uint8_t getKind() const = 0;
325 virtual uint64_t getFixUpOffset() const = 0;
326 virtual const char* getTargetName() const = 0;
327 virtual Atom
& getTarget() const = 0;
328 virtual uint64_t getTargetOffset() const = 0;
329 virtual Atom
& getFromTarget() const = 0;
330 virtual const char* getFromTargetName() const = 0;
331 virtual uint64_t getFromTargetOffset() const = 0;
333 virtual void setTarget(Atom
&, uint64_t offset
) = 0;
334 virtual void setFromTarget(Atom
&) = 0;
335 virtual const char* getDescription() const = 0;
339 virtual ~Reference() {}
343 }; // namespace ObjectFile
346 #endif // __OBJECTFILE__