2 **********************************************************************
3 * Copyright (C) 2000-2012, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * file name: ucnv2022.cpp
8 * tab size: 8 (not used)
11 * created on: 2000feb03
12 * created by: Markus W. Scherer
16 * 06/29/2000 helena Major rewrite of the callback APIs.
17 * 08/08/2000 Ram Included support for ISO-2022-JP-2
18 * Changed implementation of toUnicode
20 * 08/21/2000 Ram Added support for ISO-2022-KR
21 * 08/29/2000 Ram Seperated implementation of EBCDIC to
23 * 09/20/2000 Ram Added support for ISO-2022-CN
24 * Added implementations for getNextUChar()
25 * for specific 2022 country variants.
26 * 10/31/2000 Ram Implemented offsets logic functions
29 #include "unicode/utypes.h"
31 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
33 #include "unicode/ucnv.h"
34 #include "unicode/uset.h"
35 #include "unicode/ucnv_err.h"
36 #include "unicode/ucnv_cb.h"
37 #include "unicode/utf16.h"
46 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
48 #ifdef U_ENABLE_GENERIC_ISO_2022
50 * I am disabling the generic ISO-2022 converter after proposing to do so on
51 * the icu mailing list two days ago.
54 * 1. It does not fully support the ISO-2022/ECMA-35 specification with all of
55 * its designation sequences, single shifts with return to the previous state,
56 * switch-with-no-return to UTF-16BE or similar, etc.
57 * This is unlike the language-specific variants like ISO-2022-JP which
58 * require a much smaller repertoire of ISO-2022 features.
59 * These variants continue to be supported.
60 * 2. I believe that no one is really using the generic ISO-2022 converter
61 * but rather always one of the language-specific variants.
62 * Note that ICU's generic ISO-2022 converter has always output one escape
63 * sequence followed by UTF-8 for the whole stream.
64 * 3. Switching between subcharsets is extremely slow, because each time
65 * the previous converter is closed and a new one opened,
66 * without any kind of caching, least-recently-used list, etc.
67 * 4. The code is currently buggy, and given the above it does not seem
68 * reasonable to spend the time on maintenance.
69 * 5. ISO-2022 subcharsets should normally be used with 7-bit byte encodings.
70 * This means, for example, that when ISO-8859-7 is designated, the following
71 * ISO-2022 bytes 00..7f should be interpreted as ISO-8859-7 bytes 80..ff.
72 * The ICU ISO-2022 converter does not handle this - and has no information
73 * about which subconverter would have to be shifted vs. which is designed
76 * Markus Scherer 2003-dec-03
80 static const char SHIFT_IN_STR
[] = "\x0F";
81 // static const char SHIFT_OUT_STR[] = "\x0E";
95 * 94-character sets with native byte values A1..FE are encoded in ISO 2022
96 * as bytes 21..7E. (Subtract 0x80.)
97 * 96-character sets with native byte values A0..FF are encoded in ISO 2022
98 * as bytes 20..7F. (Subtract 0x80.)
99 * Do not encode C1 control codes with native bytes 80..9F
100 * as bytes 00..1F (C0 control codes).
110 * ISO 2022 control codes must not be converted from Unicode
111 * because they would mess up the byte stream.
112 * The bit mask 0x0800c000 has bits set at bit positions 0xe, 0xf, 0x1b
113 * corresponding to SO, SI, and ESC.
115 #define IS_2022_CONTROL(c) (((c)<0x20) && (((uint32_t)1<<(c))&0x0800c000)!=0)
117 /* for ISO-2022-JP and -CN implementations */
134 HWKANA_7BIT
=8, /* Halfwidth Katakana 7 bit */
137 /* the first few enum constants must keep their values because they correspond to myConverterArray[] */
143 * these are used in StateEnum and ISO2022State variables,
144 * but CNS_11643 must be used to index into myConverterArray[]
156 /* is the StateEnum charset value for a DBCS charset? */
157 #define IS_JP_DBCS(cs) (JISX208<=(cs) && (cs)<=KSC5601)
159 #define CSM(cs) ((uint16_t)1<<(cs))
162 * Each of these charset masks (with index x) contains a bit for a charset in exact correspondence
163 * to whether that charset is used in the corresponding version x of ISO_2022,locale=ja,version=x
165 * Note: The converter uses some leniency:
166 * - The escape sequence ESC ( I for half-width 7-bit Katakana is recognized in
167 * all versions, not just JIS7 and JIS8.
168 * - ICU does not distinguish between different versions of JIS X 0208.
170 enum { MAX_JA_VERSION
=4 };
171 static const uint16_t jpCharsetMasks
[MAX_JA_VERSION
+1]={
172 CSM(ASCII
)|CSM(JISX201
)|CSM(JISX208
)|CSM(HWKANA_7BIT
),
173 CSM(ASCII
)|CSM(JISX201
)|CSM(JISX208
)|CSM(HWKANA_7BIT
)|CSM(JISX212
),
174 CSM(ASCII
)|CSM(JISX201
)|CSM(JISX208
)|CSM(HWKANA_7BIT
)|CSM(JISX212
)|CSM(GB2312
)|CSM(KSC5601
)|CSM(ISO8859_1
)|CSM(ISO8859_7
),
175 CSM(ASCII
)|CSM(JISX201
)|CSM(JISX208
)|CSM(HWKANA_7BIT
)|CSM(JISX212
)|CSM(GB2312
)|CSM(KSC5601
)|CSM(ISO8859_1
)|CSM(ISO8859_7
),
176 CSM(ASCII
)|CSM(JISX201
)|CSM(JISX208
)|CSM(HWKANA_7BIT
)|CSM(JISX212
)|CSM(GB2312
)|CSM(KSC5601
)|CSM(ISO8859_1
)|CSM(ISO8859_7
)
188 typedef struct ISO2022State
{
189 int8_t cs
[4]; /* charset number for SI (G0)/SO (G1)/SS2 (G2)/SS3 (G3) */
190 int8_t g
; /* 0..3 for G0..G3 (SI/SO/SS2/SS3) */
191 int8_t prevG
; /* g before single shift (SS2 or SS3) */
194 #define UCNV_OPTIONS_VERSION_MASK 0xf
195 #define UCNV_2022_MAX_CONVERTERS 10
198 UConverterSharedData
*myConverterArray
[UCNV_2022_MAX_CONVERTERS
];
199 UConverter
*currentConverter
;
200 Cnv2022Type currentType
;
201 ISO2022State toU2022State
, fromU2022State
;
204 #ifdef U_ENABLE_GENERIC_ISO_2022
207 UBool isEmptySegment
;
210 }UConverterDataISO2022
;
213 /* ISO-2022 ----------------------------------------------------------------- */
215 /*Forward declaration */
217 ucnv_fromUnicode_UTF8(UConverterFromUnicodeArgs
* args
,
220 ucnv_fromUnicode_UTF8_OFFSETS_LOGIC(UConverterFromUnicodeArgs
* args
,
223 #define ESC_2022 0x1B /*ESC*/
227 INVALID_2022
= -1, /*Doesn't correspond to a valid iso 2022 escape sequence*/
228 VALID_NON_TERMINAL_2022
= 0, /*so far corresponds to a valid iso 2022 escape sequence*/
229 VALID_TERMINAL_2022
= 1, /*corresponds to a valid iso 2022 escape sequence*/
230 VALID_MAYBE_TERMINAL_2022
= 2 /*so far matches one iso 2022 escape sequence, but by adding more characters might match another escape sequence*/
231 } UCNV_TableStates_2022
;
234 * The way these state transition arrays work is:
235 * ex : ESC$B is the sequence for JISX208
236 * a) First Iteration: char is ESC
237 * i) Get the value of ESC from normalize_esq_chars_2022[] with int value of ESC as index
238 * int x = normalize_esq_chars_2022[27] which is equal to 1
239 * ii) Search for this value in escSeqStateTable_Key_2022[]
240 * value of x is stored at escSeqStateTable_Key_2022[0]
241 * iii) Save this index as offset
242 * iv) Get state of this sequence from escSeqStateTable_Value_2022[]
243 * escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022
244 * b) Switch on this state and continue to next char
245 * i) Get the value of $ from normalize_esq_chars_2022[] with int value of $ as index
246 * which is normalize_esq_chars_2022[36] == 4
247 * ii) x is currently 1(from above)
248 * x<<=5 -- x is now 32
249 * x+=normalize_esq_chars_2022[36]
251 * iii) Search for this value in escSeqStateTable_Key_2022[]
252 * value of x is stored at escSeqStateTable_Key_2022[2], so offset is 2
253 * iv) Get state of this sequence from escSeqStateTable_Value_2022[]
254 * escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022
255 * c) Switch on this state and continue to next char
256 * i) Get the value of B from normalize_esq_chars_2022[] with int value of B as index
257 * ii) x is currently 36 (from above)
258 * x<<=5 -- x is now 1152
259 * x+=normalize_esq_chars_2022[66]
261 * iii) Search for this value in escSeqStateTable_Key_2022[]
262 * value of x is stored at escSeqStateTable_Key_2022[21], so offset is 21
263 * iv) Get state of this sequence from escSeqStateTable_Value_2022[21]
264 * escSeqStateTable_Value_2022[offset], which is VALID_TERMINAL_2022
265 * v) Get the converter name form escSeqStateTable_Result_2022[21] which is JISX208
269 /*Below are the 3 arrays depicting a state transition table*/
270 static const int8_t normalize_esq_chars_2022
[256] = {
271 /* 0 1 2 3 4 5 6 7 8 9 */
273 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
274 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
275 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0
276 ,0 ,0 ,0 ,0 ,0 ,0 ,4 ,7 ,29 ,0
277 ,2 ,24 ,26 ,27 ,0 ,3 ,23 ,6 ,0 ,0
278 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
279 ,0 ,0 ,0 ,0 ,5 ,8 ,9 ,10 ,11 ,12
280 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,25 ,28
281 ,0 ,0 ,21 ,0 ,0 ,0 ,0 ,0 ,0 ,0
282 ,22 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
283 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
284 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
285 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
286 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
287 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
288 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
289 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
290 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
291 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
292 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
293 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
294 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
295 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
296 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
297 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
301 #ifdef U_ENABLE_GENERIC_ISO_2022
303 * When the generic ISO-2022 converter is completely removed, not just disabled
304 * per #ifdef, then the following state table and the associated tables that are
305 * dimensioned with MAX_STATES_2022 should be trimmed.
307 * Especially, VALID_MAYBE_TERMINAL_2022 will not be used any more, and all of
308 * the associated escape sequences starting with ESC ( B should be removed.
309 * This includes the ones with key values 1097 and all of the ones above 1000000.
311 * For the latter, the tables can simply be truncated.
312 * For the former, since the tables must be kept parallel, it is probably best
313 * to simply duplicate an adjacent table cell, parallel in all tables.
315 * It may make sense to restructure the tables, especially by using small search
316 * tables for the variants instead of indexing them parallel to the table here.
320 #define MAX_STATES_2022 74
321 static const int32_t escSeqStateTable_Key_2022
[MAX_STATES_2022
] = {
322 /* 0 1 2 3 4 5 6 7 8 9 */
324 1 ,34 ,36 ,39 ,55 ,57 ,60 ,61 ,1093 ,1096
325 ,1097 ,1098 ,1099 ,1100 ,1101 ,1102 ,1103 ,1104 ,1105 ,1106
326 ,1109 ,1154 ,1157 ,1160 ,1161 ,1176 ,1178 ,1179 ,1254 ,1257
327 ,1768 ,1773 ,1957 ,35105 ,36933 ,36936 ,36937 ,36938 ,36939 ,36940
328 ,36942 ,36943 ,36944 ,36945 ,36946 ,36947 ,36948 ,37640 ,37642 ,37644
329 ,37646 ,37711 ,37744 ,37745 ,37746 ,37747 ,37748 ,40133 ,40136 ,40138
330 ,40139 ,40140 ,40141 ,1123363 ,35947624 ,35947625 ,35947626 ,35947627 ,35947629 ,35947630
331 ,35947631 ,35947635 ,35947636 ,35947638
334 #ifdef U_ENABLE_GENERIC_ISO_2022
336 static const char* const escSeqStateTable_Result_2022
[MAX_STATES_2022
] = {
337 /* 0 1 2 3 4 5 6 7 8 9 */
339 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,"latin1" ,"latin1"
340 ,"latin1" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"JISX0201" ,"JISX0201" ,"latin1"
341 ,"latin1" ,NULL
,"JISX-208" ,"ibm-5478" ,"JISX-208" ,NULL
,NULL
,NULL
,NULL
,"UTF8"
342 ,"ISO-8859-1" ,"ISO-8859-7" ,"JIS-X-208" ,NULL
,"ibm-955" ,"ibm-367" ,"ibm-952" ,"ibm-949" ,"JISX-212" ,"ibm-1383"
343 ,"ibm-952" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-5478" ,"ibm-949" ,"ISO-IR-165"
344 ,"CNS-11643-1992,1" ,"CNS-11643-1992,2" ,"CNS-11643-1992,3" ,"CNS-11643-1992,4" ,"CNS-11643-1992,5" ,"CNS-11643-1992,6" ,"CNS-11643-1992,7" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian"
345 ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,NULL
,"latin1" ,"ibm-912" ,"ibm-913" ,"ibm-914" ,"ibm-813" ,"ibm-1089"
346 ,"ibm-920" ,"ibm-915" ,"ibm-915" ,"latin1"
351 static const int8_t escSeqStateTable_Value_2022
[MAX_STATES_2022
] = {
352 /* 0 1 2 3 4 5 6 7 8 9 */
353 VALID_NON_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
354 ,VALID_MAYBE_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
355 ,VALID_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_TERMINAL_2022
356 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
357 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
358 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
359 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_NON_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
360 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
,VALID_TERMINAL_2022
364 /* Type def for refactoring changeState_2022 code*/
366 #ifdef U_ENABLE_GENERIC_ISO_2022
374 /*********** ISO 2022 Converter Protos ***********/
376 _ISO2022Open(UConverter
*cnv
, UConverterLoadArgs
*pArgs
, UErrorCode
*errorCode
);
379 _ISO2022Close(UConverter
*converter
);
382 _ISO2022Reset(UConverter
*converter
, UConverterResetChoice choice
);
385 _ISO2022getName(const UConverter
* cnv
);
388 _ISO_2022_WriteSub(UConverterFromUnicodeArgs
*args
, int32_t offsetIndex
, UErrorCode
*err
);
391 _ISO_2022_SafeClone(const UConverter
*cnv
, void *stackBuffer
, int32_t *pBufferSize
, UErrorCode
*status
);
393 #ifdef U_ENABLE_GENERIC_ISO_2022
395 T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs
* args
, UErrorCode
* err
);
400 /*const UConverterSharedData _ISO2022Data;*/
401 extern const UConverterSharedData _ISO2022JPData
;
402 extern const UConverterSharedData _ISO2022KRData
;
403 extern const UConverterSharedData _ISO2022CNData
;
407 /*************** Converter implementations ******************/
409 /* The purpose of this function is to get around gcc compiler warnings. */
411 fromUWriteUInt8(UConverter
*cnv
,
412 const char *bytes
, int32_t length
,
413 uint8_t **target
, const char *targetLimit
,
416 UErrorCode
*pErrorCode
)
418 char *targetChars
= (char *)*target
;
419 ucnv_fromUWriteBytes(cnv
, bytes
, length
, &targetChars
, targetLimit
,
420 offsets
, sourceIndex
, pErrorCode
);
421 *target
= (uint8_t*)targetChars
;
426 setInitialStateToUnicodeKR(UConverter
* /*converter*/, UConverterDataISO2022
*myConverterData
){
427 if(myConverterData
->version
== 1) {
428 UConverter
*cnv
= myConverterData
->currentConverter
;
430 cnv
->toUnicodeStatus
=0; /* offset */
431 cnv
->mode
=0; /* state */
432 cnv
->toULength
=0; /* byteIndex */
437 setInitialStateFromUnicodeKR(UConverter
* converter
,UConverterDataISO2022
*myConverterData
){
438 /* in ISO-2022-KR the designator sequence appears only once
439 * in a file so we append it only once
441 if( converter
->charErrorBufferLength
==0){
443 converter
->charErrorBufferLength
= 4;
444 converter
->charErrorBuffer
[0] = 0x1b;
445 converter
->charErrorBuffer
[1] = 0x24;
446 converter
->charErrorBuffer
[2] = 0x29;
447 converter
->charErrorBuffer
[3] = 0x43;
449 if(myConverterData
->version
== 1) {
450 UConverter
*cnv
= myConverterData
->currentConverter
;
453 cnv
->fromUnicodeStatus
=1; /* prevLength */
458 _ISO2022Open(UConverter
*cnv
, UConverterLoadArgs
*pArgs
, UErrorCode
*errorCode
){
460 char myLocale
[6]={' ',' ',' ',' ',' ',' '};
462 cnv
->extraInfo
= uprv_malloc (sizeof (UConverterDataISO2022
));
463 if(cnv
->extraInfo
!= NULL
) {
464 UConverterNamePieces stackPieces
;
465 UConverterLoadArgs stackArgs
=UCNV_LOAD_ARGS_INITIALIZER
;
466 UConverterDataISO2022
*myConverterData
=(UConverterDataISO2022
*) cnv
->extraInfo
;
469 stackArgs
.onlyTestIsLoadable
= pArgs
->onlyTestIsLoadable
;
471 uprv_memset(myConverterData
, 0, sizeof(UConverterDataISO2022
));
472 myConverterData
->currentType
= ASCII1
;
473 cnv
->fromUnicodeStatus
=FALSE
;
475 uprv_strncpy(myLocale
, pArgs
->locale
, sizeof(myLocale
));
477 version
= pArgs
->options
& UCNV_OPTIONS_VERSION_MASK
;
478 myConverterData
->version
= version
;
479 if(myLocale
[0]=='j' && (myLocale
[1]=='a'|| myLocale
[1]=='p') &&
480 (myLocale
[2]=='_' || myLocale
[2]=='\0'))
483 /* open the required converters and cache them */
484 if(version
>MAX_JA_VERSION
) {
485 /* prevent indexing beyond jpCharsetMasks[] */
486 myConverterData
->version
= version
= 0;
488 if(jpCharsetMasks
[version
]&CSM(ISO8859_7
)) {
489 myConverterData
->myConverterArray
[ISO8859_7
] =
490 ucnv_loadSharedData("ISO8859_7", &stackPieces
, &stackArgs
, errorCode
);
492 myConverterData
->myConverterArray
[JISX208
] =
493 ucnv_loadSharedData("Shift-JIS", &stackPieces
, &stackArgs
, errorCode
);
494 if(jpCharsetMasks
[version
]&CSM(JISX212
)) {
495 myConverterData
->myConverterArray
[JISX212
] =
496 ucnv_loadSharedData("jisx-212", &stackPieces
, &stackArgs
, errorCode
);
498 if(jpCharsetMasks
[version
]&CSM(GB2312
)) {
499 myConverterData
->myConverterArray
[GB2312
] =
500 ucnv_loadSharedData("ibm-5478", &stackPieces
, &stackArgs
, errorCode
); /* gb_2312_80-1 */
502 if(jpCharsetMasks
[version
]&CSM(KSC5601
)) {
503 myConverterData
->myConverterArray
[KSC5601
] =
504 ucnv_loadSharedData("ksc_5601", &stackPieces
, &stackArgs
, errorCode
);
507 /* set the function pointers to appropriate funtions */
508 cnv
->sharedData
=(UConverterSharedData
*)(&_ISO2022JPData
);
509 uprv_strcpy(myConverterData
->locale
,"ja");
511 (void)uprv_strcpy(myConverterData
->name
,"ISO_2022,locale=ja,version=");
512 len
= uprv_strlen(myConverterData
->name
);
513 myConverterData
->name
[len
]=(char)(myConverterData
->version
+(int)'0');
514 myConverterData
->name
[len
+1]='\0';
516 else if(myLocale
[0]=='k' && (myLocale
[1]=='o'|| myLocale
[1]=='r') &&
517 (myLocale
[2]=='_' || myLocale
[2]=='\0'))
521 cnvName
="icu-internal-25546";
524 myConverterData
->version
=version
=0;
526 if(pArgs
->onlyTestIsLoadable
) {
527 ucnv_canCreateConverter(cnvName
, errorCode
); /* errorCode carries result */
528 uprv_free(cnv
->extraInfo
);
532 myConverterData
->currentConverter
=ucnv_open(cnvName
, errorCode
);
533 if (U_FAILURE(*errorCode
)) {
539 (void)uprv_strcpy(myConverterData
->name
,"ISO_2022,locale=ko,version=1");
540 uprv_memcpy(cnv
->subChars
, myConverterData
->currentConverter
->subChars
, 4);
541 cnv
->subCharLen
= myConverterData
->currentConverter
->subCharLen
;
543 (void)uprv_strcpy(myConverterData
->name
,"ISO_2022,locale=ko,version=0");
546 /* initialize the state variables */
547 setInitialStateToUnicodeKR(cnv
, myConverterData
);
548 setInitialStateFromUnicodeKR(cnv
, myConverterData
);
550 /* set the function pointers to appropriate funtions */
551 cnv
->sharedData
=(UConverterSharedData
*)&_ISO2022KRData
;
552 uprv_strcpy(myConverterData
->locale
,"ko");
555 else if(((myLocale
[0]=='z' && myLocale
[1]=='h') || (myLocale
[0]=='c'&& myLocale
[1]=='n'))&&
556 (myLocale
[2]=='_' || myLocale
[2]=='\0'))
559 /* open the required converters and cache them */
560 myConverterData
->myConverterArray
[GB2312_1
] =
561 ucnv_loadSharedData("ibm-5478", &stackPieces
, &stackArgs
, errorCode
);
563 myConverterData
->myConverterArray
[ISO_IR_165
] =
564 ucnv_loadSharedData("iso-ir-165", &stackPieces
, &stackArgs
, errorCode
);
566 myConverterData
->myConverterArray
[CNS_11643
] =
567 ucnv_loadSharedData("cns-11643-1992", &stackPieces
, &stackArgs
, errorCode
);
570 /* set the function pointers to appropriate funtions */
571 cnv
->sharedData
=(UConverterSharedData
*)&_ISO2022CNData
;
572 uprv_strcpy(myConverterData
->locale
,"cn");
575 myConverterData
->version
= 0;
576 (void)uprv_strcpy(myConverterData
->name
,"ISO_2022,locale=zh,version=0");
577 }else if (version
==1){
578 myConverterData
->version
= 1;
579 (void)uprv_strcpy(myConverterData
->name
,"ISO_2022,locale=zh,version=1");
581 myConverterData
->version
= 2;
582 (void)uprv_strcpy(myConverterData
->name
,"ISO_2022,locale=zh,version=2");
586 #ifdef U_ENABLE_GENERIC_ISO_2022
587 myConverterData
->isFirstBuffer
= TRUE
;
589 /* append the UTF-8 escape sequence */
590 cnv
->charErrorBufferLength
= 3;
591 cnv
->charErrorBuffer
[0] = 0x1b;
592 cnv
->charErrorBuffer
[1] = 0x25;
593 cnv
->charErrorBuffer
[2] = 0x42;
595 cnv
->sharedData
=(UConverterSharedData
*)&_ISO2022Data
;
596 /* initialize the state variables */
597 uprv_strcpy(myConverterData
->name
,"ISO_2022");
599 *errorCode
= U_UNSUPPORTED_ERROR
;
604 cnv
->maxBytesPerUChar
=cnv
->sharedData
->staticData
->maxBytesPerChar
;
606 if(U_FAILURE(*errorCode
) || pArgs
->onlyTestIsLoadable
) {
610 *errorCode
= U_MEMORY_ALLOCATION_ERROR
;
616 _ISO2022Close(UConverter
*converter
) {
617 UConverterDataISO2022
* myData
=(UConverterDataISO2022
*) (converter
->extraInfo
);
618 UConverterSharedData
**array
= myData
->myConverterArray
;
621 if (converter
->extraInfo
!= NULL
) {
622 /*close the array of converter pointers and free the memory*/
623 for (i
=0; i
<UCNV_2022_MAX_CONVERTERS
; i
++) {
625 ucnv_unloadSharedDataIfReady(array
[i
]);
629 ucnv_close(myData
->currentConverter
);
631 if(!converter
->isExtraLocal
){
632 uprv_free (converter
->extraInfo
);
633 converter
->extraInfo
= NULL
;
639 _ISO2022Reset(UConverter
*converter
, UConverterResetChoice choice
) {
640 UConverterDataISO2022
*myConverterData
=(UConverterDataISO2022
*) (converter
->extraInfo
);
641 if(choice
<=UCNV_RESET_TO_UNICODE
) {
642 uprv_memset(&myConverterData
->toU2022State
, 0, sizeof(ISO2022State
));
643 myConverterData
->key
= 0;
644 myConverterData
->isEmptySegment
= FALSE
;
646 if(choice
!=UCNV_RESET_TO_UNICODE
) {
647 uprv_memset(&myConverterData
->fromU2022State
, 0, sizeof(ISO2022State
));
649 #ifdef U_ENABLE_GENERIC_ISO_2022
650 if(myConverterData
->locale
[0] == 0){
651 if(choice
<=UCNV_RESET_TO_UNICODE
) {
652 myConverterData
->isFirstBuffer
= TRUE
;
653 myConverterData
->key
= 0;
654 if (converter
->mode
== UCNV_SO
){
655 ucnv_close (myConverterData
->currentConverter
);
656 myConverterData
->currentConverter
=NULL
;
658 converter
->mode
= UCNV_SI
;
660 if(choice
!=UCNV_RESET_TO_UNICODE
) {
661 /* re-append UTF-8 escape sequence */
662 converter
->charErrorBufferLength
= 3;
663 converter
->charErrorBuffer
[0] = 0x1b;
664 converter
->charErrorBuffer
[1] = 0x28;
665 converter
->charErrorBuffer
[2] = 0x42;
671 /* reset the state variables */
672 if(myConverterData
->locale
[0] == 'k'){
673 if(choice
<=UCNV_RESET_TO_UNICODE
) {
674 setInitialStateToUnicodeKR(converter
, myConverterData
);
676 if(choice
!=UCNV_RESET_TO_UNICODE
) {
677 setInitialStateFromUnicodeKR(converter
, myConverterData
);
684 _ISO2022getName(const UConverter
* cnv
){
686 UConverterDataISO2022
* myData
= (UConverterDataISO2022
*)cnv
->extraInfo
;
693 /*************** to unicode *******************/
694 /****************************************************************************
695 * Recognized escape sequences are
707 static const int8_t nextStateToUnicodeJP
[MAX_STATES_2022
]= {
708 /* 0 1 2 3 4 5 6 7 8 9 */
709 INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,SS2_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
710 ,ASCII
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,JISX201
,HWKANA_7BIT
,JISX201
,INVALID_STATE
711 ,INVALID_STATE
,INVALID_STATE
,JISX208
,GB2312
,JISX208
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
712 ,ISO8859_1
,ISO8859_7
,JISX208
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,KSC5601
,JISX212
,INVALID_STATE
713 ,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
714 ,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
715 ,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
716 ,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
719 /*************** to unicode *******************/
720 static const int8_t nextStateToUnicodeCN
[MAX_STATES_2022
]= {
721 /* 0 1 2 3 4 5 6 7 8 9 */
722 INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,SS2_STATE
,SS3_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
723 ,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
724 ,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
725 ,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
726 ,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,GB2312_1
,INVALID_STATE
,ISO_IR_165
727 ,CNS_11643_1
,CNS_11643_2
,CNS_11643_3
,CNS_11643_4
,CNS_11643_5
,CNS_11643_6
,CNS_11643_7
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
728 ,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
729 ,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
,INVALID_STATE
733 static UCNV_TableStates_2022
734 getKey_2022(char c
,int32_t* key
,int32_t* offset
){
737 int32_t hi
= MAX_STATES_2022
;
740 togo
= normalize_esq_chars_2022
[(uint8_t)c
];
742 /* not a valid character anywhere in an escape sequence */
747 togo
= (*key
<< 5) + togo
;
749 while (hi
!= low
) /*binary search*/{
751 register int32_t mid
= (hi
+low
) >> 1; /*Finds median*/
756 if (escSeqStateTable_Key_2022
[mid
] > togo
){
759 else if (escSeqStateTable_Key_2022
[mid
] < togo
){
762 else /*we found it*/{
765 return (UCNV_TableStates_2022
)escSeqStateTable_Value_2022
[mid
];
776 /*runs through a state machine to determine the escape sequence - codepage correspondance
779 changeState_2022(UConverter
* _this
,
781 const char* sourceLimit
,
784 UCNV_TableStates_2022 value
;
785 UConverterDataISO2022
* myData2022
= ((UConverterDataISO2022
*)_this
->extraInfo
);
786 uint32_t key
= myData2022
->key
;
788 int8_t initialToULength
= _this
->toULength
;
791 value
= VALID_NON_TERMINAL_2022
;
792 while (*source
< sourceLimit
) {
794 _this
->toUBytes
[_this
->toULength
++]=(uint8_t)c
;
795 value
= getKey_2022(c
,(int32_t *) &key
, &offset
);
799 case VALID_NON_TERMINAL_2022
:
800 /* continue with the loop */
803 case VALID_TERMINAL_2022
:
810 case VALID_MAYBE_TERMINAL_2022
:
811 #ifdef U_ENABLE_GENERIC_ISO_2022
812 /* ESC ( B is ambiguous only for ISO_2022 itself */
813 if(var
== ISO_2022
) {
814 /* discard toUBytes[] for ESC ( B because this sequence is correct and complete */
815 _this
->toULength
= 0;
817 /* TODO need to indicate that ESC ( B was seen; if failure, then need to replay from source or from MBCS-style replay */
819 /* continue with the loop */
820 value
= VALID_NON_TERMINAL_2022
;
825 /* not ISO_2022 itself, finish here */
826 value
= VALID_TERMINAL_2022
;
834 myData2022
->key
= key
;
836 if (value
== VALID_NON_TERMINAL_2022
) {
837 /* indicate that the escape sequence is incomplete: key!=0 */
839 } else if (value
== INVALID_2022
) {
840 *err
= U_ILLEGAL_ESCAPE_SEQUENCE
;
841 } else /* value == VALID_TERMINAL_2022 */ {
843 #ifdef U_ENABLE_GENERIC_ISO_2022
846 const char *chosenConverterName
= escSeqStateTable_Result_2022
[offset
];
847 if(chosenConverterName
== NULL
) {
849 *err
= U_UNSUPPORTED_ESCAPE_SEQUENCE
;
850 _this
->toUCallbackReason
= UCNV_UNASSIGNED
;
854 _this
->mode
= UCNV_SI
;
855 ucnv_close(myData2022
->currentConverter
);
856 myData2022
->currentConverter
= myUConverter
= ucnv_open(chosenConverterName
, err
);
857 if(U_SUCCESS(*err
)) {
858 myUConverter
->fromCharErrorBehaviour
= UCNV_TO_U_CALLBACK_STOP
;
859 _this
->mode
= UCNV_SO
;
866 StateEnum tempState
=(StateEnum
)nextStateToUnicodeJP
[offset
];
869 *err
= U_UNSUPPORTED_ESCAPE_SEQUENCE
;
872 if(myData2022
->toU2022State
.cs
[2]!=0) {
873 if(myData2022
->toU2022State
.g
<2) {
874 myData2022
->toU2022State
.prevG
=myData2022
->toU2022State
.g
;
876 myData2022
->toU2022State
.g
=2;
878 /* illegal to have SS2 before a matching designator */
879 *err
= U_ILLEGAL_ESCAPE_SEQUENCE
;
882 /* case SS3_STATE: not used in ISO-2022-JP-x */
885 if((jpCharsetMasks
[myData2022
->version
] & CSM(tempState
)) == 0) {
886 *err
= U_UNSUPPORTED_ESCAPE_SEQUENCE
;
888 /* G2 charset for SS2 */
889 myData2022
->toU2022State
.cs
[2]=(int8_t)tempState
;
893 if((jpCharsetMasks
[myData2022
->version
] & CSM(tempState
)) == 0) {
894 *err
= U_UNSUPPORTED_ESCAPE_SEQUENCE
;
897 myData2022
->toU2022State
.cs
[0]=(int8_t)tempState
;
905 StateEnum tempState
=(StateEnum
)nextStateToUnicodeCN
[offset
];
908 *err
= U_UNSUPPORTED_ESCAPE_SEQUENCE
;
911 if(myData2022
->toU2022State
.cs
[2]!=0) {
912 if(myData2022
->toU2022State
.g
<2) {
913 myData2022
->toU2022State
.prevG
=myData2022
->toU2022State
.g
;
915 myData2022
->toU2022State
.g
=2;
917 /* illegal to have SS2 before a matching designator */
918 *err
= U_ILLEGAL_ESCAPE_SEQUENCE
;
922 if(myData2022
->toU2022State
.cs
[3]!=0) {
923 if(myData2022
->toU2022State
.g
<2) {
924 myData2022
->toU2022State
.prevG
=myData2022
->toU2022State
.g
;
926 myData2022
->toU2022State
.g
=3;
928 /* illegal to have SS3 before a matching designator */
929 *err
= U_ILLEGAL_ESCAPE_SEQUENCE
;
933 if(myData2022
->version
==0) {
934 *err
= U_UNSUPPORTED_ESCAPE_SEQUENCE
;
941 myData2022
->toU2022State
.cs
[1]=(int8_t)tempState
;
944 myData2022
->toU2022State
.cs
[2]=(int8_t)tempState
;
947 /* other CNS 11643 planes */
948 if(myData2022
->version
==0) {
949 *err
= U_UNSUPPORTED_ESCAPE_SEQUENCE
;
951 myData2022
->toU2022State
.cs
[3]=(int8_t)tempState
;
959 /* nothing to be done, just accept this one escape sequence */
961 *err
= U_UNSUPPORTED_ESCAPE_SEQUENCE
;
966 *err
= U_ILLEGAL_ESCAPE_SEQUENCE
;
970 if(U_SUCCESS(*err
)) {
971 _this
->toULength
= 0;
972 } else if(*err
==U_ILLEGAL_ESCAPE_SEQUENCE
) {
973 if(_this
->toULength
>1) {
975 * Ticket 5691: consistent illegal sequences:
976 * - We include at least the first byte (ESC) in the illegal sequence.
977 * - If any of the non-initial bytes could be the start of a character,
978 * we stop the illegal sequence before the first one of those.
979 * In escape sequences, all following bytes are "printable", that is,
980 * unless they are completely illegal (>7f in SBCS, outside 21..7e in DBCS),
981 * they are valid single/lead bytes.
982 * For simplicity, we always only report the initial ESC byte as the
983 * illegal sequence and back out all other bytes we looked at.
985 /* Back out some bytes. */
986 int8_t backOutDistance
=_this
->toULength
-1;
987 int8_t bytesFromThisBuffer
=_this
->toULength
-initialToULength
;
988 if(backOutDistance
<=bytesFromThisBuffer
) {
989 /* same as initialToULength<=1 */
990 *source
-=backOutDistance
;
992 /* Back out bytes from the previous buffer: Need to replay them. */
993 _this
->preToULength
=(int8_t)(bytesFromThisBuffer
-backOutDistance
);
994 /* same as -(initialToULength-1) */
995 /* preToULength is negative! */
996 uprv_memcpy(_this
->preToU
, _this
->toUBytes
+1, -_this
->preToULength
);
997 *source
-=bytesFromThisBuffer
;
1001 } else if(*err
==U_UNSUPPORTED_ESCAPE_SEQUENCE
) {
1002 _this
->toUCallbackReason
= UCNV_UNASSIGNED
;
1006 /*Checks the characters of the buffer against valid 2022 escape sequences
1007 *if the match we return a pointer to the initial start of the sequence otherwise
1008 *we return sourceLimit
1010 /*for 2022 looks ahead in the stream
1011 *to determine the longest possible convertible
1014 static inline const char*
1015 getEndOfBuffer_2022(const char** source
,
1016 const char* sourceLimit
,
1019 const char* mySource
= *source
;
1021 #ifdef U_ENABLE_GENERIC_ISO_2022
1022 if (*source
>= sourceLimit
)
1027 if (*mySource
== ESC_2022
){
1031 UCNV_TableStates_2022 value
= VALID_NON_TERMINAL_2022
;
1033 /* Kludge: I could not
1034 * figure out the reason for validating an escape sequence
1035 * twice - once here and once in changeState_2022().
1036 * is it possible to have an ESC character in a ISO2022
1037 * byte stream which is valid in a code page? Is it legal?
1040 (mySource
+i
< sourceLimit
)&&(value
== VALID_NON_TERMINAL_2022
);
1042 value
= getKey_2022(*(mySource
+i
), &key
, &offset
);
1044 if (value
> 0 || *mySource
==ESC_2022
)
1047 if ((value
== VALID_NON_TERMINAL_2022
)&&(!flush
) )
1050 }while (++mySource
< sourceLimit
);
1054 while(mySource
< sourceLimit
&& *mySource
!= ESC_2022
) {
1062 /* This inline function replicates code in _MBCSFromUChar32() function in ucnvmbcs.c
1063 * any future change in _MBCSFromUChar32() function should be reflected here.
1064 * @return number of bytes in *value; negative number if fallback; 0 if no mapping
1066 static inline int32_t
1067 MBCS_FROM_UCHAR32_ISO2022(UConverterSharedData
* sharedData
,
1074 const uint16_t *table
;
1075 uint32_t stage2Entry
;
1080 * TODO(markus): Use and require new, faster MBCS conversion table structures.
1081 * Use internal version of ucnv_open() that verifies that the new structures are available,
1082 * else U_INTERNAL_PROGRAM_ERROR.
1084 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
1085 if(c
<0x10000 || (sharedData
->mbcs
.unicodeMask
&UCNV_HAS_SUPPLEMENTARY
)) {
1086 table
=sharedData
->mbcs
.fromUnicodeTable
;
1087 stage2Entry
=MBCS_STAGE_2_FROM_U(table
, c
);
1088 /* get the bytes and the length for the output */
1089 if(outputType
==MBCS_OUTPUT_2
){
1090 myValue
=MBCS_VALUE_2_FROM_STAGE_2(sharedData
->mbcs
.fromUnicodeBytes
, stage2Entry
, c
);
1096 } else /* outputType==MBCS_OUTPUT_3 */ {
1097 p
=MBCS_POINTER_3_FROM_STAGE_2(sharedData
->mbcs
.fromUnicodeBytes
, stage2Entry
, c
);
1098 myValue
=((uint32_t)*p
<<16)|((uint32_t)p
[1]<<8)|p
[2];
1101 } else if(myValue
<=0xffff) {
1107 /* is this code point assigned, or do we use fallbacks? */
1108 if((stage2Entry
&(1<<(16+(c
&0xf))))!=0) {
1112 } else if(FROM_U_USE_FALLBACK(useFallback
, c
) && myValue
!=0) {
1114 * We allow a 0 byte output if the "assigned" bit is set for this entry.
1115 * There is no way with this data structure for fallback output
1116 * to be a zero byte.
1123 cx
=sharedData
->mbcs
.extIndexes
;
1125 return ucnv_extSimpleMatchFromU(cx
, c
, value
, useFallback
);
1132 /* This inline function replicates code in _MBCSSingleFromUChar32() function in ucnvmbcs.c
1133 * any future change in _MBCSSingleFromUChar32() function should be reflected here.
1134 * @param retval pointer to output byte
1135 * @return 1 roundtrip byte 0 no mapping -1 fallback byte
1137 static inline int32_t
1138 MBCS_SINGLE_FROM_UCHAR32(UConverterSharedData
* sharedData
,
1143 const uint16_t *table
;
1145 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
1146 if(c
>=0x10000 && !(sharedData
->mbcs
.unicodeMask
&UCNV_HAS_SUPPLEMENTARY
)) {
1149 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
1150 table
=sharedData
->mbcs
.fromUnicodeTable
;
1151 /* get the byte for the output */
1152 value
=MBCS_SINGLE_RESULT_FROM_U(table
, (uint16_t *)sharedData
->mbcs
.fromUnicodeBytes
, c
);
1153 /* is this code point assigned, or do we use fallbacks? */
1154 *retval
=(uint32_t)(value
&0xff);
1156 return 1; /* roundtrip */
1157 } else if(useFallback
? value
>=0x800 : value
>=0xc00) {
1158 return -1; /* fallback taken */
1160 return 0; /* no mapping */
1165 * Check that the result is a 2-byte value with each byte in the range A1..FE
1166 * (strict EUC DBCS) before accepting it and subtracting 0x80 from each byte
1167 * to move it to the ISO 2022 range 21..7E.
1168 * Return 0 if out of range.
1170 static inline uint32_t
1171 _2022FromGR94DBCS(uint32_t value
) {
1172 if( (uint16_t)(value
- 0xa1a1) <= (0xfefe - 0xa1a1) &&
1173 (uint8_t)(value
- 0xa1) <= (0xfe - 0xa1)
1175 return value
- 0x8080; /* shift down to 21..7e byte range */
1177 return 0; /* not valid for ISO 2022 */
1181 #if 0 /* 5691: Call sites now check for validity. They can just += 0x8080 after that. */
1183 * This method does the reverse of _2022FromGR94DBCS(). Given the 2022 code point, it returns the
1184 * 2 byte value that is in the range A1..FE for each byte. Otherwise it returns the 2022 code point
1187 static inline uint32_t
1188 _2022ToGR94DBCS(uint32_t value
) {
1189 uint32_t returnValue
= value
+ 0x8080;
1190 if( (uint16_t)(returnValue
- 0xa1a1) <= (0xfefe - 0xa1a1) &&
1191 (uint8_t)(returnValue
- 0xa1) <= (0xfe - 0xa1)) {
1199 #ifdef U_ENABLE_GENERIC_ISO_2022
1201 /**********************************************************************************
1202 * ISO-2022 Converter
1208 T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs
* args
,
1210 const char* mySourceLimit
, *realSourceLimit
;
1211 const char* sourceStart
;
1212 const UChar
* myTargetStart
;
1213 UConverter
* saveThis
;
1214 UConverterDataISO2022
* myData
;
1217 saveThis
= args
->converter
;
1218 myData
=((UConverterDataISO2022
*)(saveThis
->extraInfo
));
1220 realSourceLimit
= args
->sourceLimit
;
1221 while (args
->source
< realSourceLimit
) {
1222 if(myData
->key
== 0) { /* are we in the middle of an escape sequence? */
1223 /*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/
1224 mySourceLimit
= getEndOfBuffer_2022(&(args
->source
), realSourceLimit
, args
->flush
);
1226 if(args
->source
< mySourceLimit
) {
1227 if(myData
->currentConverter
==NULL
) {
1228 myData
->currentConverter
= ucnv_open("ASCII",err
);
1229 if(U_FAILURE(*err
)){
1233 myData
->currentConverter
->fromCharErrorBehaviour
= UCNV_TO_U_CALLBACK_STOP
;
1234 saveThis
->mode
= UCNV_SO
;
1237 /* convert to before the ESC or until the end of the buffer */
1238 myData
->isFirstBuffer
=FALSE
;
1239 sourceStart
= args
->source
;
1240 myTargetStart
= args
->target
;
1241 args
->converter
= myData
->currentConverter
;
1242 ucnv_toUnicode(args
->converter
,
1248 (UBool
)(args
->flush
&& mySourceLimit
== realSourceLimit
),
1250 args
->converter
= saveThis
;
1252 if (*err
== U_BUFFER_OVERFLOW_ERROR
) {
1253 /* move the overflow buffer */
1254 length
= saveThis
->UCharErrorBufferLength
= myData
->currentConverter
->UCharErrorBufferLength
;
1255 myData
->currentConverter
->UCharErrorBufferLength
= 0;
1257 uprv_memcpy(saveThis
->UCharErrorBuffer
,
1258 myData
->currentConverter
->UCharErrorBuffer
,
1259 length
*U_SIZEOF_UCHAR
);
1266 * -Error while converting
1267 * -Done with entire buffer
1268 * -Need to write offsets or update the current offset
1269 * (leave that up to the code in ucnv.c)
1271 * or else we just stopped at an ESC byte and continue with changeState_2022()
1273 if (U_FAILURE(*err
) ||
1274 (args
->source
== realSourceLimit
) ||
1275 (args
->offsets
!= NULL
&& (args
->target
!= myTargetStart
|| args
->source
!= sourceStart
) ||
1276 (mySourceLimit
< realSourceLimit
&& myData
->currentConverter
->toULength
> 0))
1278 /* copy partial or error input for truncated detection and error handling */
1279 if(U_FAILURE(*err
)) {
1280 length
= saveThis
->invalidCharLength
= myData
->currentConverter
->invalidCharLength
;
1282 uprv_memcpy(saveThis
->invalidCharBuffer
, myData
->currentConverter
->invalidCharBuffer
, length
);
1285 length
= saveThis
->toULength
= myData
->currentConverter
->toULength
;
1287 uprv_memcpy(saveThis
->toUBytes
, myData
->currentConverter
->toUBytes
, length
);
1288 if(args
->source
< mySourceLimit
) {
1289 *err
= U_TRUNCATED_CHAR_FOUND
; /* truncated input before ESC */
1298 sourceStart
= args
->source
;
1299 changeState_2022(args
->converter
,
1304 if (U_FAILURE(*err
) || (args
->source
!= sourceStart
&& args
->offsets
!= NULL
)) {
1305 /* let the ucnv.c code update its current offset */
1314 * To Unicode Callback helper function
1317 toUnicodeCallback(UConverter
*cnv
,
1318 const uint32_t sourceChar
, const uint32_t targetUniChar
,
1320 if(sourceChar
>0xff){
1321 cnv
->toUBytes
[0] = (uint8_t)(sourceChar
>>8);
1322 cnv
->toUBytes
[1] = (uint8_t)sourceChar
;
1326 cnv
->toUBytes
[0] =(char) sourceChar
;
1330 if(targetUniChar
== (missingCharMarker
-1/*0xfffe*/)){
1331 *err
= U_INVALID_CHAR_FOUND
;
1334 *err
= U_ILLEGAL_CHAR_FOUND
;
1338 /**************************************ISO-2022-JP*************************************************/
1340 /************************************** IMPORTANT **************************************************
1341 * The UConverter_fromUnicode_ISO2022_JP converter does not use ucnv_fromUnicode() functions for SBCS,DBCS and
1342 * MBCS; instead, the values are obtained directly by calling _MBCSFromUChar32().
1343 * The converter iterates over each Unicode codepoint
1344 * to obtain the equivalent codepoints from the codepages supported. Since the source buffer is
1345 * processed one char at a time it would make sense to reduce the extra processing a canned converter
1346 * would do as far as possible.
1348 * If the implementation of these macros or structure of sharedData struct change in the future, make
1349 * sure that ISO-2022 is also changed.
1350 ***************************************************************************************************
1353 /***************************************************************************************************
1354 * Rules for ISO-2022-jp encoding
1355 * (i) Escape sequences must be fully contained within a line they should not
1356 * span new lines or CRs
1357 * (ii) If the last character on a line is represented by two bytes then an ASCII or
1358 * JIS-Roman character escape sequence should follow before the line terminates
1359 * (iii) If the first character on the line is represented by two bytes then a two
1360 * byte character escape sequence should precede it
1361 * (iv) If no escape sequence is encountered then the characters are ASCII
1362 * (v) Latin(ISO-8859-1) and Greek(ISO-8859-7) characters must be designated to G2,
1363 * and invoked with SS2 (ESC N).
1364 * (vi) If there is any G0 designation in text, there must be a switch to
1365 * ASCII or to JIS X 0201-Roman before a space character (but not
1366 * necessarily before "ESC 4/14 2/0" or "ESC N ' '") or control
1367 * characters such as tab or CRLF.
1368 * (vi) Supported encodings:
1369 * ASCII, JISX201, JISX208, JISX212, GB2312, KSC5601, ISO-8859-1,ISO-8859-7
1373 * JISX201, JISX208,JISX212 : new .cnv data files created
1374 * KSC5601 : alias to ibm-949 mapping table
1375 * GB2312 : alias to ibm-1386 mapping table
1376 * ISO-8859-1 : Algorithmic implemented as LATIN1 case
1377 * ISO-8859-7 : alisas to ibm-9409 mapping table
1380 /* preference order of JP charsets */
1381 static const StateEnum jpCharsetPref
[]={
1394 * The escape sequences must be in order of the enum constants like JISX201 = 3,
1395 * not in order of jpCharsetPref[]!
1397 static const char escSeqChars
[][6] ={
1398 "\x1B\x28\x42", /* <ESC>(B ASCII */
1399 "\x1B\x2E\x41", /* <ESC>.A ISO-8859-1 */
1400 "\x1B\x2E\x46", /* <ESC>.F ISO-8859-7 */
1401 "\x1B\x28\x4A", /* <ESC>(J JISX-201 */
1402 "\x1B\x24\x42", /* <ESC>$B JISX-208 */
1403 "\x1B\x24\x28\x44", /* <ESC>$(D JISX-212 */
1404 "\x1B\x24\x41", /* <ESC>$A GB2312 */
1405 "\x1B\x24\x28\x43", /* <ESC>$(C KSC5601 */
1406 "\x1B\x28\x49" /* <ESC>(I HWKANA_7BIT */
1409 static const int8_t escSeqCharsLen
[] ={
1410 3, /* length of <ESC>(B ASCII */
1411 3, /* length of <ESC>.A ISO-8859-1 */
1412 3, /* length of <ESC>.F ISO-8859-7 */
1413 3, /* length of <ESC>(J JISX-201 */
1414 3, /* length of <ESC>$B JISX-208 */
1415 4, /* length of <ESC>$(D JISX-212 */
1416 3, /* length of <ESC>$A GB2312 */
1417 4, /* length of <ESC>$(C KSC5601 */
1418 3 /* length of <ESC>(I HWKANA_7BIT */
1422 * The iteration over various code pages works this way:
1423 * i) Get the currentState from myConverterData->currentState
1424 * ii) Check if the character is mapped to a valid character in the currentState
1425 * Yes -> a) set the initIterState to currentState
1426 * b) remain in this state until an invalid character is found
1427 * No -> a) go to the next code page and find the character
1428 * iii) Before changing the state increment the current state check if the current state
1429 * is equal to the intitIteration state
1430 * Yes -> A character that cannot be represented in any of the supported encodings
1431 * break and return a U_INVALID_CHARACTER error
1432 * No -> Continue and find the character in next code page
1435 * TODO: Implement a priority technique where the users are allowed to set the priority of code pages
1438 /* Map 00..7F to Unicode according to JIS X 0201. */
1439 static inline uint32_t
1440 jisx201ToU(uint32_t value
) {
1443 } else if(value
== 0x5c) {
1445 } else if(value
== 0x7e) {
1447 } else /* value <= 0x7f */ {
1452 /* Map Unicode to 00..7F according to JIS X 0201. Return U+FFFE if unmappable. */
1453 static inline uint32_t
1454 jisx201FromU(uint32_t value
) {
1456 if(value
!=0x5c && value
!=0x7e) {
1459 } else if(value
==0xa5) {
1461 } else if(value
==0x203e) {
1468 * Take a valid Shift-JIS byte pair, check that it is in the range corresponding
1469 * to JIS X 0208, and convert it to a pair of 21..7E bytes.
1470 * Return 0 if the byte pair is out of range.
1472 static inline uint32_t
1473 _2022FromSJIS(uint32_t value
) {
1476 if(value
> 0xEFFC) {
1477 return 0; /* beyond JIS X 0208 */
1480 trail
= (uint8_t)value
;
1482 value
&= 0xff00; /* lead byte */
1483 if(value
<= 0x9f00) {
1485 } else /* 0xe000 <= value <= 0xef00 */ {
1493 value
|= trail
- 0x1f;
1495 value
|= trail
- 0x20;
1497 } else /* trail <= 0xfc */ {
1498 value
|= trail
- 0x7e;
1504 * Convert a pair of JIS X 0208 21..7E bytes to Shift-JIS.
1505 * If either byte is outside 21..7E make sure that the result is not valid
1506 * for Shift-JIS so that the converter catches it.
1507 * Some invalid byte values already turn into equally invalid Shift-JIS
1508 * byte values and need not be tested explicitly.
1511 _2022ToSJIS(uint8_t c1
, uint8_t c2
, char bytes
[2]) {
1516 } else if(c2
<= 0x7e) {
1519 c2
= 0; /* invalid */
1522 if((uint8_t)(c2
-0x21) <= ((0x7e)-0x21)) {
1525 c2
= 0; /* invalid */
1531 } else if(c1
<= 0x3f) {
1534 c1
= 0; /* invalid */
1536 bytes
[0] = (char)c1
;
1537 bytes
[1] = (char)c2
;
1541 * JIS X 0208 has fallbacks from Unicode half-width Katakana to full-width (DBCS)
1543 * Now that we use a Shift-JIS table for JIS X 0208 we need to hardcode these fallbacks
1544 * because Shift-JIS roundtrips half-width Katakana to single bytes.
1545 * These were the only fallbacks in ICU's jisx-208.ucm file.
1547 static const uint16_t hwkana_fb
[HWKANA_END
- HWKANA_START
+ 1] = {
1548 0x2123, /* U+FF61 */
1563 0x213C, /* U+FF70 */
1579 0x253F, /* U+FF80 */
1595 0x255F, /* U+FF90 */
1614 UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterFromUnicodeArgs
* args
, UErrorCode
* err
) {
1615 UConverter
*cnv
= args
->converter
;
1616 UConverterDataISO2022
*converterData
;
1617 ISO2022State
*pFromU2022State
;
1618 uint8_t *target
= (uint8_t *) args
->target
;
1619 const uint8_t *targetLimit
= (const uint8_t *) args
->targetLimit
;
1620 const UChar
* source
= args
->source
;
1621 const UChar
* sourceLimit
= args
->sourceLimit
;
1622 int32_t* offsets
= args
->offsets
;
1625 int32_t len
, outLen
;
1627 int32_t choiceCount
;
1628 uint32_t targetValue
= 0;
1634 /* set up the state */
1635 converterData
= (UConverterDataISO2022
*)cnv
->extraInfo
;
1636 pFromU2022State
= &converterData
->fromU2022State
;
1640 /* check if the last codepoint of previous buffer was a lead surrogate*/
1641 if((sourceChar
= cnv
->fromUChar32
)!=0 && target
< targetLimit
) {
1645 while(source
< sourceLimit
) {
1646 if(target
< targetLimit
) {
1648 sourceChar
= *(source
++);
1649 /*check if the char is a First surrogate*/
1650 if(U16_IS_SURROGATE(sourceChar
)) {
1651 if(U16_IS_SURROGATE_LEAD(sourceChar
)) {
1653 /*look ahead to find the trail surrogate*/
1654 if(source
< sourceLimit
) {
1655 /* test the following code unit */
1656 UChar trail
=(UChar
) *source
;
1657 if(U16_IS_TRAIL(trail
)) {
1659 sourceChar
=U16_GET_SUPPLEMENTARY(sourceChar
, trail
);
1660 cnv
->fromUChar32
=0x00;
1661 /* convert this supplementary code point */
1662 /* exit this condition tree */
1664 /* this is an unmatched lead code unit (1st surrogate) */
1665 /* callback(illegal) */
1666 *err
=U_ILLEGAL_CHAR_FOUND
;
1667 cnv
->fromUChar32
=sourceChar
;
1672 cnv
->fromUChar32
=sourceChar
;
1676 /* this is an unmatched trail code unit (2nd surrogate) */
1677 /* callback(illegal) */
1678 *err
=U_ILLEGAL_CHAR_FOUND
;
1679 cnv
->fromUChar32
=sourceChar
;
1684 /* do not convert SO/SI/ESC */
1685 if(IS_2022_CONTROL(sourceChar
)) {
1686 /* callback(illegal) */
1687 *err
=U_ILLEGAL_CHAR_FOUND
;
1688 cnv
->fromUChar32
=sourceChar
;
1692 /* do the conversion */
1694 if(choiceCount
== 0) {
1698 * The csm variable keeps track of which charsets are allowed
1699 * and not used yet while building the choices[].
1701 csm
= jpCharsetMasks
[converterData
->version
];
1704 /* JIS7/8: try single-byte half-width Katakana before JISX208 */
1705 if(converterData
->version
== 3 || converterData
->version
== 4) {
1706 choices
[choiceCount
++] = (int8_t)HWKANA_7BIT
;
1708 /* Do not try single-byte half-width Katakana for other versions. */
1709 csm
&= ~CSM(HWKANA_7BIT
);
1711 /* try the current G0 charset */
1712 choices
[choiceCount
++] = cs
= pFromU2022State
->cs
[0];
1715 /* try the current G2 charset */
1716 if((cs
= pFromU2022State
->cs
[2]) != 0) {
1717 choices
[choiceCount
++] = cs
;
1721 /* try all the other possible charsets */
1722 for(i
= 0; i
< LENGTHOF(jpCharsetPref
); ++i
) {
1723 cs
= (int8_t)jpCharsetPref
[i
];
1725 choices
[choiceCount
++] = cs
;
1733 * len==0: no mapping found yet
1734 * len<0: found a fallback result: continue looking for a roundtrip but no further fallbacks
1735 * len>0: found a roundtrip result, done
1739 * We will turn off useFallback after finding a fallback,
1740 * but we still get fallbacks from PUA code points as usual.
1741 * Therefore, we will also need to check that we don't overwrite
1742 * an early fallback with a later one.
1744 useFallback
= cnv
->useFallback
;
1746 for(i
= 0; i
< choiceCount
&& len
<= 0; ++i
) {
1749 int8_t cs0
= choices
[i
];
1752 if(sourceChar
<= 0x7f) {
1753 targetValue
= (uint32_t)sourceChar
;
1760 if(GR96_START
<= sourceChar
&& sourceChar
<= GR96_END
) {
1761 targetValue
= (uint32_t)sourceChar
- 0x80;
1768 if((uint32_t)(sourceChar
- HWKANA_START
) <= (HWKANA_END
- HWKANA_START
)) {
1769 if(converterData
->version
==3) {
1770 /* JIS7: use G1 (SO) */
1771 /* Shift U+FF61..U+FF9F to bytes 21..5F. */
1772 targetValue
= (uint32_t)(sourceChar
- (HWKANA_START
- 0x21));
1774 pFromU2022State
->cs
[1] = cs
= cs0
; /* do not output an escape sequence */
1776 } else if(converterData
->version
==4) {
1777 /* JIS8: use 8-bit bytes with any single-byte charset, see escape sequence output below */
1778 /* Shift U+FF61..U+FF9F to bytes A1..DF. */
1779 targetValue
= (uint32_t)(sourceChar
- (HWKANA_START
- 0xa1));
1782 cs
= pFromU2022State
->cs
[0];
1783 if(IS_JP_DBCS(cs
)) {
1784 /* switch from a DBCS charset to JISX201 */
1785 cs
= (int8_t)JISX201
;
1787 /* else stay in the current G0 charset */
1790 /* else do not use HWKANA_7BIT with other versions */
1795 value
= jisx201FromU(sourceChar
);
1797 targetValue
= value
;
1801 useFallback
= FALSE
;
1805 /* G0 DBCS from Shift-JIS table */
1806 len2
= MBCS_FROM_UCHAR32_ISO2022(
1807 converterData
->myConverterArray
[cs0
],
1809 useFallback
, MBCS_OUTPUT_2
);
1810 if(len2
== 2 || (len2
== -2 && len
== 0)) { /* only accept DBCS: abs(len)==2 */
1811 value
= _2022FromSJIS(value
);
1813 targetValue
= value
;
1817 useFallback
= FALSE
;
1819 } else if(len
== 0 && useFallback
&&
1820 (uint32_t)(sourceChar
- HWKANA_START
) <= (HWKANA_END
- HWKANA_START
)) {
1821 targetValue
= hwkana_fb
[sourceChar
- HWKANA_START
];
1825 useFallback
= FALSE
;
1829 /* G0 SBCS forced to 7-bit output */
1830 len2
= MBCS_SINGLE_FROM_UCHAR32(
1831 converterData
->myConverterArray
[cs0
],
1834 if(len2
!= 0 && !(len2
< 0 && len
!= 0) && GR96_START
<= value
&& value
<= GR96_END
) {
1835 targetValue
= value
- 0x80;
1839 useFallback
= FALSE
;
1844 len2
= MBCS_FROM_UCHAR32_ISO2022(
1845 converterData
->myConverterArray
[cs0
],
1847 useFallback
, MBCS_OUTPUT_2
);
1848 if(len2
== 2 || (len2
== -2 && len
== 0)) { /* only accept DBCS: abs(len)==2 */
1849 if(cs0
== KSC5601
) {
1851 * Check for valid bytes for the encoding scheme.
1852 * This is necessary because the sub-converter (windows-949)
1853 * has a broader encoding scheme than is valid for 2022.
1855 value
= _2022FromGR94DBCS(value
);
1860 targetValue
= value
;
1864 useFallback
= FALSE
;
1872 len
= -len
; /* fallback */
1874 outLen
= 0; /* count output bytes */
1876 /* write SI if necessary (only for JIS7) */
1877 if(pFromU2022State
->g
== 1 && g
== 0) {
1878 buffer
[outLen
++] = UCNV_SI
;
1879 pFromU2022State
->g
= 0;
1882 /* write the designation sequence if necessary */
1883 if(cs
!= pFromU2022State
->cs
[g
]) {
1884 int32_t escLen
= escSeqCharsLen
[cs
];
1885 uprv_memcpy(buffer
+ outLen
, escSeqChars
[cs
], escLen
);
1887 pFromU2022State
->cs
[g
] = cs
;
1889 /* invalidate the choices[] */
1893 /* write the shift sequence if necessary */
1894 if(g
!= pFromU2022State
->g
) {
1896 /* case 0 handled before writing escapes */
1898 buffer
[outLen
++] = UCNV_SO
;
1899 pFromU2022State
->g
= 1;
1901 default: /* case 2 */
1902 buffer
[outLen
++] = 0x1b;
1903 buffer
[outLen
++] = 0x4e;
1905 /* no case 3: no SS3 in ISO-2022-JP-x */
1909 /* write the output bytes */
1911 buffer
[outLen
++] = (char)targetValue
;
1912 } else /* len == 2 */ {
1913 buffer
[outLen
++] = (char)(targetValue
>> 8);
1914 buffer
[outLen
++] = (char)targetValue
;
1918 * if we cannot find the character after checking all codepages
1919 * then this is an error
1921 *err
= U_INVALID_CHAR_FOUND
;
1922 cnv
->fromUChar32
=sourceChar
;
1926 if(sourceChar
== CR
|| sourceChar
== LF
) {
1927 /* reset the G2 state at the end of a line (conversion got us into ASCII or JISX201 already) */
1928 pFromU2022State
->cs
[2] = 0;
1932 /* output outLen>0 bytes in buffer[] */
1934 *target
++ = buffer
[0];
1936 *offsets
++ = (int32_t)(source
- args
->source
- 1); /* -1: known to be ASCII */
1938 } else if(outLen
== 2 && (target
+ 2) <= targetLimit
) {
1939 *target
++ = buffer
[0];
1940 *target
++ = buffer
[1];
1942 int32_t sourceIndex
= (int32_t)(source
- args
->source
- U16_LENGTH(sourceChar
));
1943 *offsets
++ = sourceIndex
;
1944 *offsets
++ = sourceIndex
;
1950 &target
, (const char *)targetLimit
,
1951 &offsets
, (int32_t)(source
- args
->source
- U16_LENGTH(sourceChar
)),
1953 if(U_FAILURE(*err
)) {
1957 } /* end if(myTargetIndex<myTargetLength) */
1959 *err
=U_BUFFER_OVERFLOW_ERROR
;
1963 }/* end while(mySourceIndex<mySourceLength) */
1966 * the end of the input stream and detection of truncated input
1967 * are handled by the framework, but for ISO-2022-JP conversion
1968 * we need to be in ASCII mode at the very end
1972 * in SO mode or not in ASCII mode
1973 * end of input and no truncated input
1975 if( U_SUCCESS(*err
) &&
1976 (pFromU2022State
->g
!=0 || pFromU2022State
->cs
[0]!=ASCII
) &&
1977 args
->flush
&& source
>=sourceLimit
&& cnv
->fromUChar32
==0
1979 int32_t sourceIndex
;
1983 if(pFromU2022State
->g
!= 0) {
1984 buffer
[outLen
++] = UCNV_SI
;
1985 pFromU2022State
->g
= 0;
1988 if(pFromU2022State
->cs
[0] != ASCII
) {
1989 int32_t escLen
= escSeqCharsLen
[ASCII
];
1990 uprv_memcpy(buffer
+ outLen
, escSeqChars
[ASCII
], escLen
);
1992 pFromU2022State
->cs
[0] = (int8_t)ASCII
;
1995 /* get the source index of the last input character */
1997 * TODO this would be simpler and more reliable if we used a pair
1998 * of sourceIndex/prevSourceIndex like in ucnvmbcs.c
1999 * so that we could simply use the prevSourceIndex here;
2000 * this code gives an incorrect result for the rare case of an unmatched
2001 * trail surrogate that is alone in the last buffer of the text stream
2003 sourceIndex
=(int32_t)(source
-args
->source
);
2006 if( U16_IS_TRAIL(args
->source
[sourceIndex
]) &&
2007 (sourceIndex
==0 || U16_IS_LEAD(args
->source
[sourceIndex
-1]))
2018 &target
, (const char *)targetLimit
,
2019 &offsets
, sourceIndex
,
2023 /*save the state and return */
2024 args
->source
= source
;
2025 args
->target
= (char*)target
;
2028 /*************** to unicode *******************/
2031 UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterToUnicodeArgs
*args
,
2034 const char *mySource
= (char *) args
->source
;
2035 UChar
*myTarget
= args
->target
;
2036 const char *mySourceLimit
= args
->sourceLimit
;
2037 uint32_t targetUniChar
= 0x0000;
2038 uint32_t mySourceChar
= 0x0000;
2039 uint32_t tmpSourceChar
= 0x0000;
2040 UConverterDataISO2022
* myData
;
2041 ISO2022State
*pToU2022State
;
2044 myData
=(UConverterDataISO2022
*)(args
->converter
->extraInfo
);
2045 pToU2022State
= &myData
->toU2022State
;
2047 if(myData
->key
!= 0) {
2048 /* continue with a partial escape sequence */
2050 } else if(args
->converter
->toULength
== 1 && mySource
< mySourceLimit
&& myTarget
< args
->targetLimit
) {
2051 /* continue with a partial double-byte character */
2052 mySourceChar
= args
->converter
->toUBytes
[0];
2053 args
->converter
->toULength
= 0;
2054 cs
= (StateEnum
)pToU2022State
->cs
[pToU2022State
->g
];
2055 targetUniChar
= missingCharMarker
;
2059 while(mySource
< mySourceLimit
){
2061 targetUniChar
=missingCharMarker
;
2063 if(myTarget
< args
->targetLimit
){
2065 mySourceChar
= (unsigned char) *mySource
++;
2067 switch(mySourceChar
) {
2069 if(myData
->version
==3) {
2073 /* only JIS7 uses SI/SO, not ISO-2022-JP-x */
2074 myData
->isEmptySegment
= FALSE
; /* reset this, we have a different error */
2079 if(myData
->version
==3) {
2080 /* JIS7: switch to G1 half-width Katakana */
2081 pToU2022State
->cs
[1] = (int8_t)HWKANA_7BIT
;
2085 /* only JIS7 uses SI/SO, not ISO-2022-JP-x */
2086 myData
->isEmptySegment
= FALSE
; /* reset this, we have a different error */
2094 const char * mySourceBefore
= mySource
;
2095 int8_t toULengthBefore
= args
->converter
->toULength
;
2097 changeState_2022(args
->converter
,&(mySource
),
2098 mySourceLimit
, ISO_2022_JP
,err
);
2100 /* If in ISO-2022-JP only and we successully completed an escape sequence, but previous segment was empty, create an error */
2101 if(myData
->version
==0 && myData
->key
==0 && U_SUCCESS(*err
) && myData
->isEmptySegment
) {
2102 *err
= U_ILLEGAL_ESCAPE_SEQUENCE
;
2103 args
->converter
->toUCallbackReason
= UCNV_IRREGULAR
;
2104 args
->converter
->toULength
= (int8_t)(toULengthBefore
+ (mySource
- mySourceBefore
));
2108 /* invalid or illegal escape sequence */
2109 if(U_FAILURE(*err
)){
2110 args
->target
= myTarget
;
2111 args
->source
= mySource
;
2112 myData
->isEmptySegment
= FALSE
; /* Reset to avoid future spurious errors */
2115 /* If we successfully completed an escape sequence, we begin a new segment, empty so far */
2116 if(myData
->key
==0) {
2117 myData
->isEmptySegment
= TRUE
;
2121 /* ISO-2022-JP does not use single-byte (C1) SS2 and SS3 */
2126 /* automatically reset to single-byte mode */
2127 if((StateEnum
)pToU2022State
->cs
[0] != ASCII
&& (StateEnum
)pToU2022State
->cs
[0] != JISX201
) {
2128 pToU2022State
->cs
[0] = (int8_t)ASCII
;
2130 pToU2022State
->cs
[2] = 0;
2131 pToU2022State
->g
= 0;
2134 /* convert one or two bytes */
2135 myData
->isEmptySegment
= FALSE
;
2136 cs
= (StateEnum
)pToU2022State
->cs
[pToU2022State
->g
];
2137 if( (uint8_t)(mySourceChar
- 0xa1) <= (0xdf - 0xa1) && myData
->version
==4 &&
2140 /* 8-bit halfwidth katakana in any single-byte mode for JIS8 */
2141 targetUniChar
= mySourceChar
+ (HWKANA_START
- 0xa1);
2143 /* return from a single-shift state to the previous one */
2144 if(pToU2022State
->g
>= 2) {
2145 pToU2022State
->g
=pToU2022State
->prevG
;
2149 if(mySourceChar
<= 0x7f) {
2150 targetUniChar
= mySourceChar
;
2154 if(mySourceChar
<= 0x7f) {
2155 targetUniChar
= mySourceChar
+ 0x80;
2157 /* return from a single-shift state to the previous one */
2158 pToU2022State
->g
=pToU2022State
->prevG
;
2161 if(mySourceChar
<= 0x7f) {
2162 /* convert mySourceChar+0x80 to use a normal 8-bit table */
2164 _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(
2165 myData
->myConverterArray
[cs
],
2166 mySourceChar
+ 0x80);
2168 /* return from a single-shift state to the previous one */
2169 pToU2022State
->g
=pToU2022State
->prevG
;
2172 if(mySourceChar
<= 0x7f) {
2173 targetUniChar
= jisx201ToU(mySourceChar
);
2177 if((uint8_t)(mySourceChar
- 0x21) <= (0x5f - 0x21)) {
2178 /* 7-bit halfwidth Katakana */
2179 targetUniChar
= mySourceChar
+ (HWKANA_START
- 0x21);
2184 if(mySource
< mySourceLimit
) {
2185 int leadIsOk
, trailIsOk
;
2188 trailByte
= (uint8_t)*mySource
;
2190 * Ticket 5691: consistent illegal sequences:
2191 * - We include at least the first byte in the illegal sequence.
2192 * - If any of the non-initial bytes could be the start of a character,
2193 * we stop the illegal sequence before the first one of those.
2195 * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is
2196 * an ESC/SO/SI, we report only the first byte as the illegal sequence.
2197 * Otherwise we convert or report the pair of bytes.
2199 leadIsOk
= (uint8_t)(mySourceChar
- 0x21) <= (0x7e - 0x21);
2200 trailIsOk
= (uint8_t)(trailByte
- 0x21) <= (0x7e - 0x21);
2201 if (leadIsOk
&& trailIsOk
) {
2203 tmpSourceChar
= (mySourceChar
<< 8) | trailByte
;
2205 _2022ToSJIS((uint8_t)mySourceChar
, trailByte
, tempBuf
);
2206 mySourceChar
= tmpSourceChar
;
2208 /* Copy before we modify tmpSourceChar so toUnicodeCallback() sees the correct bytes. */
2209 mySourceChar
= tmpSourceChar
;
2210 if (cs
== KSC5601
) {
2211 tmpSourceChar
+= 0x8080; /* = _2022ToGR94DBCS(tmpSourceChar) */
2213 tempBuf
[0] = (char)(tmpSourceChar
>> 8);
2214 tempBuf
[1] = (char)(tmpSourceChar
);
2216 targetUniChar
= ucnv_MBCSSimpleGetNextUChar(myData
->myConverterArray
[cs
], tempBuf
, 2, FALSE
);
2217 } else if (!(trailIsOk
|| IS_2022_CONTROL(trailByte
))) {
2218 /* report a pair of illegal bytes if the second byte is not a DBCS starter */
2220 /* add another bit so that the code below writes 2 bytes in case of error */
2221 mySourceChar
= 0x10000 | (mySourceChar
<< 8) | trailByte
;
2224 args
->converter
->toUBytes
[0] = (uint8_t)mySourceChar
;
2225 args
->converter
->toULength
= 1;
2228 } /* End of inner switch */
2230 } /* End of outer switch */
2231 if(targetUniChar
< (missingCharMarker
-1/*0xfffe*/)){
2233 args
->offsets
[myTarget
- args
->target
] = (int32_t)(mySource
- args
->source
- (mySourceChar
<= 0xff ? 1 : 2));
2235 *(myTarget
++)=(UChar
)targetUniChar
;
2237 else if(targetUniChar
> missingCharMarker
){
2238 /* disassemble the surrogate pair and write to output*/
2239 targetUniChar
-=0x0010000;
2240 *myTarget
= (UChar
)(0xd800+(UChar
)(targetUniChar
>>10));
2242 args
->offsets
[myTarget
- args
->target
] = (int32_t)(mySource
- args
->source
- (mySourceChar
<= 0xff ? 1 : 2));
2245 if(myTarget
< args
->targetLimit
){
2246 *myTarget
= (UChar
)(0xdc00+(UChar
)(targetUniChar
&0x3ff));
2248 args
->offsets
[myTarget
- args
->target
] = (int32_t)(mySource
- args
->source
- (mySourceChar
<= 0xff ? 1 : 2));
2252 args
->converter
->UCharErrorBuffer
[args
->converter
->UCharErrorBufferLength
++]=
2253 (UChar
)(0xdc00+(UChar
)(targetUniChar
&0x3ff));
2258 /* Call the callback function*/
2259 toUnicodeCallback(args
->converter
,mySourceChar
,targetUniChar
,err
);
2263 else{ /* goes with "if(myTarget < args->targetLimit)" way up near top of function */
2264 *err
=U_BUFFER_OVERFLOW_ERROR
;
2269 args
->target
= myTarget
;
2270 args
->source
= mySource
;
2274 /***************************************************************
2275 * Rules for ISO-2022-KR encoding
2276 * i) The KSC5601 designator sequence should appear only once in a file,
2277 * at the begining of a line before any KSC5601 characters. This usually
2278 * means that it appears by itself on the first line of the file
2279 * ii) There are only 2 shifting sequences SO to shift into double byte mode
2280 * and SI to shift into single byte mode
2283 UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterFromUnicodeArgs
* args
, UErrorCode
* err
){
2285 UConverter
* saveConv
= args
->converter
;
2286 UConverterDataISO2022
*myConverterData
=(UConverterDataISO2022
*)saveConv
->extraInfo
;
2287 args
->converter
=myConverterData
->currentConverter
;
2289 myConverterData
->currentConverter
->fromUChar32
= saveConv
->fromUChar32
;
2290 ucnv_MBCSFromUnicodeWithOffsets(args
,err
);
2291 saveConv
->fromUChar32
= myConverterData
->currentConverter
->fromUChar32
;
2293 if(*err
== U_BUFFER_OVERFLOW_ERROR
) {
2294 if(myConverterData
->currentConverter
->charErrorBufferLength
> 0) {
2296 saveConv
->charErrorBuffer
,
2297 myConverterData
->currentConverter
->charErrorBuffer
,
2298 myConverterData
->currentConverter
->charErrorBufferLength
);
2300 saveConv
->charErrorBufferLength
= myConverterData
->currentConverter
->charErrorBufferLength
;
2301 myConverterData
->currentConverter
->charErrorBufferLength
= 0;
2303 args
->converter
=saveConv
;
2307 UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterFromUnicodeArgs
* args
, UErrorCode
* err
){
2309 const UChar
*source
= args
->source
;
2310 const UChar
*sourceLimit
= args
->sourceLimit
;
2311 unsigned char *target
= (unsigned char *) args
->target
;
2312 unsigned char *targetLimit
= (unsigned char *) args
->targetLimit
;
2313 int32_t* offsets
= args
->offsets
;
2314 uint32_t targetByteUnit
= 0x0000;
2315 UChar32 sourceChar
= 0x0000;
2316 UBool isTargetByteDBCS
;
2317 UBool oldIsTargetByteDBCS
;
2318 UConverterDataISO2022
*converterData
;
2319 UConverterSharedData
* sharedData
;
2323 converterData
=(UConverterDataISO2022
*)args
->converter
->extraInfo
;
2324 /* if the version is 1 then the user is requesting
2325 * conversion with ibm-25546 pass the arguments to
2326 * MBCS converter and return
2328 if(converterData
->version
==1){
2329 UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args
,err
);
2333 /* initialize data */
2334 sharedData
= converterData
->currentConverter
->sharedData
;
2335 useFallback
= args
->converter
->useFallback
;
2336 isTargetByteDBCS
=(UBool
)args
->converter
->fromUnicodeStatus
;
2337 oldIsTargetByteDBCS
= isTargetByteDBCS
;
2339 isTargetByteDBCS
= (UBool
) args
->converter
->fromUnicodeStatus
;
2340 if((sourceChar
= args
->converter
->fromUChar32
)!=0 && target
<targetLimit
) {
2343 while(source
< sourceLimit
){
2345 targetByteUnit
= missingCharMarker
;
2347 if(target
< (unsigned char*) args
->targetLimit
){
2348 sourceChar
= *source
++;
2350 /* do not convert SO/SI/ESC */
2351 if(IS_2022_CONTROL(sourceChar
)) {
2352 /* callback(illegal) */
2353 *err
=U_ILLEGAL_CHAR_FOUND
;
2354 args
->converter
->fromUChar32
=sourceChar
;
2358 length
= MBCS_FROM_UCHAR32_ISO2022(sharedData
,sourceChar
,&targetByteUnit
,useFallback
,MBCS_OUTPUT_2
);
2360 length
= -length
; /* fallback */
2362 /* only DBCS or SBCS characters are expected*/
2363 /* DB characters with high bit set to 1 are expected */
2364 if( length
> 2 || length
==0 ||
2365 (length
== 1 && targetByteUnit
> 0x7f) ||
2367 ((uint16_t)(targetByteUnit
- 0xa1a1) > (0xfefe - 0xa1a1) ||
2368 (uint8_t)(targetByteUnit
- 0xa1) > (0xfe - 0xa1)))
2370 targetByteUnit
=missingCharMarker
;
2372 if (targetByteUnit
!= missingCharMarker
){
2374 oldIsTargetByteDBCS
= isTargetByteDBCS
;
2375 isTargetByteDBCS
= (UBool
)(targetByteUnit
>0x00FF);
2376 /* append the shift sequence */
2377 if (oldIsTargetByteDBCS
!= isTargetByteDBCS
){
2379 if (isTargetByteDBCS
)
2380 *target
++ = UCNV_SO
;
2382 *target
++ = UCNV_SI
;
2384 *(offsets
++) = (int32_t)(source
- args
->source
-1);
2386 /* write the targetUniChar to target */
2387 if(targetByteUnit
<= 0x00FF){
2388 if( target
< targetLimit
){
2389 *(target
++) = (unsigned char) targetByteUnit
;
2391 *(offsets
++) = (int32_t)(source
- args
->source
-1);
2395 args
->converter
->charErrorBuffer
[args
->converter
->charErrorBufferLength
++] = (unsigned char) (targetByteUnit
);
2396 *err
= U_BUFFER_OVERFLOW_ERROR
;
2399 if(target
< targetLimit
){
2400 *(target
++) =(unsigned char) ((targetByteUnit
>>8) -0x80);
2402 *(offsets
++) = (int32_t)(source
- args
->source
-1);
2404 if(target
< targetLimit
){
2405 *(target
++) =(unsigned char) (targetByteUnit
-0x80);
2407 *(offsets
++) = (int32_t)(source
- args
->source
-1);
2410 args
->converter
->charErrorBuffer
[args
->converter
->charErrorBufferLength
++] = (unsigned char) (targetByteUnit
-0x80);
2411 *err
= U_BUFFER_OVERFLOW_ERROR
;
2414 args
->converter
->charErrorBuffer
[args
->converter
->charErrorBufferLength
++] = (unsigned char) ((targetByteUnit
>>8) -0x80);
2415 args
->converter
->charErrorBuffer
[args
->converter
->charErrorBufferLength
++] = (unsigned char) (targetByteUnit
-0x80);
2416 *err
= U_BUFFER_OVERFLOW_ERROR
;
2422 /* oops.. the code point is unassingned
2423 * set the error and reason
2426 /*check if the char is a First surrogate*/
2427 if(U16_IS_SURROGATE(sourceChar
)) {
2428 if(U16_IS_SURROGATE_LEAD(sourceChar
)) {
2430 /*look ahead to find the trail surrogate*/
2431 if(source
< sourceLimit
) {
2432 /* test the following code unit */
2433 UChar trail
=(UChar
) *source
;
2434 if(U16_IS_TRAIL(trail
)) {
2436 sourceChar
=U16_GET_SUPPLEMENTARY(sourceChar
, trail
);
2437 *err
= U_INVALID_CHAR_FOUND
;
2438 /* convert this surrogate code point */
2439 /* exit this condition tree */
2441 /* this is an unmatched lead code unit (1st surrogate) */
2442 /* callback(illegal) */
2443 *err
=U_ILLEGAL_CHAR_FOUND
;
2447 *err
= U_ZERO_ERROR
;
2450 /* this is an unmatched trail code unit (2nd surrogate) */
2451 /* callback(illegal) */
2452 *err
=U_ILLEGAL_CHAR_FOUND
;
2455 /* callback(unassigned) for a BMP code point */
2456 *err
= U_INVALID_CHAR_FOUND
;
2459 args
->converter
->fromUChar32
=sourceChar
;
2462 } /* end if(myTargetIndex<myTargetLength) */
2464 *err
=U_BUFFER_OVERFLOW_ERROR
;
2468 }/* end while(mySourceIndex<mySourceLength) */
2471 * the end of the input stream and detection of truncated input
2472 * are handled by the framework, but for ISO-2022-KR conversion
2473 * we need to be in ASCII mode at the very end
2478 * end of input and no truncated input
2480 if( U_SUCCESS(*err
) &&
2482 args
->flush
&& source
>=sourceLimit
&& args
->converter
->fromUChar32
==0
2484 int32_t sourceIndex
;
2486 /* we are switching to ASCII */
2487 isTargetByteDBCS
=FALSE
;
2489 /* get the source index of the last input character */
2491 * TODO this would be simpler and more reliable if we used a pair
2492 * of sourceIndex/prevSourceIndex like in ucnvmbcs.c
2493 * so that we could simply use the prevSourceIndex here;
2494 * this code gives an incorrect result for the rare case of an unmatched
2495 * trail surrogate that is alone in the last buffer of the text stream
2497 sourceIndex
=(int32_t)(source
-args
->source
);
2500 if( U16_IS_TRAIL(args
->source
[sourceIndex
]) &&
2501 (sourceIndex
==0 || U16_IS_LEAD(args
->source
[sourceIndex
-1]))
2512 &target
, (const char *)targetLimit
,
2513 &offsets
, sourceIndex
,
2517 /*save the state and return */
2518 args
->source
= source
;
2519 args
->target
= (char*)target
;
2520 args
->converter
->fromUnicodeStatus
= (uint32_t)isTargetByteDBCS
;
2523 /************************ To Unicode ***************************************/
2526 UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterToUnicodeArgs
*args
,
2528 char const* sourceStart
;
2529 UConverterDataISO2022
* myData
=(UConverterDataISO2022
*)(args
->converter
->extraInfo
);
2531 UConverterToUnicodeArgs subArgs
;
2532 int32_t minArgsSize
;
2534 /* set up the subconverter arguments */
2535 if(args
->size
<sizeof(UConverterToUnicodeArgs
)) {
2536 minArgsSize
= args
->size
;
2538 minArgsSize
= (int32_t)sizeof(UConverterToUnicodeArgs
);
2541 uprv_memcpy(&subArgs
, args
, minArgsSize
);
2542 subArgs
.size
= (uint16_t)minArgsSize
;
2543 subArgs
.converter
= myData
->currentConverter
;
2545 /* remember the original start of the input for offsets */
2546 sourceStart
= args
->source
;
2548 if(myData
->key
!= 0) {
2549 /* continue with a partial escape sequence */
2553 while(U_SUCCESS(*err
) && args
->source
< args
->sourceLimit
) {
2554 /*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/
2555 subArgs
.source
= args
->source
;
2556 subArgs
.sourceLimit
= getEndOfBuffer_2022(&(args
->source
), args
->sourceLimit
, args
->flush
);
2557 if(subArgs
.source
!= subArgs
.sourceLimit
) {
2559 * get the current partial byte sequence
2561 * it needs to be moved between the public and the subconverter
2562 * so that the conversion framework, which only sees the public
2563 * converter, can handle truncated and illegal input etc.
2565 if(args
->converter
->toULength
> 0) {
2566 uprv_memcpy(subArgs
.converter
->toUBytes
, args
->converter
->toUBytes
, args
->converter
->toULength
);
2568 subArgs
.converter
->toULength
= args
->converter
->toULength
;
2571 * Convert up to the end of the input, or to before the next escape character.
2572 * Does not handle conversion extensions because the preToU[] state etc.
2575 ucnv_MBCSToUnicodeWithOffsets(&subArgs
, err
);
2577 if(args
->offsets
!= NULL
&& sourceStart
!= args
->source
) {
2578 /* update offsets to base them on the actual start of the input */
2579 int32_t *offsets
= args
->offsets
;
2580 UChar
*target
= args
->target
;
2581 int32_t delta
= (int32_t)(args
->source
- sourceStart
);
2582 while(target
< subArgs
.target
) {
2590 args
->source
= subArgs
.source
;
2591 args
->target
= subArgs
.target
;
2592 args
->offsets
= subArgs
.offsets
;
2594 /* copy input/error/overflow buffers */
2595 if(subArgs
.converter
->toULength
> 0) {
2596 uprv_memcpy(args
->converter
->toUBytes
, subArgs
.converter
->toUBytes
, subArgs
.converter
->toULength
);
2598 args
->converter
->toULength
= subArgs
.converter
->toULength
;
2600 if(*err
== U_BUFFER_OVERFLOW_ERROR
) {
2601 if(subArgs
.converter
->UCharErrorBufferLength
> 0) {
2602 uprv_memcpy(args
->converter
->UCharErrorBuffer
, subArgs
.converter
->UCharErrorBuffer
,
2603 subArgs
.converter
->UCharErrorBufferLength
);
2605 args
->converter
->UCharErrorBufferLength
=subArgs
.converter
->UCharErrorBufferLength
;
2606 subArgs
.converter
->UCharErrorBufferLength
= 0;
2610 if (U_FAILURE(*err
) || (args
->source
== args
->sourceLimit
)) {
2615 changeState_2022(args
->converter
,
2624 UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterToUnicodeArgs
*args
,
2627 const char *mySource
= ( char *) args
->source
;
2628 UChar
*myTarget
= args
->target
;
2629 const char *mySourceLimit
= args
->sourceLimit
;
2630 UChar32 targetUniChar
= 0x0000;
2631 UChar mySourceChar
= 0x0000;
2632 UConverterDataISO2022
* myData
;
2633 UConverterSharedData
* sharedData
;
2636 myData
=(UConverterDataISO2022
*)(args
->converter
->extraInfo
);
2637 if(myData
->version
==1){
2638 UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args
,err
);
2642 /* initialize state */
2643 sharedData
= myData
->currentConverter
->sharedData
;
2644 useFallback
= args
->converter
->useFallback
;
2646 if(myData
->key
!= 0) {
2647 /* continue with a partial escape sequence */
2649 } else if(args
->converter
->toULength
== 1 && mySource
< mySourceLimit
&& myTarget
< args
->targetLimit
) {
2650 /* continue with a partial double-byte character */
2651 mySourceChar
= args
->converter
->toUBytes
[0];
2652 args
->converter
->toULength
= 0;
2656 while(mySource
< mySourceLimit
){
2658 if(myTarget
< args
->targetLimit
){
2660 mySourceChar
= (unsigned char) *mySource
++;
2662 if(mySourceChar
==UCNV_SI
){
2663 myData
->toU2022State
.g
= 0;
2664 if (myData
->isEmptySegment
) {
2665 myData
->isEmptySegment
= FALSE
; /* we are handling it, reset to avoid future spurious errors */
2666 *err
= U_ILLEGAL_ESCAPE_SEQUENCE
;
2667 args
->converter
->toUCallbackReason
= UCNV_IRREGULAR
;
2668 args
->converter
->toUBytes
[0] = (uint8_t)mySourceChar
;
2669 args
->converter
->toULength
= 1;
2670 args
->target
= myTarget
;
2671 args
->source
= mySource
;
2674 /*consume the source */
2676 }else if(mySourceChar
==UCNV_SO
){
2677 myData
->toU2022State
.g
= 1;
2678 myData
->isEmptySegment
= TRUE
; /* Begin a new segment, empty so far */
2679 /*consume the source */
2681 }else if(mySourceChar
==ESC_2022
){
2684 myData
->isEmptySegment
= FALSE
; /* Any invalid ESC sequences will be detected separately, so just reset this */
2685 changeState_2022(args
->converter
,&(mySource
),
2686 mySourceLimit
, ISO_2022_KR
, err
);
2687 if(U_FAILURE(*err
)){
2688 args
->target
= myTarget
;
2689 args
->source
= mySource
;
2695 myData
->isEmptySegment
= FALSE
; /* Any invalid char errors will be detected separately, so just reset this */
2696 if(myData
->toU2022State
.g
== 1) {
2697 if(mySource
< mySourceLimit
) {
2698 int leadIsOk
, trailIsOk
;
2701 targetUniChar
= missingCharMarker
;
2702 trailByte
= (uint8_t)*mySource
;
2704 * Ticket 5691: consistent illegal sequences:
2705 * - We include at least the first byte in the illegal sequence.
2706 * - If any of the non-initial bytes could be the start of a character,
2707 * we stop the illegal sequence before the first one of those.
2709 * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is
2710 * an ESC/SO/SI, we report only the first byte as the illegal sequence.
2711 * Otherwise we convert or report the pair of bytes.
2713 leadIsOk
= (uint8_t)(mySourceChar
- 0x21) <= (0x7e - 0x21);
2714 trailIsOk
= (uint8_t)(trailByte
- 0x21) <= (0x7e - 0x21);
2715 if (leadIsOk
&& trailIsOk
) {
2717 tempBuf
[0] = (char)(mySourceChar
+ 0x80);
2718 tempBuf
[1] = (char)(trailByte
+ 0x80);
2719 targetUniChar
= ucnv_MBCSSimpleGetNextUChar(sharedData
, tempBuf
, 2, useFallback
);
2720 mySourceChar
= (mySourceChar
<< 8) | trailByte
;
2721 } else if (!(trailIsOk
|| IS_2022_CONTROL(trailByte
))) {
2722 /* report a pair of illegal bytes if the second byte is not a DBCS starter */
2724 /* add another bit so that the code below writes 2 bytes in case of error */
2725 mySourceChar
= 0x10000 | (mySourceChar
<< 8) | trailByte
;
2728 args
->converter
->toUBytes
[0] = (uint8_t)mySourceChar
;
2729 args
->converter
->toULength
= 1;
2733 else if(mySourceChar
<= 0x7f) {
2734 targetUniChar
= ucnv_MBCSSimpleGetNextUChar(sharedData
, mySource
- 1, 1, useFallback
);
2736 targetUniChar
= 0xffff;
2738 if(targetUniChar
< 0xfffe){
2740 args
->offsets
[myTarget
- args
->target
] = (int32_t)(mySource
- args
->source
- (mySourceChar
<= 0xff ? 1 : 2));
2742 *(myTarget
++)=(UChar
)targetUniChar
;
2745 /* Call the callback function*/
2746 toUnicodeCallback(args
->converter
,mySourceChar
,targetUniChar
,err
);
2751 *err
=U_BUFFER_OVERFLOW_ERROR
;
2755 args
->target
= myTarget
;
2756 args
->source
= mySource
;
2759 /*************************** END ISO2022-KR *********************************/
2761 /*************************** ISO-2022-CN *********************************
2763 * Rules for ISO-2022-CN Encoding:
2764 * i) The designator sequence must appear once on a line before any instance
2765 * of character set it designates.
2766 * ii) If two lines contain characters from the same character set, both lines
2767 * must include the designator sequence.
2768 * iii) Once the designator sequence is known, a shifting sequence has to be found
2769 * to invoke the shifting
2770 * iv) All lines start in ASCII and end in ASCII.
2771 * v) Four shifting sequences are employed for this purpose:
2773 * Sequcence ASCII Eq Charsets
2774 * ---------- ------- ---------
2776 * SO <SO> CNS-11643-1992 Plane 1, GB2312, ISO-IR-165
2777 * SS2 <ESC>N CNS-11643-1992 Plane 2
2778 * SS3 <ESC>O CNS-11643-1992 Planes 3-7
2781 * SOdesignator : ESC "$" ")" finalchar_for_SO
2782 * SS2designator : ESC "$" "*" finalchar_for_SS2
2783 * SS3designator : ESC "$" "+" finalchar_for_SS3
2785 * ESC $ ) A Indicates the bytes following SO are Chinese
2786 * characters as defined in GB 2312-80, until
2787 * another SOdesignation appears
2790 * ESC $ ) E Indicates the bytes following SO are as defined
2791 * in ISO-IR-165 (for details, see section 2.1),
2792 * until another SOdesignation appears
2794 * ESC $ ) G Indicates the bytes following SO are as defined
2795 * in CNS 11643-plane-1, until another
2796 * SOdesignation appears
2798 * ESC $ * H Indicates the two bytes immediately following
2799 * SS2 is a Chinese character as defined in CNS
2800 * 11643-plane-2, until another SS2designation
2802 * (Meaning <ESC>N must preceed every 2 byte
2805 * ESC $ + I Indicates the immediate two bytes following SS3
2806 * is a Chinese character as defined in CNS
2807 * 11643-plane-3, until another SS3designation
2809 * (Meaning <ESC>O must preceed every 2 byte
2812 * ESC $ + J Indicates the immediate two bytes following SS3
2813 * is a Chinese character as defined in CNS
2814 * 11643-plane-4, until another SS3designation
2816 * (In English: <ESC>O must preceed every 2 byte
2819 * ESC $ + K Indicates the immediate two bytes following SS3
2820 * is a Chinese character as defined in CNS
2821 * 11643-plane-5, until another SS3designation
2824 * ESC $ + L Indicates the immediate two bytes following SS3
2825 * is a Chinese character as defined in CNS
2826 * 11643-plane-6, until another SS3designation
2829 * ESC $ + M Indicates the immediate two bytes following SS3
2830 * is a Chinese character as defined in CNS
2831 * 11643-plane-7, until another SS3designation
2834 * As in ISO-2022-CN, each line starts in ASCII, and ends in ASCII, and
2835 * has its own designation information before any Chinese characters
2840 /* The following are defined this way to make the strings truly readonly */
2841 static const char GB_2312_80_STR
[] = "\x1B\x24\x29\x41";
2842 static const char ISO_IR_165_STR
[] = "\x1B\x24\x29\x45";
2843 static const char CNS_11643_1992_Plane_1_STR
[] = "\x1B\x24\x29\x47";
2844 static const char CNS_11643_1992_Plane_2_STR
[] = "\x1B\x24\x2A\x48";
2845 static const char CNS_11643_1992_Plane_3_STR
[] = "\x1B\x24\x2B\x49";
2846 static const char CNS_11643_1992_Plane_4_STR
[] = "\x1B\x24\x2B\x4A";
2847 static const char CNS_11643_1992_Plane_5_STR
[] = "\x1B\x24\x2B\x4B";
2848 static const char CNS_11643_1992_Plane_6_STR
[] = "\x1B\x24\x2B\x4C";
2849 static const char CNS_11643_1992_Plane_7_STR
[] = "\x1B\x24\x2B\x4D";
2851 /********************** ISO2022-CN Data **************************/
2852 static const char* const escSeqCharsCN
[10] ={
2853 SHIFT_IN_STR
, /* 0 ASCII */
2854 GB_2312_80_STR
, /* 1 GB2312_1 */
2855 ISO_IR_165_STR
, /* 2 ISO_IR_165 */
2856 CNS_11643_1992_Plane_1_STR
,
2857 CNS_11643_1992_Plane_2_STR
,
2858 CNS_11643_1992_Plane_3_STR
,
2859 CNS_11643_1992_Plane_4_STR
,
2860 CNS_11643_1992_Plane_5_STR
,
2861 CNS_11643_1992_Plane_6_STR
,
2862 CNS_11643_1992_Plane_7_STR
2866 UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterFromUnicodeArgs
* args
, UErrorCode
* err
){
2867 UConverter
*cnv
= args
->converter
;
2868 UConverterDataISO2022
*converterData
;
2869 ISO2022State
*pFromU2022State
;
2870 uint8_t *target
= (uint8_t *) args
->target
;
2871 const uint8_t *targetLimit
= (const uint8_t *) args
->targetLimit
;
2872 const UChar
* source
= args
->source
;
2873 const UChar
* sourceLimit
= args
->sourceLimit
;
2874 int32_t* offsets
= args
->offsets
;
2879 int32_t choiceCount
;
2880 uint32_t targetValue
= 0;
2883 /* set up the state */
2884 converterData
= (UConverterDataISO2022
*)cnv
->extraInfo
;
2885 pFromU2022State
= &converterData
->fromU2022State
;
2889 /* check if the last codepoint of previous buffer was a lead surrogate*/
2890 if((sourceChar
= cnv
->fromUChar32
)!=0 && target
< targetLimit
) {
2894 while( source
< sourceLimit
){
2895 if(target
< targetLimit
){
2897 sourceChar
= *(source
++);
2898 /*check if the char is a First surrogate*/
2899 if(U16_IS_SURROGATE(sourceChar
)) {
2900 if(U16_IS_SURROGATE_LEAD(sourceChar
)) {
2902 /*look ahead to find the trail surrogate*/
2903 if(source
< sourceLimit
) {
2904 /* test the following code unit */
2905 UChar trail
=(UChar
) *source
;
2906 if(U16_IS_TRAIL(trail
)) {
2908 sourceChar
=U16_GET_SUPPLEMENTARY(sourceChar
, trail
);
2909 cnv
->fromUChar32
=0x00;
2910 /* convert this supplementary code point */
2911 /* exit this condition tree */
2913 /* this is an unmatched lead code unit (1st surrogate) */
2914 /* callback(illegal) */
2915 *err
=U_ILLEGAL_CHAR_FOUND
;
2916 cnv
->fromUChar32
=sourceChar
;
2921 cnv
->fromUChar32
=sourceChar
;
2925 /* this is an unmatched trail code unit (2nd surrogate) */
2926 /* callback(illegal) */
2927 *err
=U_ILLEGAL_CHAR_FOUND
;
2928 cnv
->fromUChar32
=sourceChar
;
2933 /* do the conversion */
2934 if(sourceChar
<= 0x007f ){
2935 /* do not convert SO/SI/ESC */
2936 if(IS_2022_CONTROL(sourceChar
)) {
2937 /* callback(illegal) */
2938 *err
=U_ILLEGAL_CHAR_FOUND
;
2939 cnv
->fromUChar32
=sourceChar
;
2944 if(pFromU2022State
->g
== 0) {
2945 buffer
[0] = (char)sourceChar
;
2948 buffer
[0] = UCNV_SI
;
2949 buffer
[1] = (char)sourceChar
;
2951 pFromU2022State
->g
= 0;
2954 if(sourceChar
== CR
|| sourceChar
== LF
) {
2955 /* reset the state at the end of a line */
2956 uprv_memset(pFromU2022State
, 0, sizeof(ISO2022State
));
2961 /* convert U+0080..U+10ffff */
2965 if(choiceCount
== 0) {
2966 /* try the current SO/G1 converter first */
2967 choices
[0] = pFromU2022State
->cs
[1];
2969 /* default to GB2312_1 if none is designated yet */
2970 if(choices
[0] == 0) {
2971 choices
[0] = GB2312_1
;
2974 if(converterData
->version
== 0) {
2977 /* try the other SO/G1 converter; a CNS_11643_1 lookup may result in any plane */
2978 if(choices
[0] == GB2312_1
) {
2979 choices
[1] = (int8_t)CNS_11643_1
;
2981 choices
[1] = (int8_t)GB2312_1
;
2985 } else if (converterData
->version
== 1) {
2986 /* ISO-2022-CN-EXT */
2988 /* try one of the other converters */
2989 switch(choices
[0]) {
2991 choices
[1] = (int8_t)CNS_11643_1
;
2992 choices
[2] = (int8_t)ISO_IR_165
;
2995 choices
[1] = (int8_t)GB2312_1
;
2996 choices
[2] = (int8_t)CNS_11643_1
;
2998 default: /* CNS_11643_x */
2999 choices
[1] = (int8_t)GB2312_1
;
3000 choices
[2] = (int8_t)ISO_IR_165
;
3006 choices
[0] = (int8_t)CNS_11643_1
;
3007 choices
[1] = (int8_t)GB2312_1
;
3013 * len==0: no mapping found yet
3014 * len<0: found a fallback result: continue looking for a roundtrip but no further fallbacks
3015 * len>0: found a roundtrip result, done
3019 * We will turn off useFallback after finding a fallback,
3020 * but we still get fallbacks from PUA code points as usual.
3021 * Therefore, we will also need to check that we don't overwrite
3022 * an early fallback with a later one.
3024 useFallback
= cnv
->useFallback
;
3026 for(i
= 0; i
< choiceCount
&& len
<= 0; ++i
) {
3027 int8_t cs0
= choices
[i
];
3031 if(cs0
>= CNS_11643_0
) {
3032 len2
= MBCS_FROM_UCHAR32_ISO2022(
3033 converterData
->myConverterArray
[CNS_11643
],
3038 if(len2
== 3 || (len2
== -3 && len
== 0)) {
3039 targetValue
= value
;
3040 cs
= (int8_t)(CNS_11643_0
+ (value
>> 16) - 0x80);
3045 useFallback
= FALSE
;
3047 if(cs
== CNS_11643_1
) {
3049 } else if(cs
== CNS_11643_2
) {
3051 } else /* plane 3..7 */ if(converterData
->version
== 1) {
3054 /* ISO-2022-CN (without -EXT) does not support plane 3..7 */
3059 /* GB2312_1 or ISO-IR-165 */
3060 U_ASSERT(cs0
<UCNV_2022_MAX_CONVERTERS
);
3061 len2
= MBCS_FROM_UCHAR32_ISO2022(
3062 converterData
->myConverterArray
[cs0
],
3067 if(len2
== 2 || (len2
== -2 && len
== 0)) {
3068 targetValue
= value
;
3072 useFallback
= FALSE
;
3079 len
= 0; /* count output bytes; it must have been abs(len) == 2 */
3081 /* write the designation sequence if necessary */
3082 if(cs
!= pFromU2022State
->cs
[g
]) {
3083 if(cs
< CNS_11643
) {
3084 uprv_memcpy(buffer
, escSeqCharsCN
[cs
], 4);
3086 U_ASSERT(cs
>= CNS_11643_1
);
3087 uprv_memcpy(buffer
, escSeqCharsCN
[CNS_11643
+ (cs
- CNS_11643_1
)], 4);
3090 pFromU2022State
->cs
[g
] = cs
;
3092 /* changing the SO/G1 charset invalidates the choices[] */
3097 /* write the shift sequence if necessary */
3098 if(g
!= pFromU2022State
->g
) {
3101 buffer
[len
++] = UCNV_SO
;
3103 /* set the new state only if it is the locking shift SO/G1, not for SS2 or SS3 */
3104 pFromU2022State
->g
= 1;
3107 buffer
[len
++] = 0x1b;
3108 buffer
[len
++] = 0x4e;
3110 default: /* case 3 */
3111 buffer
[len
++] = 0x1b;
3112 buffer
[len
++] = 0x4f;
3117 /* write the two output bytes */
3118 buffer
[len
++] = (char)(targetValue
>> 8);
3119 buffer
[len
++] = (char)targetValue
;
3121 /* if we cannot find the character after checking all codepages
3122 * then this is an error
3124 *err
= U_INVALID_CHAR_FOUND
;
3125 cnv
->fromUChar32
=sourceChar
;
3130 /* output len>0 bytes in buffer[] */
3132 *target
++ = buffer
[0];
3134 *offsets
++ = (int32_t)(source
- args
->source
- 1); /* -1: known to be ASCII */
3136 } else if(len
== 2 && (target
+ 2) <= targetLimit
) {
3137 *target
++ = buffer
[0];
3138 *target
++ = buffer
[1];
3140 int32_t sourceIndex
= (int32_t)(source
- args
->source
- U16_LENGTH(sourceChar
));
3141 *offsets
++ = sourceIndex
;
3142 *offsets
++ = sourceIndex
;
3148 &target
, (const char *)targetLimit
,
3149 &offsets
, (int32_t)(source
- args
->source
- U16_LENGTH(sourceChar
)),
3151 if(U_FAILURE(*err
)) {
3155 } /* end if(myTargetIndex<myTargetLength) */
3157 *err
=U_BUFFER_OVERFLOW_ERROR
;
3161 }/* end while(mySourceIndex<mySourceLength) */
3164 * the end of the input stream and detection of truncated input
3165 * are handled by the framework, but for ISO-2022-CN conversion
3166 * we need to be in ASCII mode at the very end
3171 * end of input and no truncated input
3173 if( U_SUCCESS(*err
) &&
3174 pFromU2022State
->g
!=0 &&
3175 args
->flush
&& source
>=sourceLimit
&& cnv
->fromUChar32
==0
3177 int32_t sourceIndex
;
3179 /* we are switching to ASCII */
3180 pFromU2022State
->g
=0;
3182 /* get the source index of the last input character */
3184 * TODO this would be simpler and more reliable if we used a pair
3185 * of sourceIndex/prevSourceIndex like in ucnvmbcs.c
3186 * so that we could simply use the prevSourceIndex here;
3187 * this code gives an incorrect result for the rare case of an unmatched
3188 * trail surrogate that is alone in the last buffer of the text stream
3190 sourceIndex
=(int32_t)(source
-args
->source
);
3193 if( U16_IS_TRAIL(args
->source
[sourceIndex
]) &&
3194 (sourceIndex
==0 || U16_IS_LEAD(args
->source
[sourceIndex
-1]))
3205 &target
, (const char *)targetLimit
,
3206 &offsets
, sourceIndex
,
3210 /*save the state and return */
3211 args
->source
= source
;
3212 args
->target
= (char*)target
;
3217 UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterToUnicodeArgs
*args
,
3220 const char *mySource
= (char *) args
->source
;
3221 UChar
*myTarget
= args
->target
;
3222 const char *mySourceLimit
= args
->sourceLimit
;
3223 uint32_t targetUniChar
= 0x0000;
3224 uint32_t mySourceChar
= 0x0000;
3225 UConverterDataISO2022
* myData
;
3226 ISO2022State
*pToU2022State
;
3228 myData
=(UConverterDataISO2022
*)(args
->converter
->extraInfo
);
3229 pToU2022State
= &myData
->toU2022State
;
3231 if(myData
->key
!= 0) {
3232 /* continue with a partial escape sequence */
3234 } else if(args
->converter
->toULength
== 1 && mySource
< mySourceLimit
&& myTarget
< args
->targetLimit
) {
3235 /* continue with a partial double-byte character */
3236 mySourceChar
= args
->converter
->toUBytes
[0];
3237 args
->converter
->toULength
= 0;
3238 targetUniChar
= missingCharMarker
;
3242 while(mySource
< mySourceLimit
){
3244 targetUniChar
=missingCharMarker
;
3246 if(myTarget
< args
->targetLimit
){
3248 mySourceChar
= (unsigned char) *mySource
++;
3250 switch(mySourceChar
){
3253 if (myData
->isEmptySegment
) {
3254 myData
->isEmptySegment
= FALSE
; /* we are handling it, reset to avoid future spurious errors */
3255 *err
= U_ILLEGAL_ESCAPE_SEQUENCE
;
3256 args
->converter
->toUCallbackReason
= UCNV_IRREGULAR
;
3257 args
->converter
->toUBytes
[0] = mySourceChar
;
3258 args
->converter
->toULength
= 1;
3259 args
->target
= myTarget
;
3260 args
->source
= mySource
;
3266 if(pToU2022State
->cs
[1] != 0) {
3268 myData
->isEmptySegment
= TRUE
; /* Begin a new segment, empty so far */
3271 /* illegal to have SO before a matching designator */
3272 myData
->isEmptySegment
= FALSE
; /* Handling a different error, reset this to avoid future spurious errs */
3280 const char * mySourceBefore
= mySource
;
3281 int8_t toULengthBefore
= args
->converter
->toULength
;
3283 changeState_2022(args
->converter
,&(mySource
),
3284 mySourceLimit
, ISO_2022_CN
,err
);
3286 /* After SO there must be at least one character before a designator (designator error handled separately) */
3287 if(myData
->key
==0 && U_SUCCESS(*err
) && myData
->isEmptySegment
) {
3288 *err
= U_ILLEGAL_ESCAPE_SEQUENCE
;
3289 args
->converter
->toUCallbackReason
= UCNV_IRREGULAR
;
3290 args
->converter
->toULength
= (int8_t)(toULengthBefore
+ (mySource
- mySourceBefore
));
3294 /* invalid or illegal escape sequence */
3295 if(U_FAILURE(*err
)){
3296 args
->target
= myTarget
;
3297 args
->source
= mySource
;
3298 myData
->isEmptySegment
= FALSE
; /* Reset to avoid future spurious errors */
3303 /* ISO-2022-CN does not use single-byte (C1) SS2 and SS3 */
3308 uprv_memset(pToU2022State
, 0, sizeof(ISO2022State
));
3311 /* convert one or two bytes */
3312 myData
->isEmptySegment
= FALSE
;
3313 if(pToU2022State
->g
!= 0) {
3314 if(mySource
< mySourceLimit
) {
3315 UConverterSharedData
*cnv
;
3316 StateEnum tempState
;
3318 int leadIsOk
, trailIsOk
;
3321 trailByte
= (uint8_t)*mySource
;
3323 * Ticket 5691: consistent illegal sequences:
3324 * - We include at least the first byte in the illegal sequence.
3325 * - If any of the non-initial bytes could be the start of a character,
3326 * we stop the illegal sequence before the first one of those.
3328 * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is
3329 * an ESC/SO/SI, we report only the first byte as the illegal sequence.
3330 * Otherwise we convert or report the pair of bytes.
3332 leadIsOk
= (uint8_t)(mySourceChar
- 0x21) <= (0x7e - 0x21);
3333 trailIsOk
= (uint8_t)(trailByte
- 0x21) <= (0x7e - 0x21);
3334 if (leadIsOk
&& trailIsOk
) {
3336 tempState
= (StateEnum
)pToU2022State
->cs
[pToU2022State
->g
];
3337 if(tempState
>= CNS_11643_0
) {
3338 cnv
= myData
->myConverterArray
[CNS_11643
];
3339 tempBuf
[0] = (char) (0x80+(tempState
-CNS_11643_0
));
3340 tempBuf
[1] = (char) (mySourceChar
);
3341 tempBuf
[2] = (char) trailByte
;
3345 U_ASSERT(tempState
<UCNV_2022_MAX_CONVERTERS
);
3346 cnv
= myData
->myConverterArray
[tempState
];
3347 tempBuf
[0] = (char) (mySourceChar
);
3348 tempBuf
[1] = (char) trailByte
;
3351 targetUniChar
= ucnv_MBCSSimpleGetNextUChar(cnv
, tempBuf
, tempBufLen
, FALSE
);
3352 mySourceChar
= (mySourceChar
<< 8) | trailByte
;
3353 } else if (!(trailIsOk
|| IS_2022_CONTROL(trailByte
))) {
3354 /* report a pair of illegal bytes if the second byte is not a DBCS starter */
3356 /* add another bit so that the code below writes 2 bytes in case of error */
3357 mySourceChar
= 0x10000 | (mySourceChar
<< 8) | trailByte
;
3359 if(pToU2022State
->g
>=2) {
3360 /* return from a single-shift state to the previous one */
3361 pToU2022State
->g
=pToU2022State
->prevG
;
3364 args
->converter
->toUBytes
[0] = (uint8_t)mySourceChar
;
3365 args
->converter
->toULength
= 1;
3370 if(mySourceChar
<= 0x7f) {
3371 targetUniChar
= (UChar
) mySourceChar
;
3376 if(targetUniChar
< (missingCharMarker
-1/*0xfffe*/)){
3378 args
->offsets
[myTarget
- args
->target
] = (int32_t)(mySource
- args
->source
- (mySourceChar
<= 0xff ? 1 : 2));
3380 *(myTarget
++)=(UChar
)targetUniChar
;
3382 else if(targetUniChar
> missingCharMarker
){
3383 /* disassemble the surrogate pair and write to output*/
3384 targetUniChar
-=0x0010000;
3385 *myTarget
= (UChar
)(0xd800+(UChar
)(targetUniChar
>>10));
3387 args
->offsets
[myTarget
- args
->target
] = (int32_t)(mySource
- args
->source
- (mySourceChar
<= 0xff ? 1 : 2));
3390 if(myTarget
< args
->targetLimit
){
3391 *myTarget
= (UChar
)(0xdc00+(UChar
)(targetUniChar
&0x3ff));
3393 args
->offsets
[myTarget
- args
->target
] = (int32_t)(mySource
- args
->source
- (mySourceChar
<= 0xff ? 1 : 2));
3397 args
->converter
->UCharErrorBuffer
[args
->converter
->UCharErrorBufferLength
++]=
3398 (UChar
)(0xdc00+(UChar
)(targetUniChar
&0x3ff));
3403 /* Call the callback function*/
3404 toUnicodeCallback(args
->converter
,mySourceChar
,targetUniChar
,err
);
3409 *err
=U_BUFFER_OVERFLOW_ERROR
;
3414 args
->target
= myTarget
;
3415 args
->source
= mySource
;
3419 _ISO_2022_WriteSub(UConverterFromUnicodeArgs
*args
, int32_t offsetIndex
, UErrorCode
*err
) {
3420 UConverter
*cnv
= args
->converter
;
3421 UConverterDataISO2022
*myConverterData
=(UConverterDataISO2022
*) cnv
->extraInfo
;
3422 ISO2022State
*pFromU2022State
=&myConverterData
->fromU2022State
;
3427 subchar
=(char *)cnv
->subChars
;
3428 length
=cnv
->subCharLen
; /* assume length==1 for most variants */
3431 switch(myConverterData
->locale
[0]){
3436 if(pFromU2022State
->g
== 1) {
3437 /* JIS7: switch from G1 to G0 */
3438 pFromU2022State
->g
= 0;
3442 cs
= pFromU2022State
->cs
[0];
3443 if(cs
!= ASCII
&& cs
!= JISX201
) {
3444 /* not in ASCII or JIS X 0201: switch to ASCII */
3445 pFromU2022State
->cs
[0] = (int8_t)ASCII
;
3455 if(pFromU2022State
->g
!= 0) {
3456 /* not in ASCII mode: switch to ASCII */
3457 pFromU2022State
->g
= 0;
3463 if(myConverterData
->version
== 0) {
3465 if((UBool
)args
->converter
->fromUnicodeStatus
) {
3466 /* in DBCS mode: switch to SBCS */
3467 args
->converter
->fromUnicodeStatus
= 0;
3471 } else /* length == 2*/ {
3472 if(!(UBool
)args
->converter
->fromUnicodeStatus
) {
3473 /* in SBCS mode: switch to DBCS */
3474 args
->converter
->fromUnicodeStatus
= 1;
3482 /* save the subconverter's substitution string */
3483 uint8_t *currentSubChars
= myConverterData
->currentConverter
->subChars
;
3484 int8_t currentSubCharLen
= myConverterData
->currentConverter
->subCharLen
;
3486 /* set our substitution string into the subconverter */
3487 myConverterData
->currentConverter
->subChars
= (uint8_t *)subchar
;
3488 myConverterData
->currentConverter
->subCharLen
= (int8_t)length
;
3490 /* let the subconverter write the subchar, set/retrieve fromUChar32 state */
3491 args
->converter
= myConverterData
->currentConverter
;
3492 myConverterData
->currentConverter
->fromUChar32
= cnv
->fromUChar32
;
3493 ucnv_cbFromUWriteSub(args
, 0, err
);
3494 cnv
->fromUChar32
= myConverterData
->currentConverter
->fromUChar32
;
3495 args
->converter
= cnv
;
3497 /* restore the subconverter's substitution string */
3498 myConverterData
->currentConverter
->subChars
= currentSubChars
;
3499 myConverterData
->currentConverter
->subCharLen
= currentSubCharLen
;
3501 if(*err
== U_BUFFER_OVERFLOW_ERROR
) {
3502 if(myConverterData
->currentConverter
->charErrorBufferLength
> 0) {
3504 cnv
->charErrorBuffer
,
3505 myConverterData
->currentConverter
->charErrorBuffer
,
3506 myConverterData
->currentConverter
->charErrorBufferLength
);
3508 cnv
->charErrorBufferLength
= myConverterData
->currentConverter
->charErrorBufferLength
;
3509 myConverterData
->currentConverter
->charErrorBufferLength
= 0;
3517 ucnv_cbFromUWriteBytes(args
,
3518 buffer
, (int32_t)(p
- buffer
),
3523 * Structure for cloning an ISO 2022 converter into a single memory block.
3524 * ucnv_safeClone() of the converter will align the entire cloneStruct,
3525 * and then ucnv_safeClone() of the sub-converter may additionally align
3526 * currentConverter inside the cloneStruct, for which we need the deadSpace
3527 * after currentConverter.
3528 * This is because UAlignedMemory may be larger than the actually
3529 * necessary alignment size for the platform.
3530 * The other cloneStruct fields will not be moved around,
3531 * and are aligned properly with cloneStruct's alignment.
3536 UConverter currentConverter
;
3537 UAlignedMemory deadSpace
;
3538 UConverterDataISO2022 mydata
;
3543 _ISO_2022_SafeClone(
3544 const UConverter
*cnv
,
3546 int32_t *pBufferSize
,
3549 struct cloneStruct
* localClone
;
3550 UConverterDataISO2022
*cnvData
;
3553 if (*pBufferSize
== 0) { /* 'preflighting' request - set needed size into *pBufferSize */
3554 *pBufferSize
= (int32_t)sizeof(struct cloneStruct
);
3558 cnvData
= (UConverterDataISO2022
*)cnv
->extraInfo
;
3559 localClone
= (struct cloneStruct
*)stackBuffer
;
3561 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
3563 uprv_memcpy(&localClone
->mydata
, cnvData
, sizeof(UConverterDataISO2022
));
3564 localClone
->cnv
.extraInfo
= &localClone
->mydata
; /* set pointer to extra data */
3565 localClone
->cnv
.isExtraLocal
= TRUE
;
3567 /* share the subconverters */
3569 if(cnvData
->currentConverter
!= NULL
) {
3570 size
= (int32_t)(sizeof(UConverter
) + sizeof(UAlignedMemory
)); /* include size of padding */
3571 localClone
->mydata
.currentConverter
=
3572 ucnv_safeClone(cnvData
->currentConverter
,
3573 &localClone
->currentConverter
,
3575 if(U_FAILURE(*status
)) {
3580 for(i
=0; i
<UCNV_2022_MAX_CONVERTERS
; ++i
) {
3581 if(cnvData
->myConverterArray
[i
] != NULL
) {
3582 ucnv_incrementRefCount(cnvData
->myConverterArray
[i
]);
3586 return &localClone
->cnv
;
3590 _ISO_2022_GetUnicodeSet(const UConverter
*cnv
,
3591 const USetAdder
*sa
,
3592 UConverterUnicodeSet which
,
3593 UErrorCode
*pErrorCode
)
3596 UConverterDataISO2022
* cnvData
;
3598 if (U_FAILURE(*pErrorCode
)) {
3601 #ifdef U_ENABLE_GENERIC_ISO_2022
3602 if (cnv
->sharedData
== &_ISO2022Data
) {
3603 /* We use UTF-8 in this case */
3604 sa
->addRange(sa
->set
, 0, 0xd7FF);
3605 sa
->addRange(sa
->set
, 0xE000, 0x10FFFF);
3610 cnvData
= (UConverterDataISO2022
*)cnv
->extraInfo
;
3612 /* open a set and initialize it with code points that are algorithmically round-tripped */
3613 switch(cnvData
->locale
[0]){
3615 /* include JIS X 0201 which is hardcoded */
3616 sa
->add(sa
->set
, 0xa5);
3617 sa
->add(sa
->set
, 0x203e);
3618 if(jpCharsetMasks
[cnvData
->version
]&CSM(ISO8859_1
)) {
3619 /* include Latin-1 for some variants of JP */
3620 sa
->addRange(sa
->set
, 0, 0xff);
3622 /* include ASCII for JP */
3623 sa
->addRange(sa
->set
, 0, 0x7f);
3625 if(cnvData
->version
==3 || cnvData
->version
==4 || which
==UCNV_ROUNDTRIP_AND_FALLBACK_SET
) {
3627 * Do not test (jpCharsetMasks[cnvData->version]&CSM(HWKANA_7BIT))!=0
3628 * because the bit is on for all JP versions although only versions 3 & 4 (JIS7 & JIS8)
3629 * use half-width Katakana.
3630 * This is because all ISO-2022-JP variants are lenient in that they accept (in toUnicode)
3631 * half-width Katakana via the ESC ( I sequence.
3632 * However, we only emit (fromUnicode) half-width Katakana according to the
3633 * definition of each variant.
3635 * When including fallbacks,
3636 * we need to include half-width Katakana Unicode code points for all JP variants because
3637 * JIS X 0208 has hardcoded fallbacks for them (which map to full-width Katakana).
3639 /* include half-width Katakana for JP */
3640 sa
->addRange(sa
->set
, HWKANA_START
, HWKANA_END
);
3645 /* include ASCII for CN */
3646 sa
->addRange(sa
->set
, 0, 0x7f);
3649 /* there is only one converter for KR, and it is not in the myConverterArray[] */
3650 cnvData
->currentConverter
->sharedData
->impl
->getUnicodeSet(
3651 cnvData
->currentConverter
, sa
, which
, pErrorCode
);
3652 /* the loop over myConverterArray[] will simply not find another converter */
3658 #if 0 /* Replaced by ucnv_MBCSGetFilteredUnicodeSetForUnicode() until we implement ucnv_getUnicodeSet() with reverse fallbacks. */
3659 if( (cnvData
->locale
[0]=='c' || cnvData
->locale
[0]=='z') &&
3660 cnvData
->version
==0 && i
==CNS_11643
3662 /* special handling for non-EXT ISO-2022-CN: add only code points for CNS planes 1 and 2 */
3663 ucnv_MBCSGetUnicodeSetForBytes(
3664 cnvData
->myConverterArray
[i
],
3665 sa
, UCNV_ROUNDTRIP_SET
,
3671 for (i
=0; i
<UCNV_2022_MAX_CONVERTERS
; i
++) {
3672 UConverterSetFilter filter
;
3673 if(cnvData
->myConverterArray
[i
]!=NULL
) {
3674 if( (cnvData
->locale
[0]=='c' || cnvData
->locale
[0]=='z') &&
3675 cnvData
->version
==0 && i
==CNS_11643
3678 * Version-specific for CN:
3679 * CN version 0 does not map CNS planes 3..7 although
3680 * they are all available in the CNS conversion table;
3681 * CN version 1 (-EXT) does map them all.
3682 * The two versions create different Unicode sets.
3684 filter
=UCNV_SET_FILTER_2022_CN
;
3685 } else if(cnvData
->locale
[0]=='j' && i
==JISX208
) {
3687 * Only add code points that map to Shift-JIS codes
3688 * corresponding to JIS X 0208.
3690 filter
=UCNV_SET_FILTER_SJIS
;
3691 } else if(i
==KSC5601
) {
3693 * Some of the KSC 5601 tables (convrtrs.txt has this aliases on multiple tables)
3694 * are broader than GR94.
3696 filter
=UCNV_SET_FILTER_GR94DBCS
;
3698 filter
=UCNV_SET_FILTER_NONE
;
3700 ucnv_MBCSGetFilteredUnicodeSetForUnicode(cnvData
->myConverterArray
[i
], sa
, which
, filter
, pErrorCode
);
3705 * ISO 2022 converters must not convert SO/SI/ESC despite what
3706 * sub-converters do by themselves.
3707 * Remove these characters from the set.
3709 sa
->remove(sa
->set
, 0x0e);
3710 sa
->remove(sa
->set
, 0x0f);
3711 sa
->remove(sa
->set
, 0x1b);
3713 /* ISO 2022 converters do not convert C1 controls either */
3714 sa
->removeRange(sa
->set
, 0x80, 0x9f);
3717 static const UConverterImpl _ISO2022Impl
={
3727 #ifdef U_ENABLE_GENERIC_ISO_2022
3728 T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC
,
3729 T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC
,
3730 ucnv_fromUnicode_UTF8
,
3731 ucnv_fromUnicode_UTF8_OFFSETS_LOGIC
,
3743 _ISO_2022_SafeClone
,
3744 _ISO_2022_GetUnicodeSet
,
3749 static const UConverterStaticData _ISO2022StaticData
={
3750 sizeof(UConverterStaticData
),
3756 3, /* max 3 bytes per UChar from UTF-8 (4 bytes from surrogate _pair_) */
3763 { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
3765 const UConverterSharedData _ISO2022Data
={
3766 sizeof(UConverterSharedData
),
3770 &_ISO2022StaticData
,
3773 0, UCNV_MBCS_TABLE_INITIALIZER
3776 /*************JP****************/
3777 static const UConverterImpl _ISO2022JPImpl
={
3787 UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC
,
3788 UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC
,
3789 UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC
,
3790 UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC
,
3796 _ISO_2022_SafeClone
,
3797 _ISO_2022_GetUnicodeSet
,
3802 static const UConverterStaticData _ISO2022JPStaticData
={
3803 sizeof(UConverterStaticData
),
3809 6, /* max 6 bytes per UChar: 4-byte escape sequence + DBCS */
3816 { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
3821 const UConverterSharedData _ISO2022JPData
={
3822 sizeof(UConverterSharedData
),
3826 &_ISO2022JPStaticData
,
3829 0, UCNV_MBCS_TABLE_INITIALIZER
3834 /************* KR ***************/
3835 static const UConverterImpl _ISO2022KRImpl
={
3845 UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC
,
3846 UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC
,
3847 UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC
,
3848 UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC
,
3854 _ISO_2022_SafeClone
,
3855 _ISO_2022_GetUnicodeSet
,
3860 static const UConverterStaticData _ISO2022KRStaticData
={
3861 sizeof(UConverterStaticData
),
3867 3, /* max 3 bytes per UChar: SO+DBCS */
3874 { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
3879 const UConverterSharedData _ISO2022KRData
={
3880 sizeof(UConverterSharedData
),
3884 &_ISO2022KRStaticData
,
3887 0, UCNV_MBCS_TABLE_INITIALIZER
3892 /*************** CN ***************/
3893 static const UConverterImpl _ISO2022CNImpl
={
3904 UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC
,
3905 UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC
,
3906 UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC
,
3907 UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC
,
3913 _ISO_2022_SafeClone
,
3914 _ISO_2022_GetUnicodeSet
,
3919 static const UConverterStaticData _ISO2022CNStaticData
={
3920 sizeof(UConverterStaticData
),
3926 8, /* max 8 bytes per UChar: 4-byte CNS designator + 2 bytes for SS2/SS3 + DBCS */
3933 { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
3938 const UConverterSharedData _ISO2022CNData
={
3939 sizeof(UConverterSharedData
),
3943 &_ISO2022CNStaticData
,
3946 0, UCNV_MBCS_TABLE_INITIALIZER
3951 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */