]> git.saurik.com Git - apple/javascriptcore.git/blob - runtime/MathObject.cpp
JavaScriptCore-1097.3.3.tar.gz
[apple/javascriptcore.git] / runtime / MathObject.cpp
1 /*
2 * Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
3 * Copyright (C) 2007, 2008 Apple Inc. All Rights Reserved.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 #include "config.h"
22 #include "MathObject.h"
23
24 #include "Lookup.h"
25 #include "ObjectPrototype.h"
26 #include "Operations.h"
27 #include <time.h>
28 #include <wtf/Assertions.h>
29 #include <wtf/MathExtras.h>
30 #include <wtf/RandomNumber.h>
31 #include <wtf/RandomNumberSeed.h>
32
33 namespace JSC {
34
35 ASSERT_CLASS_FITS_IN_CELL(MathObject);
36
37 static EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState*);
38 static EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*);
39 static EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState*);
40 static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState*);
41 static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState*);
42 static EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState*);
43 static EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState*);
44 static EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState*);
45 static EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState*);
46 static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState*);
47 static EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState*);
48 static EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState*);
49 static EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState*);
50 static EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState*);
51 static EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState*);
52 static EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*);
53 static EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*);
54 static EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*);
55
56 }
57
58 #include "MathObject.lut.h"
59
60 namespace JSC {
61
62 ASSERT_HAS_TRIVIAL_DESTRUCTOR(MathObject);
63
64 const ClassInfo MathObject::s_info = { "Math", &JSNonFinalObject::s_info, 0, ExecState::mathTable, CREATE_METHOD_TABLE(MathObject) };
65
66 /* Source for MathObject.lut.h
67 @begin mathTable
68 abs mathProtoFuncAbs DontEnum|Function 1
69 acos mathProtoFuncACos DontEnum|Function 1
70 asin mathProtoFuncASin DontEnum|Function 1
71 atan mathProtoFuncATan DontEnum|Function 1
72 atan2 mathProtoFuncATan2 DontEnum|Function 2
73 ceil mathProtoFuncCeil DontEnum|Function 1
74 cos mathProtoFuncCos DontEnum|Function 1
75 exp mathProtoFuncExp DontEnum|Function 1
76 floor mathProtoFuncFloor DontEnum|Function 1
77 log mathProtoFuncLog DontEnum|Function 1
78 max mathProtoFuncMax DontEnum|Function 2
79 min mathProtoFuncMin DontEnum|Function 2
80 pow mathProtoFuncPow DontEnum|Function 2
81 random mathProtoFuncRandom DontEnum|Function 0
82 round mathProtoFuncRound DontEnum|Function 1
83 sin mathProtoFuncSin DontEnum|Function 1
84 sqrt mathProtoFuncSqrt DontEnum|Function 1
85 tan mathProtoFuncTan DontEnum|Function 1
86 @end
87 */
88
89 MathObject::MathObject(JSGlobalObject* globalObject, Structure* structure)
90 : JSNonFinalObject(globalObject->globalData(), structure)
91 {
92 }
93
94 void MathObject::finishCreation(ExecState* exec, JSGlobalObject* globalObject)
95 {
96 Base::finishCreation(globalObject->globalData());
97 ASSERT(inherits(&s_info));
98
99 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly);
100 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly);
101 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly);
102 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly);
103 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly); // See ECMA-262 15.8.1.5
104 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly);
105 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly);
106 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly);
107 }
108
109 bool MathObject::getOwnPropertySlot(JSCell* cell, ExecState* exec, const Identifier& propertyName, PropertySlot &slot)
110 {
111 return getStaticFunctionSlot<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(cell), propertyName, slot);
112 }
113
114 bool MathObject::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
115 {
116 return getStaticFunctionDescriptor<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(object), propertyName, descriptor);
117 }
118
119 // ------------------------------ Functions --------------------------------
120
121 EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState* exec)
122 {
123 return JSValue::encode(jsNumber(fabs(exec->argument(0).toNumber(exec))));
124 }
125
126 EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState* exec)
127 {
128 return JSValue::encode(jsDoubleNumber(acos(exec->argument(0).toNumber(exec))));
129 }
130
131 EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState* exec)
132 {
133 return JSValue::encode(jsDoubleNumber(asin(exec->argument(0).toNumber(exec))));
134 }
135
136 EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState* exec)
137 {
138 return JSValue::encode(jsDoubleNumber(atan(exec->argument(0).toNumber(exec))));
139 }
140
141 EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState* exec)
142 {
143 double arg0 = exec->argument(0).toNumber(exec);
144 double arg1 = exec->argument(1).toNumber(exec);
145 return JSValue::encode(jsDoubleNumber(atan2(arg0, arg1)));
146 }
147
148 EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState* exec)
149 {
150 return JSValue::encode(jsNumber(ceil(exec->argument(0).toNumber(exec))));
151 }
152
153 EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState* exec)
154 {
155 return JSValue::encode(jsDoubleNumber(cos(exec->argument(0).toNumber(exec))));
156 }
157
158 EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState* exec)
159 {
160 return JSValue::encode(jsDoubleNumber(exp(exec->argument(0).toNumber(exec))));
161 }
162
163 EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState* exec)
164 {
165 return JSValue::encode(jsNumber(floor(exec->argument(0).toNumber(exec))));
166 }
167
168 EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState* exec)
169 {
170 return JSValue::encode(jsDoubleNumber(log(exec->argument(0).toNumber(exec))));
171 }
172
173 EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState* exec)
174 {
175 unsigned argsCount = exec->argumentCount();
176 double result = -std::numeric_limits<double>::infinity();
177 for (unsigned k = 0; k < argsCount; ++k) {
178 double val = exec->argument(k).toNumber(exec);
179 if (isnan(val)) {
180 result = std::numeric_limits<double>::quiet_NaN();
181 break;
182 }
183 if (val > result || (val == 0 && result == 0 && !signbit(val)))
184 result = val;
185 }
186 return JSValue::encode(jsNumber(result));
187 }
188
189 EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState* exec)
190 {
191 unsigned argsCount = exec->argumentCount();
192 double result = +std::numeric_limits<double>::infinity();
193 for (unsigned k = 0; k < argsCount; ++k) {
194 double val = exec->argument(k).toNumber(exec);
195 if (isnan(val)) {
196 result = std::numeric_limits<double>::quiet_NaN();
197 break;
198 }
199 if (val < result || (val == 0 && result == 0 && signbit(val)))
200 result = val;
201 }
202 return JSValue::encode(jsNumber(result));
203 }
204
205 #if CPU(ARM_THUMB2)
206
207 static double fdlibmPow(double x, double y);
208
209 static ALWAYS_INLINE bool isDenormal(double x)
210 {
211 static const uint64_t signbit = 0x8000000000000000ULL;
212 static const uint64_t minNormal = 0x0001000000000000ULL;
213 return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1;
214 }
215
216 static ALWAYS_INLINE bool isEdgeCase(double x)
217 {
218 static const uint64_t signbit = 0x8000000000000000ULL;
219 static const uint64_t infinity = 0x7fffffffffffffffULL;
220 return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1;
221 }
222
223 static ALWAYS_INLINE double mathPow(double x, double y)
224 {
225 if (!isDenormal(x) && !isDenormal(y)) {
226 double libmResult = pow(x,y);
227 if (libmResult || isEdgeCase(x) || isEdgeCase(y))
228 return libmResult;
229 }
230 return fdlibmPow(x,y);
231 }
232
233 #else
234
235 ALWAYS_INLINE double mathPow(double x, double y)
236 {
237 return pow(x, y);
238 }
239
240 #endif
241
242 EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState* exec)
243 {
244 // ECMA 15.8.2.1.13
245
246 double arg = exec->argument(0).toNumber(exec);
247 double arg2 = exec->argument(1).toNumber(exec);
248
249 if (isnan(arg2))
250 return JSValue::encode(jsNaN());
251 if (isinf(arg2) && fabs(arg) == 1)
252 return JSValue::encode(jsNaN());
253 return JSValue::encode(jsNumber(mathPow(arg, arg2)));
254 }
255
256 EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState* exec)
257 {
258 return JSValue::encode(jsDoubleNumber(exec->lexicalGlobalObject()->weakRandomNumber()));
259 }
260
261 EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState* exec)
262 {
263 double arg = exec->argument(0).toNumber(exec);
264 double integer = ceil(arg);
265 return JSValue::encode(jsNumber(integer - (integer - arg > 0.5)));
266 }
267
268 EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState* exec)
269 {
270 return JSValue::encode(exec->globalData().cachedSin(exec->argument(0).toNumber(exec)));
271 }
272
273 EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState* exec)
274 {
275 return JSValue::encode(jsDoubleNumber(sqrt(exec->argument(0).toNumber(exec))));
276 }
277
278 EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState* exec)
279 {
280 return JSValue::encode(jsDoubleNumber(tan(exec->argument(0).toNumber(exec))));
281 }
282
283 #if CPU(ARM_THUMB2)
284
285 // The following code is taken from netlib.org:
286 // http://www.netlib.org/fdlibm/fdlibm.h
287 // http://www.netlib.org/fdlibm/e_pow.c
288 // http://www.netlib.org/fdlibm/s_scalbn.c
289 //
290 // And was originally distributed under the following license:
291
292 /*
293 * ====================================================
294 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
295 *
296 * Developed at SunSoft, a Sun Microsystems, Inc. business.
297 * Permission to use, copy, modify, and distribute this
298 * software is freely granted, provided that this notice
299 * is preserved.
300 * ====================================================
301 */
302 /*
303 * ====================================================
304 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
305 *
306 * Permission to use, copy, modify, and distribute this
307 * software is freely granted, provided that this notice
308 * is preserved.
309 * ====================================================
310 */
311
312 /* __ieee754_pow(x,y) return x**y
313 *
314 * n
315 * Method: Let x = 2 * (1+f)
316 * 1. Compute and return log2(x) in two pieces:
317 * log2(x) = w1 + w2,
318 * where w1 has 53-24 = 29 bit trailing zeros.
319 * 2. Perform y*log2(x) = n+y' by simulating muti-precision
320 * arithmetic, where |y'|<=0.5.
321 * 3. Return x**y = 2**n*exp(y'*log2)
322 *
323 * Special cases:
324 * 1. (anything) ** 0 is 1
325 * 2. (anything) ** 1 is itself
326 * 3. (anything) ** NAN is NAN
327 * 4. NAN ** (anything except 0) is NAN
328 * 5. +-(|x| > 1) ** +INF is +INF
329 * 6. +-(|x| > 1) ** -INF is +0
330 * 7. +-(|x| < 1) ** +INF is +0
331 * 8. +-(|x| < 1) ** -INF is +INF
332 * 9. +-1 ** +-INF is NAN
333 * 10. +0 ** (+anything except 0, NAN) is +0
334 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
335 * 12. +0 ** (-anything except 0, NAN) is +INF
336 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
337 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
338 * 15. +INF ** (+anything except 0,NAN) is +INF
339 * 16. +INF ** (-anything except 0,NAN) is +0
340 * 17. -INF ** (anything) = -0 ** (-anything)
341 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
342 * 19. (-anything except 0 and inf) ** (non-integer) is NAN
343 *
344 * Accuracy:
345 * pow(x,y) returns x**y nearly rounded. In particular
346 * pow(integer,integer)
347 * always returns the correct integer provided it is
348 * representable.
349 *
350 * Constants :
351 * The hexadecimal values are the intended ones for the following
352 * constants. The decimal values may be used, provided that the
353 * compiler will convert from decimal to binary accurately enough
354 * to produce the hexadecimal values shown.
355 */
356
357 #define __HI(x) *(1+(int*)&x)
358 #define __LO(x) *(int*)&x
359
360 static const double
361 bp[] = {1.0, 1.5,},
362 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
363 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
364 zero = 0.0,
365 one = 1.0,
366 two = 2.0,
367 two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
368 huge = 1.0e300,
369 tiny = 1.0e-300,
370 /* for scalbn */
371 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
372 twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
373 /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
374 L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
375 L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
376 L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
377 L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
378 L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
379 L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
380 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
381 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
382 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
383 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
384 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
385 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
386 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
387 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
388 ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
389 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
390 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
391 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
392 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
393 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
394 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
395
396 inline double fdlibmScalbn (double x, int n)
397 {
398 int k,hx,lx;
399 hx = __HI(x);
400 lx = __LO(x);
401 k = (hx&0x7ff00000)>>20; /* extract exponent */
402 if (k==0) { /* 0 or subnormal x */
403 if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
404 x *= two54;
405 hx = __HI(x);
406 k = ((hx&0x7ff00000)>>20) - 54;
407 if (n< -50000) return tiny*x; /*underflow*/
408 }
409 if (k==0x7ff) return x+x; /* NaN or Inf */
410 k = k+n;
411 if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
412 if (k > 0) /* normal result */
413 {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
414 if (k <= -54) {
415 if (n > 50000) /* in case integer overflow in n+k */
416 return huge*copysign(huge,x); /*overflow*/
417 else return tiny*copysign(tiny,x); /*underflow*/
418 }
419 k += 54; /* subnormal result */
420 __HI(x) = (hx&0x800fffff)|(k<<20);
421 return x*twom54;
422 }
423
424 double fdlibmPow(double x, double y)
425 {
426 double z,ax,z_h,z_l,p_h,p_l;
427 double y1,t1,t2,r,s,t,u,v,w;
428 int i0,i1,i,j,k,yisint,n;
429 int hx,hy,ix,iy;
430 unsigned lx,ly;
431
432 i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
433 hx = __HI(x); lx = __LO(x);
434 hy = __HI(y); ly = __LO(y);
435 ix = hx&0x7fffffff; iy = hy&0x7fffffff;
436
437 /* y==zero: x**0 = 1 */
438 if((iy|ly)==0) return one;
439
440 /* +-NaN return x+y */
441 if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
442 iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
443 return x+y;
444
445 /* determine if y is an odd int when x < 0
446 * yisint = 0 ... y is not an integer
447 * yisint = 1 ... y is an odd int
448 * yisint = 2 ... y is an even int
449 */
450 yisint = 0;
451 if(hx<0) {
452 if(iy>=0x43400000) yisint = 2; /* even integer y */
453 else if(iy>=0x3ff00000) {
454 k = (iy>>20)-0x3ff; /* exponent */
455 if(k>20) {
456 j = ly>>(52-k);
457 if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1);
458 } else if(ly==0) {
459 j = iy>>(20-k);
460 if((j<<(20-k))==iy) yisint = 2-(j&1);
461 }
462 }
463 }
464
465 /* special value of y */
466 if(ly==0) {
467 if (iy==0x7ff00000) { /* y is +-inf */
468 if(((ix-0x3ff00000)|lx)==0)
469 return y - y; /* inf**+-1 is NaN */
470 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
471 return (hy>=0)? y: zero;
472 else /* (|x|<1)**-,+inf = inf,0 */
473 return (hy<0)?-y: zero;
474 }
475 if(iy==0x3ff00000) { /* y is +-1 */
476 if(hy<0) return one/x; else return x;
477 }
478 if(hy==0x40000000) return x*x; /* y is 2 */
479 if(hy==0x3fe00000) { /* y is 0.5 */
480 if(hx>=0) /* x >= +0 */
481 return sqrt(x);
482 }
483 }
484
485 ax = fabs(x);
486 /* special value of x */
487 if(lx==0) {
488 if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
489 z = ax; /*x is +-0,+-inf,+-1*/
490 if(hy<0) z = one/z; /* z = (1/|x|) */
491 if(hx<0) {
492 if(((ix-0x3ff00000)|yisint)==0) {
493 z = (z-z)/(z-z); /* (-1)**non-int is NaN */
494 } else if(yisint==1)
495 z = -z; /* (x<0)**odd = -(|x|**odd) */
496 }
497 return z;
498 }
499 }
500
501 n = (hx>>31)+1;
502
503 /* (x<0)**(non-int) is NaN */
504 if((n|yisint)==0) return (x-x)/(x-x);
505
506 s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
507 if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
508
509 /* |y| is huge */
510 if(iy>0x41e00000) { /* if |y| > 2**31 */
511 if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
512 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
513 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
514 }
515 /* over/underflow if x is not close to one */
516 if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
517 if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
518 /* now |1-x| is tiny <= 2**-20, suffice to compute
519 log(x) by x-x^2/2+x^3/3-x^4/4 */
520 t = ax-one; /* t has 20 trailing zeros */
521 w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
522 u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
523 v = t*ivln2_l-w*ivln2;
524 t1 = u+v;
525 __LO(t1) = 0;
526 t2 = v-(t1-u);
527 } else {
528 double ss,s2,s_h,s_l,t_h,t_l;
529 n = 0;
530 /* take care subnormal number */
531 if(ix<0x00100000)
532 {ax *= two53; n -= 53; ix = __HI(ax); }
533 n += ((ix)>>20)-0x3ff;
534 j = ix&0x000fffff;
535 /* determine interval */
536 ix = j|0x3ff00000; /* normalize ix */
537 if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
538 else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
539 else {k=0;n+=1;ix -= 0x00100000;}
540 __HI(ax) = ix;
541
542 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
543 u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
544 v = one/(ax+bp[k]);
545 ss = u*v;
546 s_h = ss;
547 __LO(s_h) = 0;
548 /* t_h=ax+bp[k] High */
549 t_h = zero;
550 __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
551 t_l = ax - (t_h-bp[k]);
552 s_l = v*((u-s_h*t_h)-s_h*t_l);
553 /* compute log(ax) */
554 s2 = ss*ss;
555 r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
556 r += s_l*(s_h+ss);
557 s2 = s_h*s_h;
558 t_h = 3.0+s2+r;
559 __LO(t_h) = 0;
560 t_l = r-((t_h-3.0)-s2);
561 /* u+v = ss*(1+...) */
562 u = s_h*t_h;
563 v = s_l*t_h+t_l*ss;
564 /* 2/(3log2)*(ss+...) */
565 p_h = u+v;
566 __LO(p_h) = 0;
567 p_l = v-(p_h-u);
568 z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
569 z_l = cp_l*p_h+p_l*cp+dp_l[k];
570 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
571 t = (double)n;
572 t1 = (((z_h+z_l)+dp_h[k])+t);
573 __LO(t1) = 0;
574 t2 = z_l-(((t1-t)-dp_h[k])-z_h);
575 }
576
577 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
578 y1 = y;
579 __LO(y1) = 0;
580 p_l = (y-y1)*t1+y*t2;
581 p_h = y1*t1;
582 z = p_l+p_h;
583 j = __HI(z);
584 i = __LO(z);
585 if (j>=0x40900000) { /* z >= 1024 */
586 if(((j-0x40900000)|i)!=0) /* if z > 1024 */
587 return s*huge*huge; /* overflow */
588 else {
589 if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
590 }
591 } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
592 if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
593 return s*tiny*tiny; /* underflow */
594 else {
595 if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
596 }
597 }
598 /*
599 * compute 2**(p_h+p_l)
600 */
601 i = j&0x7fffffff;
602 k = (i>>20)-0x3ff;
603 n = 0;
604 if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
605 n = j+(0x00100000>>(k+1));
606 k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
607 t = zero;
608 __HI(t) = (n&~(0x000fffff>>k));
609 n = ((n&0x000fffff)|0x00100000)>>(20-k);
610 if(j<0) n = -n;
611 p_h -= t;
612 }
613 t = p_l+p_h;
614 __LO(t) = 0;
615 u = t*lg2_h;
616 v = (p_l-(t-p_h))*lg2+t*lg2_l;
617 z = u+v;
618 w = v-(z-u);
619 t = z*z;
620 t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
621 r = (z*t1)/(t1-two)-(w+z*w);
622 z = one-(r-z);
623 j = __HI(z);
624 j += (n<<20);
625 if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */
626 else __HI(z) += (n<<20);
627 return s*z;
628 }
629
630 #endif
631
632 } // namespace JSC