]>
Commit | Line | Data |
---|---|---|
9dae56ea A |
1 | /* |
2 | * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) | |
3 | * Copyright (C) 2007, 2008 Apple Inc. All Rights Reserved. | |
4 | * | |
5 | * This library is free software; you can redistribute it and/or | |
6 | * modify it under the terms of the GNU Lesser General Public | |
7 | * License as published by the Free Software Foundation; either | |
8 | * version 2 of the License, or (at your option) any later version. | |
9 | * | |
10 | * This library is distributed in the hope that it will be useful, | |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
13 | * Lesser General Public License for more details. | |
14 | * | |
15 | * You should have received a copy of the GNU Lesser General Public | |
16 | * License along with this library; if not, write to the Free Software | |
17 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 | * | |
19 | */ | |
20 | ||
21 | #include "config.h" | |
22 | #include "MathObject.h" | |
23 | ||
4e4e5a6f | 24 | #include "Lookup.h" |
9dae56ea A |
25 | #include "ObjectPrototype.h" |
26 | #include "Operations.h" | |
27 | #include <time.h> | |
28 | #include <wtf/Assertions.h> | |
29 | #include <wtf/MathExtras.h> | |
30 | #include <wtf/RandomNumber.h> | |
31 | #include <wtf/RandomNumberSeed.h> | |
32 | ||
33 | namespace JSC { | |
34 | ||
35 | ASSERT_CLASS_FITS_IN_CELL(MathObject); | |
36 | ||
14957cd0 A |
37 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState*); |
38 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*); | |
39 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState*); | |
40 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState*); | |
41 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState*); | |
42 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState*); | |
43 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState*); | |
44 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState*); | |
45 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState*); | |
46 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState*); | |
47 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState*); | |
48 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState*); | |
49 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState*); | |
50 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState*); | |
51 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState*); | |
52 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*); | |
53 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*); | |
54 | static EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*); | |
9dae56ea A |
55 | |
56 | } | |
57 | ||
58 | #include "MathObject.lut.h" | |
59 | ||
60 | namespace JSC { | |
61 | ||
6fe7ccc8 A |
62 | ASSERT_HAS_TRIVIAL_DESTRUCTOR(MathObject); |
63 | ||
64 | const ClassInfo MathObject::s_info = { "Math", &JSNonFinalObject::s_info, 0, ExecState::mathTable, CREATE_METHOD_TABLE(MathObject) }; | |
9dae56ea A |
65 | |
66 | /* Source for MathObject.lut.h | |
67 | @begin mathTable | |
68 | abs mathProtoFuncAbs DontEnum|Function 1 | |
69 | acos mathProtoFuncACos DontEnum|Function 1 | |
70 | asin mathProtoFuncASin DontEnum|Function 1 | |
71 | atan mathProtoFuncATan DontEnum|Function 1 | |
72 | atan2 mathProtoFuncATan2 DontEnum|Function 2 | |
73 | ceil mathProtoFuncCeil DontEnum|Function 1 | |
74 | cos mathProtoFuncCos DontEnum|Function 1 | |
75 | exp mathProtoFuncExp DontEnum|Function 1 | |
76 | floor mathProtoFuncFloor DontEnum|Function 1 | |
77 | log mathProtoFuncLog DontEnum|Function 1 | |
78 | max mathProtoFuncMax DontEnum|Function 2 | |
79 | min mathProtoFuncMin DontEnum|Function 2 | |
80 | pow mathProtoFuncPow DontEnum|Function 2 | |
81 | random mathProtoFuncRandom DontEnum|Function 0 | |
82 | round mathProtoFuncRound DontEnum|Function 1 | |
83 | sin mathProtoFuncSin DontEnum|Function 1 | |
84 | sqrt mathProtoFuncSqrt DontEnum|Function 1 | |
85 | tan mathProtoFuncTan DontEnum|Function 1 | |
86 | @end | |
87 | */ | |
88 | ||
6fe7ccc8 A |
89 | MathObject::MathObject(JSGlobalObject* globalObject, Structure* structure) |
90 | : JSNonFinalObject(globalObject->globalData(), structure) | |
91 | { | |
92 | } | |
93 | ||
94 | void MathObject::finishCreation(ExecState* exec, JSGlobalObject* globalObject) | |
9dae56ea | 95 | { |
6fe7ccc8 | 96 | Base::finishCreation(globalObject->globalData()); |
14957cd0 | 97 | ASSERT(inherits(&s_info)); |
9dae56ea | 98 | |
14957cd0 A |
99 | putDirectWithoutTransition(exec->globalData(), Identifier(exec, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly); |
100 | putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly); | |
101 | putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly); | |
102 | putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly); | |
103 | putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly); // See ECMA-262 15.8.1.5 | |
104 | putDirectWithoutTransition(exec->globalData(), Identifier(exec, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly); | |
105 | putDirectWithoutTransition(exec->globalData(), Identifier(exec, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly); | |
106 | putDirectWithoutTransition(exec->globalData(), Identifier(exec, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly); | |
107 | } | |
9dae56ea | 108 | |
6fe7ccc8 | 109 | bool MathObject::getOwnPropertySlot(JSCell* cell, ExecState* exec, const Identifier& propertyName, PropertySlot &slot) |
9dae56ea | 110 | { |
6fe7ccc8 | 111 | return getStaticFunctionSlot<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(cell), propertyName, slot); |
f9bf01c6 | 112 | } |
9dae56ea | 113 | |
6fe7ccc8 | 114 | bool MathObject::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor) |
f9bf01c6 | 115 | { |
6fe7ccc8 | 116 | return getStaticFunctionDescriptor<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(object), propertyName, descriptor); |
9dae56ea A |
117 | } |
118 | ||
119 | // ------------------------------ Functions -------------------------------- | |
120 | ||
14957cd0 | 121 | EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState* exec) |
9dae56ea | 122 | { |
14957cd0 | 123 | return JSValue::encode(jsNumber(fabs(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
124 | } |
125 | ||
14957cd0 | 126 | EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState* exec) |
9dae56ea | 127 | { |
14957cd0 | 128 | return JSValue::encode(jsDoubleNumber(acos(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
129 | } |
130 | ||
14957cd0 | 131 | EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState* exec) |
9dae56ea | 132 | { |
14957cd0 | 133 | return JSValue::encode(jsDoubleNumber(asin(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
134 | } |
135 | ||
14957cd0 | 136 | EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState* exec) |
9dae56ea | 137 | { |
14957cd0 | 138 | return JSValue::encode(jsDoubleNumber(atan(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
139 | } |
140 | ||
14957cd0 | 141 | EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState* exec) |
9dae56ea | 142 | { |
14957cd0 A |
143 | double arg0 = exec->argument(0).toNumber(exec); |
144 | double arg1 = exec->argument(1).toNumber(exec); | |
145 | return JSValue::encode(jsDoubleNumber(atan2(arg0, arg1))); | |
9dae56ea A |
146 | } |
147 | ||
14957cd0 | 148 | EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState* exec) |
9dae56ea | 149 | { |
14957cd0 | 150 | return JSValue::encode(jsNumber(ceil(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
151 | } |
152 | ||
14957cd0 | 153 | EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState* exec) |
9dae56ea | 154 | { |
14957cd0 | 155 | return JSValue::encode(jsDoubleNumber(cos(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
156 | } |
157 | ||
14957cd0 | 158 | EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState* exec) |
9dae56ea | 159 | { |
14957cd0 | 160 | return JSValue::encode(jsDoubleNumber(exp(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
161 | } |
162 | ||
14957cd0 | 163 | EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState* exec) |
9dae56ea | 164 | { |
14957cd0 | 165 | return JSValue::encode(jsNumber(floor(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
166 | } |
167 | ||
14957cd0 | 168 | EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState* exec) |
9dae56ea | 169 | { |
14957cd0 | 170 | return JSValue::encode(jsDoubleNumber(log(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
171 | } |
172 | ||
14957cd0 | 173 | EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState* exec) |
9dae56ea | 174 | { |
14957cd0 | 175 | unsigned argsCount = exec->argumentCount(); |
6fe7ccc8 | 176 | double result = -std::numeric_limits<double>::infinity(); |
9dae56ea | 177 | for (unsigned k = 0; k < argsCount; ++k) { |
14957cd0 | 178 | double val = exec->argument(k).toNumber(exec); |
9dae56ea | 179 | if (isnan(val)) { |
6fe7ccc8 | 180 | result = std::numeric_limits<double>::quiet_NaN(); |
9dae56ea A |
181 | break; |
182 | } | |
183 | if (val > result || (val == 0 && result == 0 && !signbit(val))) | |
184 | result = val; | |
185 | } | |
14957cd0 | 186 | return JSValue::encode(jsNumber(result)); |
9dae56ea A |
187 | } |
188 | ||
14957cd0 | 189 | EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState* exec) |
9dae56ea | 190 | { |
14957cd0 | 191 | unsigned argsCount = exec->argumentCount(); |
6fe7ccc8 | 192 | double result = +std::numeric_limits<double>::infinity(); |
9dae56ea | 193 | for (unsigned k = 0; k < argsCount; ++k) { |
14957cd0 | 194 | double val = exec->argument(k).toNumber(exec); |
9dae56ea | 195 | if (isnan(val)) { |
6fe7ccc8 | 196 | result = std::numeric_limits<double>::quiet_NaN(); |
9dae56ea A |
197 | break; |
198 | } | |
199 | if (val < result || (val == 0 && result == 0 && signbit(val))) | |
200 | result = val; | |
201 | } | |
14957cd0 | 202 | return JSValue::encode(jsNumber(result)); |
9dae56ea A |
203 | } |
204 | ||
6fe7ccc8 A |
205 | #if CPU(ARM_THUMB2) |
206 | ||
207 | static double fdlibmPow(double x, double y); | |
208 | ||
209 | static ALWAYS_INLINE bool isDenormal(double x) | |
210 | { | |
211 | static const uint64_t signbit = 0x8000000000000000ULL; | |
212 | static const uint64_t minNormal = 0x0001000000000000ULL; | |
213 | return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1; | |
214 | } | |
215 | ||
216 | static ALWAYS_INLINE bool isEdgeCase(double x) | |
217 | { | |
218 | static const uint64_t signbit = 0x8000000000000000ULL; | |
219 | static const uint64_t infinity = 0x7fffffffffffffffULL; | |
220 | return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1; | |
221 | } | |
222 | ||
223 | static ALWAYS_INLINE double mathPow(double x, double y) | |
224 | { | |
225 | if (!isDenormal(x) && !isDenormal(y)) { | |
226 | double libmResult = pow(x,y); | |
227 | if (libmResult || isEdgeCase(x) || isEdgeCase(y)) | |
228 | return libmResult; | |
229 | } | |
230 | return fdlibmPow(x,y); | |
231 | } | |
232 | ||
233 | #else | |
234 | ||
235 | ALWAYS_INLINE double mathPow(double x, double y) | |
236 | { | |
237 | return pow(x, y); | |
238 | } | |
239 | ||
240 | #endif | |
241 | ||
14957cd0 | 242 | EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState* exec) |
9dae56ea A |
243 | { |
244 | // ECMA 15.8.2.1.13 | |
245 | ||
14957cd0 A |
246 | double arg = exec->argument(0).toNumber(exec); |
247 | double arg2 = exec->argument(1).toNumber(exec); | |
9dae56ea A |
248 | |
249 | if (isnan(arg2)) | |
14957cd0 | 250 | return JSValue::encode(jsNaN()); |
9dae56ea | 251 | if (isinf(arg2) && fabs(arg) == 1) |
14957cd0 | 252 | return JSValue::encode(jsNaN()); |
6fe7ccc8 | 253 | return JSValue::encode(jsNumber(mathPow(arg, arg2))); |
9dae56ea A |
254 | } |
255 | ||
14957cd0 | 256 | EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState* exec) |
9dae56ea | 257 | { |
14957cd0 | 258 | return JSValue::encode(jsDoubleNumber(exec->lexicalGlobalObject()->weakRandomNumber())); |
9dae56ea A |
259 | } |
260 | ||
14957cd0 | 261 | EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState* exec) |
9dae56ea | 262 | { |
14957cd0 | 263 | double arg = exec->argument(0).toNumber(exec); |
4e4e5a6f | 264 | double integer = ceil(arg); |
14957cd0 | 265 | return JSValue::encode(jsNumber(integer - (integer - arg > 0.5))); |
9dae56ea A |
266 | } |
267 | ||
14957cd0 | 268 | EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState* exec) |
9dae56ea | 269 | { |
14957cd0 | 270 | return JSValue::encode(exec->globalData().cachedSin(exec->argument(0).toNumber(exec))); |
9dae56ea A |
271 | } |
272 | ||
14957cd0 | 273 | EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState* exec) |
9dae56ea | 274 | { |
14957cd0 | 275 | return JSValue::encode(jsDoubleNumber(sqrt(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
276 | } |
277 | ||
14957cd0 | 278 | EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState* exec) |
9dae56ea | 279 | { |
14957cd0 | 280 | return JSValue::encode(jsDoubleNumber(tan(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
281 | } |
282 | ||
6fe7ccc8 A |
283 | #if CPU(ARM_THUMB2) |
284 | ||
285 | // The following code is taken from netlib.org: | |
286 | // http://www.netlib.org/fdlibm/fdlibm.h | |
287 | // http://www.netlib.org/fdlibm/e_pow.c | |
288 | // http://www.netlib.org/fdlibm/s_scalbn.c | |
289 | // | |
290 | // And was originally distributed under the following license: | |
291 | ||
292 | /* | |
293 | * ==================================================== | |
294 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
295 | * | |
296 | * Developed at SunSoft, a Sun Microsystems, Inc. business. | |
297 | * Permission to use, copy, modify, and distribute this | |
298 | * software is freely granted, provided that this notice | |
299 | * is preserved. | |
300 | * ==================================================== | |
301 | */ | |
302 | /* | |
303 | * ==================================================== | |
304 | * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. | |
305 | * | |
306 | * Permission to use, copy, modify, and distribute this | |
307 | * software is freely granted, provided that this notice | |
308 | * is preserved. | |
309 | * ==================================================== | |
310 | */ | |
311 | ||
312 | /* __ieee754_pow(x,y) return x**y | |
313 | * | |
314 | * n | |
315 | * Method: Let x = 2 * (1+f) | |
316 | * 1. Compute and return log2(x) in two pieces: | |
317 | * log2(x) = w1 + w2, | |
318 | * where w1 has 53-24 = 29 bit trailing zeros. | |
319 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision | |
320 | * arithmetic, where |y'|<=0.5. | |
321 | * 3. Return x**y = 2**n*exp(y'*log2) | |
322 | * | |
323 | * Special cases: | |
324 | * 1. (anything) ** 0 is 1 | |
325 | * 2. (anything) ** 1 is itself | |
326 | * 3. (anything) ** NAN is NAN | |
327 | * 4. NAN ** (anything except 0) is NAN | |
328 | * 5. +-(|x| > 1) ** +INF is +INF | |
329 | * 6. +-(|x| > 1) ** -INF is +0 | |
330 | * 7. +-(|x| < 1) ** +INF is +0 | |
331 | * 8. +-(|x| < 1) ** -INF is +INF | |
332 | * 9. +-1 ** +-INF is NAN | |
333 | * 10. +0 ** (+anything except 0, NAN) is +0 | |
334 | * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 | |
335 | * 12. +0 ** (-anything except 0, NAN) is +INF | |
336 | * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF | |
337 | * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) | |
338 | * 15. +INF ** (+anything except 0,NAN) is +INF | |
339 | * 16. +INF ** (-anything except 0,NAN) is +0 | |
340 | * 17. -INF ** (anything) = -0 ** (-anything) | |
341 | * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) | |
342 | * 19. (-anything except 0 and inf) ** (non-integer) is NAN | |
343 | * | |
344 | * Accuracy: | |
345 | * pow(x,y) returns x**y nearly rounded. In particular | |
346 | * pow(integer,integer) | |
347 | * always returns the correct integer provided it is | |
348 | * representable. | |
349 | * | |
350 | * Constants : | |
351 | * The hexadecimal values are the intended ones for the following | |
352 | * constants. The decimal values may be used, provided that the | |
353 | * compiler will convert from decimal to binary accurately enough | |
354 | * to produce the hexadecimal values shown. | |
355 | */ | |
356 | ||
357 | #define __HI(x) *(1+(int*)&x) | |
358 | #define __LO(x) *(int*)&x | |
359 | ||
360 | static const double | |
361 | bp[] = {1.0, 1.5,}, | |
362 | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ | |
363 | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ | |
364 | zero = 0.0, | |
365 | one = 1.0, | |
366 | two = 2.0, | |
367 | two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ | |
368 | huge = 1.0e300, | |
369 | tiny = 1.0e-300, | |
370 | /* for scalbn */ | |
371 | two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ | |
372 | twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ | |
373 | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ | |
374 | L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ | |
375 | L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ | |
376 | L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ | |
377 | L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ | |
378 | L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ | |
379 | L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ | |
380 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ | |
381 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ | |
382 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ | |
383 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ | |
384 | P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ | |
385 | lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ | |
386 | lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ | |
387 | lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ | |
388 | ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ | |
389 | cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ | |
390 | cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ | |
391 | cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ | |
392 | ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ | |
393 | ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ | |
394 | ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ | |
395 | ||
396 | inline double fdlibmScalbn (double x, int n) | |
397 | { | |
398 | int k,hx,lx; | |
399 | hx = __HI(x); | |
400 | lx = __LO(x); | |
401 | k = (hx&0x7ff00000)>>20; /* extract exponent */ | |
402 | if (k==0) { /* 0 or subnormal x */ | |
403 | if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ | |
404 | x *= two54; | |
405 | hx = __HI(x); | |
406 | k = ((hx&0x7ff00000)>>20) - 54; | |
407 | if (n< -50000) return tiny*x; /*underflow*/ | |
408 | } | |
409 | if (k==0x7ff) return x+x; /* NaN or Inf */ | |
410 | k = k+n; | |
411 | if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ | |
412 | if (k > 0) /* normal result */ | |
413 | {__HI(x) = (hx&0x800fffff)|(k<<20); return x;} | |
414 | if (k <= -54) { | |
415 | if (n > 50000) /* in case integer overflow in n+k */ | |
416 | return huge*copysign(huge,x); /*overflow*/ | |
417 | else return tiny*copysign(tiny,x); /*underflow*/ | |
418 | } | |
419 | k += 54; /* subnormal result */ | |
420 | __HI(x) = (hx&0x800fffff)|(k<<20); | |
421 | return x*twom54; | |
422 | } | |
423 | ||
424 | double fdlibmPow(double x, double y) | |
425 | { | |
426 | double z,ax,z_h,z_l,p_h,p_l; | |
427 | double y1,t1,t2,r,s,t,u,v,w; | |
428 | int i0,i1,i,j,k,yisint,n; | |
429 | int hx,hy,ix,iy; | |
430 | unsigned lx,ly; | |
431 | ||
432 | i0 = ((*(int*)&one)>>29)^1; i1=1-i0; | |
433 | hx = __HI(x); lx = __LO(x); | |
434 | hy = __HI(y); ly = __LO(y); | |
435 | ix = hx&0x7fffffff; iy = hy&0x7fffffff; | |
436 | ||
437 | /* y==zero: x**0 = 1 */ | |
438 | if((iy|ly)==0) return one; | |
439 | ||
440 | /* +-NaN return x+y */ | |
441 | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || | |
442 | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) | |
443 | return x+y; | |
444 | ||
445 | /* determine if y is an odd int when x < 0 | |
446 | * yisint = 0 ... y is not an integer | |
447 | * yisint = 1 ... y is an odd int | |
448 | * yisint = 2 ... y is an even int | |
449 | */ | |
450 | yisint = 0; | |
451 | if(hx<0) { | |
452 | if(iy>=0x43400000) yisint = 2; /* even integer y */ | |
453 | else if(iy>=0x3ff00000) { | |
454 | k = (iy>>20)-0x3ff; /* exponent */ | |
455 | if(k>20) { | |
456 | j = ly>>(52-k); | |
457 | if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1); | |
458 | } else if(ly==0) { | |
459 | j = iy>>(20-k); | |
460 | if((j<<(20-k))==iy) yisint = 2-(j&1); | |
461 | } | |
462 | } | |
463 | } | |
464 | ||
465 | /* special value of y */ | |
466 | if(ly==0) { | |
467 | if (iy==0x7ff00000) { /* y is +-inf */ | |
468 | if(((ix-0x3ff00000)|lx)==0) | |
469 | return y - y; /* inf**+-1 is NaN */ | |
470 | else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ | |
471 | return (hy>=0)? y: zero; | |
472 | else /* (|x|<1)**-,+inf = inf,0 */ | |
473 | return (hy<0)?-y: zero; | |
474 | } | |
475 | if(iy==0x3ff00000) { /* y is +-1 */ | |
476 | if(hy<0) return one/x; else return x; | |
477 | } | |
478 | if(hy==0x40000000) return x*x; /* y is 2 */ | |
479 | if(hy==0x3fe00000) { /* y is 0.5 */ | |
480 | if(hx>=0) /* x >= +0 */ | |
481 | return sqrt(x); | |
482 | } | |
483 | } | |
484 | ||
485 | ax = fabs(x); | |
486 | /* special value of x */ | |
487 | if(lx==0) { | |
488 | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ | |
489 | z = ax; /*x is +-0,+-inf,+-1*/ | |
490 | if(hy<0) z = one/z; /* z = (1/|x|) */ | |
491 | if(hx<0) { | |
492 | if(((ix-0x3ff00000)|yisint)==0) { | |
493 | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ | |
494 | } else if(yisint==1) | |
495 | z = -z; /* (x<0)**odd = -(|x|**odd) */ | |
496 | } | |
497 | return z; | |
498 | } | |
499 | } | |
500 | ||
501 | n = (hx>>31)+1; | |
502 | ||
503 | /* (x<0)**(non-int) is NaN */ | |
504 | if((n|yisint)==0) return (x-x)/(x-x); | |
505 | ||
506 | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ | |
507 | if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ | |
508 | ||
509 | /* |y| is huge */ | |
510 | if(iy>0x41e00000) { /* if |y| > 2**31 */ | |
511 | if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ | |
512 | if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; | |
513 | if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; | |
514 | } | |
515 | /* over/underflow if x is not close to one */ | |
516 | if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; | |
517 | if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; | |
518 | /* now |1-x| is tiny <= 2**-20, suffice to compute | |
519 | log(x) by x-x^2/2+x^3/3-x^4/4 */ | |
520 | t = ax-one; /* t has 20 trailing zeros */ | |
521 | w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); | |
522 | u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ | |
523 | v = t*ivln2_l-w*ivln2; | |
524 | t1 = u+v; | |
525 | __LO(t1) = 0; | |
526 | t2 = v-(t1-u); | |
527 | } else { | |
528 | double ss,s2,s_h,s_l,t_h,t_l; | |
529 | n = 0; | |
530 | /* take care subnormal number */ | |
531 | if(ix<0x00100000) | |
532 | {ax *= two53; n -= 53; ix = __HI(ax); } | |
533 | n += ((ix)>>20)-0x3ff; | |
534 | j = ix&0x000fffff; | |
535 | /* determine interval */ | |
536 | ix = j|0x3ff00000; /* normalize ix */ | |
537 | if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ | |
538 | else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ | |
539 | else {k=0;n+=1;ix -= 0x00100000;} | |
540 | __HI(ax) = ix; | |
541 | ||
542 | /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ | |
543 | u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ | |
544 | v = one/(ax+bp[k]); | |
545 | ss = u*v; | |
546 | s_h = ss; | |
547 | __LO(s_h) = 0; | |
548 | /* t_h=ax+bp[k] High */ | |
549 | t_h = zero; | |
550 | __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); | |
551 | t_l = ax - (t_h-bp[k]); | |
552 | s_l = v*((u-s_h*t_h)-s_h*t_l); | |
553 | /* compute log(ax) */ | |
554 | s2 = ss*ss; | |
555 | r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); | |
556 | r += s_l*(s_h+ss); | |
557 | s2 = s_h*s_h; | |
558 | t_h = 3.0+s2+r; | |
559 | __LO(t_h) = 0; | |
560 | t_l = r-((t_h-3.0)-s2); | |
561 | /* u+v = ss*(1+...) */ | |
562 | u = s_h*t_h; | |
563 | v = s_l*t_h+t_l*ss; | |
564 | /* 2/(3log2)*(ss+...) */ | |
565 | p_h = u+v; | |
566 | __LO(p_h) = 0; | |
567 | p_l = v-(p_h-u); | |
568 | z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ | |
569 | z_l = cp_l*p_h+p_l*cp+dp_l[k]; | |
570 | /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ | |
571 | t = (double)n; | |
572 | t1 = (((z_h+z_l)+dp_h[k])+t); | |
573 | __LO(t1) = 0; | |
574 | t2 = z_l-(((t1-t)-dp_h[k])-z_h); | |
575 | } | |
576 | ||
577 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ | |
578 | y1 = y; | |
579 | __LO(y1) = 0; | |
580 | p_l = (y-y1)*t1+y*t2; | |
581 | p_h = y1*t1; | |
582 | z = p_l+p_h; | |
583 | j = __HI(z); | |
584 | i = __LO(z); | |
585 | if (j>=0x40900000) { /* z >= 1024 */ | |
586 | if(((j-0x40900000)|i)!=0) /* if z > 1024 */ | |
587 | return s*huge*huge; /* overflow */ | |
588 | else { | |
589 | if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ | |
590 | } | |
591 | } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ | |
592 | if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ | |
593 | return s*tiny*tiny; /* underflow */ | |
594 | else { | |
595 | if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ | |
596 | } | |
597 | } | |
598 | /* | |
599 | * compute 2**(p_h+p_l) | |
600 | */ | |
601 | i = j&0x7fffffff; | |
602 | k = (i>>20)-0x3ff; | |
603 | n = 0; | |
604 | if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ | |
605 | n = j+(0x00100000>>(k+1)); | |
606 | k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ | |
607 | t = zero; | |
608 | __HI(t) = (n&~(0x000fffff>>k)); | |
609 | n = ((n&0x000fffff)|0x00100000)>>(20-k); | |
610 | if(j<0) n = -n; | |
611 | p_h -= t; | |
612 | } | |
613 | t = p_l+p_h; | |
614 | __LO(t) = 0; | |
615 | u = t*lg2_h; | |
616 | v = (p_l-(t-p_h))*lg2+t*lg2_l; | |
617 | z = u+v; | |
618 | w = v-(z-u); | |
619 | t = z*z; | |
620 | t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); | |
621 | r = (z*t1)/(t1-two)-(w+z*w); | |
622 | z = one-(r-z); | |
623 | j = __HI(z); | |
624 | j += (n<<20); | |
625 | if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */ | |
626 | else __HI(z) += (n<<20); | |
627 | return s*z; | |
628 | } | |
629 | ||
630 | #endif | |
631 | ||
9dae56ea | 632 | } // namespace JSC |