]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ********************************************************************** | |
51004dcb | 3 | * Copyright (C) 2000-2012, International Business Machines |
b75a7d8f A |
4 | * Corporation and others. All Rights Reserved. |
5 | ********************************************************************** | |
4388f060 | 6 | * file name: ucnv2022.cpp |
b75a7d8f A |
7 | * encoding: US-ASCII |
8 | * tab size: 8 (not used) | |
9 | * indentation:4 | |
10 | * | |
11 | * created on: 2000feb03 | |
12 | * created by: Markus W. Scherer | |
13 | * | |
14 | * Change history: | |
15 | * | |
16 | * 06/29/2000 helena Major rewrite of the callback APIs. | |
17 | * 08/08/2000 Ram Included support for ISO-2022-JP-2 | |
18 | * Changed implementation of toUnicode | |
19 | * function | |
20 | * 08/21/2000 Ram Added support for ISO-2022-KR | |
21 | * 08/29/2000 Ram Seperated implementation of EBCDIC to | |
22 | * ucnvebdc.c | |
23 | * 09/20/2000 Ram Added support for ISO-2022-CN | |
24 | * Added implementations for getNextUChar() | |
25 | * for specific 2022 country variants. | |
26 | * 10/31/2000 Ram Implemented offsets logic functions | |
27 | */ | |
28 | ||
29 | #include "unicode/utypes.h" | |
30 | ||
374ca955 | 31 | #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION |
b75a7d8f A |
32 | |
33 | #include "unicode/ucnv.h" | |
34 | #include "unicode/uset.h" | |
35 | #include "unicode/ucnv_err.h" | |
36 | #include "unicode/ucnv_cb.h" | |
4388f060 | 37 | #include "unicode/utf16.h" |
374ca955 | 38 | #include "ucnv_imp.h" |
b75a7d8f A |
39 | #include "ucnv_bld.h" |
40 | #include "ucnv_cnv.h" | |
41 | #include "ucnvmbcs.h" | |
42 | #include "cstring.h" | |
43 | #include "cmemory.h" | |
4388f060 | 44 | #include "uassert.h" |
b75a7d8f | 45 | |
374ca955 A |
46 | #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
47 | ||
48 | #ifdef U_ENABLE_GENERIC_ISO_2022 | |
49 | /* | |
50 | * I am disabling the generic ISO-2022 converter after proposing to do so on | |
51 | * the icu mailing list two days ago. | |
52 | * | |
53 | * Reasons: | |
54 | * 1. It does not fully support the ISO-2022/ECMA-35 specification with all of | |
55 | * its designation sequences, single shifts with return to the previous state, | |
56 | * switch-with-no-return to UTF-16BE or similar, etc. | |
57 | * This is unlike the language-specific variants like ISO-2022-JP which | |
58 | * require a much smaller repertoire of ISO-2022 features. | |
59 | * These variants continue to be supported. | |
60 | * 2. I believe that no one is really using the generic ISO-2022 converter | |
61 | * but rather always one of the language-specific variants. | |
62 | * Note that ICU's generic ISO-2022 converter has always output one escape | |
63 | * sequence followed by UTF-8 for the whole stream. | |
64 | * 3. Switching between subcharsets is extremely slow, because each time | |
65 | * the previous converter is closed and a new one opened, | |
66 | * without any kind of caching, least-recently-used list, etc. | |
67 | * 4. The code is currently buggy, and given the above it does not seem | |
68 | * reasonable to spend the time on maintenance. | |
69 | * 5. ISO-2022 subcharsets should normally be used with 7-bit byte encodings. | |
70 | * This means, for example, that when ISO-8859-7 is designated, the following | |
71 | * ISO-2022 bytes 00..7f should be interpreted as ISO-8859-7 bytes 80..ff. | |
72 | * The ICU ISO-2022 converter does not handle this - and has no information | |
73 | * about which subconverter would have to be shifted vs. which is designed | |
74 | * for 7-bit ISO-2022. | |
75 | * | |
76 | * Markus Scherer 2003-dec-03 | |
77 | */ | |
78 | #endif | |
79 | ||
80 | static const char SHIFT_IN_STR[] = "\x0F"; | |
51004dcb | 81 | // static const char SHIFT_OUT_STR[] = "\x0E"; |
b75a7d8f A |
82 | |
83 | #define CR 0x0D | |
84 | #define LF 0x0A | |
85 | #define H_TAB 0x09 | |
86 | #define V_TAB 0x0B | |
87 | #define SPACE 0x20 | |
88 | ||
46f4442e A |
89 | enum { |
90 | HWKANA_START=0xff61, | |
91 | HWKANA_END=0xff9f | |
92 | }; | |
93 | ||
94 | /* | |
95 | * 94-character sets with native byte values A1..FE are encoded in ISO 2022 | |
96 | * as bytes 21..7E. (Subtract 0x80.) | |
97 | * 96-character sets with native byte values A0..FF are encoded in ISO 2022 | |
98 | * as bytes 20..7F. (Subtract 0x80.) | |
99 | * Do not encode C1 control codes with native bytes 80..9F | |
100 | * as bytes 00..1F (C0 control codes). | |
101 | */ | |
102 | enum { | |
103 | GR94_START=0xa1, | |
104 | GR94_END=0xfe, | |
105 | GR96_START=0xa0, | |
106 | GR96_END=0xff | |
107 | }; | |
108 | ||
73c04bcf A |
109 | /* |
110 | * ISO 2022 control codes must not be converted from Unicode | |
111 | * because they would mess up the byte stream. | |
112 | * The bit mask 0x0800c000 has bits set at bit positions 0xe, 0xf, 0x1b | |
113 | * corresponding to SO, SI, and ESC. | |
114 | */ | |
115 | #define IS_2022_CONTROL(c) (((c)<0x20) && (((uint32_t)1<<(c))&0x0800c000)!=0) | |
116 | ||
374ca955 | 117 | /* for ISO-2022-JP and -CN implementations */ |
b75a7d8f | 118 | typedef enum { |
374ca955 A |
119 | /* shared values */ |
120 | INVALID_STATE=-1, | |
b75a7d8f | 121 | ASCII = 0, |
374ca955 A |
122 | |
123 | SS2_STATE=0x10, | |
124 | SS3_STATE, | |
125 | ||
126 | /* JP */ | |
b75a7d8f A |
127 | ISO8859_1 = 1 , |
128 | ISO8859_7 = 2 , | |
129 | JISX201 = 3, | |
130 | JISX208 = 4, | |
131 | JISX212 = 5, | |
132 | GB2312 =6, | |
133 | KSC5601 =7, | |
134 | HWKANA_7BIT=8, /* Halfwidth Katakana 7 bit */ | |
b75a7d8f | 135 | |
374ca955 A |
136 | /* CN */ |
137 | /* the first few enum constants must keep their values because they correspond to myConverterArray[] */ | |
138 | GB2312_1=1, | |
139 | ISO_IR_165=2, | |
140 | CNS_11643=3, | |
141 | ||
142 | /* | |
143 | * these are used in StateEnum and ISO2022State variables, | |
144 | * but CNS_11643 must be used to index into myConverterArray[] | |
145 | */ | |
146 | CNS_11643_0=0x20, | |
147 | CNS_11643_1, | |
148 | CNS_11643_2, | |
149 | CNS_11643_3, | |
150 | CNS_11643_4, | |
151 | CNS_11643_5, | |
152 | CNS_11643_6, | |
153 | CNS_11643_7 | |
b75a7d8f A |
154 | } StateEnum; |
155 | ||
374ca955 A |
156 | /* is the StateEnum charset value for a DBCS charset? */ |
157 | #define IS_JP_DBCS(cs) (JISX208<=(cs) && (cs)<=KSC5601) | |
158 | ||
159 | #define CSM(cs) ((uint16_t)1<<(cs)) | |
b75a7d8f | 160 | |
374ca955 A |
161 | /* |
162 | * Each of these charset masks (with index x) contains a bit for a charset in exact correspondence | |
163 | * to whether that charset is used in the corresponding version x of ISO_2022,locale=ja,version=x | |
164 | * | |
165 | * Note: The converter uses some leniency: | |
166 | * - The escape sequence ESC ( I for half-width 7-bit Katakana is recognized in | |
167 | * all versions, not just JIS7 and JIS8. | |
168 | * - ICU does not distinguish between different versions of JIS X 0208. | |
169 | */ | |
729e4ab9 A |
170 | enum { MAX_JA_VERSION=4 }; |
171 | static const uint16_t jpCharsetMasks[MAX_JA_VERSION+1]={ | |
374ca955 A |
172 | CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT), |
173 | CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212), | |
174 | CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7), | |
175 | CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7), | |
176 | CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7) | |
177 | }; | |
b75a7d8f A |
178 | |
179 | typedef enum { | |
180 | ASCII1=0, | |
181 | LATIN1, | |
182 | SBCS, | |
183 | DBCS, | |
374ca955 A |
184 | MBCS, |
185 | HWKANA | |
b75a7d8f A |
186 | }Cnv2022Type; |
187 | ||
374ca955 A |
188 | typedef struct ISO2022State { |
189 | int8_t cs[4]; /* charset number for SI (G0)/SO (G1)/SS2 (G2)/SS3 (G3) */ | |
190 | int8_t g; /* 0..3 for G0..G3 (SI/SO/SS2/SS3) */ | |
191 | int8_t prevG; /* g before single shift (SS2 or SS3) */ | |
192 | } ISO2022State; | |
193 | ||
b75a7d8f A |
194 | #define UCNV_OPTIONS_VERSION_MASK 0xf |
195 | #define UCNV_2022_MAX_CONVERTERS 10 | |
196 | ||
197 | typedef struct{ | |
73c04bcf | 198 | UConverterSharedData *myConverterArray[UCNV_2022_MAX_CONVERTERS]; |
b75a7d8f | 199 | UConverter *currentConverter; |
b75a7d8f | 200 | Cnv2022Type currentType; |
374ca955 | 201 | ISO2022State toU2022State, fromU2022State; |
b75a7d8f A |
202 | uint32_t key; |
203 | uint32_t version; | |
73c04bcf A |
204 | #ifdef U_ENABLE_GENERIC_ISO_2022 |
205 | UBool isFirstBuffer; | |
206 | #endif | |
d5d484b0 | 207 | UBool isEmptySegment; |
b75a7d8f | 208 | char name[30]; |
73c04bcf | 209 | char locale[3]; |
b75a7d8f A |
210 | }UConverterDataISO2022; |
211 | ||
374ca955 | 212 | /* Protos */ |
b75a7d8f A |
213 | /* ISO-2022 ----------------------------------------------------------------- */ |
214 | ||
215 | /*Forward declaration */ | |
46f4442e | 216 | U_CFUNC void |
374ca955 A |
217 | ucnv_fromUnicode_UTF8(UConverterFromUnicodeArgs * args, |
218 | UErrorCode * err); | |
46f4442e | 219 | U_CFUNC void |
374ca955 A |
220 | ucnv_fromUnicode_UTF8_OFFSETS_LOGIC(UConverterFromUnicodeArgs * args, |
221 | UErrorCode * err); | |
b75a7d8f A |
222 | |
223 | #define ESC_2022 0x1B /*ESC*/ | |
224 | ||
225 | typedef enum | |
226 | { | |
227 | INVALID_2022 = -1, /*Doesn't correspond to a valid iso 2022 escape sequence*/ | |
228 | VALID_NON_TERMINAL_2022 = 0, /*so far corresponds to a valid iso 2022 escape sequence*/ | |
229 | VALID_TERMINAL_2022 = 1, /*corresponds to a valid iso 2022 escape sequence*/ | |
374ca955 | 230 | VALID_MAYBE_TERMINAL_2022 = 2 /*so far matches one iso 2022 escape sequence, but by adding more characters might match another escape sequence*/ |
b75a7d8f A |
231 | } UCNV_TableStates_2022; |
232 | ||
233 | /* | |
234 | * The way these state transition arrays work is: | |
235 | * ex : ESC$B is the sequence for JISX208 | |
236 | * a) First Iteration: char is ESC | |
237 | * i) Get the value of ESC from normalize_esq_chars_2022[] with int value of ESC as index | |
238 | * int x = normalize_esq_chars_2022[27] which is equal to 1 | |
239 | * ii) Search for this value in escSeqStateTable_Key_2022[] | |
240 | * value of x is stored at escSeqStateTable_Key_2022[0] | |
241 | * iii) Save this index as offset | |
242 | * iv) Get state of this sequence from escSeqStateTable_Value_2022[] | |
243 | * escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022 | |
244 | * b) Switch on this state and continue to next char | |
245 | * i) Get the value of $ from normalize_esq_chars_2022[] with int value of $ as index | |
246 | * which is normalize_esq_chars_2022[36] == 4 | |
247 | * ii) x is currently 1(from above) | |
248 | * x<<=5 -- x is now 32 | |
249 | * x+=normalize_esq_chars_2022[36] | |
250 | * now x is 36 | |
251 | * iii) Search for this value in escSeqStateTable_Key_2022[] | |
252 | * value of x is stored at escSeqStateTable_Key_2022[2], so offset is 2 | |
253 | * iv) Get state of this sequence from escSeqStateTable_Value_2022[] | |
254 | * escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022 | |
255 | * c) Switch on this state and continue to next char | |
256 | * i) Get the value of B from normalize_esq_chars_2022[] with int value of B as index | |
257 | * ii) x is currently 36 (from above) | |
258 | * x<<=5 -- x is now 1152 | |
259 | * x+=normalize_esq_chars_2022[66] | |
260 | * now x is 1161 | |
261 | * iii) Search for this value in escSeqStateTable_Key_2022[] | |
262 | * value of x is stored at escSeqStateTable_Key_2022[21], so offset is 21 | |
263 | * iv) Get state of this sequence from escSeqStateTable_Value_2022[21] | |
264 | * escSeqStateTable_Value_2022[offset], which is VALID_TERMINAL_2022 | |
265 | * v) Get the converter name form escSeqStateTable_Result_2022[21] which is JISX208 | |
266 | */ | |
267 | ||
268 | ||
269 | /*Below are the 3 arrays depicting a state transition table*/ | |
270 | static const int8_t normalize_esq_chars_2022[256] = { | |
271 | /* 0 1 2 3 4 5 6 7 8 9 */ | |
272 | ||
273 | 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
274 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
275 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 | |
276 | ,0 ,0 ,0 ,0 ,0 ,0 ,4 ,7 ,29 ,0 | |
277 | ,2 ,24 ,26 ,27 ,0 ,3 ,23 ,6 ,0 ,0 | |
278 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
279 | ,0 ,0 ,0 ,0 ,5 ,8 ,9 ,10 ,11 ,12 | |
280 | ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,25 ,28 | |
281 | ,0 ,0 ,21 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
282 | ,22 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
283 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
284 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
285 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
286 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
287 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
288 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
289 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
290 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
291 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
292 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
293 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
294 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
295 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
296 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
297 | ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 | |
298 | ,0 ,0 ,0 ,0 ,0 ,0 | |
299 | }; | |
300 | ||
374ca955 A |
301 | #ifdef U_ENABLE_GENERIC_ISO_2022 |
302 | /* | |
303 | * When the generic ISO-2022 converter is completely removed, not just disabled | |
304 | * per #ifdef, then the following state table and the associated tables that are | |
305 | * dimensioned with MAX_STATES_2022 should be trimmed. | |
306 | * | |
307 | * Especially, VALID_MAYBE_TERMINAL_2022 will not be used any more, and all of | |
308 | * the associated escape sequences starting with ESC ( B should be removed. | |
309 | * This includes the ones with key values 1097 and all of the ones above 1000000. | |
310 | * | |
311 | * For the latter, the tables can simply be truncated. | |
312 | * For the former, since the tables must be kept parallel, it is probably best | |
313 | * to simply duplicate an adjacent table cell, parallel in all tables. | |
314 | * | |
315 | * It may make sense to restructure the tables, especially by using small search | |
316 | * tables for the variants instead of indexing them parallel to the table here. | |
317 | */ | |
318 | #endif | |
319 | ||
b75a7d8f A |
320 | #define MAX_STATES_2022 74 |
321 | static const int32_t escSeqStateTable_Key_2022[MAX_STATES_2022] = { | |
322 | /* 0 1 2 3 4 5 6 7 8 9 */ | |
323 | ||
324 | 1 ,34 ,36 ,39 ,55 ,57 ,60 ,61 ,1093 ,1096 | |
325 | ,1097 ,1098 ,1099 ,1100 ,1101 ,1102 ,1103 ,1104 ,1105 ,1106 | |
326 | ,1109 ,1154 ,1157 ,1160 ,1161 ,1176 ,1178 ,1179 ,1254 ,1257 | |
327 | ,1768 ,1773 ,1957 ,35105 ,36933 ,36936 ,36937 ,36938 ,36939 ,36940 | |
328 | ,36942 ,36943 ,36944 ,36945 ,36946 ,36947 ,36948 ,37640 ,37642 ,37644 | |
329 | ,37646 ,37711 ,37744 ,37745 ,37746 ,37747 ,37748 ,40133 ,40136 ,40138 | |
330 | ,40139 ,40140 ,40141 ,1123363 ,35947624 ,35947625 ,35947626 ,35947627 ,35947629 ,35947630 | |
331 | ,35947631 ,35947635 ,35947636 ,35947638 | |
332 | }; | |
333 | ||
374ca955 | 334 | #ifdef U_ENABLE_GENERIC_ISO_2022 |
b75a7d8f A |
335 | |
336 | static const char* const escSeqStateTable_Result_2022[MAX_STATES_2022] = { | |
337 | /* 0 1 2 3 4 5 6 7 8 9 */ | |
338 | ||
339 | NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,"latin1" ,"latin1" | |
374ca955 | 340 | ,"latin1" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"JISX0201" ,"JISX0201" ,"latin1" |
b75a7d8f A |
341 | ,"latin1" ,NULL ,"JISX-208" ,"ibm-5478" ,"JISX-208" ,NULL ,NULL ,NULL ,NULL ,"UTF8" |
342 | ,"ISO-8859-1" ,"ISO-8859-7" ,"JIS-X-208" ,NULL ,"ibm-955" ,"ibm-367" ,"ibm-952" ,"ibm-949" ,"JISX-212" ,"ibm-1383" | |
343 | ,"ibm-952" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-5478" ,"ibm-949" ,"ISO-IR-165" | |
344 | ,"CNS-11643-1992,1" ,"CNS-11643-1992,2" ,"CNS-11643-1992,3" ,"CNS-11643-1992,4" ,"CNS-11643-1992,5" ,"CNS-11643-1992,6" ,"CNS-11643-1992,7" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" | |
345 | ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,NULL ,"latin1" ,"ibm-912" ,"ibm-913" ,"ibm-914" ,"ibm-813" ,"ibm-1089" | |
346 | ,"ibm-920" ,"ibm-915" ,"ibm-915" ,"latin1" | |
347 | }; | |
348 | ||
374ca955 A |
349 | #endif |
350 | ||
46f4442e | 351 | static const int8_t escSeqStateTable_Value_2022[MAX_STATES_2022] = { |
b75a7d8f | 352 | /* 0 1 2 3 4 5 6 7 8 9 */ |
374ca955 | 353 | VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 |
b75a7d8f A |
354 | ,VALID_MAYBE_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 |
355 | ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 | |
356 | ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 | |
357 | ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 | |
358 | ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 | |
359 | ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 | |
360 | ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 | |
361 | }; | |
362 | ||
363 | ||
b75a7d8f A |
364 | /* Type def for refactoring changeState_2022 code*/ |
365 | typedef enum{ | |
374ca955 | 366 | #ifdef U_ENABLE_GENERIC_ISO_2022 |
b75a7d8f | 367 | ISO_2022=0, |
374ca955 | 368 | #endif |
b75a7d8f A |
369 | ISO_2022_JP=1, |
370 | ISO_2022_KR=2, | |
371 | ISO_2022_CN=3 | |
372 | } Variant2022; | |
373 | ||
b75a7d8f | 374 | /*********** ISO 2022 Converter Protos ***********/ |
46f4442e | 375 | static void |
729e4ab9 | 376 | _ISO2022Open(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *errorCode); |
b75a7d8f A |
377 | |
378 | static void | |
379 | _ISO2022Close(UConverter *converter); | |
380 | ||
46f4442e | 381 | static void |
b75a7d8f A |
382 | _ISO2022Reset(UConverter *converter, UConverterResetChoice choice); |
383 | ||
46f4442e | 384 | static const char* |
b75a7d8f A |
385 | _ISO2022getName(const UConverter* cnv); |
386 | ||
46f4442e | 387 | static void |
b75a7d8f A |
388 | _ISO_2022_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err); |
389 | ||
46f4442e | 390 | static UConverter * |
b75a7d8f A |
391 | _ISO_2022_SafeClone(const UConverter *cnv, void *stackBuffer, int32_t *pBufferSize, UErrorCode *status); |
392 | ||
374ca955 | 393 | #ifdef U_ENABLE_GENERIC_ISO_2022 |
46f4442e | 394 | static void |
374ca955 A |
395 | T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs* args, UErrorCode* err); |
396 | #endif | |
b75a7d8f | 397 | |
4388f060 A |
398 | namespace { |
399 | ||
374ca955 | 400 | /*const UConverterSharedData _ISO2022Data;*/ |
4388f060 A |
401 | extern const UConverterSharedData _ISO2022JPData; |
402 | extern const UConverterSharedData _ISO2022KRData; | |
403 | extern const UConverterSharedData _ISO2022CNData; | |
404 | ||
405 | } // namespace | |
b75a7d8f | 406 | |
374ca955 | 407 | /*************** Converter implementations ******************/ |
b75a7d8f | 408 | |
73c04bcf | 409 | /* The purpose of this function is to get around gcc compiler warnings. */ |
4388f060 | 410 | static inline void |
73c04bcf A |
411 | fromUWriteUInt8(UConverter *cnv, |
412 | const char *bytes, int32_t length, | |
413 | uint8_t **target, const char *targetLimit, | |
414 | int32_t **offsets, | |
415 | int32_t sourceIndex, | |
416 | UErrorCode *pErrorCode) | |
417 | { | |
418 | char *targetChars = (char *)*target; | |
419 | ucnv_fromUWriteBytes(cnv, bytes, length, &targetChars, targetLimit, | |
420 | offsets, sourceIndex, pErrorCode); | |
421 | *target = (uint8_t*)targetChars; | |
422 | ||
423 | } | |
424 | ||
4388f060 A |
425 | static inline void |
426 | setInitialStateToUnicodeKR(UConverter* /*converter*/, UConverterDataISO2022 *myConverterData){ | |
374ca955 A |
427 | if(myConverterData->version == 1) { |
428 | UConverter *cnv = myConverterData->currentConverter; | |
b75a7d8f | 429 | |
374ca955 A |
430 | cnv->toUnicodeStatus=0; /* offset */ |
431 | cnv->mode=0; /* state */ | |
432 | cnv->toULength=0; /* byteIndex */ | |
433 | } | |
434 | } | |
b75a7d8f | 435 | |
4388f060 | 436 | static inline void |
374ca955 A |
437 | setInitialStateFromUnicodeKR(UConverter* converter,UConverterDataISO2022 *myConverterData){ |
438 | /* in ISO-2022-KR the designator sequence appears only once | |
439 | * in a file so we append it only once | |
440 | */ | |
441 | if( converter->charErrorBufferLength==0){ | |
b75a7d8f | 442 | |
374ca955 A |
443 | converter->charErrorBufferLength = 4; |
444 | converter->charErrorBuffer[0] = 0x1b; | |
445 | converter->charErrorBuffer[1] = 0x24; | |
446 | converter->charErrorBuffer[2] = 0x29; | |
447 | converter->charErrorBuffer[3] = 0x43; | |
448 | } | |
449 | if(myConverterData->version == 1) { | |
450 | UConverter *cnv = myConverterData->currentConverter; | |
b75a7d8f | 451 | |
374ca955 A |
452 | cnv->fromUChar32=0; |
453 | cnv->fromUnicodeStatus=1; /* prevLength */ | |
454 | } | |
455 | } | |
b75a7d8f | 456 | |
46f4442e | 457 | static void |
729e4ab9 | 458 | _ISO2022Open(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *errorCode){ |
b75a7d8f | 459 | |
374ca955 | 460 | char myLocale[6]={' ',' ',' ',' ',' ',' '}; |
b75a7d8f | 461 | |
374ca955 A |
462 | cnv->extraInfo = uprv_malloc (sizeof (UConverterDataISO2022)); |
463 | if(cnv->extraInfo != NULL) { | |
729e4ab9 | 464 | UConverterNamePieces stackPieces; |
4388f060 | 465 | UConverterLoadArgs stackArgs=UCNV_LOAD_ARGS_INITIALIZER; |
374ca955 A |
466 | UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) cnv->extraInfo; |
467 | uint32_t version; | |
b75a7d8f | 468 | |
729e4ab9 A |
469 | stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable; |
470 | ||
374ca955 | 471 | uprv_memset(myConverterData, 0, sizeof(UConverterDataISO2022)); |
374ca955 | 472 | myConverterData->currentType = ASCII1; |
374ca955 | 473 | cnv->fromUnicodeStatus =FALSE; |
729e4ab9 A |
474 | if(pArgs->locale){ |
475 | uprv_strncpy(myLocale, pArgs->locale, sizeof(myLocale)); | |
374ca955 | 476 | } |
729e4ab9 | 477 | version = pArgs->options & UCNV_OPTIONS_VERSION_MASK; |
73c04bcf | 478 | myConverterData->version = version; |
46f4442e | 479 | if(myLocale[0]=='j' && (myLocale[1]=='a'|| myLocale[1]=='p') && |
73c04bcf A |
480 | (myLocale[2]=='_' || myLocale[2]=='\0')) |
481 | { | |
482 | size_t len=0; | |
374ca955 | 483 | /* open the required converters and cache them */ |
729e4ab9 A |
484 | if(version>MAX_JA_VERSION) { |
485 | /* prevent indexing beyond jpCharsetMasks[] */ | |
486 | myConverterData->version = version = 0; | |
487 | } | |
374ca955 | 488 | if(jpCharsetMasks[version]&CSM(ISO8859_7)) { |
729e4ab9 A |
489 | myConverterData->myConverterArray[ISO8859_7] = |
490 | ucnv_loadSharedData("ISO8859_7", &stackPieces, &stackArgs, errorCode); | |
374ca955 | 491 | } |
729e4ab9 A |
492 | myConverterData->myConverterArray[JISX208] = |
493 | ucnv_loadSharedData("Shift-JIS", &stackPieces, &stackArgs, errorCode); | |
374ca955 | 494 | if(jpCharsetMasks[version]&CSM(JISX212)) { |
729e4ab9 A |
495 | myConverterData->myConverterArray[JISX212] = |
496 | ucnv_loadSharedData("jisx-212", &stackPieces, &stackArgs, errorCode); | |
374ca955 A |
497 | } |
498 | if(jpCharsetMasks[version]&CSM(GB2312)) { | |
729e4ab9 A |
499 | myConverterData->myConverterArray[GB2312] = |
500 | ucnv_loadSharedData("ibm-5478", &stackPieces, &stackArgs, errorCode); /* gb_2312_80-1 */ | |
374ca955 A |
501 | } |
502 | if(jpCharsetMasks[version]&CSM(KSC5601)) { | |
729e4ab9 A |
503 | myConverterData->myConverterArray[KSC5601] = |
504 | ucnv_loadSharedData("ksc_5601", &stackPieces, &stackArgs, errorCode); | |
374ca955 | 505 | } |
b75a7d8f | 506 | |
374ca955 A |
507 | /* set the function pointers to appropriate funtions */ |
508 | cnv->sharedData=(UConverterSharedData*)(&_ISO2022JPData); | |
509 | uprv_strcpy(myConverterData->locale,"ja"); | |
b75a7d8f | 510 | |
46f4442e | 511 | (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=ja,version="); |
374ca955 A |
512 | len = uprv_strlen(myConverterData->name); |
513 | myConverterData->name[len]=(char)(myConverterData->version+(int)'0'); | |
514 | myConverterData->name[len+1]='\0'; | |
515 | } | |
46f4442e | 516 | else if(myLocale[0]=='k' && (myLocale[1]=='o'|| myLocale[1]=='r') && |
73c04bcf A |
517 | (myLocale[2]=='_' || myLocale[2]=='\0')) |
518 | { | |
729e4ab9 A |
519 | const char *cnvName; |
520 | if(version==1) { | |
521 | cnvName="icu-internal-25546"; | |
522 | } else { | |
523 | cnvName="ibm-949"; | |
524 | myConverterData->version=version=0; | |
525 | } | |
526 | if(pArgs->onlyTestIsLoadable) { | |
527 | ucnv_canCreateConverter(cnvName, errorCode); /* errorCode carries result */ | |
528 | uprv_free(cnv->extraInfo); | |
529 | cnv->extraInfo=NULL; | |
530 | return; | |
531 | } else { | |
532 | myConverterData->currentConverter=ucnv_open(cnvName, errorCode); | |
73c04bcf A |
533 | if (U_FAILURE(*errorCode)) { |
534 | _ISO2022Close(cnv); | |
535 | return; | |
536 | } | |
b75a7d8f | 537 | |
729e4ab9 A |
538 | if(version==1) { |
539 | (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=ko,version=1"); | |
540 | uprv_memcpy(cnv->subChars, myConverterData->currentConverter->subChars, 4); | |
541 | cnv->subCharLen = myConverterData->currentConverter->subCharLen; | |
542 | }else{ | |
543 | (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=ko,version=0"); | |
73c04bcf | 544 | } |
b75a7d8f | 545 | |
729e4ab9 A |
546 | /* initialize the state variables */ |
547 | setInitialStateToUnicodeKR(cnv, myConverterData); | |
548 | setInitialStateFromUnicodeKR(cnv, myConverterData); | |
b75a7d8f | 549 | |
729e4ab9 A |
550 | /* set the function pointers to appropriate funtions */ |
551 | cnv->sharedData=(UConverterSharedData*)&_ISO2022KRData; | |
552 | uprv_strcpy(myConverterData->locale,"ko"); | |
553 | } | |
b75a7d8f | 554 | } |
46f4442e | 555 | else if(((myLocale[0]=='z' && myLocale[1]=='h') || (myLocale[0]=='c'&& myLocale[1]=='n'))&& |
73c04bcf A |
556 | (myLocale[2]=='_' || myLocale[2]=='\0')) |
557 | { | |
b75a7d8f A |
558 | |
559 | /* open the required converters and cache them */ | |
729e4ab9 A |
560 | myConverterData->myConverterArray[GB2312_1] = |
561 | ucnv_loadSharedData("ibm-5478", &stackPieces, &stackArgs, errorCode); | |
374ca955 | 562 | if(version==1) { |
729e4ab9 A |
563 | myConverterData->myConverterArray[ISO_IR_165] = |
564 | ucnv_loadSharedData("iso-ir-165", &stackPieces, &stackArgs, errorCode); | |
374ca955 | 565 | } |
729e4ab9 A |
566 | myConverterData->myConverterArray[CNS_11643] = |
567 | ucnv_loadSharedData("cns-11643-1992", &stackPieces, &stackArgs, errorCode); | |
b75a7d8f | 568 | |
b75a7d8f A |
569 | |
570 | /* set the function pointers to appropriate funtions */ | |
571 | cnv->sharedData=(UConverterSharedData*)&_ISO2022CNData; | |
572 | uprv_strcpy(myConverterData->locale,"cn"); | |
573 | ||
729e4ab9 | 574 | if (version==0){ |
b75a7d8f | 575 | myConverterData->version = 0; |
46f4442e | 576 | (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=zh,version=0"); |
729e4ab9 A |
577 | }else if (version==1){ |
578 | myConverterData->version = 1; | |
579 | (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=zh,version=1"); | |
580 | }else { | |
581 | myConverterData->version = 2; | |
582 | (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=zh,version=2"); | |
b75a7d8f A |
583 | } |
584 | } | |
585 | else{ | |
374ca955 | 586 | #ifdef U_ENABLE_GENERIC_ISO_2022 |
73c04bcf A |
587 | myConverterData->isFirstBuffer = TRUE; |
588 | ||
b75a7d8f A |
589 | /* append the UTF-8 escape sequence */ |
590 | cnv->charErrorBufferLength = 3; | |
591 | cnv->charErrorBuffer[0] = 0x1b; | |
592 | cnv->charErrorBuffer[1] = 0x25; | |
593 | cnv->charErrorBuffer[2] = 0x42; | |
594 | ||
595 | cnv->sharedData=(UConverterSharedData*)&_ISO2022Data; | |
596 | /* initialize the state variables */ | |
b75a7d8f | 597 | uprv_strcpy(myConverterData->name,"ISO_2022"); |
374ca955 A |
598 | #else |
599 | *errorCode = U_UNSUPPORTED_ERROR; | |
600 | return; | |
601 | #endif | |
b75a7d8f A |
602 | } |
603 | ||
374ca955 A |
604 | cnv->maxBytesPerUChar=cnv->sharedData->staticData->maxBytesPerChar; |
605 | ||
729e4ab9 | 606 | if(U_FAILURE(*errorCode) || pArgs->onlyTestIsLoadable) { |
374ca955 A |
607 | _ISO2022Close(cnv); |
608 | } | |
b75a7d8f A |
609 | } else { |
610 | *errorCode = U_MEMORY_ALLOCATION_ERROR; | |
611 | } | |
b75a7d8f A |
612 | } |
613 | ||
614 | ||
615 | static void | |
616 | _ISO2022Close(UConverter *converter) { | |
374ca955 A |
617 | UConverterDataISO2022* myData =(UConverterDataISO2022 *) (converter->extraInfo); |
618 | UConverterSharedData **array = myData->myConverterArray; | |
619 | int32_t i; | |
b75a7d8f A |
620 | |
621 | if (converter->extraInfo != NULL) { | |
622 | /*close the array of converter pointers and free the memory*/ | |
374ca955 A |
623 | for (i=0; i<UCNV_2022_MAX_CONVERTERS; i++) { |
624 | if(array[i]!=NULL) { | |
625 | ucnv_unloadSharedDataIfReady(array[i]); | |
b75a7d8f | 626 | } |
b75a7d8f A |
627 | } |
628 | ||
374ca955 | 629 | ucnv_close(myData->currentConverter); |
b75a7d8f A |
630 | |
631 | if(!converter->isExtraLocal){ | |
632 | uprv_free (converter->extraInfo); | |
374ca955 | 633 | converter->extraInfo = NULL; |
b75a7d8f A |
634 | } |
635 | } | |
636 | } | |
637 | ||
638 | static void | |
639 | _ISO2022Reset(UConverter *converter, UConverterResetChoice choice) { | |
640 | UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) (converter->extraInfo); | |
374ca955 A |
641 | if(choice<=UCNV_RESET_TO_UNICODE) { |
642 | uprv_memset(&myConverterData->toU2022State, 0, sizeof(ISO2022State)); | |
643 | myConverterData->key = 0; | |
d5d484b0 | 644 | myConverterData->isEmptySegment = FALSE; |
374ca955 A |
645 | } |
646 | if(choice!=UCNV_RESET_TO_UNICODE) { | |
647 | uprv_memset(&myConverterData->fromU2022State, 0, sizeof(ISO2022State)); | |
648 | } | |
649 | #ifdef U_ENABLE_GENERIC_ISO_2022 | |
650 | if(myConverterData->locale[0] == 0){ | |
b75a7d8f A |
651 | if(choice<=UCNV_RESET_TO_UNICODE) { |
652 | myConverterData->isFirstBuffer = TRUE; | |
374ca955 | 653 | myConverterData->key = 0; |
b75a7d8f A |
654 | if (converter->mode == UCNV_SO){ |
655 | ucnv_close (myConverterData->currentConverter); | |
656 | myConverterData->currentConverter=NULL; | |
657 | } | |
46f4442e | 658 | converter->mode = UCNV_SI; |
b75a7d8f A |
659 | } |
660 | if(choice!=UCNV_RESET_TO_UNICODE) { | |
661 | /* re-append UTF-8 escape sequence */ | |
662 | converter->charErrorBufferLength = 3; | |
663 | converter->charErrorBuffer[0] = 0x1b; | |
664 | converter->charErrorBuffer[1] = 0x28; | |
665 | converter->charErrorBuffer[2] = 0x42; | |
666 | } | |
667 | } | |
374ca955 A |
668 | else |
669 | #endif | |
670 | { | |
b75a7d8f | 671 | /* reset the state variables */ |
374ca955 | 672 | if(myConverterData->locale[0] == 'k'){ |
b75a7d8f A |
673 | if(choice<=UCNV_RESET_TO_UNICODE) { |
674 | setInitialStateToUnicodeKR(converter, myConverterData); | |
675 | } | |
676 | if(choice!=UCNV_RESET_TO_UNICODE) { | |
677 | setInitialStateFromUnicodeKR(converter, myConverterData); | |
678 | } | |
679 | } | |
680 | } | |
681 | } | |
682 | ||
46f4442e | 683 | static const char* |
b75a7d8f A |
684 | _ISO2022getName(const UConverter* cnv){ |
685 | if(cnv->extraInfo){ | |
686 | UConverterDataISO2022* myData= (UConverterDataISO2022*)cnv->extraInfo; | |
687 | return myData->name; | |
688 | } | |
689 | return NULL; | |
690 | } | |
691 | ||
b75a7d8f | 692 | |
374ca955 A |
693 | /*************** to unicode *******************/ |
694 | /**************************************************************************** | |
695 | * Recognized escape sequences are | |
696 | * <ESC>(B ASCII | |
697 | * <ESC>.A ISO-8859-1 | |
698 | * <ESC>.F ISO-8859-7 | |
699 | * <ESC>(J JISX-201 | |
700 | * <ESC>(I JISX-201 | |
701 | * <ESC>$B JISX-208 | |
702 | * <ESC>$@ JISX-208 | |
703 | * <ESC>$(D JISX-212 | |
704 | * <ESC>$A GB2312 | |
705 | * <ESC>$(C KSC5601 | |
706 | */ | |
46f4442e | 707 | static const int8_t nextStateToUnicodeJP[MAX_STATES_2022]= { |
374ca955 A |
708 | /* 0 1 2 3 4 5 6 7 8 9 */ |
709 | INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,SS2_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
710 | ,ASCII ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,JISX201 ,HWKANA_7BIT ,JISX201 ,INVALID_STATE | |
711 | ,INVALID_STATE ,INVALID_STATE ,JISX208 ,GB2312 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
712 | ,ISO8859_1 ,ISO8859_7 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,KSC5601 ,JISX212 ,INVALID_STATE | |
713 | ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
714 | ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
715 | ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
716 | ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
717 | }; | |
b75a7d8f | 718 | |
374ca955 | 719 | /*************** to unicode *******************/ |
46f4442e | 720 | static const int8_t nextStateToUnicodeCN[MAX_STATES_2022]= { |
374ca955 A |
721 | /* 0 1 2 3 4 5 6 7 8 9 */ |
722 | INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,SS2_STATE ,SS3_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
723 | ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
724 | ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
725 | ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
726 | ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,GB2312_1 ,INVALID_STATE ,ISO_IR_165 | |
727 | ,CNS_11643_1 ,CNS_11643_2 ,CNS_11643_3 ,CNS_11643_4 ,CNS_11643_5 ,CNS_11643_6 ,CNS_11643_7 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
728 | ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
729 | ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE | |
730 | }; | |
b75a7d8f | 731 | |
b75a7d8f | 732 | |
46f4442e | 733 | static UCNV_TableStates_2022 |
374ca955 A |
734 | getKey_2022(char c,int32_t* key,int32_t* offset){ |
735 | int32_t togo; | |
736 | int32_t low = 0; | |
737 | int32_t hi = MAX_STATES_2022; | |
738 | int32_t oldmid=0; | |
b75a7d8f | 739 | |
374ca955 A |
740 | togo = normalize_esq_chars_2022[(uint8_t)c]; |
741 | if(togo == 0) { | |
742 | /* not a valid character anywhere in an escape sequence */ | |
743 | *key = 0; | |
744 | *offset = 0; | |
745 | return INVALID_2022; | |
746 | } | |
747 | togo = (*key << 5) + togo; | |
b75a7d8f | 748 | |
374ca955 | 749 | while (hi != low) /*binary search*/{ |
b75a7d8f | 750 | |
374ca955 A |
751 | register int32_t mid = (hi+low) >> 1; /*Finds median*/ |
752 | ||
46f4442e | 753 | if (mid == oldmid) |
374ca955 A |
754 | break; |
755 | ||
756 | if (escSeqStateTable_Key_2022[mid] > togo){ | |
757 | hi = mid; | |
758 | } | |
759 | else if (escSeqStateTable_Key_2022[mid] < togo){ | |
760 | low = mid; | |
761 | } | |
762 | else /*we found it*/{ | |
763 | *key = togo; | |
764 | *offset = mid; | |
46f4442e | 765 | return (UCNV_TableStates_2022)escSeqStateTable_Value_2022[mid]; |
374ca955 A |
766 | } |
767 | oldmid = mid; | |
b75a7d8f | 768 | |
b75a7d8f | 769 | } |
b75a7d8f | 770 | |
374ca955 A |
771 | *key = 0; |
772 | *offset = 0; | |
773 | return INVALID_2022; | |
b75a7d8f A |
774 | } |
775 | ||
374ca955 A |
776 | /*runs through a state machine to determine the escape sequence - codepage correspondance |
777 | */ | |
46f4442e | 778 | static void |
374ca955 | 779 | changeState_2022(UConverter* _this, |
46f4442e | 780 | const char** source, |
374ca955 A |
781 | const char* sourceLimit, |
782 | Variant2022 var, | |
783 | UErrorCode* err){ | |
784 | UCNV_TableStates_2022 value; | |
785 | UConverterDataISO2022* myData2022 = ((UConverterDataISO2022*)_this->extraInfo); | |
786 | uint32_t key = myData2022->key; | |
73c04bcf | 787 | int32_t offset = 0; |
fd0068a8 | 788 | int8_t initialToULength = _this->toULength; |
374ca955 A |
789 | char c; |
790 | ||
791 | value = VALID_NON_TERMINAL_2022; | |
792 | while (*source < sourceLimit) { | |
793 | c = *(*source)++; | |
794 | _this->toUBytes[_this->toULength++]=(uint8_t)c; | |
795 | value = getKey_2022(c,(int32_t *) &key, &offset); | |
46f4442e | 796 | |
374ca955 | 797 | switch (value){ |
b75a7d8f | 798 | |
374ca955 A |
799 | case VALID_NON_TERMINAL_2022 : |
800 | /* continue with the loop */ | |
801 | break; | |
b75a7d8f | 802 | |
374ca955 A |
803 | case VALID_TERMINAL_2022: |
804 | key = 0; | |
805 | goto DONE; | |
b75a7d8f | 806 | |
374ca955 A |
807 | case INVALID_2022: |
808 | goto DONE; | |
b75a7d8f | 809 | |
374ca955 A |
810 | case VALID_MAYBE_TERMINAL_2022: |
811 | #ifdef U_ENABLE_GENERIC_ISO_2022 | |
812 | /* ESC ( B is ambiguous only for ISO_2022 itself */ | |
813 | if(var == ISO_2022) { | |
814 | /* discard toUBytes[] for ESC ( B because this sequence is correct and complete */ | |
815 | _this->toULength = 0; | |
b75a7d8f | 816 | |
374ca955 A |
817 | /* TODO need to indicate that ESC ( B was seen; if failure, then need to replay from source or from MBCS-style replay */ |
818 | ||
819 | /* continue with the loop */ | |
820 | value = VALID_NON_TERMINAL_2022; | |
821 | break; | |
822 | } else | |
823 | #endif | |
824 | { | |
825 | /* not ISO_2022 itself, finish here */ | |
826 | value = VALID_TERMINAL_2022; | |
827 | key = 0; | |
828 | goto DONE; | |
b75a7d8f A |
829 | } |
830 | } | |
b75a7d8f | 831 | } |
b75a7d8f | 832 | |
374ca955 A |
833 | DONE: |
834 | myData2022->key = key; | |
b75a7d8f | 835 | |
374ca955 A |
836 | if (value == VALID_NON_TERMINAL_2022) { |
837 | /* indicate that the escape sequence is incomplete: key!=0 */ | |
838 | return; | |
839 | } else if (value == INVALID_2022 ) { | |
840 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | |
374ca955 A |
841 | } else /* value == VALID_TERMINAL_2022 */ { |
842 | switch(var){ | |
843 | #ifdef U_ENABLE_GENERIC_ISO_2022 | |
844 | case ISO_2022: | |
845 | { | |
846 | const char *chosenConverterName = escSeqStateTable_Result_2022[offset]; | |
847 | if(chosenConverterName == NULL) { | |
848 | /* SS2 or SS3 */ | |
849 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | |
46f4442e | 850 | _this->toUCallbackReason = UCNV_UNASSIGNED; |
374ca955 | 851 | return; |
b75a7d8f | 852 | } |
374ca955 A |
853 | |
854 | _this->mode = UCNV_SI; | |
855 | ucnv_close(myData2022->currentConverter); | |
856 | myData2022->currentConverter = myUConverter = ucnv_open(chosenConverterName, err); | |
857 | if(U_SUCCESS(*err)) { | |
858 | myUConverter->fromCharErrorBehaviour = UCNV_TO_U_CALLBACK_STOP; | |
859 | _this->mode = UCNV_SO; | |
860 | } | |
861 | break; | |
862 | } | |
863 | #endif | |
864 | case ISO_2022_JP: | |
865 | { | |
46f4442e | 866 | StateEnum tempState=(StateEnum)nextStateToUnicodeJP[offset]; |
374ca955 A |
867 | switch(tempState) { |
868 | case INVALID_STATE: | |
869 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | |
870 | break; | |
871 | case SS2_STATE: | |
872 | if(myData2022->toU2022State.cs[2]!=0) { | |
873 | if(myData2022->toU2022State.g<2) { | |
874 | myData2022->toU2022State.prevG=myData2022->toU2022State.g; | |
875 | } | |
876 | myData2022->toU2022State.g=2; | |
877 | } else { | |
878 | /* illegal to have SS2 before a matching designator */ | |
879 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | |
880 | } | |
881 | break; | |
882 | /* case SS3_STATE: not used in ISO-2022-JP-x */ | |
883 | case ISO8859_1: | |
884 | case ISO8859_7: | |
885 | if((jpCharsetMasks[myData2022->version] & CSM(tempState)) == 0) { | |
886 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | |
887 | } else { | |
888 | /* G2 charset for SS2 */ | |
889 | myData2022->toU2022State.cs[2]=(int8_t)tempState; | |
890 | } | |
891 | break; | |
892 | default: | |
893 | if((jpCharsetMasks[myData2022->version] & CSM(tempState)) == 0) { | |
894 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | |
895 | } else { | |
896 | /* G0 charset */ | |
897 | myData2022->toU2022State.cs[0]=(int8_t)tempState; | |
898 | } | |
899 | break; | |
900 | } | |
901 | } | |
902 | break; | |
903 | case ISO_2022_CN: | |
904 | { | |
46f4442e | 905 | StateEnum tempState=(StateEnum)nextStateToUnicodeCN[offset]; |
374ca955 A |
906 | switch(tempState) { |
907 | case INVALID_STATE: | |
908 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | |
909 | break; | |
910 | case SS2_STATE: | |
911 | if(myData2022->toU2022State.cs[2]!=0) { | |
912 | if(myData2022->toU2022State.g<2) { | |
913 | myData2022->toU2022State.prevG=myData2022->toU2022State.g; | |
914 | } | |
915 | myData2022->toU2022State.g=2; | |
916 | } else { | |
917 | /* illegal to have SS2 before a matching designator */ | |
918 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | |
919 | } | |
920 | break; | |
921 | case SS3_STATE: | |
922 | if(myData2022->toU2022State.cs[3]!=0) { | |
923 | if(myData2022->toU2022State.g<2) { | |
924 | myData2022->toU2022State.prevG=myData2022->toU2022State.g; | |
925 | } | |
926 | myData2022->toU2022State.g=3; | |
927 | } else { | |
928 | /* illegal to have SS3 before a matching designator */ | |
929 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | |
930 | } | |
931 | break; | |
932 | case ISO_IR_165: | |
933 | if(myData2022->version==0) { | |
934 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | |
935 | break; | |
936 | } | |
73c04bcf | 937 | /*fall through*/ |
374ca955 | 938 | case GB2312_1: |
73c04bcf | 939 | /*fall through*/ |
374ca955 A |
940 | case CNS_11643_1: |
941 | myData2022->toU2022State.cs[1]=(int8_t)tempState; | |
942 | break; | |
943 | case CNS_11643_2: | |
944 | myData2022->toU2022State.cs[2]=(int8_t)tempState; | |
945 | break; | |
946 | default: | |
947 | /* other CNS 11643 planes */ | |
948 | if(myData2022->version==0) { | |
949 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | |
950 | } else { | |
951 | myData2022->toU2022State.cs[3]=(int8_t)tempState; | |
952 | } | |
953 | break; | |
954 | } | |
955 | } | |
956 | break; | |
957 | case ISO_2022_KR: | |
958 | if(offset==0x30){ | |
959 | /* nothing to be done, just accept this one escape sequence */ | |
960 | } else { | |
961 | *err = U_UNSUPPORTED_ESCAPE_SEQUENCE; | |
962 | } | |
963 | break; | |
964 | ||
965 | default: | |
966 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | |
967 | break; | |
968 | } | |
969 | } | |
970 | if(U_SUCCESS(*err)) { | |
971 | _this->toULength = 0; | |
fd0068a8 A |
972 | } else if(*err==U_ILLEGAL_ESCAPE_SEQUENCE) { |
973 | if(_this->toULength>1) { | |
974 | /* | |
975 | * Ticket 5691: consistent illegal sequences: | |
976 | * - We include at least the first byte (ESC) in the illegal sequence. | |
977 | * - If any of the non-initial bytes could be the start of a character, | |
978 | * we stop the illegal sequence before the first one of those. | |
979 | * In escape sequences, all following bytes are "printable", that is, | |
980 | * unless they are completely illegal (>7f in SBCS, outside 21..7e in DBCS), | |
981 | * they are valid single/lead bytes. | |
982 | * For simplicity, we always only report the initial ESC byte as the | |
983 | * illegal sequence and back out all other bytes we looked at. | |
984 | */ | |
985 | /* Back out some bytes. */ | |
986 | int8_t backOutDistance=_this->toULength-1; | |
987 | int8_t bytesFromThisBuffer=_this->toULength-initialToULength; | |
988 | if(backOutDistance<=bytesFromThisBuffer) { | |
989 | /* same as initialToULength<=1 */ | |
990 | *source-=backOutDistance; | |
991 | } else { | |
992 | /* Back out bytes from the previous buffer: Need to replay them. */ | |
993 | _this->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance); | |
994 | /* same as -(initialToULength-1) */ | |
995 | /* preToULength is negative! */ | |
996 | uprv_memcpy(_this->preToU, _this->toUBytes+1, -_this->preToULength); | |
997 | *source-=bytesFromThisBuffer; | |
998 | } | |
999 | _this->toULength=1; | |
1000 | } | |
46f4442e A |
1001 | } else if(*err==U_UNSUPPORTED_ESCAPE_SEQUENCE) { |
1002 | _this->toUCallbackReason = UCNV_UNASSIGNED; | |
374ca955 A |
1003 | } |
1004 | } | |
1005 | ||
1006 | /*Checks the characters of the buffer against valid 2022 escape sequences | |
1007 | *if the match we return a pointer to the initial start of the sequence otherwise | |
1008 | *we return sourceLimit | |
1009 | */ | |
1010 | /*for 2022 looks ahead in the stream | |
1011 | *to determine the longest possible convertible | |
1012 | *data stream | |
1013 | */ | |
4388f060 | 1014 | static inline const char* |
374ca955 A |
1015 | getEndOfBuffer_2022(const char** source, |
1016 | const char* sourceLimit, | |
4388f060 | 1017 | UBool /*flush*/){ |
374ca955 A |
1018 | |
1019 | const char* mySource = *source; | |
1020 | ||
1021 | #ifdef U_ENABLE_GENERIC_ISO_2022 | |
46f4442e | 1022 | if (*source >= sourceLimit) |
374ca955 A |
1023 | return sourceLimit; |
1024 | ||
1025 | do{ | |
1026 | ||
1027 | if (*mySource == ESC_2022){ | |
1028 | int8_t i; | |
1029 | int32_t key = 0; | |
1030 | int32_t offset; | |
1031 | UCNV_TableStates_2022 value = VALID_NON_TERMINAL_2022; | |
1032 | ||
1033 | /* Kludge: I could not | |
1034 | * figure out the reason for validating an escape sequence | |
1035 | * twice - once here and once in changeState_2022(). | |
1036 | * is it possible to have an ESC character in a ISO2022 | |
1037 | * byte stream which is valid in a code page? Is it legal? | |
1038 | */ | |
46f4442e | 1039 | for (i=0; |
374ca955 A |
1040 | (mySource+i < sourceLimit)&&(value == VALID_NON_TERMINAL_2022); |
1041 | i++) { | |
1042 | value = getKey_2022(*(mySource+i), &key, &offset); | |
1043 | } | |
46f4442e | 1044 | if (value > 0 || *mySource==ESC_2022) |
374ca955 A |
1045 | return mySource; |
1046 | ||
46f4442e | 1047 | if ((value == VALID_NON_TERMINAL_2022)&&(!flush) ) |
374ca955 A |
1048 | return sourceLimit; |
1049 | } | |
1050 | }while (++mySource < sourceLimit); | |
1051 | ||
1052 | return sourceLimit; | |
1053 | #else | |
1054 | while(mySource < sourceLimit && *mySource != ESC_2022) { | |
1055 | ++mySource; | |
1056 | } | |
1057 | return mySource; | |
1058 | #endif | |
1059 | } | |
1060 | ||
1061 | ||
1062 | /* This inline function replicates code in _MBCSFromUChar32() function in ucnvmbcs.c | |
46f4442e A |
1063 | * any future change in _MBCSFromUChar32() function should be reflected here. |
1064 | * @return number of bytes in *value; negative number if fallback; 0 if no mapping | |
374ca955 | 1065 | */ |
4388f060 | 1066 | static inline int32_t |
374ca955 | 1067 | MBCS_FROM_UCHAR32_ISO2022(UConverterSharedData* sharedData, |
46f4442e A |
1068 | UChar32 c, |
1069 | uint32_t* value, | |
1070 | UBool useFallback, | |
374ca955 A |
1071 | int outputType) |
1072 | { | |
1073 | const int32_t *cx; | |
1074 | const uint16_t *table; | |
1075 | uint32_t stage2Entry; | |
1076 | uint32_t myValue; | |
46f4442e | 1077 | int32_t length; |
374ca955 | 1078 | const uint8_t *p; |
46f4442e A |
1079 | /* |
1080 | * TODO(markus): Use and require new, faster MBCS conversion table structures. | |
1081 | * Use internal version of ucnv_open() that verifies that the new structures are available, | |
1082 | * else U_INTERNAL_PROGRAM_ERROR. | |
1083 | */ | |
374ca955 A |
1084 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
1085 | if(c<0x10000 || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | |
1086 | table=sharedData->mbcs.fromUnicodeTable; | |
1087 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | |
1088 | /* get the bytes and the length for the output */ | |
1089 | if(outputType==MBCS_OUTPUT_2){ | |
1090 | myValue=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); | |
1091 | if(myValue<=0xff) { | |
46f4442e | 1092 | length=1; |
374ca955 | 1093 | } else { |
46f4442e | 1094 | length=2; |
374ca955 A |
1095 | } |
1096 | } else /* outputType==MBCS_OUTPUT_3 */ { | |
1097 | p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); | |
1098 | myValue=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
1099 | if(myValue<=0xff) { | |
46f4442e | 1100 | length=1; |
374ca955 | 1101 | } else if(myValue<=0xffff) { |
46f4442e | 1102 | length=2; |
374ca955 | 1103 | } else { |
46f4442e | 1104 | length=3; |
b75a7d8f A |
1105 | } |
1106 | } | |
1107 | /* is this code point assigned, or do we use fallbacks? */ | |
46f4442e A |
1108 | if((stage2Entry&(1<<(16+(c&0xf))))!=0) { |
1109 | /* assigned */ | |
1110 | *value=myValue; | |
1111 | return length; | |
1112 | } else if(FROM_U_USE_FALLBACK(useFallback, c) && myValue!=0) { | |
b75a7d8f | 1113 | /* |
374ca955 | 1114 | * We allow a 0 byte output if the "assigned" bit is set for this entry. |
b75a7d8f | 1115 | * There is no way with this data structure for fallback output |
374ca955 | 1116 | * to be a zero byte. |
b75a7d8f | 1117 | */ |
b75a7d8f | 1118 | *value=myValue; |
46f4442e | 1119 | return -length; |
b75a7d8f | 1120 | } |
b75a7d8f | 1121 | } |
374ca955 A |
1122 | |
1123 | cx=sharedData->mbcs.extIndexes; | |
1124 | if(cx!=NULL) { | |
46f4442e | 1125 | return ucnv_extSimpleMatchFromU(cx, c, value, useFallback); |
374ca955 A |
1126 | } |
1127 | ||
1128 | /* unassigned */ | |
46f4442e | 1129 | return 0; |
b75a7d8f A |
1130 | } |
1131 | ||
1132 | /* This inline function replicates code in _MBCSSingleFromUChar32() function in ucnvmbcs.c | |
46f4442e A |
1133 | * any future change in _MBCSSingleFromUChar32() function should be reflected here. |
1134 | * @param retval pointer to output byte | |
1135 | * @return 1 roundtrip byte 0 no mapping -1 fallback byte | |
b75a7d8f | 1136 | */ |
4388f060 | 1137 | static inline int32_t |
b75a7d8f | 1138 | MBCS_SINGLE_FROM_UCHAR32(UConverterSharedData* sharedData, |
46f4442e A |
1139 | UChar32 c, |
1140 | uint32_t* retval, | |
b75a7d8f A |
1141 | UBool useFallback) |
1142 | { | |
46f4442e | 1143 | const uint16_t *table; |
b75a7d8f A |
1144 | int32_t value; |
1145 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ | |
374ca955 | 1146 | if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
46f4442e | 1147 | return 0; |
b75a7d8f A |
1148 | } |
1149 | /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ | |
374ca955 | 1150 | table=sharedData->mbcs.fromUnicodeTable; |
b75a7d8f | 1151 | /* get the byte for the output */ |
374ca955 | 1152 | value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); |
b75a7d8f | 1153 | /* is this code point assigned, or do we use fallbacks? */ |
46f4442e A |
1154 | *retval=(uint32_t)(value&0xff); |
1155 | if(value>=0xf00) { | |
1156 | return 1; /* roundtrip */ | |
1157 | } else if(useFallback ? value>=0x800 : value>=0xc00) { | |
1158 | return -1; /* fallback taken */ | |
b75a7d8f | 1159 | } else { |
46f4442e | 1160 | return 0; /* no mapping */ |
b75a7d8f | 1161 | } |
b75a7d8f A |
1162 | } |
1163 | ||
46f4442e A |
1164 | /* |
1165 | * Check that the result is a 2-byte value with each byte in the range A1..FE | |
1166 | * (strict EUC DBCS) before accepting it and subtracting 0x80 from each byte | |
1167 | * to move it to the ISO 2022 range 21..7E. | |
1168 | * Return 0 if out of range. | |
1169 | */ | |
4388f060 | 1170 | static inline uint32_t |
46f4442e A |
1171 | _2022FromGR94DBCS(uint32_t value) { |
1172 | if( (uint16_t)(value - 0xa1a1) <= (0xfefe - 0xa1a1) && | |
1173 | (uint8_t)(value - 0xa1) <= (0xfe - 0xa1) | |
1174 | ) { | |
1175 | return value - 0x8080; /* shift down to 21..7e byte range */ | |
1176 | } else { | |
1177 | return 0; /* not valid for ISO 2022 */ | |
1178 | } | |
1179 | } | |
1180 | ||
1181 | #if 0 /* 5691: Call sites now check for validity. They can just += 0x8080 after that. */ | |
1182 | /* | |
1183 | * This method does the reverse of _2022FromGR94DBCS(). Given the 2022 code point, it returns the | |
1184 | * 2 byte value that is in the range A1..FE for each byte. Otherwise it returns the 2022 code point | |
1185 | * unchanged. | |
1186 | */ | |
4388f060 | 1187 | static inline uint32_t |
46f4442e A |
1188 | _2022ToGR94DBCS(uint32_t value) { |
1189 | uint32_t returnValue = value + 0x8080; | |
1190 | if( (uint16_t)(returnValue - 0xa1a1) <= (0xfefe - 0xa1a1) && | |
1191 | (uint8_t)(returnValue - 0xa1) <= (0xfe - 0xa1)) { | |
1192 | return returnValue; | |
1193 | } else { | |
1194 | return value; | |
1195 | } | |
1196 | } | |
1197 | #endif | |
1198 | ||
374ca955 A |
1199 | #ifdef U_ENABLE_GENERIC_ISO_2022 |
1200 | ||
b75a7d8f A |
1201 | /********************************************************************************** |
1202 | * ISO-2022 Converter | |
1203 | * | |
1204 | * | |
1205 | */ | |
1206 | ||
46f4442e | 1207 | static void |
b75a7d8f A |
1208 | T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs* args, |
1209 | UErrorCode* err){ | |
374ca955 A |
1210 | const char* mySourceLimit, *realSourceLimit; |
1211 | const char* sourceStart; | |
1212 | const UChar* myTargetStart; | |
b75a7d8f | 1213 | UConverter* saveThis; |
b75a7d8f | 1214 | UConverterDataISO2022* myData; |
374ca955 A |
1215 | int8_t length; |
1216 | ||
1217 | saveThis = args->converter; | |
1218 | myData=((UConverterDataISO2022*)(saveThis->extraInfo)); | |
1219 | ||
1220 | realSourceLimit = args->sourceLimit; | |
1221 | while (args->source < realSourceLimit) { | |
1222 | if(myData->key == 0) { /* are we in the middle of an escape sequence? */ | |
1223 | /*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/ | |
1224 | mySourceLimit = getEndOfBuffer_2022(&(args->source), realSourceLimit, args->flush); | |
1225 | ||
1226 | if(args->source < mySourceLimit) { | |
1227 | if(myData->currentConverter==NULL) { | |
1228 | myData->currentConverter = ucnv_open("ASCII",err); | |
1229 | if(U_FAILURE(*err)){ | |
1230 | return; | |
1231 | } | |
b75a7d8f | 1232 | |
374ca955 A |
1233 | myData->currentConverter->fromCharErrorBehaviour = UCNV_TO_U_CALLBACK_STOP; |
1234 | saveThis->mode = UCNV_SO; | |
b75a7d8f | 1235 | } |
b75a7d8f | 1236 | |
374ca955 A |
1237 | /* convert to before the ESC or until the end of the buffer */ |
1238 | myData->isFirstBuffer=FALSE; | |
1239 | sourceStart = args->source; | |
1240 | myTargetStart = args->target; | |
1241 | args->converter = myData->currentConverter; | |
1242 | ucnv_toUnicode(args->converter, | |
1243 | &args->target, | |
1244 | args->targetLimit, | |
1245 | &args->source, | |
1246 | mySourceLimit, | |
1247 | args->offsets, | |
1248 | (UBool)(args->flush && mySourceLimit == realSourceLimit), | |
1249 | err); | |
1250 | args->converter = saveThis; | |
1251 | ||
1252 | if (*err == U_BUFFER_OVERFLOW_ERROR) { | |
1253 | /* move the overflow buffer */ | |
1254 | length = saveThis->UCharErrorBufferLength = myData->currentConverter->UCharErrorBufferLength; | |
1255 | myData->currentConverter->UCharErrorBufferLength = 0; | |
1256 | if(length > 0) { | |
1257 | uprv_memcpy(saveThis->UCharErrorBuffer, | |
1258 | myData->currentConverter->UCharErrorBuffer, | |
1259 | length*U_SIZEOF_UCHAR); | |
1260 | } | |
1261 | return; | |
1262 | } | |
b75a7d8f | 1263 | |
374ca955 A |
1264 | /* |
1265 | * At least one of: | |
1266 | * -Error while converting | |
1267 | * -Done with entire buffer | |
1268 | * -Need to write offsets or update the current offset | |
1269 | * (leave that up to the code in ucnv.c) | |
1270 | * | |
1271 | * or else we just stopped at an ESC byte and continue with changeState_2022() | |
1272 | */ | |
1273 | if (U_FAILURE(*err) || | |
1274 | (args->source == realSourceLimit) || | |
1275 | (args->offsets != NULL && (args->target != myTargetStart || args->source != sourceStart) || | |
1276 | (mySourceLimit < realSourceLimit && myData->currentConverter->toULength > 0)) | |
1277 | ) { | |
1278 | /* copy partial or error input for truncated detection and error handling */ | |
1279 | if(U_FAILURE(*err)) { | |
1280 | length = saveThis->invalidCharLength = myData->currentConverter->invalidCharLength; | |
1281 | if(length > 0) { | |
1282 | uprv_memcpy(saveThis->invalidCharBuffer, myData->currentConverter->invalidCharBuffer, length); | |
1283 | } | |
1284 | } else { | |
1285 | length = saveThis->toULength = myData->currentConverter->toULength; | |
1286 | if(length > 0) { | |
1287 | uprv_memcpy(saveThis->toUBytes, myData->currentConverter->toUBytes, length); | |
1288 | if(args->source < mySourceLimit) { | |
1289 | *err = U_TRUNCATED_CHAR_FOUND; /* truncated input before ESC */ | |
1290 | } | |
1291 | } | |
1292 | } | |
1293 | return; | |
b75a7d8f | 1294 | } |
b75a7d8f A |
1295 | } |
1296 | } | |
b75a7d8f A |
1297 | |
1298 | sourceStart = args->source; | |
1299 | changeState_2022(args->converter, | |
46f4442e | 1300 | &(args->source), |
374ca955 | 1301 | realSourceLimit, |
b75a7d8f | 1302 | ISO_2022, |
b75a7d8f | 1303 | err); |
374ca955 A |
1304 | if (U_FAILURE(*err) || (args->source != sourceStart && args->offsets != NULL)) { |
1305 | /* let the ucnv.c code update its current offset */ | |
1306 | return; | |
b75a7d8f | 1307 | } |
b75a7d8f | 1308 | } |
b75a7d8f A |
1309 | } |
1310 | ||
374ca955 | 1311 | #endif |
b75a7d8f A |
1312 | |
1313 | /* | |
1314 | * To Unicode Callback helper function | |
1315 | */ | |
46f4442e | 1316 | static void |
374ca955 A |
1317 | toUnicodeCallback(UConverter *cnv, |
1318 | const uint32_t sourceChar, const uint32_t targetUniChar, | |
1319 | UErrorCode* err){ | |
b75a7d8f | 1320 | if(sourceChar>0xff){ |
374ca955 A |
1321 | cnv->toUBytes[0] = (uint8_t)(sourceChar>>8); |
1322 | cnv->toUBytes[1] = (uint8_t)sourceChar; | |
1323 | cnv->toULength = 2; | |
b75a7d8f A |
1324 | } |
1325 | else{ | |
374ca955 | 1326 | cnv->toUBytes[0] =(char) sourceChar; |
fd0068a8 | 1327 | cnv->toULength = 1; |
b75a7d8f A |
1328 | } |
1329 | ||
1330 | if(targetUniChar == (missingCharMarker-1/*0xfffe*/)){ | |
b75a7d8f A |
1331 | *err = U_INVALID_CHAR_FOUND; |
1332 | } | |
1333 | else{ | |
b75a7d8f A |
1334 | *err = U_ILLEGAL_CHAR_FOUND; |
1335 | } | |
b75a7d8f A |
1336 | } |
1337 | ||
1338 | /**************************************ISO-2022-JP*************************************************/ | |
1339 | ||
1340 | /************************************** IMPORTANT ************************************************** | |
1341 | * The UConverter_fromUnicode_ISO2022_JP converter does not use ucnv_fromUnicode() functions for SBCS,DBCS and | |
1342 | * MBCS; instead, the values are obtained directly by calling _MBCSFromUChar32(). | |
46f4442e A |
1343 | * The converter iterates over each Unicode codepoint |
1344 | * to obtain the equivalent codepoints from the codepages supported. Since the source buffer is | |
1345 | * processed one char at a time it would make sense to reduce the extra processing a canned converter | |
b75a7d8f A |
1346 | * would do as far as possible. |
1347 | * | |
46f4442e A |
1348 | * If the implementation of these macros or structure of sharedData struct change in the future, make |
1349 | * sure that ISO-2022 is also changed. | |
b75a7d8f A |
1350 | *************************************************************************************************** |
1351 | */ | |
1352 | ||
1353 | /*************************************************************************************************** | |
1354 | * Rules for ISO-2022-jp encoding | |
46f4442e | 1355 | * (i) Escape sequences must be fully contained within a line they should not |
b75a7d8f A |
1356 | * span new lines or CRs |
1357 | * (ii) If the last character on a line is represented by two bytes then an ASCII or | |
1358 | * JIS-Roman character escape sequence should follow before the line terminates | |
46f4442e A |
1359 | * (iii) If the first character on the line is represented by two bytes then a two |
1360 | * byte character escape sequence should precede it | |
b75a7d8f A |
1361 | * (iv) If no escape sequence is encountered then the characters are ASCII |
1362 | * (v) Latin(ISO-8859-1) and Greek(ISO-8859-7) characters must be designated to G2, | |
1363 | * and invoked with SS2 (ESC N). | |
1364 | * (vi) If there is any G0 designation in text, there must be a switch to | |
1365 | * ASCII or to JIS X 0201-Roman before a space character (but not | |
1366 | * necessarily before "ESC 4/14 2/0" or "ESC N ' '") or control | |
1367 | * characters such as tab or CRLF. | |
1368 | * (vi) Supported encodings: | |
1369 | * ASCII, JISX201, JISX208, JISX212, GB2312, KSC5601, ISO-8859-1,ISO-8859-7 | |
1370 | * | |
1371 | * source : RFC-1554 | |
1372 | * | |
1373 | * JISX201, JISX208,JISX212 : new .cnv data files created | |
1374 | * KSC5601 : alias to ibm-949 mapping table | |
1375 | * GB2312 : alias to ibm-1386 mapping table | |
1376 | * ISO-8859-1 : Algorithmic implemented as LATIN1 case | |
1377 | * ISO-8859-7 : alisas to ibm-9409 mapping table | |
1378 | */ | |
b75a7d8f | 1379 | |
374ca955 A |
1380 | /* preference order of JP charsets */ |
1381 | static const StateEnum jpCharsetPref[]={ | |
1382 | ASCII, | |
1383 | JISX201, | |
1384 | ISO8859_1, | |
1385 | ISO8859_7, | |
1386 | JISX208, | |
1387 | JISX212, | |
1388 | GB2312, | |
1389 | KSC5601, | |
1390 | HWKANA_7BIT | |
b75a7d8f A |
1391 | }; |
1392 | ||
73c04bcf A |
1393 | /* |
1394 | * The escape sequences must be in order of the enum constants like JISX201 = 3, | |
1395 | * not in order of jpCharsetPref[]! | |
1396 | */ | |
374ca955 | 1397 | static const char escSeqChars[][6] ={ |
b75a7d8f A |
1398 | "\x1B\x28\x42", /* <ESC>(B ASCII */ |
1399 | "\x1B\x2E\x41", /* <ESC>.A ISO-8859-1 */ | |
1400 | "\x1B\x2E\x46", /* <ESC>.F ISO-8859-7 */ | |
1401 | "\x1B\x28\x4A", /* <ESC>(J JISX-201 */ | |
1402 | "\x1B\x24\x42", /* <ESC>$B JISX-208 */ | |
1403 | "\x1B\x24\x28\x44", /* <ESC>$(D JISX-212 */ | |
1404 | "\x1B\x24\x41", /* <ESC>$A GB2312 */ | |
1405 | "\x1B\x24\x28\x43", /* <ESC>$(C KSC5601 */ | |
1406 | "\x1B\x28\x49" /* <ESC>(I HWKANA_7BIT */ | |
1407 | ||
1408 | }; | |
46f4442e | 1409 | static const int8_t escSeqCharsLen[] ={ |
374ca955 | 1410 | 3, /* length of <ESC>(B ASCII */ |
b75a7d8f A |
1411 | 3, /* length of <ESC>.A ISO-8859-1 */ |
1412 | 3, /* length of <ESC>.F ISO-8859-7 */ | |
1413 | 3, /* length of <ESC>(J JISX-201 */ | |
1414 | 3, /* length of <ESC>$B JISX-208 */ | |
1415 | 4, /* length of <ESC>$(D JISX-212 */ | |
1416 | 3, /* length of <ESC>$A GB2312 */ | |
1417 | 4, /* length of <ESC>$(C KSC5601 */ | |
1418 | 3 /* length of <ESC>(I HWKANA_7BIT */ | |
1419 | }; | |
1420 | ||
1421 | /* | |
1422 | * The iteration over various code pages works this way: | |
1423 | * i) Get the currentState from myConverterData->currentState | |
1424 | * ii) Check if the character is mapped to a valid character in the currentState | |
1425 | * Yes -> a) set the initIterState to currentState | |
1426 | * b) remain in this state until an invalid character is found | |
1427 | * No -> a) go to the next code page and find the character | |
46f4442e | 1428 | * iii) Before changing the state increment the current state check if the current state |
b75a7d8f A |
1429 | * is equal to the intitIteration state |
1430 | * Yes -> A character that cannot be represented in any of the supported encodings | |
1431 | * break and return a U_INVALID_CHARACTER error | |
1432 | * No -> Continue and find the character in next code page | |
1433 | * | |
1434 | * | |
46f4442e | 1435 | * TODO: Implement a priority technique where the users are allowed to set the priority of code pages |
b75a7d8f A |
1436 | */ |
1437 | ||
46f4442e | 1438 | /* Map 00..7F to Unicode according to JIS X 0201. */ |
4388f060 | 1439 | static inline uint32_t |
46f4442e A |
1440 | jisx201ToU(uint32_t value) { |
1441 | if(value < 0x5c) { | |
1442 | return value; | |
1443 | } else if(value == 0x5c) { | |
1444 | return 0xa5; | |
1445 | } else if(value == 0x7e) { | |
1446 | return 0x203e; | |
1447 | } else /* value <= 0x7f */ { | |
1448 | return value; | |
1449 | } | |
1450 | } | |
1451 | ||
1452 | /* Map Unicode to 00..7F according to JIS X 0201. Return U+FFFE if unmappable. */ | |
4388f060 | 1453 | static inline uint32_t |
46f4442e A |
1454 | jisx201FromU(uint32_t value) { |
1455 | if(value<=0x7f) { | |
1456 | if(value!=0x5c && value!=0x7e) { | |
1457 | return value; | |
1458 | } | |
1459 | } else if(value==0xa5) { | |
1460 | return 0x5c; | |
1461 | } else if(value==0x203e) { | |
1462 | return 0x7e; | |
1463 | } | |
1464 | return 0xfffe; | |
1465 | } | |
1466 | ||
1467 | /* | |
1468 | * Take a valid Shift-JIS byte pair, check that it is in the range corresponding | |
1469 | * to JIS X 0208, and convert it to a pair of 21..7E bytes. | |
1470 | * Return 0 if the byte pair is out of range. | |
1471 | */ | |
4388f060 | 1472 | static inline uint32_t |
46f4442e A |
1473 | _2022FromSJIS(uint32_t value) { |
1474 | uint8_t trail; | |
1475 | ||
1476 | if(value > 0xEFFC) { | |
1477 | return 0; /* beyond JIS X 0208 */ | |
1478 | } | |
1479 | ||
1480 | trail = (uint8_t)value; | |
1481 | ||
1482 | value &= 0xff00; /* lead byte */ | |
1483 | if(value <= 0x9f00) { | |
1484 | value -= 0x7000; | |
1485 | } else /* 0xe000 <= value <= 0xef00 */ { | |
1486 | value -= 0xb000; | |
1487 | } | |
1488 | value <<= 1; | |
1489 | ||
1490 | if(trail <= 0x9e) { | |
1491 | value -= 0x100; | |
1492 | if(trail <= 0x7e) { | |
1493 | value |= trail - 0x1f; | |
1494 | } else { | |
1495 | value |= trail - 0x20; | |
1496 | } | |
1497 | } else /* trail <= 0xfc */ { | |
1498 | value |= trail - 0x7e; | |
1499 | } | |
1500 | return value; | |
1501 | } | |
1502 | ||
1503 | /* | |
1504 | * Convert a pair of JIS X 0208 21..7E bytes to Shift-JIS. | |
1505 | * If either byte is outside 21..7E make sure that the result is not valid | |
1506 | * for Shift-JIS so that the converter catches it. | |
1507 | * Some invalid byte values already turn into equally invalid Shift-JIS | |
1508 | * byte values and need not be tested explicitly. | |
1509 | */ | |
4388f060 | 1510 | static inline void |
46f4442e A |
1511 | _2022ToSJIS(uint8_t c1, uint8_t c2, char bytes[2]) { |
1512 | if(c1&1) { | |
1513 | ++c1; | |
1514 | if(c2 <= 0x5f) { | |
1515 | c2 += 0x1f; | |
1516 | } else if(c2 <= 0x7e) { | |
1517 | c2 += 0x20; | |
1518 | } else { | |
1519 | c2 = 0; /* invalid */ | |
1520 | } | |
1521 | } else { | |
1522 | if((uint8_t)(c2-0x21) <= ((0x7e)-0x21)) { | |
1523 | c2 += 0x7e; | |
1524 | } else { | |
1525 | c2 = 0; /* invalid */ | |
1526 | } | |
1527 | } | |
1528 | c1 >>= 1; | |
1529 | if(c1 <= 0x2f) { | |
1530 | c1 += 0x70; | |
1531 | } else if(c1 <= 0x3f) { | |
1532 | c1 += 0xb0; | |
1533 | } else { | |
1534 | c1 = 0; /* invalid */ | |
1535 | } | |
1536 | bytes[0] = (char)c1; | |
1537 | bytes[1] = (char)c2; | |
1538 | } | |
1539 | ||
1540 | /* | |
1541 | * JIS X 0208 has fallbacks from Unicode half-width Katakana to full-width (DBCS) | |
1542 | * Katakana. | |
1543 | * Now that we use a Shift-JIS table for JIS X 0208 we need to hardcode these fallbacks | |
1544 | * because Shift-JIS roundtrips half-width Katakana to single bytes. | |
1545 | * These were the only fallbacks in ICU's jisx-208.ucm file. | |
1546 | */ | |
1547 | static const uint16_t hwkana_fb[HWKANA_END - HWKANA_START + 1] = { | |
1548 | 0x2123, /* U+FF61 */ | |
1549 | 0x2156, | |
1550 | 0x2157, | |
1551 | 0x2122, | |
1552 | 0x2126, | |
1553 | 0x2572, | |
1554 | 0x2521, | |
1555 | 0x2523, | |
1556 | 0x2525, | |
1557 | 0x2527, | |
1558 | 0x2529, | |
1559 | 0x2563, | |
1560 | 0x2565, | |
1561 | 0x2567, | |
1562 | 0x2543, | |
1563 | 0x213C, /* U+FF70 */ | |
1564 | 0x2522, | |
1565 | 0x2524, | |
1566 | 0x2526, | |
1567 | 0x2528, | |
1568 | 0x252A, | |
1569 | 0x252B, | |
1570 | 0x252D, | |
1571 | 0x252F, | |
1572 | 0x2531, | |
1573 | 0x2533, | |
1574 | 0x2535, | |
1575 | 0x2537, | |
1576 | 0x2539, | |
1577 | 0x253B, | |
1578 | 0x253D, | |
1579 | 0x253F, /* U+FF80 */ | |
1580 | 0x2541, | |
1581 | 0x2544, | |
1582 | 0x2546, | |
1583 | 0x2548, | |
1584 | 0x254A, | |
1585 | 0x254B, | |
1586 | 0x254C, | |
1587 | 0x254D, | |
1588 | 0x254E, | |
1589 | 0x254F, | |
1590 | 0x2552, | |
1591 | 0x2555, | |
1592 | 0x2558, | |
1593 | 0x255B, | |
1594 | 0x255E, | |
1595 | 0x255F, /* U+FF90 */ | |
1596 | 0x2560, | |
1597 | 0x2561, | |
1598 | 0x2562, | |
1599 | 0x2564, | |
1600 | 0x2566, | |
1601 | 0x2568, | |
1602 | 0x2569, | |
1603 | 0x256A, | |
1604 | 0x256B, | |
1605 | 0x256C, | |
1606 | 0x256D, | |
1607 | 0x256F, | |
1608 | 0x2573, | |
1609 | 0x212B, | |
1610 | 0x212C /* U+FF9F */ | |
1611 | }; | |
1612 | ||
1613 | static void | |
374ca955 | 1614 | UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err) { |
46f4442e | 1615 | UConverter *cnv = args->converter; |
b75a7d8f | 1616 | UConverterDataISO2022 *converterData; |
374ca955 A |
1617 | ISO2022State *pFromU2022State; |
1618 | uint8_t *target = (uint8_t *) args->target; | |
1619 | const uint8_t *targetLimit = (const uint8_t *) args->targetLimit; | |
b75a7d8f A |
1620 | const UChar* source = args->source; |
1621 | const UChar* sourceLimit = args->sourceLimit; | |
1622 | int32_t* offsets = args->offsets; | |
374ca955 A |
1623 | UChar32 sourceChar; |
1624 | char buffer[8]; | |
1625 | int32_t len, outLen; | |
1626 | int8_t choices[10]; | |
1627 | int32_t choiceCount; | |
73c04bcf | 1628 | uint32_t targetValue = 0; |
374ca955 A |
1629 | UBool useFallback; |
1630 | ||
1631 | int32_t i; | |
1632 | int8_t cs, g; | |
1633 | ||
1634 | /* set up the state */ | |
46f4442e | 1635 | converterData = (UConverterDataISO2022*)cnv->extraInfo; |
374ca955 | 1636 | pFromU2022State = &converterData->fromU2022State; |
374ca955 A |
1637 | |
1638 | choiceCount = 0; | |
b75a7d8f | 1639 | |
b75a7d8f | 1640 | /* check if the last codepoint of previous buffer was a lead surrogate*/ |
46f4442e | 1641 | if((sourceChar = cnv->fromUChar32)!=0 && target< targetLimit) { |
b75a7d8f A |
1642 | goto getTrail; |
1643 | } | |
b75a7d8f | 1644 | |
374ca955 A |
1645 | while(source < sourceLimit) { |
1646 | if(target < targetLimit) { | |
b75a7d8f | 1647 | |
b75a7d8f | 1648 | sourceChar = *(source++); |
374ca955 | 1649 | /*check if the char is a First surrogate*/ |
4388f060 A |
1650 | if(U16_IS_SURROGATE(sourceChar)) { |
1651 | if(U16_IS_SURROGATE_LEAD(sourceChar)) { | |
374ca955 A |
1652 | getTrail: |
1653 | /*look ahead to find the trail surrogate*/ | |
1654 | if(source < sourceLimit) { | |
1655 | /* test the following code unit */ | |
1656 | UChar trail=(UChar) *source; | |
4388f060 | 1657 | if(U16_IS_TRAIL(trail)) { |
374ca955 | 1658 | source++; |
4388f060 | 1659 | sourceChar=U16_GET_SUPPLEMENTARY(sourceChar, trail); |
46f4442e | 1660 | cnv->fromUChar32=0x00; |
374ca955 A |
1661 | /* convert this supplementary code point */ |
1662 | /* exit this condition tree */ | |
1663 | } else { | |
1664 | /* this is an unmatched lead code unit (1st surrogate) */ | |
1665 | /* callback(illegal) */ | |
1666 | *err=U_ILLEGAL_CHAR_FOUND; | |
46f4442e | 1667 | cnv->fromUChar32=sourceChar; |
374ca955 | 1668 | break; |
b75a7d8f | 1669 | } |
374ca955 A |
1670 | } else { |
1671 | /* no more input */ | |
46f4442e | 1672 | cnv->fromUChar32=sourceChar; |
b75a7d8f A |
1673 | break; |
1674 | } | |
374ca955 A |
1675 | } else { |
1676 | /* this is an unmatched trail code unit (2nd surrogate) */ | |
1677 | /* callback(illegal) */ | |
1678 | *err=U_ILLEGAL_CHAR_FOUND; | |
46f4442e | 1679 | cnv->fromUChar32=sourceChar; |
374ca955 A |
1680 | break; |
1681 | } | |
b75a7d8f A |
1682 | } |
1683 | ||
73c04bcf A |
1684 | /* do not convert SO/SI/ESC */ |
1685 | if(IS_2022_CONTROL(sourceChar)) { | |
1686 | /* callback(illegal) */ | |
1687 | *err=U_ILLEGAL_CHAR_FOUND; | |
46f4442e | 1688 | cnv->fromUChar32=sourceChar; |
73c04bcf A |
1689 | break; |
1690 | } | |
1691 | ||
374ca955 | 1692 | /* do the conversion */ |
b75a7d8f | 1693 | |
374ca955 A |
1694 | if(choiceCount == 0) { |
1695 | uint16_t csm; | |
b75a7d8f | 1696 | |
374ca955 A |
1697 | /* |
1698 | * The csm variable keeps track of which charsets are allowed | |
1699 | * and not used yet while building the choices[]. | |
1700 | */ | |
1701 | csm = jpCharsetMasks[converterData->version]; | |
1702 | choiceCount = 0; | |
1703 | ||
1704 | /* JIS7/8: try single-byte half-width Katakana before JISX208 */ | |
1705 | if(converterData->version == 3 || converterData->version == 4) { | |
46f4442e | 1706 | choices[choiceCount++] = (int8_t)HWKANA_7BIT; |
374ca955 | 1707 | } |
46f4442e A |
1708 | /* Do not try single-byte half-width Katakana for other versions. */ |
1709 | csm &= ~CSM(HWKANA_7BIT); | |
b75a7d8f | 1710 | |
374ca955 A |
1711 | /* try the current G0 charset */ |
1712 | choices[choiceCount++] = cs = pFromU2022State->cs[0]; | |
1713 | csm &= ~CSM(cs); | |
b75a7d8f | 1714 | |
374ca955 A |
1715 | /* try the current G2 charset */ |
1716 | if((cs = pFromU2022State->cs[2]) != 0) { | |
1717 | choices[choiceCount++] = cs; | |
1718 | csm &= ~CSM(cs); | |
1719 | } | |
1720 | ||
1721 | /* try all the other possible charsets */ | |
1722 | for(i = 0; i < LENGTHOF(jpCharsetPref); ++i) { | |
1723 | cs = (int8_t)jpCharsetPref[i]; | |
1724 | if(CSM(cs) & csm) { | |
1725 | choices[choiceCount++] = cs; | |
1726 | csm &= ~CSM(cs); | |
b75a7d8f A |
1727 | } |
1728 | } | |
374ca955 | 1729 | } |
b75a7d8f | 1730 | |
374ca955 | 1731 | cs = g = 0; |
46f4442e A |
1732 | /* |
1733 | * len==0: no mapping found yet | |
1734 | * len<0: found a fallback result: continue looking for a roundtrip but no further fallbacks | |
1735 | * len>0: found a roundtrip result, done | |
1736 | */ | |
374ca955 | 1737 | len = 0; |
46f4442e A |
1738 | /* |
1739 | * We will turn off useFallback after finding a fallback, | |
1740 | * but we still get fallbacks from PUA code points as usual. | |
1741 | * Therefore, we will also need to check that we don't overwrite | |
1742 | * an early fallback with a later one. | |
1743 | */ | |
1744 | useFallback = cnv->useFallback; | |
374ca955 | 1745 | |
46f4442e A |
1746 | for(i = 0; i < choiceCount && len <= 0; ++i) { |
1747 | uint32_t value; | |
1748 | int32_t len2; | |
1749 | int8_t cs0 = choices[i]; | |
1750 | switch(cs0) { | |
374ca955 A |
1751 | case ASCII: |
1752 | if(sourceChar <= 0x7f) { | |
1753 | targetValue = (uint32_t)sourceChar; | |
1754 | len = 1; | |
46f4442e A |
1755 | cs = cs0; |
1756 | g = 0; | |
b75a7d8f | 1757 | } |
374ca955 A |
1758 | break; |
1759 | case ISO8859_1: | |
46f4442e | 1760 | if(GR96_START <= sourceChar && sourceChar <= GR96_END) { |
374ca955 A |
1761 | targetValue = (uint32_t)sourceChar - 0x80; |
1762 | len = 1; | |
46f4442e | 1763 | cs = cs0; |
374ca955 A |
1764 | g = 2; |
1765 | } | |
1766 | break; | |
1767 | case HWKANA_7BIT: | |
46f4442e | 1768 | if((uint32_t)(sourceChar - HWKANA_START) <= (HWKANA_END - HWKANA_START)) { |
374ca955 A |
1769 | if(converterData->version==3) { |
1770 | /* JIS7: use G1 (SO) */ | |
46f4442e A |
1771 | /* Shift U+FF61..U+FF9F to bytes 21..5F. */ |
1772 | targetValue = (uint32_t)(sourceChar - (HWKANA_START - 0x21)); | |
1773 | len = 1; | |
1774 | pFromU2022State->cs[1] = cs = cs0; /* do not output an escape sequence */ | |
374ca955 A |
1775 | g = 1; |
1776 | } else if(converterData->version==4) { | |
1777 | /* JIS8: use 8-bit bytes with any single-byte charset, see escape sequence output below */ | |
46f4442e A |
1778 | /* Shift U+FF61..U+FF9F to bytes A1..DF. */ |
1779 | targetValue = (uint32_t)(sourceChar - (HWKANA_START - 0xa1)); | |
1780 | len = 1; | |
374ca955 | 1781 | |
46f4442e A |
1782 | cs = pFromU2022State->cs[0]; |
1783 | if(IS_JP_DBCS(cs)) { | |
374ca955 A |
1784 | /* switch from a DBCS charset to JISX201 */ |
1785 | cs = (int8_t)JISX201; | |
b75a7d8f | 1786 | } |
46f4442e A |
1787 | /* else stay in the current G0 charset */ |
1788 | g = 0; | |
b75a7d8f | 1789 | } |
46f4442e | 1790 | /* else do not use HWKANA_7BIT with other versions */ |
b75a7d8f | 1791 | } |
374ca955 A |
1792 | break; |
1793 | case JISX201: | |
1794 | /* G0 SBCS */ | |
46f4442e A |
1795 | value = jisx201FromU(sourceChar); |
1796 | if(value <= 0x7f) { | |
1797 | targetValue = value; | |
374ca955 | 1798 | len = 1; |
46f4442e A |
1799 | cs = cs0; |
1800 | g = 0; | |
1801 | useFallback = FALSE; | |
1802 | } | |
1803 | break; | |
1804 | case JISX208: | |
1805 | /* G0 DBCS from Shift-JIS table */ | |
1806 | len2 = MBCS_FROM_UCHAR32_ISO2022( | |
1807 | converterData->myConverterArray[cs0], | |
1808 | sourceChar, &value, | |
1809 | useFallback, MBCS_OUTPUT_2); | |
1810 | if(len2 == 2 || (len2 == -2 && len == 0)) { /* only accept DBCS: abs(len)==2 */ | |
1811 | value = _2022FromSJIS(value); | |
1812 | if(value != 0) { | |
1813 | targetValue = value; | |
1814 | len = len2; | |
1815 | cs = cs0; | |
1816 | g = 0; | |
1817 | useFallback = FALSE; | |
1818 | } | |
1819 | } else if(len == 0 && useFallback && | |
1820 | (uint32_t)(sourceChar - HWKANA_START) <= (HWKANA_END - HWKANA_START)) { | |
1821 | targetValue = hwkana_fb[sourceChar - HWKANA_START]; | |
1822 | len = -2; | |
1823 | cs = cs0; | |
1824 | g = 0; | |
1825 | useFallback = FALSE; | |
374ca955 A |
1826 | } |
1827 | break; | |
1828 | case ISO8859_7: | |
1829 | /* G0 SBCS forced to 7-bit output */ | |
46f4442e A |
1830 | len2 = MBCS_SINGLE_FROM_UCHAR32( |
1831 | converterData->myConverterArray[cs0], | |
1832 | sourceChar, &value, | |
1833 | useFallback); | |
1834 | if(len2 != 0 && !(len2 < 0 && len != 0) && GR96_START <= value && value <= GR96_END) { | |
1835 | targetValue = value - 0x80; | |
1836 | len = len2; | |
1837 | cs = cs0; | |
374ca955 | 1838 | g = 2; |
46f4442e | 1839 | useFallback = FALSE; |
374ca955 A |
1840 | } |
1841 | break; | |
1842 | default: | |
1843 | /* G0 DBCS */ | |
46f4442e A |
1844 | len2 = MBCS_FROM_UCHAR32_ISO2022( |
1845 | converterData->myConverterArray[cs0], | |
1846 | sourceChar, &value, | |
1847 | useFallback, MBCS_OUTPUT_2); | |
1848 | if(len2 == 2 || (len2 == -2 && len == 0)) { /* only accept DBCS: abs(len)==2 */ | |
1849 | if(cs0 == KSC5601) { | |
1850 | /* | |
1851 | * Check for valid bytes for the encoding scheme. | |
1852 | * This is necessary because the sub-converter (windows-949) | |
1853 | * has a broader encoding scheme than is valid for 2022. | |
1854 | */ | |
1855 | value = _2022FromGR94DBCS(value); | |
1856 | if(value == 0) { | |
1857 | break; | |
1858 | } | |
1859 | } | |
1860 | targetValue = value; | |
1861 | len = len2; | |
1862 | cs = cs0; | |
1863 | g = 0; | |
1864 | useFallback = FALSE; | |
374ca955 A |
1865 | } |
1866 | break; | |
b75a7d8f A |
1867 | } |
1868 | } | |
b75a7d8f | 1869 | |
46f4442e A |
1870 | if(len != 0) { |
1871 | if(len < 0) { | |
1872 | len = -len; /* fallback */ | |
1873 | } | |
374ca955 A |
1874 | outLen = 0; /* count output bytes */ |
1875 | ||
1876 | /* write SI if necessary (only for JIS7) */ | |
1877 | if(pFromU2022State->g == 1 && g == 0) { | |
1878 | buffer[outLen++] = UCNV_SI; | |
1879 | pFromU2022State->g = 0; | |
1880 | } | |
1881 | ||
1882 | /* write the designation sequence if necessary */ | |
1883 | if(cs != pFromU2022State->cs[g]) { | |
1884 | int32_t escLen = escSeqCharsLen[cs]; | |
1885 | uprv_memcpy(buffer + outLen, escSeqChars[cs], escLen); | |
1886 | outLen += escLen; | |
1887 | pFromU2022State->cs[g] = cs; | |
1888 | ||
1889 | /* invalidate the choices[] */ | |
1890 | choiceCount = 0; | |
1891 | } | |
1892 | ||
1893 | /* write the shift sequence if necessary */ | |
1894 | if(g != pFromU2022State->g) { | |
1895 | switch(g) { | |
1896 | /* case 0 handled before writing escapes */ | |
1897 | case 1: | |
1898 | buffer[outLen++] = UCNV_SO; | |
1899 | pFromU2022State->g = 1; | |
1900 | break; | |
1901 | default: /* case 2 */ | |
1902 | buffer[outLen++] = 0x1b; | |
1903 | buffer[outLen++] = 0x4e; | |
1904 | break; | |
1905 | /* no case 3: no SS3 in ISO-2022-JP-x */ | |
1906 | } | |
1907 | } | |
1908 | ||
1909 | /* write the output bytes */ | |
1910 | if(len == 1) { | |
1911 | buffer[outLen++] = (char)targetValue; | |
1912 | } else /* len == 2 */ { | |
1913 | buffer[outLen++] = (char)(targetValue >> 8); | |
1914 | buffer[outLen++] = (char)targetValue; | |
1915 | } | |
1916 | } else { | |
1917 | /* | |
46f4442e | 1918 | * if we cannot find the character after checking all codepages |
b75a7d8f A |
1919 | * then this is an error |
1920 | */ | |
b75a7d8f | 1921 | *err = U_INVALID_CHAR_FOUND; |
46f4442e | 1922 | cnv->fromUChar32=sourceChar; |
374ca955 A |
1923 | break; |
1924 | } | |
1925 | ||
1926 | if(sourceChar == CR || sourceChar == LF) { | |
1927 | /* reset the G2 state at the end of a line (conversion got us into ASCII or JISX201 already) */ | |
1928 | pFromU2022State->cs[2] = 0; | |
1929 | choiceCount = 0; | |
1930 | } | |
1931 | ||
1932 | /* output outLen>0 bytes in buffer[] */ | |
1933 | if(outLen == 1) { | |
1934 | *target++ = buffer[0]; | |
1935 | if(offsets) { | |
73c04bcf | 1936 | *offsets++ = (int32_t)(source - args->source - 1); /* -1: known to be ASCII */ |
b75a7d8f | 1937 | } |
374ca955 A |
1938 | } else if(outLen == 2 && (target + 2) <= targetLimit) { |
1939 | *target++ = buffer[0]; | |
1940 | *target++ = buffer[1]; | |
1941 | if(offsets) { | |
1942 | int32_t sourceIndex = (int32_t)(source - args->source - U16_LENGTH(sourceChar)); | |
1943 | *offsets++ = sourceIndex; | |
1944 | *offsets++ = sourceIndex; | |
1945 | } | |
1946 | } else { | |
73c04bcf | 1947 | fromUWriteUInt8( |
46f4442e | 1948 | cnv, |
374ca955 | 1949 | buffer, outLen, |
73c04bcf | 1950 | &target, (const char *)targetLimit, |
374ca955 A |
1951 | &offsets, (int32_t)(source - args->source - U16_LENGTH(sourceChar)), |
1952 | err); | |
1953 | if(U_FAILURE(*err)) { | |
b75a7d8f A |
1954 | break; |
1955 | } | |
1956 | } | |
1957 | } /* end if(myTargetIndex<myTargetLength) */ | |
1958 | else{ | |
1959 | *err =U_BUFFER_OVERFLOW_ERROR; | |
1960 | break; | |
1961 | } | |
1962 | ||
1963 | }/* end while(mySourceIndex<mySourceLength) */ | |
1964 | ||
374ca955 A |
1965 | /* |
1966 | * the end of the input stream and detection of truncated input | |
1967 | * are handled by the framework, but for ISO-2022-JP conversion | |
1968 | * we need to be in ASCII mode at the very end | |
1969 | * | |
1970 | * conditions: | |
1971 | * successful | |
1972 | * in SO mode or not in ASCII mode | |
1973 | * end of input and no truncated input | |
b75a7d8f | 1974 | */ |
374ca955 A |
1975 | if( U_SUCCESS(*err) && |
1976 | (pFromU2022State->g!=0 || pFromU2022State->cs[0]!=ASCII) && | |
46f4442e | 1977 | args->flush && source>=sourceLimit && cnv->fromUChar32==0 |
374ca955 A |
1978 | ) { |
1979 | int32_t sourceIndex; | |
1980 | ||
1981 | outLen = 0; | |
1982 | ||
1983 | if(pFromU2022State->g != 0) { | |
1984 | buffer[outLen++] = UCNV_SI; | |
1985 | pFromU2022State->g = 0; | |
1986 | } | |
1987 | ||
1988 | if(pFromU2022State->cs[0] != ASCII) { | |
1989 | int32_t escLen = escSeqCharsLen[ASCII]; | |
1990 | uprv_memcpy(buffer + outLen, escSeqChars[ASCII], escLen); | |
1991 | outLen += escLen; | |
1992 | pFromU2022State->cs[0] = (int8_t)ASCII; | |
1993 | } | |
1994 | ||
1995 | /* get the source index of the last input character */ | |
1996 | /* | |
1997 | * TODO this would be simpler and more reliable if we used a pair | |
1998 | * of sourceIndex/prevSourceIndex like in ucnvmbcs.c | |
1999 | * so that we could simply use the prevSourceIndex here; | |
2000 | * this code gives an incorrect result for the rare case of an unmatched | |
2001 | * trail surrogate that is alone in the last buffer of the text stream | |
2002 | */ | |
2003 | sourceIndex=(int32_t)(source-args->source); | |
2004 | if(sourceIndex>0) { | |
2005 | --sourceIndex; | |
2006 | if( U16_IS_TRAIL(args->source[sourceIndex]) && | |
2007 | (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1])) | |
2008 | ) { | |
2009 | --sourceIndex; | |
2010 | } | |
2011 | } else { | |
2012 | sourceIndex=-1; | |
2013 | } | |
2014 | ||
73c04bcf | 2015 | fromUWriteUInt8( |
46f4442e | 2016 | cnv, |
374ca955 | 2017 | buffer, outLen, |
73c04bcf | 2018 | &target, (const char *)targetLimit, |
374ca955 A |
2019 | &offsets, sourceIndex, |
2020 | err); | |
b75a7d8f A |
2021 | } |
2022 | ||
2023 | /*save the state and return */ | |
2024 | args->source = source; | |
2025 | args->target = (char*)target; | |
2026 | } | |
2027 | ||
2028 | /*************** to unicode *******************/ | |
2029 | ||
46f4442e | 2030 | static void |
b75a7d8f | 2031 | UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterToUnicodeArgs *args, |
374ca955 | 2032 | UErrorCode* err){ |
46f4442e | 2033 | char tempBuf[2]; |
374ca955 | 2034 | const char *mySource = (char *) args->source; |
b75a7d8f A |
2035 | UChar *myTarget = args->target; |
2036 | const char *mySourceLimit = args->sourceLimit; | |
2037 | uint32_t targetUniChar = 0x0000; | |
2038 | uint32_t mySourceChar = 0x0000; | |
46f4442e | 2039 | uint32_t tmpSourceChar = 0x0000; |
b75a7d8f | 2040 | UConverterDataISO2022* myData; |
374ca955 A |
2041 | ISO2022State *pToU2022State; |
2042 | StateEnum cs; | |
b75a7d8f | 2043 | |
b75a7d8f | 2044 | myData=(UConverterDataISO2022*)(args->converter->extraInfo); |
374ca955 | 2045 | pToU2022State = &myData->toU2022State; |
b75a7d8f | 2046 | |
374ca955 A |
2047 | if(myData->key != 0) { |
2048 | /* continue with a partial escape sequence */ | |
2049 | goto escape; | |
2050 | } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) { | |
2051 | /* continue with a partial double-byte character */ | |
2052 | mySourceChar = args->converter->toUBytes[0]; | |
2053 | args->converter->toULength = 0; | |
2054 | cs = (StateEnum)pToU2022State->cs[pToU2022State->g]; | |
fd0068a8 | 2055 | targetUniChar = missingCharMarker; |
374ca955 A |
2056 | goto getTrailByte; |
2057 | } | |
2058 | ||
2059 | while(mySource < mySourceLimit){ | |
2060 | ||
2061 | targetUniChar =missingCharMarker; | |
b75a7d8f A |
2062 | |
2063 | if(myTarget < args->targetLimit){ | |
2064 | ||
2065 | mySourceChar= (unsigned char) *mySource++; | |
374ca955 A |
2066 | |
2067 | switch(mySourceChar) { | |
2068 | case UCNV_SI: | |
2069 | if(myData->version==3) { | |
2070 | pToU2022State->g=0; | |
b75a7d8f | 2071 | continue; |
374ca955 A |
2072 | } else { |
2073 | /* only JIS7 uses SI/SO, not ISO-2022-JP-x */ | |
d5d484b0 | 2074 | myData->isEmptySegment = FALSE; /* reset this, we have a different error */ |
374ca955 | 2075 | break; |
b75a7d8f | 2076 | } |
b75a7d8f | 2077 | |
374ca955 A |
2078 | case UCNV_SO: |
2079 | if(myData->version==3) { | |
2080 | /* JIS7: switch to G1 half-width Katakana */ | |
2081 | pToU2022State->cs[1] = (int8_t)HWKANA_7BIT; | |
2082 | pToU2022State->g=1; | |
b75a7d8f | 2083 | continue; |
374ca955 A |
2084 | } else { |
2085 | /* only JIS7 uses SI/SO, not ISO-2022-JP-x */ | |
d5d484b0 | 2086 | myData->isEmptySegment = FALSE; /* reset this, we have a different error */ |
374ca955 | 2087 | break; |
b75a7d8f | 2088 | } |
b75a7d8f | 2089 | |
374ca955 A |
2090 | case ESC_2022: |
2091 | mySource--; | |
2092 | escape: | |
d5d484b0 A |
2093 | { |
2094 | const char * mySourceBefore = mySource; | |
2095 | int8_t toULengthBefore = args->converter->toULength; | |
2096 | ||
46f4442e | 2097 | changeState_2022(args->converter,&(mySource), |
d5d484b0 A |
2098 | mySourceLimit, ISO_2022_JP,err); |
2099 | ||
2100 | /* If in ISO-2022-JP only and we successully completed an escape sequence, but previous segment was empty, create an error */ | |
46f4442e A |
2101 | if(myData->version==0 && myData->key==0 && U_SUCCESS(*err) && myData->isEmptySegment) { |
2102 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | |
2103 | args->converter->toUCallbackReason = UCNV_IRREGULAR; | |
729e4ab9 | 2104 | args->converter->toULength = (int8_t)(toULengthBefore + (mySource - mySourceBefore)); |
d5d484b0 | 2105 | } |
d5d484b0 | 2106 | } |
46f4442e | 2107 | |
374ca955 A |
2108 | /* invalid or illegal escape sequence */ |
2109 | if(U_FAILURE(*err)){ | |
2110 | args->target = myTarget; | |
2111 | args->source = mySource; | |
d5d484b0 | 2112 | myData->isEmptySegment = FALSE; /* Reset to avoid future spurious errors */ |
374ca955 | 2113 | return; |
b75a7d8f | 2114 | } |
d5d484b0 | 2115 | /* If we successfully completed an escape sequence, we begin a new segment, empty so far */ |
46f4442e | 2116 | if(myData->key==0) { |
d5d484b0 A |
2117 | myData->isEmptySegment = TRUE; |
2118 | } | |
374ca955 | 2119 | continue; |
b75a7d8f | 2120 | |
374ca955 | 2121 | /* ISO-2022-JP does not use single-byte (C1) SS2 and SS3 */ |
b75a7d8f | 2122 | |
374ca955 A |
2123 | case CR: |
2124 | /*falls through*/ | |
2125 | case LF: | |
2126 | /* automatically reset to single-byte mode */ | |
2127 | if((StateEnum)pToU2022State->cs[0] != ASCII && (StateEnum)pToU2022State->cs[0] != JISX201) { | |
2128 | pToU2022State->cs[0] = (int8_t)ASCII; | |
b75a7d8f | 2129 | } |
374ca955 A |
2130 | pToU2022State->cs[2] = 0; |
2131 | pToU2022State->g = 0; | |
2132 | /* falls through */ | |
b75a7d8f | 2133 | default: |
374ca955 | 2134 | /* convert one or two bytes */ |
d5d484b0 | 2135 | myData->isEmptySegment = FALSE; |
374ca955 A |
2136 | cs = (StateEnum)pToU2022State->cs[pToU2022State->g]; |
2137 | if( (uint8_t)(mySourceChar - 0xa1) <= (0xdf - 0xa1) && myData->version==4 && | |
2138 | !IS_JP_DBCS(cs) | |
2139 | ) { | |
2140 | /* 8-bit halfwidth katakana in any single-byte mode for JIS8 */ | |
46f4442e | 2141 | targetUniChar = mySourceChar + (HWKANA_START - 0xa1); |
374ca955 A |
2142 | |
2143 | /* return from a single-shift state to the previous one */ | |
2144 | if(pToU2022State->g >= 2) { | |
2145 | pToU2022State->g=pToU2022State->prevG; | |
2146 | } | |
2147 | } else switch(cs) { | |
2148 | case ASCII: | |
2149 | if(mySourceChar <= 0x7f) { | |
2150 | targetUniChar = mySourceChar; | |
2151 | } | |
2152 | break; | |
2153 | case ISO8859_1: | |
2154 | if(mySourceChar <= 0x7f) { | |
2155 | targetUniChar = mySourceChar + 0x80; | |
2156 | } | |
2157 | /* return from a single-shift state to the previous one */ | |
2158 | pToU2022State->g=pToU2022State->prevG; | |
2159 | break; | |
2160 | case ISO8859_7: | |
2161 | if(mySourceChar <= 0x7f) { | |
2162 | /* convert mySourceChar+0x80 to use a normal 8-bit table */ | |
2163 | targetUniChar = | |
2164 | _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP( | |
2165 | myData->myConverterArray[cs], | |
2166 | mySourceChar + 0x80); | |
2167 | } | |
2168 | /* return from a single-shift state to the previous one */ | |
2169 | pToU2022State->g=pToU2022State->prevG; | |
2170 | break; | |
2171 | case JISX201: | |
2172 | if(mySourceChar <= 0x7f) { | |
46f4442e | 2173 | targetUniChar = jisx201ToU(mySourceChar); |
374ca955 A |
2174 | } |
2175 | break; | |
2176 | case HWKANA_7BIT: | |
2177 | if((uint8_t)(mySourceChar - 0x21) <= (0x5f - 0x21)) { | |
2178 | /* 7-bit halfwidth Katakana */ | |
46f4442e | 2179 | targetUniChar = mySourceChar + (HWKANA_START - 0x21); |
374ca955 A |
2180 | } |
2181 | break; | |
2182 | default: | |
2183 | /* G0 DBCS */ | |
2184 | if(mySource < mySourceLimit) { | |
fd0068a8 A |
2185 | int leadIsOk, trailIsOk; |
2186 | uint8_t trailByte; | |
374ca955 | 2187 | getTrailByte: |
fd0068a8 | 2188 | trailByte = (uint8_t)*mySource; |
fd0068a8 A |
2189 | /* |
2190 | * Ticket 5691: consistent illegal sequences: | |
2191 | * - We include at least the first byte in the illegal sequence. | |
2192 | * - If any of the non-initial bytes could be the start of a character, | |
46f4442e | 2193 | * we stop the illegal sequence before the first one of those. |
fd0068a8 A |
2194 | * |
2195 | * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is | |
2196 | * an ESC/SO/SI, we report only the first byte as the illegal sequence. | |
2197 | * Otherwise we convert or report the pair of bytes. | |
2198 | */ | |
2199 | leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21); | |
2200 | trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21); | |
2201 | if (leadIsOk && trailIsOk) { | |
2202 | ++mySource; | |
46f4442e A |
2203 | tmpSourceChar = (mySourceChar << 8) | trailByte; |
2204 | if(cs == JISX208) { | |
2205 | _2022ToSJIS((uint8_t)mySourceChar, trailByte, tempBuf); | |
2206 | mySourceChar = tmpSourceChar; | |
2207 | } else { | |
2208 | /* Copy before we modify tmpSourceChar so toUnicodeCallback() sees the correct bytes. */ | |
2209 | mySourceChar = tmpSourceChar; | |
2210 | if (cs == KSC5601) { | |
2211 | tmpSourceChar += 0x8080; /* = _2022ToGR94DBCS(tmpSourceChar) */ | |
2212 | } | |
2213 | tempBuf[0] = (char)(tmpSourceChar >> 8); | |
2214 | tempBuf[1] = (char)(tmpSourceChar); | |
2215 | } | |
fd0068a8 A |
2216 | targetUniChar = ucnv_MBCSSimpleGetNextUChar(myData->myConverterArray[cs], tempBuf, 2, FALSE); |
2217 | } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) { | |
2218 | /* report a pair of illegal bytes if the second byte is not a DBCS starter */ | |
2219 | ++mySource; | |
2220 | /* add another bit so that the code below writes 2 bytes in case of error */ | |
2221 | mySourceChar = 0x10000 | (mySourceChar << 8) | trailByte; | |
2222 | } | |
374ca955 A |
2223 | } else { |
2224 | args->converter->toUBytes[0] = (uint8_t)mySourceChar; | |
2225 | args->converter->toULength = 1; | |
2226 | goto endloop; | |
2227 | } | |
46f4442e | 2228 | } /* End of inner switch */ |
b75a7d8f | 2229 | break; |
46f4442e | 2230 | } /* End of outer switch */ |
b75a7d8f A |
2231 | if(targetUniChar < (missingCharMarker-1/*0xfffe*/)){ |
2232 | if(args->offsets){ | |
73c04bcf | 2233 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); |
b75a7d8f A |
2234 | } |
2235 | *(myTarget++)=(UChar)targetUniChar; | |
b75a7d8f | 2236 | } |
374ca955 A |
2237 | else if(targetUniChar > missingCharMarker){ |
2238 | /* disassemble the surrogate pair and write to output*/ | |
2239 | targetUniChar-=0x0010000; | |
2240 | *myTarget = (UChar)(0xd800+(UChar)(targetUniChar>>10)); | |
2241 | if(args->offsets){ | |
73c04bcf | 2242 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); |
374ca955 A |
2243 | } |
2244 | ++myTarget; | |
46f4442e | 2245 | if(myTarget< args->targetLimit){ |
374ca955 A |
2246 | *myTarget = (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff)); |
2247 | if(args->offsets){ | |
73c04bcf | 2248 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); |
374ca955 A |
2249 | } |
2250 | ++myTarget; | |
2251 | }else{ | |
2252 | args->converter->UCharErrorBuffer[args->converter->UCharErrorBufferLength++]= | |
2253 | (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff)); | |
2254 | } | |
b75a7d8f | 2255 | |
374ca955 A |
2256 | } |
2257 | else{ | |
b75a7d8f | 2258 | /* Call the callback function*/ |
374ca955 A |
2259 | toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err); |
2260 | break; | |
b75a7d8f A |
2261 | } |
2262 | } | |
46f4442e | 2263 | else{ /* goes with "if(myTarget < args->targetLimit)" way up near top of function */ |
b75a7d8f A |
2264 | *err =U_BUFFER_OVERFLOW_ERROR; |
2265 | break; | |
2266 | } | |
2267 | } | |
374ca955 | 2268 | endloop: |
b75a7d8f A |
2269 | args->target = myTarget; |
2270 | args->source = mySource; | |
2271 | } | |
2272 | ||
2273 | ||
b75a7d8f A |
2274 | /*************************************************************** |
2275 | * Rules for ISO-2022-KR encoding | |
46f4442e | 2276 | * i) The KSC5601 designator sequence should appear only once in a file, |
b75a7d8f A |
2277 | * at the begining of a line before any KSC5601 characters. This usually |
2278 | * means that it appears by itself on the first line of the file | |
2279 | * ii) There are only 2 shifting sequences SO to shift into double byte mode | |
2280 | * and SI to shift into single byte mode | |
2281 | */ | |
46f4442e | 2282 | static void |
b75a7d8f A |
2283 | UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterFromUnicodeArgs* args, UErrorCode* err){ |
2284 | ||
374ca955 A |
2285 | UConverter* saveConv = args->converter; |
2286 | UConverterDataISO2022 *myConverterData=(UConverterDataISO2022*)saveConv->extraInfo; | |
2287 | args->converter=myConverterData->currentConverter; | |
2288 | ||
2289 | myConverterData->currentConverter->fromUChar32 = saveConv->fromUChar32; | |
2290 | ucnv_MBCSFromUnicodeWithOffsets(args,err); | |
2291 | saveConv->fromUChar32 = myConverterData->currentConverter->fromUChar32; | |
2292 | ||
2293 | if(*err == U_BUFFER_OVERFLOW_ERROR) { | |
2294 | if(myConverterData->currentConverter->charErrorBufferLength > 0) { | |
2295 | uprv_memcpy( | |
2296 | saveConv->charErrorBuffer, | |
2297 | myConverterData->currentConverter->charErrorBuffer, | |
2298 | myConverterData->currentConverter->charErrorBufferLength); | |
2299 | } | |
2300 | saveConv->charErrorBufferLength = myConverterData->currentConverter->charErrorBufferLength; | |
2301 | myConverterData->currentConverter->charErrorBufferLength = 0; | |
2302 | } | |
2303 | args->converter=saveConv; | |
b75a7d8f A |
2304 | } |
2305 | ||
46f4442e | 2306 | static void |
b75a7d8f A |
2307 | UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){ |
2308 | ||
2309 | const UChar *source = args->source; | |
2310 | const UChar *sourceLimit = args->sourceLimit; | |
2311 | unsigned char *target = (unsigned char *) args->target; | |
2312 | unsigned char *targetLimit = (unsigned char *) args->targetLimit; | |
2313 | int32_t* offsets = args->offsets; | |
2314 | uint32_t targetByteUnit = 0x0000; | |
2315 | UChar32 sourceChar = 0x0000; | |
2316 | UBool isTargetByteDBCS; | |
2317 | UBool oldIsTargetByteDBCS; | |
2318 | UConverterDataISO2022 *converterData; | |
b75a7d8f A |
2319 | UConverterSharedData* sharedData; |
2320 | UBool useFallback; | |
2321 | int32_t length =0; | |
2322 | ||
b75a7d8f | 2323 | converterData=(UConverterDataISO2022*)args->converter->extraInfo; |
46f4442e A |
2324 | /* if the version is 1 then the user is requesting |
2325 | * conversion with ibm-25546 pass the arguments to | |
b75a7d8f A |
2326 | * MBCS converter and return |
2327 | */ | |
2328 | if(converterData->version==1){ | |
2329 | UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args,err); | |
2330 | return; | |
2331 | } | |
374ca955 A |
2332 | |
2333 | /* initialize data */ | |
2334 | sharedData = converterData->currentConverter->sharedData; | |
2335 | useFallback = args->converter->useFallback; | |
2336 | isTargetByteDBCS=(UBool)args->converter->fromUnicodeStatus; | |
2337 | oldIsTargetByteDBCS = isTargetByteDBCS; | |
46f4442e | 2338 | |
b75a7d8f | 2339 | isTargetByteDBCS = (UBool) args->converter->fromUnicodeStatus; |
374ca955 | 2340 | if((sourceChar = args->converter->fromUChar32)!=0 && target <targetLimit) { |
b75a7d8f A |
2341 | goto getTrail; |
2342 | } | |
2343 | while(source < sourceLimit){ | |
46f4442e | 2344 | |
b75a7d8f A |
2345 | targetByteUnit = missingCharMarker; |
2346 | ||
2347 | if(target < (unsigned char*) args->targetLimit){ | |
2348 | sourceChar = *source++; | |
73c04bcf A |
2349 | |
2350 | /* do not convert SO/SI/ESC */ | |
2351 | if(IS_2022_CONTROL(sourceChar)) { | |
2352 | /* callback(illegal) */ | |
2353 | *err=U_ILLEGAL_CHAR_FOUND; | |
2354 | args->converter->fromUChar32=sourceChar; | |
2355 | break; | |
2356 | } | |
2357 | ||
46f4442e A |
2358 | length = MBCS_FROM_UCHAR32_ISO2022(sharedData,sourceChar,&targetByteUnit,useFallback,MBCS_OUTPUT_2); |
2359 | if(length < 0) { | |
2360 | length = -length; /* fallback */ | |
2361 | } | |
b75a7d8f | 2362 | /* only DBCS or SBCS characters are expected*/ |
374ca955 | 2363 | /* DB characters with high bit set to 1 are expected */ |
fd0068a8 A |
2364 | if( length > 2 || length==0 || |
2365 | (length == 1 && targetByteUnit > 0x7f) || | |
2366 | (length == 2 && | |
2367 | ((uint16_t)(targetByteUnit - 0xa1a1) > (0xfefe - 0xa1a1) || | |
2368 | (uint8_t)(targetByteUnit - 0xa1) > (0xfe - 0xa1))) | |
2369 | ) { | |
b75a7d8f A |
2370 | targetByteUnit=missingCharMarker; |
2371 | } | |
2372 | if (targetByteUnit != missingCharMarker){ | |
2373 | ||
2374 | oldIsTargetByteDBCS = isTargetByteDBCS; | |
2375 | isTargetByteDBCS = (UBool)(targetByteUnit>0x00FF); | |
2376 | /* append the shift sequence */ | |
2377 | if (oldIsTargetByteDBCS != isTargetByteDBCS ){ | |
46f4442e A |
2378 | |
2379 | if (isTargetByteDBCS) | |
b75a7d8f | 2380 | *target++ = UCNV_SO; |
46f4442e | 2381 | else |
b75a7d8f A |
2382 | *target++ = UCNV_SI; |
2383 | if(offsets) | |
73c04bcf | 2384 | *(offsets++) = (int32_t)(source - args->source-1); |
b75a7d8f A |
2385 | } |
2386 | /* write the targetUniChar to target */ | |
2387 | if(targetByteUnit <= 0x00FF){ | |
2388 | if( target < targetLimit){ | |
2389 | *(target++) = (unsigned char) targetByteUnit; | |
2390 | if(offsets){ | |
73c04bcf | 2391 | *(offsets++) = (int32_t)(source - args->source-1); |
b75a7d8f A |
2392 | } |
2393 | ||
2394 | }else{ | |
2395 | args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit); | |
2396 | *err = U_BUFFER_OVERFLOW_ERROR; | |
2397 | } | |
2398 | }else{ | |
2399 | if(target < targetLimit){ | |
2400 | *(target++) =(unsigned char) ((targetByteUnit>>8) -0x80); | |
2401 | if(offsets){ | |
73c04bcf | 2402 | *(offsets++) = (int32_t)(source - args->source-1); |
b75a7d8f A |
2403 | } |
2404 | if(target < targetLimit){ | |
2405 | *(target++) =(unsigned char) (targetByteUnit -0x80); | |
2406 | if(offsets){ | |
73c04bcf | 2407 | *(offsets++) = (int32_t)(source - args->source-1); |
b75a7d8f A |
2408 | } |
2409 | }else{ | |
2410 | args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit -0x80); | |
2411 | *err = U_BUFFER_OVERFLOW_ERROR; | |
2412 | } | |
2413 | }else{ | |
2414 | args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) ((targetByteUnit>>8) -0x80); | |
2415 | args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit-0x80); | |
2416 | *err = U_BUFFER_OVERFLOW_ERROR; | |
2417 | } | |
2418 | } | |
2419 | ||
2420 | } | |
2421 | else{ | |
2422 | /* oops.. the code point is unassingned | |
2423 | * set the error and reason | |
2424 | */ | |
b75a7d8f A |
2425 | |
2426 | /*check if the char is a First surrogate*/ | |
4388f060 A |
2427 | if(U16_IS_SURROGATE(sourceChar)) { |
2428 | if(U16_IS_SURROGATE_LEAD(sourceChar)) { | |
b75a7d8f A |
2429 | getTrail: |
2430 | /*look ahead to find the trail surrogate*/ | |
2431 | if(source < sourceLimit) { | |
2432 | /* test the following code unit */ | |
2433 | UChar trail=(UChar) *source; | |
4388f060 | 2434 | if(U16_IS_TRAIL(trail)) { |
b75a7d8f | 2435 | source++; |
4388f060 | 2436 | sourceChar=U16_GET_SUPPLEMENTARY(sourceChar, trail); |
b75a7d8f | 2437 | *err = U_INVALID_CHAR_FOUND; |
b75a7d8f A |
2438 | /* convert this surrogate code point */ |
2439 | /* exit this condition tree */ | |
2440 | } else { | |
2441 | /* this is an unmatched lead code unit (1st surrogate) */ | |
2442 | /* callback(illegal) */ | |
b75a7d8f A |
2443 | *err=U_ILLEGAL_CHAR_FOUND; |
2444 | } | |
2445 | } else { | |
2446 | /* no more input */ | |
2447 | *err = U_ZERO_ERROR; | |
b75a7d8f A |
2448 | } |
2449 | } else { | |
2450 | /* this is an unmatched trail code unit (2nd surrogate) */ | |
2451 | /* callback(illegal) */ | |
b75a7d8f A |
2452 | *err=U_ILLEGAL_CHAR_FOUND; |
2453 | } | |
374ca955 A |
2454 | } else { |
2455 | /* callback(unassigned) for a BMP code point */ | |
2456 | *err = U_INVALID_CHAR_FOUND; | |
b75a7d8f | 2457 | } |
b75a7d8f | 2458 | |
374ca955 | 2459 | args->converter->fromUChar32=sourceChar; |
374ca955 | 2460 | break; |
b75a7d8f A |
2461 | } |
2462 | } /* end if(myTargetIndex<myTargetLength) */ | |
2463 | else{ | |
2464 | *err =U_BUFFER_OVERFLOW_ERROR; | |
2465 | break; | |
2466 | } | |
2467 | ||
2468 | }/* end while(mySourceIndex<mySourceLength) */ | |
2469 | ||
374ca955 A |
2470 | /* |
2471 | * the end of the input stream and detection of truncated input | |
2472 | * are handled by the framework, but for ISO-2022-KR conversion | |
2473 | * we need to be in ASCII mode at the very end | |
2474 | * | |
2475 | * conditions: | |
2476 | * successful | |
2477 | * not in ASCII mode | |
2478 | * end of input and no truncated input | |
b75a7d8f | 2479 | */ |
374ca955 A |
2480 | if( U_SUCCESS(*err) && |
2481 | isTargetByteDBCS && | |
2482 | args->flush && source>=sourceLimit && args->converter->fromUChar32==0 | |
2483 | ) { | |
2484 | int32_t sourceIndex; | |
2485 | ||
2486 | /* we are switching to ASCII */ | |
2487 | isTargetByteDBCS=FALSE; | |
2488 | ||
2489 | /* get the source index of the last input character */ | |
2490 | /* | |
2491 | * TODO this would be simpler and more reliable if we used a pair | |
2492 | * of sourceIndex/prevSourceIndex like in ucnvmbcs.c | |
2493 | * so that we could simply use the prevSourceIndex here; | |
2494 | * this code gives an incorrect result for the rare case of an unmatched | |
2495 | * trail surrogate that is alone in the last buffer of the text stream | |
2496 | */ | |
2497 | sourceIndex=(int32_t)(source-args->source); | |
2498 | if(sourceIndex>0) { | |
2499 | --sourceIndex; | |
2500 | if( U16_IS_TRAIL(args->source[sourceIndex]) && | |
2501 | (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1])) | |
2502 | ) { | |
2503 | --sourceIndex; | |
2504 | } | |
2505 | } else { | |
2506 | sourceIndex=-1; | |
2507 | } | |
2508 | ||
73c04bcf | 2509 | fromUWriteUInt8( |
374ca955 A |
2510 | args->converter, |
2511 | SHIFT_IN_STR, 1, | |
73c04bcf | 2512 | &target, (const char *)targetLimit, |
374ca955 A |
2513 | &offsets, sourceIndex, |
2514 | err); | |
b75a7d8f A |
2515 | } |
2516 | ||
2517 | /*save the state and return */ | |
2518 | args->source = source; | |
2519 | args->target = (char*)target; | |
2520 | args->converter->fromUnicodeStatus = (uint32_t)isTargetByteDBCS; | |
2521 | } | |
2522 | ||
2523 | /************************ To Unicode ***************************************/ | |
2524 | ||
46f4442e | 2525 | static void |
b75a7d8f A |
2526 | UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterToUnicodeArgs *args, |
2527 | UErrorCode* err){ | |
b75a7d8f | 2528 | char const* sourceStart; |
b75a7d8f | 2529 | UConverterDataISO2022* myData=(UConverterDataISO2022*)(args->converter->extraInfo); |
b75a7d8f | 2530 | |
374ca955 A |
2531 | UConverterToUnicodeArgs subArgs; |
2532 | int32_t minArgsSize; | |
2533 | ||
2534 | /* set up the subconverter arguments */ | |
2535 | if(args->size<sizeof(UConverterToUnicodeArgs)) { | |
2536 | minArgsSize = args->size; | |
2537 | } else { | |
2538 | minArgsSize = (int32_t)sizeof(UConverterToUnicodeArgs); | |
2539 | } | |
2540 | ||
2541 | uprv_memcpy(&subArgs, args, minArgsSize); | |
2542 | subArgs.size = (uint16_t)minArgsSize; | |
2543 | subArgs.converter = myData->currentConverter; | |
2544 | ||
2545 | /* remember the original start of the input for offsets */ | |
2546 | sourceStart = args->source; | |
2547 | ||
2548 | if(myData->key != 0) { | |
2549 | /* continue with a partial escape sequence */ | |
2550 | goto escape; | |
2551 | } | |
2552 | ||
2553 | while(U_SUCCESS(*err) && args->source < args->sourceLimit) { | |
b75a7d8f | 2554 | /*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/ |
374ca955 A |
2555 | subArgs.source = args->source; |
2556 | subArgs.sourceLimit = getEndOfBuffer_2022(&(args->source), args->sourceLimit, args->flush); | |
2557 | if(subArgs.source != subArgs.sourceLimit) { | |
2558 | /* | |
2559 | * get the current partial byte sequence | |
2560 | * | |
2561 | * it needs to be moved between the public and the subconverter | |
2562 | * so that the conversion framework, which only sees the public | |
2563 | * converter, can handle truncated and illegal input etc. | |
2564 | */ | |
2565 | if(args->converter->toULength > 0) { | |
2566 | uprv_memcpy(subArgs.converter->toUBytes, args->converter->toUBytes, args->converter->toULength); | |
2567 | } | |
2568 | subArgs.converter->toULength = args->converter->toULength; | |
2569 | ||
2570 | /* | |
2571 | * Convert up to the end of the input, or to before the next escape character. | |
2572 | * Does not handle conversion extensions because the preToU[] state etc. | |
2573 | * is not copied. | |
2574 | */ | |
2575 | ucnv_MBCSToUnicodeWithOffsets(&subArgs, err); | |
2576 | ||
2577 | if(args->offsets != NULL && sourceStart != args->source) { | |
2578 | /* update offsets to base them on the actual start of the input */ | |
2579 | int32_t *offsets = args->offsets; | |
2580 | UChar *target = args->target; | |
2581 | int32_t delta = (int32_t)(args->source - sourceStart); | |
2582 | while(target < subArgs.target) { | |
2583 | if(*offsets >= 0) { | |
2584 | *offsets += delta; | |
2585 | } | |
2586 | ++offsets; | |
2587 | ++target; | |
2588 | } | |
2589 | } | |
2590 | args->source = subArgs.source; | |
2591 | args->target = subArgs.target; | |
2592 | args->offsets = subArgs.offsets; | |
2593 | ||
2594 | /* copy input/error/overflow buffers */ | |
2595 | if(subArgs.converter->toULength > 0) { | |
2596 | uprv_memcpy(args->converter->toUBytes, subArgs.converter->toUBytes, subArgs.converter->toULength); | |
2597 | } | |
2598 | args->converter->toULength = subArgs.converter->toULength; | |
2599 | ||
2600 | if(*err == U_BUFFER_OVERFLOW_ERROR) { | |
2601 | if(subArgs.converter->UCharErrorBufferLength > 0) { | |
2602 | uprv_memcpy(args->converter->UCharErrorBuffer, subArgs.converter->UCharErrorBuffer, | |
2603 | subArgs.converter->UCharErrorBufferLength); | |
2604 | } | |
2605 | args->converter->UCharErrorBufferLength=subArgs.converter->UCharErrorBufferLength; | |
2606 | subArgs.converter->UCharErrorBufferLength = 0; | |
b75a7d8f | 2607 | } |
b75a7d8f A |
2608 | } |
2609 | ||
374ca955 | 2610 | if (U_FAILURE(*err) || (args->source == args->sourceLimit)) { |
b75a7d8f | 2611 | return; |
374ca955 | 2612 | } |
b75a7d8f | 2613 | |
374ca955 | 2614 | escape: |
b75a7d8f | 2615 | changeState_2022(args->converter, |
46f4442e | 2616 | &(args->source), |
b75a7d8f | 2617 | args->sourceLimit, |
b75a7d8f | 2618 | ISO_2022_KR, |
b75a7d8f | 2619 | err); |
374ca955 | 2620 | } |
b75a7d8f A |
2621 | } |
2622 | ||
46f4442e | 2623 | static void |
b75a7d8f A |
2624 | UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterToUnicodeArgs *args, |
2625 | UErrorCode* err){ | |
374ca955 | 2626 | char tempBuf[2]; |
b75a7d8f A |
2627 | const char *mySource = ( char *) args->source; |
2628 | UChar *myTarget = args->target; | |
2629 | const char *mySourceLimit = args->sourceLimit; | |
2630 | UChar32 targetUniChar = 0x0000; | |
2631 | UChar mySourceChar = 0x0000; | |
2632 | UConverterDataISO2022* myData; | |
b75a7d8f A |
2633 | UConverterSharedData* sharedData ; |
2634 | UBool useFallback; | |
2635 | ||
374ca955 A |
2636 | myData=(UConverterDataISO2022*)(args->converter->extraInfo); |
2637 | if(myData->version==1){ | |
2638 | UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args,err); | |
b75a7d8f A |
2639 | return; |
2640 | } | |
374ca955 | 2641 | |
b75a7d8f | 2642 | /* initialize state */ |
374ca955 | 2643 | sharedData = myData->currentConverter->sharedData; |
b75a7d8f | 2644 | useFallback = args->converter->useFallback; |
46f4442e | 2645 | |
374ca955 A |
2646 | if(myData->key != 0) { |
2647 | /* continue with a partial escape sequence */ | |
2648 | goto escape; | |
2649 | } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) { | |
2650 | /* continue with a partial double-byte character */ | |
2651 | mySourceChar = args->converter->toUBytes[0]; | |
2652 | args->converter->toULength = 0; | |
2653 | goto getTrailByte; | |
b75a7d8f | 2654 | } |
b75a7d8f | 2655 | |
374ca955 | 2656 | while(mySource< mySourceLimit){ |
b75a7d8f A |
2657 | |
2658 | if(myTarget < args->targetLimit){ | |
2659 | ||
2660 | mySourceChar= (unsigned char) *mySource++; | |
2661 | ||
2662 | if(mySourceChar==UCNV_SI){ | |
374ca955 | 2663 | myData->toU2022State.g = 0; |
d5d484b0 A |
2664 | if (myData->isEmptySegment) { |
2665 | myData->isEmptySegment = FALSE; /* we are handling it, reset to avoid future spurious errors */ | |
46f4442e A |
2666 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; |
2667 | args->converter->toUCallbackReason = UCNV_IRREGULAR; | |
2668 | args->converter->toUBytes[0] = (uint8_t)mySourceChar; | |
d5d484b0 A |
2669 | args->converter->toULength = 1; |
2670 | args->target = myTarget; | |
2671 | args->source = mySource; | |
2672 | return; | |
2673 | } | |
b75a7d8f A |
2674 | /*consume the source */ |
2675 | continue; | |
2676 | }else if(mySourceChar==UCNV_SO){ | |
374ca955 | 2677 | myData->toU2022State.g = 1; |
d5d484b0 | 2678 | myData->isEmptySegment = TRUE; /* Begin a new segment, empty so far */ |
b75a7d8f A |
2679 | /*consume the source */ |
2680 | continue; | |
374ca955 A |
2681 | }else if(mySourceChar==ESC_2022){ |
2682 | mySource--; | |
2683 | escape: | |
d5d484b0 | 2684 | myData->isEmptySegment = FALSE; /* Any invalid ESC sequences will be detected separately, so just reset this */ |
46f4442e | 2685 | changeState_2022(args->converter,&(mySource), |
374ca955 | 2686 | mySourceLimit, ISO_2022_KR, err); |
b75a7d8f A |
2687 | if(U_FAILURE(*err)){ |
2688 | args->target = myTarget; | |
2689 | args->source = mySource; | |
2690 | return; | |
2691 | } | |
2692 | continue; | |
46f4442e | 2693 | } |
b75a7d8f | 2694 | |
d5d484b0 | 2695 | myData->isEmptySegment = FALSE; /* Any invalid char errors will be detected separately, so just reset this */ |
374ca955 A |
2696 | if(myData->toU2022State.g == 1) { |
2697 | if(mySource < mySourceLimit) { | |
fd0068a8 A |
2698 | int leadIsOk, trailIsOk; |
2699 | uint8_t trailByte; | |
374ca955 | 2700 | getTrailByte: |
fd0068a8 A |
2701 | targetUniChar = missingCharMarker; |
2702 | trailByte = (uint8_t)*mySource; | |
2703 | /* | |
2704 | * Ticket 5691: consistent illegal sequences: | |
2705 | * - We include at least the first byte in the illegal sequence. | |
2706 | * - If any of the non-initial bytes could be the start of a character, | |
2707 | * we stop the illegal sequence before the first one of those. | |
2708 | * | |
2709 | * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is | |
2710 | * an ESC/SO/SI, we report only the first byte as the illegal sequence. | |
2711 | * Otherwise we convert or report the pair of bytes. | |
2712 | */ | |
2713 | leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21); | |
2714 | trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21); | |
2715 | if (leadIsOk && trailIsOk) { | |
2716 | ++mySource; | |
2717 | tempBuf[0] = (char)(mySourceChar + 0x80); | |
2718 | tempBuf[1] = (char)(trailByte + 0x80); | |
2719 | targetUniChar = ucnv_MBCSSimpleGetNextUChar(sharedData, tempBuf, 2, useFallback); | |
2720 | mySourceChar = (mySourceChar << 8) | trailByte; | |
2721 | } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) { | |
2722 | /* report a pair of illegal bytes if the second byte is not a DBCS starter */ | |
2723 | ++mySource; | |
2724 | /* add another bit so that the code below writes 2 bytes in case of error */ | |
2725 | mySourceChar = 0x10000 | (mySourceChar << 8) | trailByte; | |
374ca955 A |
2726 | } |
2727 | } else { | |
2728 | args->converter->toUBytes[0] = (uint8_t)mySourceChar; | |
2729 | args->converter->toULength = 1; | |
2730 | break; | |
b75a7d8f A |
2731 | } |
2732 | } | |
fd0068a8 | 2733 | else if(mySourceChar <= 0x7f) { |
374ca955 | 2734 | targetUniChar = ucnv_MBCSSimpleGetNextUChar(sharedData, mySource - 1, 1, useFallback); |
fd0068a8 A |
2735 | } else { |
2736 | targetUniChar = 0xffff; | |
b75a7d8f | 2737 | } |
374ca955 A |
2738 | if(targetUniChar < 0xfffe){ |
2739 | if(args->offsets) { | |
73c04bcf | 2740 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); |
374ca955 | 2741 | } |
b75a7d8f A |
2742 | *(myTarget++)=(UChar)targetUniChar; |
2743 | } | |
2744 | else { | |
b75a7d8f | 2745 | /* Call the callback function*/ |
374ca955 A |
2746 | toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err); |
2747 | break; | |
b75a7d8f A |
2748 | } |
2749 | } | |
2750 | else{ | |
2751 | *err =U_BUFFER_OVERFLOW_ERROR; | |
2752 | break; | |
2753 | } | |
2754 | } | |
b75a7d8f A |
2755 | args->target = myTarget; |
2756 | args->source = mySource; | |
2757 | } | |
2758 | ||
2759 | /*************************** END ISO2022-KR *********************************/ | |
2760 | ||
2761 | /*************************** ISO-2022-CN ********************************* | |
2762 | * | |
2763 | * Rules for ISO-2022-CN Encoding: | |
374ca955 | 2764 | * i) The designator sequence must appear once on a line before any instance |
b75a7d8f A |
2765 | * of character set it designates. |
2766 | * ii) If two lines contain characters from the same character set, both lines | |
2767 | * must include the designator sequence. | |
374ca955 | 2768 | * iii) Once the designator sequence is known, a shifting sequence has to be found |
b75a7d8f A |
2769 | * to invoke the shifting |
2770 | * iv) All lines start in ASCII and end in ASCII. | |
2771 | * v) Four shifting sequences are employed for this purpose: | |
2772 | * | |
2773 | * Sequcence ASCII Eq Charsets | |
2774 | * ---------- ------- --------- | |
374ca955 A |
2775 | * SI <SI> US-ASCII |
2776 | * SO <SO> CNS-11643-1992 Plane 1, GB2312, ISO-IR-165 | |
2777 | * SS2 <ESC>N CNS-11643-1992 Plane 2 | |
2778 | * SS3 <ESC>O CNS-11643-1992 Planes 3-7 | |
b75a7d8f A |
2779 | * |
2780 | * vi) | |
2781 | * SOdesignator : ESC "$" ")" finalchar_for_SO | |
2782 | * SS2designator : ESC "$" "*" finalchar_for_SS2 | |
2783 | * SS3designator : ESC "$" "+" finalchar_for_SS3 | |
2784 | * | |
2785 | * ESC $ ) A Indicates the bytes following SO are Chinese | |
2786 | * characters as defined in GB 2312-80, until | |
2787 | * another SOdesignation appears | |
2788 | * | |
2789 | * | |
2790 | * ESC $ ) E Indicates the bytes following SO are as defined | |
2791 | * in ISO-IR-165 (for details, see section 2.1), | |
2792 | * until another SOdesignation appears | |
2793 | * | |
2794 | * ESC $ ) G Indicates the bytes following SO are as defined | |
2795 | * in CNS 11643-plane-1, until another | |
2796 | * SOdesignation appears | |
2797 | * | |
2798 | * ESC $ * H Indicates the two bytes immediately following | |
2799 | * SS2 is a Chinese character as defined in CNS | |
2800 | * 11643-plane-2, until another SS2designation | |
2801 | * appears | |
46f4442e | 2802 | * (Meaning <ESC>N must preceed every 2 byte |
b75a7d8f A |
2803 | * sequence.) |
2804 | * | |
2805 | * ESC $ + I Indicates the immediate two bytes following SS3 | |
2806 | * is a Chinese character as defined in CNS | |
2807 | * 11643-plane-3, until another SS3designation | |
2808 | * appears | |
46f4442e | 2809 | * (Meaning <ESC>O must preceed every 2 byte |
b75a7d8f A |
2810 | * sequence.) |
2811 | * | |
2812 | * ESC $ + J Indicates the immediate two bytes following SS3 | |
2813 | * is a Chinese character as defined in CNS | |
2814 | * 11643-plane-4, until another SS3designation | |
2815 | * appears | |
46f4442e | 2816 | * (In English: <ESC>O must preceed every 2 byte |
b75a7d8f A |
2817 | * sequence.) |
2818 | * | |
2819 | * ESC $ + K Indicates the immediate two bytes following SS3 | |
2820 | * is a Chinese character as defined in CNS | |
2821 | * 11643-plane-5, until another SS3designation | |
2822 | * appears | |
2823 | * | |
2824 | * ESC $ + L Indicates the immediate two bytes following SS3 | |
2825 | * is a Chinese character as defined in CNS | |
2826 | * 11643-plane-6, until another SS3designation | |
2827 | * appears | |
2828 | * | |
2829 | * ESC $ + M Indicates the immediate two bytes following SS3 | |
2830 | * is a Chinese character as defined in CNS | |
2831 | * 11643-plane-7, until another SS3designation | |
2832 | * appears | |
2833 | * | |
2834 | * As in ISO-2022-CN, each line starts in ASCII, and ends in ASCII, and | |
2835 | * has its own designation information before any Chinese characters | |
2836 | * appear | |
2837 | * | |
2838 | */ | |
2839 | ||
4388f060 | 2840 | /* The following are defined this way to make the strings truly readonly */ |
b75a7d8f A |
2841 | static const char GB_2312_80_STR[] = "\x1B\x24\x29\x41"; |
2842 | static const char ISO_IR_165_STR[] = "\x1B\x24\x29\x45"; | |
2843 | static const char CNS_11643_1992_Plane_1_STR[] = "\x1B\x24\x29\x47"; | |
2844 | static const char CNS_11643_1992_Plane_2_STR[] = "\x1B\x24\x2A\x48"; | |
2845 | static const char CNS_11643_1992_Plane_3_STR[] = "\x1B\x24\x2B\x49"; | |
2846 | static const char CNS_11643_1992_Plane_4_STR[] = "\x1B\x24\x2B\x4A"; | |
2847 | static const char CNS_11643_1992_Plane_5_STR[] = "\x1B\x24\x2B\x4B"; | |
2848 | static const char CNS_11643_1992_Plane_6_STR[] = "\x1B\x24\x2B\x4C"; | |
2849 | static const char CNS_11643_1992_Plane_7_STR[] = "\x1B\x24\x2B\x4D"; | |
2850 | ||
2851 | /********************** ISO2022-CN Data **************************/ | |
2852 | static const char* const escSeqCharsCN[10] ={ | |
4388f060 A |
2853 | SHIFT_IN_STR, /* 0 ASCII */ |
2854 | GB_2312_80_STR, /* 1 GB2312_1 */ | |
2855 | ISO_IR_165_STR, /* 2 ISO_IR_165 */ | |
b75a7d8f A |
2856 | CNS_11643_1992_Plane_1_STR, |
2857 | CNS_11643_1992_Plane_2_STR, | |
2858 | CNS_11643_1992_Plane_3_STR, | |
2859 | CNS_11643_1992_Plane_4_STR, | |
2860 | CNS_11643_1992_Plane_5_STR, | |
2861 | CNS_11643_1992_Plane_6_STR, | |
2862 | CNS_11643_1992_Plane_7_STR | |
2863 | }; | |
b75a7d8f | 2864 | |
46f4442e | 2865 | static void |
b75a7d8f | 2866 | UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){ |
46f4442e | 2867 | UConverter *cnv = args->converter; |
b75a7d8f | 2868 | UConverterDataISO2022 *converterData; |
374ca955 A |
2869 | ISO2022State *pFromU2022State; |
2870 | uint8_t *target = (uint8_t *) args->target; | |
2871 | const uint8_t *targetLimit = (const uint8_t *) args->targetLimit; | |
b75a7d8f A |
2872 | const UChar* source = args->source; |
2873 | const UChar* sourceLimit = args->sourceLimit; | |
2874 | int32_t* offsets = args->offsets; | |
374ca955 A |
2875 | UChar32 sourceChar; |
2876 | char buffer[8]; | |
2877 | int32_t len; | |
2878 | int8_t choices[3]; | |
2879 | int32_t choiceCount; | |
73c04bcf | 2880 | uint32_t targetValue = 0; |
b75a7d8f A |
2881 | UBool useFallback; |
2882 | ||
b75a7d8f | 2883 | /* set up the state */ |
46f4442e | 2884 | converterData = (UConverterDataISO2022*)cnv->extraInfo; |
374ca955 | 2885 | pFromU2022State = &converterData->fromU2022State; |
374ca955 A |
2886 | |
2887 | choiceCount = 0; | |
b75a7d8f A |
2888 | |
2889 | /* check if the last codepoint of previous buffer was a lead surrogate*/ | |
46f4442e | 2890 | if((sourceChar = cnv->fromUChar32)!=0 && target< targetLimit) { |
b75a7d8f A |
2891 | goto getTrail; |
2892 | } | |
2893 | ||
b75a7d8f | 2894 | while( source < sourceLimit){ |
b75a7d8f A |
2895 | if(target < targetLimit){ |
2896 | ||
2897 | sourceChar = *(source++); | |
2898 | /*check if the char is a First surrogate*/ | |
4388f060 A |
2899 | if(U16_IS_SURROGATE(sourceChar)) { |
2900 | if(U16_IS_SURROGATE_LEAD(sourceChar)) { | |
b75a7d8f A |
2901 | getTrail: |
2902 | /*look ahead to find the trail surrogate*/ | |
2903 | if(source < sourceLimit) { | |
2904 | /* test the following code unit */ | |
2905 | UChar trail=(UChar) *source; | |
4388f060 | 2906 | if(U16_IS_TRAIL(trail)) { |
b75a7d8f | 2907 | source++; |
4388f060 | 2908 | sourceChar=U16_GET_SUPPLEMENTARY(sourceChar, trail); |
46f4442e | 2909 | cnv->fromUChar32=0x00; |
374ca955 | 2910 | /* convert this supplementary code point */ |
b75a7d8f A |
2911 | /* exit this condition tree */ |
2912 | } else { | |
2913 | /* this is an unmatched lead code unit (1st surrogate) */ | |
2914 | /* callback(illegal) */ | |
b75a7d8f | 2915 | *err=U_ILLEGAL_CHAR_FOUND; |
46f4442e | 2916 | cnv->fromUChar32=sourceChar; |
374ca955 | 2917 | break; |
b75a7d8f A |
2918 | } |
2919 | } else { | |
2920 | /* no more input */ | |
46f4442e | 2921 | cnv->fromUChar32=sourceChar; |
b75a7d8f A |
2922 | break; |
2923 | } | |
2924 | } else { | |
2925 | /* this is an unmatched trail code unit (2nd surrogate) */ | |
2926 | /* callback(illegal) */ | |
b75a7d8f | 2927 | *err=U_ILLEGAL_CHAR_FOUND; |
46f4442e | 2928 | cnv->fromUChar32=sourceChar; |
374ca955 | 2929 | break; |
b75a7d8f A |
2930 | } |
2931 | } | |
2932 | ||
2933 | /* do the conversion */ | |
374ca955 | 2934 | if(sourceChar <= 0x007f ){ |
73c04bcf A |
2935 | /* do not convert SO/SI/ESC */ |
2936 | if(IS_2022_CONTROL(sourceChar)) { | |
2937 | /* callback(illegal) */ | |
2938 | *err=U_ILLEGAL_CHAR_FOUND; | |
46f4442e | 2939 | cnv->fromUChar32=sourceChar; |
73c04bcf A |
2940 | break; |
2941 | } | |
2942 | ||
374ca955 A |
2943 | /* US-ASCII */ |
2944 | if(pFromU2022State->g == 0) { | |
2945 | buffer[0] = (char)sourceChar; | |
2946 | len = 1; | |
2947 | } else { | |
2948 | buffer[0] = UCNV_SI; | |
2949 | buffer[1] = (char)sourceChar; | |
2950 | len = 2; | |
2951 | pFromU2022State->g = 0; | |
2952 | choiceCount = 0; | |
2953 | } | |
2954 | if(sourceChar == CR || sourceChar == LF) { | |
2955 | /* reset the state at the end of a line */ | |
2956 | uprv_memset(pFromU2022State, 0, sizeof(ISO2022State)); | |
2957 | choiceCount = 0; | |
b75a7d8f | 2958 | } |
b75a7d8f A |
2959 | } |
2960 | else{ | |
374ca955 | 2961 | /* convert U+0080..U+10ffff */ |
374ca955 A |
2962 | int32_t i; |
2963 | int8_t cs, g; | |
2964 | ||
2965 | if(choiceCount == 0) { | |
2966 | /* try the current SO/G1 converter first */ | |
2967 | choices[0] = pFromU2022State->cs[1]; | |
2968 | ||
2969 | /* default to GB2312_1 if none is designated yet */ | |
2970 | if(choices[0] == 0) { | |
2971 | choices[0] = GB2312_1; | |
2972 | } | |
b75a7d8f | 2973 | |
374ca955 A |
2974 | if(converterData->version == 0) { |
2975 | /* ISO-2022-CN */ | |
2976 | ||
2977 | /* try the other SO/G1 converter; a CNS_11643_1 lookup may result in any plane */ | |
2978 | if(choices[0] == GB2312_1) { | |
2979 | choices[1] = (int8_t)CNS_11643_1; | |
2980 | } else { | |
2981 | choices[1] = (int8_t)GB2312_1; | |
b75a7d8f | 2982 | } |
374ca955 A |
2983 | |
2984 | choiceCount = 2; | |
729e4ab9 | 2985 | } else if (converterData->version == 1) { |
374ca955 A |
2986 | /* ISO-2022-CN-EXT */ |
2987 | ||
2988 | /* try one of the other converters */ | |
2989 | switch(choices[0]) { | |
2990 | case GB2312_1: | |
2991 | choices[1] = (int8_t)CNS_11643_1; | |
2992 | choices[2] = (int8_t)ISO_IR_165; | |
2993 | break; | |
2994 | case ISO_IR_165: | |
2995 | choices[1] = (int8_t)GB2312_1; | |
2996 | choices[2] = (int8_t)CNS_11643_1; | |
2997 | break; | |
2998 | default: /* CNS_11643_x */ | |
2999 | choices[1] = (int8_t)GB2312_1; | |
3000 | choices[2] = (int8_t)ISO_IR_165; | |
3001 | break; | |
b75a7d8f | 3002 | } |
b75a7d8f | 3003 | |
374ca955 | 3004 | choiceCount = 3; |
729e4ab9 A |
3005 | } else { |
3006 | choices[0] = (int8_t)CNS_11643_1; | |
3007 | choices[1] = (int8_t)GB2312_1; | |
374ca955 | 3008 | } |
b75a7d8f A |
3009 | } |
3010 | ||
374ca955 | 3011 | cs = g = 0; |
46f4442e A |
3012 | /* |
3013 | * len==0: no mapping found yet | |
3014 | * len<0: found a fallback result: continue looking for a roundtrip but no further fallbacks | |
3015 | * len>0: found a roundtrip result, done | |
3016 | */ | |
374ca955 | 3017 | len = 0; |
46f4442e A |
3018 | /* |
3019 | * We will turn off useFallback after finding a fallback, | |
3020 | * but we still get fallbacks from PUA code points as usual. | |
3021 | * Therefore, we will also need to check that we don't overwrite | |
3022 | * an early fallback with a later one. | |
3023 | */ | |
3024 | useFallback = cnv->useFallback; | |
3025 | ||
3026 | for(i = 0; i < choiceCount && len <= 0; ++i) { | |
3027 | int8_t cs0 = choices[i]; | |
3028 | if(cs0 > 0) { | |
3029 | uint32_t value; | |
3030 | int32_t len2; | |
3031 | if(cs0 >= CNS_11643_0) { | |
3032 | len2 = MBCS_FROM_UCHAR32_ISO2022( | |
3033 | converterData->myConverterArray[CNS_11643], | |
3034 | sourceChar, | |
3035 | &value, | |
3036 | useFallback, | |
3037 | MBCS_OUTPUT_3); | |
3038 | if(len2 == 3 || (len2 == -3 && len == 0)) { | |
3039 | targetValue = value; | |
3040 | cs = (int8_t)(CNS_11643_0 + (value >> 16) - 0x80); | |
3041 | if(len2 >= 0) { | |
3042 | len = 2; | |
3043 | } else { | |
3044 | len = -2; | |
3045 | useFallback = FALSE; | |
3046 | } | |
374ca955 A |
3047 | if(cs == CNS_11643_1) { |
3048 | g = 1; | |
3049 | } else if(cs == CNS_11643_2) { | |
3050 | g = 2; | |
3051 | } else /* plane 3..7 */ if(converterData->version == 1) { | |
3052 | g = 3; | |
3053 | } else { | |
3054 | /* ISO-2022-CN (without -EXT) does not support plane 3..7 */ | |
3055 | len = 0; | |
3056 | } | |
3057 | } | |
3058 | } else { | |
3059 | /* GB2312_1 or ISO-IR-165 */ | |
4388f060 | 3060 | U_ASSERT(cs0<UCNV_2022_MAX_CONVERTERS); |
46f4442e A |
3061 | len2 = MBCS_FROM_UCHAR32_ISO2022( |
3062 | converterData->myConverterArray[cs0], | |
3063 | sourceChar, | |
3064 | &value, | |
3065 | useFallback, | |
3066 | MBCS_OUTPUT_2); | |
3067 | if(len2 == 2 || (len2 == -2 && len == 0)) { | |
3068 | targetValue = value; | |
3069 | len = len2; | |
3070 | cs = cs0; | |
3071 | g = 1; | |
3072 | useFallback = FALSE; | |
3073 | } | |
374ca955 | 3074 | } |
b75a7d8f | 3075 | } |
b75a7d8f A |
3076 | } |
3077 | ||
46f4442e A |
3078 | if(len != 0) { |
3079 | len = 0; /* count output bytes; it must have been abs(len) == 2 */ | |
b75a7d8f | 3080 | |
374ca955 A |
3081 | /* write the designation sequence if necessary */ |
3082 | if(cs != pFromU2022State->cs[g]) { | |
3083 | if(cs < CNS_11643) { | |
3084 | uprv_memcpy(buffer, escSeqCharsCN[cs], 4); | |
3085 | } else { | |
4388f060 | 3086 | U_ASSERT(cs >= CNS_11643_1); |
374ca955 | 3087 | uprv_memcpy(buffer, escSeqCharsCN[CNS_11643 + (cs - CNS_11643_1)], 4); |
b75a7d8f | 3088 | } |
374ca955 A |
3089 | len = 4; |
3090 | pFromU2022State->cs[g] = cs; | |
3091 | if(g == 1) { | |
3092 | /* changing the SO/G1 charset invalidates the choices[] */ | |
3093 | choiceCount = 0; | |
b75a7d8f | 3094 | } |
374ca955 A |
3095 | } |
3096 | ||
3097 | /* write the shift sequence if necessary */ | |
3098 | if(g != pFromU2022State->g) { | |
3099 | switch(g) { | |
3100 | case 1: | |
3101 | buffer[len++] = UCNV_SO; | |
3102 | ||
3103 | /* set the new state only if it is the locking shift SO/G1, not for SS2 or SS3 */ | |
3104 | pFromU2022State->g = 1; | |
3105 | break; | |
3106 | case 2: | |
3107 | buffer[len++] = 0x1b; | |
3108 | buffer[len++] = 0x4e; | |
3109 | break; | |
3110 | default: /* case 3 */ | |
3111 | buffer[len++] = 0x1b; | |
3112 | buffer[len++] = 0x4f; | |
3113 | break; | |
b75a7d8f | 3114 | } |
b75a7d8f | 3115 | } |
b75a7d8f | 3116 | |
374ca955 A |
3117 | /* write the two output bytes */ |
3118 | buffer[len++] = (char)(targetValue >> 8); | |
3119 | buffer[len++] = (char)targetValue; | |
3120 | } else { | |
46f4442e | 3121 | /* if we cannot find the character after checking all codepages |
374ca955 A |
3122 | * then this is an error |
3123 | */ | |
3124 | *err = U_INVALID_CHAR_FOUND; | |
46f4442e | 3125 | cnv->fromUChar32=sourceChar; |
374ca955 A |
3126 | break; |
3127 | } | |
b75a7d8f | 3128 | } |
b75a7d8f | 3129 | |
374ca955 A |
3130 | /* output len>0 bytes in buffer[] */ |
3131 | if(len == 1) { | |
3132 | *target++ = buffer[0]; | |
3133 | if(offsets) { | |
73c04bcf | 3134 | *offsets++ = (int32_t)(source - args->source - 1); /* -1: known to be ASCII */ |
374ca955 A |
3135 | } |
3136 | } else if(len == 2 && (target + 2) <= targetLimit) { | |
3137 | *target++ = buffer[0]; | |
3138 | *target++ = buffer[1]; | |
3139 | if(offsets) { | |
3140 | int32_t sourceIndex = (int32_t)(source - args->source - U16_LENGTH(sourceChar)); | |
3141 | *offsets++ = sourceIndex; | |
3142 | *offsets++ = sourceIndex; | |
3143 | } | |
3144 | } else { | |
73c04bcf | 3145 | fromUWriteUInt8( |
46f4442e | 3146 | cnv, |
374ca955 | 3147 | buffer, len, |
73c04bcf | 3148 | &target, (const char *)targetLimit, |
374ca955 A |
3149 | &offsets, (int32_t)(source - args->source - U16_LENGTH(sourceChar)), |
3150 | err); | |
3151 | if(U_FAILURE(*err)) { | |
b75a7d8f A |
3152 | break; |
3153 | } | |
3154 | } | |
3155 | } /* end if(myTargetIndex<myTargetLength) */ | |
3156 | else{ | |
3157 | *err =U_BUFFER_OVERFLOW_ERROR; | |
3158 | break; | |
3159 | } | |
3160 | ||
3161 | }/* end while(mySourceIndex<mySourceLength) */ | |
3162 | ||
374ca955 A |
3163 | /* |
3164 | * the end of the input stream and detection of truncated input | |
3165 | * are handled by the framework, but for ISO-2022-CN conversion | |
3166 | * we need to be in ASCII mode at the very end | |
3167 | * | |
3168 | * conditions: | |
3169 | * successful | |
3170 | * not in ASCII mode | |
3171 | * end of input and no truncated input | |
b75a7d8f | 3172 | */ |
374ca955 A |
3173 | if( U_SUCCESS(*err) && |
3174 | pFromU2022State->g!=0 && | |
46f4442e | 3175 | args->flush && source>=sourceLimit && cnv->fromUChar32==0 |
374ca955 A |
3176 | ) { |
3177 | int32_t sourceIndex; | |
3178 | ||
3179 | /* we are switching to ASCII */ | |
3180 | pFromU2022State->g=0; | |
3181 | ||
3182 | /* get the source index of the last input character */ | |
3183 | /* | |
3184 | * TODO this would be simpler and more reliable if we used a pair | |
3185 | * of sourceIndex/prevSourceIndex like in ucnvmbcs.c | |
3186 | * so that we could simply use the prevSourceIndex here; | |
3187 | * this code gives an incorrect result for the rare case of an unmatched | |
3188 | * trail surrogate that is alone in the last buffer of the text stream | |
3189 | */ | |
3190 | sourceIndex=(int32_t)(source-args->source); | |
3191 | if(sourceIndex>0) { | |
3192 | --sourceIndex; | |
3193 | if( U16_IS_TRAIL(args->source[sourceIndex]) && | |
3194 | (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1])) | |
3195 | ) { | |
3196 | --sourceIndex; | |
b75a7d8f | 3197 | } |
374ca955 A |
3198 | } else { |
3199 | sourceIndex=-1; | |
b75a7d8f | 3200 | } |
b75a7d8f | 3201 | |
73c04bcf | 3202 | fromUWriteUInt8( |
46f4442e | 3203 | cnv, |
374ca955 | 3204 | SHIFT_IN_STR, 1, |
73c04bcf | 3205 | &target, (const char *)targetLimit, |
374ca955 A |
3206 | &offsets, sourceIndex, |
3207 | err); | |
b75a7d8f | 3208 | } |
b75a7d8f | 3209 | |
374ca955 A |
3210 | /*save the state and return */ |
3211 | args->source = source; | |
3212 | args->target = (char*)target; | |
b75a7d8f A |
3213 | } |
3214 | ||
3215 | ||
46f4442e | 3216 | static void |
b75a7d8f A |
3217 | UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterToUnicodeArgs *args, |
3218 | UErrorCode* err){ | |
3219 | char tempBuf[3]; | |
374ca955 | 3220 | const char *mySource = (char *) args->source; |
b75a7d8f | 3221 | UChar *myTarget = args->target; |
b75a7d8f A |
3222 | const char *mySourceLimit = args->sourceLimit; |
3223 | uint32_t targetUniChar = 0x0000; | |
3224 | uint32_t mySourceChar = 0x0000; | |
3225 | UConverterDataISO2022* myData; | |
374ca955 | 3226 | ISO2022State *pToU2022State; |
b75a7d8f | 3227 | |
374ca955 A |
3228 | myData=(UConverterDataISO2022*)(args->converter->extraInfo); |
3229 | pToU2022State = &myData->toU2022State; | |
3230 | ||
3231 | if(myData->key != 0) { | |
3232 | /* continue with a partial escape sequence */ | |
3233 | goto escape; | |
3234 | } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) { | |
3235 | /* continue with a partial double-byte character */ | |
3236 | mySourceChar = args->converter->toUBytes[0]; | |
3237 | args->converter->toULength = 0; | |
fd0068a8 | 3238 | targetUniChar = missingCharMarker; |
374ca955 | 3239 | goto getTrailByte; |
b75a7d8f | 3240 | } |
374ca955 A |
3241 | |
3242 | while(mySource < mySourceLimit){ | |
b75a7d8f A |
3243 | |
3244 | targetUniChar =missingCharMarker; | |
3245 | ||
3246 | if(myTarget < args->targetLimit){ | |
3247 | ||
3248 | mySourceChar= (unsigned char) *mySource++; | |
3249 | ||
b75a7d8f A |
3250 | switch(mySourceChar){ |
3251 | case UCNV_SI: | |
374ca955 | 3252 | pToU2022State->g=0; |
d5d484b0 A |
3253 | if (myData->isEmptySegment) { |
3254 | myData->isEmptySegment = FALSE; /* we are handling it, reset to avoid future spurious errors */ | |
46f4442e A |
3255 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; |
3256 | args->converter->toUCallbackReason = UCNV_IRREGULAR; | |
d5d484b0 A |
3257 | args->converter->toUBytes[0] = mySourceChar; |
3258 | args->converter->toULength = 1; | |
3259 | args->target = myTarget; | |
3260 | args->source = mySource; | |
3261 | return; | |
3262 | } | |
b75a7d8f A |
3263 | continue; |
3264 | ||
3265 | case UCNV_SO: | |
374ca955 A |
3266 | if(pToU2022State->cs[1] != 0) { |
3267 | pToU2022State->g=1; | |
d5d484b0 | 3268 | myData->isEmptySegment = TRUE; /* Begin a new segment, empty so far */ |
374ca955 A |
3269 | continue; |
3270 | } else { | |
3271 | /* illegal to have SO before a matching designator */ | |
d5d484b0 | 3272 | myData->isEmptySegment = FALSE; /* Handling a different error, reset this to avoid future spurious errs */ |
b75a7d8f A |
3273 | break; |
3274 | } | |
3275 | ||
b75a7d8f | 3276 | case ESC_2022: |
b75a7d8f | 3277 | mySource--; |
374ca955 | 3278 | escape: |
d5d484b0 A |
3279 | { |
3280 | const char * mySourceBefore = mySource; | |
3281 | int8_t toULengthBefore = args->converter->toULength; | |
3282 | ||
46f4442e | 3283 | changeState_2022(args->converter,&(mySource), |
d5d484b0 A |
3284 | mySourceLimit, ISO_2022_CN,err); |
3285 | ||
3286 | /* After SO there must be at least one character before a designator (designator error handled separately) */ | |
46f4442e A |
3287 | if(myData->key==0 && U_SUCCESS(*err) && myData->isEmptySegment) { |
3288 | *err = U_ILLEGAL_ESCAPE_SEQUENCE; | |
3289 | args->converter->toUCallbackReason = UCNV_IRREGULAR; | |
729e4ab9 | 3290 | args->converter->toULength = (int8_t)(toULengthBefore + (mySource - mySourceBefore)); |
d5d484b0 A |
3291 | } |
3292 | } | |
b75a7d8f A |
3293 | |
3294 | /* invalid or illegal escape sequence */ | |
3295 | if(U_FAILURE(*err)){ | |
3296 | args->target = myTarget; | |
3297 | args->source = mySource; | |
d5d484b0 | 3298 | myData->isEmptySegment = FALSE; /* Reset to avoid future spurious errors */ |
b75a7d8f A |
3299 | return; |
3300 | } | |
3301 | continue; | |
3302 | ||
374ca955 A |
3303 | /* ISO-2022-CN does not use single-byte (C1) SS2 and SS3 */ |
3304 | ||
3305 | case CR: | |
3306 | /*falls through*/ | |
3307 | case LF: | |
3308 | uprv_memset(pToU2022State, 0, sizeof(ISO2022State)); | |
3309 | /* falls through */ | |
3310 | default: | |
3311 | /* convert one or two bytes */ | |
d5d484b0 | 3312 | myData->isEmptySegment = FALSE; |
374ca955 A |
3313 | if(pToU2022State->g != 0) { |
3314 | if(mySource < mySourceLimit) { | |
3315 | UConverterSharedData *cnv; | |
3316 | StateEnum tempState; | |
3317 | int32_t tempBufLen; | |
fd0068a8 A |
3318 | int leadIsOk, trailIsOk; |
3319 | uint8_t trailByte; | |
374ca955 | 3320 | getTrailByte: |
fd0068a8 A |
3321 | trailByte = (uint8_t)*mySource; |
3322 | /* | |
3323 | * Ticket 5691: consistent illegal sequences: | |
3324 | * - We include at least the first byte in the illegal sequence. | |
3325 | * - If any of the non-initial bytes could be the start of a character, | |
3326 | * we stop the illegal sequence before the first one of those. | |
3327 | * | |
3328 | * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is | |
3329 | * an ESC/SO/SI, we report only the first byte as the illegal sequence. | |
3330 | * Otherwise we convert or report the pair of bytes. | |
3331 | */ | |
3332 | leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21); | |
3333 | trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21); | |
3334 | if (leadIsOk && trailIsOk) { | |
3335 | ++mySource; | |
3336 | tempState = (StateEnum)pToU2022State->cs[pToU2022State->g]; | |
3337 | if(tempState >= CNS_11643_0) { | |
3338 | cnv = myData->myConverterArray[CNS_11643]; | |
3339 | tempBuf[0] = (char) (0x80+(tempState-CNS_11643_0)); | |
3340 | tempBuf[1] = (char) (mySourceChar); | |
3341 | tempBuf[2] = (char) trailByte; | |
3342 | tempBufLen = 3; | |
3343 | ||
3344 | }else{ | |
4388f060 | 3345 | U_ASSERT(tempState<UCNV_2022_MAX_CONVERTERS); |
fd0068a8 A |
3346 | cnv = myData->myConverterArray[tempState]; |
3347 | tempBuf[0] = (char) (mySourceChar); | |
3348 | tempBuf[1] = (char) trailByte; | |
3349 | tempBufLen = 2; | |
3350 | } | |
3351 | targetUniChar = ucnv_MBCSSimpleGetNextUChar(cnv, tempBuf, tempBufLen, FALSE); | |
3352 | mySourceChar = (mySourceChar << 8) | trailByte; | |
3353 | } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) { | |
3354 | /* report a pair of illegal bytes if the second byte is not a DBCS starter */ | |
3355 | ++mySource; | |
3356 | /* add another bit so that the code below writes 2 bytes in case of error */ | |
3357 | mySourceChar = 0x10000 | (mySourceChar << 8) | trailByte; | |
374ca955 | 3358 | } |
374ca955 A |
3359 | if(pToU2022State->g>=2) { |
3360 | /* return from a single-shift state to the previous one */ | |
3361 | pToU2022State->g=pToU2022State->prevG; | |
3362 | } | |
374ca955 A |
3363 | } else { |
3364 | args->converter->toUBytes[0] = (uint8_t)mySourceChar; | |
3365 | args->converter->toULength = 1; | |
3366 | goto endloop; | |
3367 | } | |
3368 | } | |
3369 | else{ | |
3370 | if(mySourceChar <= 0x7f) { | |
3371 | targetUniChar = (UChar) mySourceChar; | |
3372 | } | |
3373 | } | |
3374 | break; | |
b75a7d8f A |
3375 | } |
3376 | if(targetUniChar < (missingCharMarker-1/*0xfffe*/)){ | |
3377 | if(args->offsets){ | |
73c04bcf | 3378 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); |
b75a7d8f A |
3379 | } |
3380 | *(myTarget++)=(UChar)targetUniChar; | |
3381 | } | |
3382 | else if(targetUniChar > missingCharMarker){ | |
3383 | /* disassemble the surrogate pair and write to output*/ | |
3384 | targetUniChar-=0x0010000; | |
374ca955 | 3385 | *myTarget = (UChar)(0xd800+(UChar)(targetUniChar>>10)); |
b75a7d8f | 3386 | if(args->offsets){ |
73c04bcf | 3387 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); |
b75a7d8f | 3388 | } |
374ca955 | 3389 | ++myTarget; |
46f4442e | 3390 | if(myTarget< args->targetLimit){ |
374ca955 | 3391 | *myTarget = (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff)); |
b75a7d8f | 3392 | if(args->offsets){ |
73c04bcf | 3393 | args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2)); |
b75a7d8f | 3394 | } |
374ca955 | 3395 | ++myTarget; |
b75a7d8f A |
3396 | }else{ |
3397 | args->converter->UCharErrorBuffer[args->converter->UCharErrorBufferLength++]= | |
3398 | (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff)); | |
3399 | } | |
3400 | ||
3401 | } | |
3402 | else{ | |
3403 | /* Call the callback function*/ | |
374ca955 A |
3404 | toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err); |
3405 | break; | |
b75a7d8f A |
3406 | } |
3407 | } | |
3408 | else{ | |
3409 | *err =U_BUFFER_OVERFLOW_ERROR; | |
3410 | break; | |
3411 | } | |
3412 | } | |
374ca955 | 3413 | endloop: |
b75a7d8f A |
3414 | args->target = myTarget; |
3415 | args->source = mySource; | |
3416 | } | |
3417 | ||
3418 | static void | |
3419 | _ISO_2022_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err) { | |
3420 | UConverter *cnv = args->converter; | |
3421 | UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) cnv->extraInfo; | |
374ca955 A |
3422 | ISO2022State *pFromU2022State=&myConverterData->fromU2022State; |
3423 | char *p, *subchar; | |
3424 | char buffer[8]; | |
3425 | int32_t length; | |
3426 | ||
73c04bcf | 3427 | subchar=(char *)cnv->subChars; |
374ca955 | 3428 | length=cnv->subCharLen; /* assume length==1 for most variants */ |
b75a7d8f A |
3429 | |
3430 | p = buffer; | |
3431 | switch(myConverterData->locale[0]){ | |
3432 | case 'j': | |
374ca955 A |
3433 | { |
3434 | int8_t cs; | |
3435 | ||
3436 | if(pFromU2022State->g == 1) { | |
3437 | /* JIS7: switch from G1 to G0 */ | |
3438 | pFromU2022State->g = 0; | |
3439 | *p++ = UCNV_SI; | |
3440 | } | |
3441 | ||
3442 | cs = pFromU2022State->cs[0]; | |
3443 | if(cs != ASCII && cs != JISX201) { | |
3444 | /* not in ASCII or JIS X 0201: switch to ASCII */ | |
3445 | pFromU2022State->cs[0] = (int8_t)ASCII; | |
b75a7d8f A |
3446 | *p++ = '\x1b'; |
3447 | *p++ = '\x28'; | |
3448 | *p++ = '\x42'; | |
b75a7d8f | 3449 | } |
374ca955 A |
3450 | |
3451 | *p++ = subchar[0]; | |
b75a7d8f | 3452 | break; |
374ca955 | 3453 | } |
b75a7d8f | 3454 | case 'c': |
374ca955 A |
3455 | if(pFromU2022State->g != 0) { |
3456 | /* not in ASCII mode: switch to ASCII */ | |
3457 | pFromU2022State->g = 0; | |
3458 | *p++ = UCNV_SI; | |
3459 | } | |
3460 | *p++ = subchar[0]; | |
b75a7d8f A |
3461 | break; |
3462 | case 'k': | |
374ca955 A |
3463 | if(myConverterData->version == 0) { |
3464 | if(length == 1) { | |
3465 | if((UBool)args->converter->fromUnicodeStatus) { | |
3466 | /* in DBCS mode: switch to SBCS */ | |
3467 | args->converter->fromUnicodeStatus = 0; | |
3468 | *p++ = UCNV_SI; | |
3469 | } | |
3470 | *p++ = subchar[0]; | |
3471 | } else /* length == 2*/ { | |
3472 | if(!(UBool)args->converter->fromUnicodeStatus) { | |
3473 | /* in SBCS mode: switch to DBCS */ | |
3474 | args->converter->fromUnicodeStatus = 1; | |
3475 | *p++ = UCNV_SO; | |
3476 | } | |
3477 | *p++ = subchar[0]; | |
3478 | *p++ = subchar[1]; | |
3479 | } | |
3480 | break; | |
3481 | } else { | |
73c04bcf A |
3482 | /* save the subconverter's substitution string */ |
3483 | uint8_t *currentSubChars = myConverterData->currentConverter->subChars; | |
3484 | int8_t currentSubCharLen = myConverterData->currentConverter->subCharLen; | |
3485 | ||
3486 | /* set our substitution string into the subconverter */ | |
3487 | myConverterData->currentConverter->subChars = (uint8_t *)subchar; | |
374ca955 A |
3488 | myConverterData->currentConverter->subCharLen = (int8_t)length; |
3489 | ||
73c04bcf A |
3490 | /* let the subconverter write the subchar, set/retrieve fromUChar32 state */ |
3491 | args->converter = myConverterData->currentConverter; | |
374ca955 A |
3492 | myConverterData->currentConverter->fromUChar32 = cnv->fromUChar32; |
3493 | ucnv_cbFromUWriteSub(args, 0, err); | |
3494 | cnv->fromUChar32 = myConverterData->currentConverter->fromUChar32; | |
73c04bcf A |
3495 | args->converter = cnv; |
3496 | ||
3497 | /* restore the subconverter's substitution string */ | |
3498 | myConverterData->currentConverter->subChars = currentSubChars; | |
3499 | myConverterData->currentConverter->subCharLen = currentSubCharLen; | |
374ca955 A |
3500 | |
3501 | if(*err == U_BUFFER_OVERFLOW_ERROR) { | |
3502 | if(myConverterData->currentConverter->charErrorBufferLength > 0) { | |
3503 | uprv_memcpy( | |
3504 | cnv->charErrorBuffer, | |
3505 | myConverterData->currentConverter->charErrorBuffer, | |
3506 | myConverterData->currentConverter->charErrorBufferLength); | |
3507 | } | |
3508 | cnv->charErrorBufferLength = myConverterData->currentConverter->charErrorBufferLength; | |
3509 | myConverterData->currentConverter->charErrorBufferLength = 0; | |
3510 | } | |
374ca955 | 3511 | return; |
b75a7d8f | 3512 | } |
b75a7d8f A |
3513 | default: |
3514 | /* not expected */ | |
3515 | break; | |
3516 | } | |
3517 | ucnv_cbFromUWriteBytes(args, | |
3518 | buffer, (int32_t)(p - buffer), | |
3519 | offsetIndex, err); | |
3520 | } | |
3521 | ||
73c04bcf A |
3522 | /* |
3523 | * Structure for cloning an ISO 2022 converter into a single memory block. | |
3524 | * ucnv_safeClone() of the converter will align the entire cloneStruct, | |
3525 | * and then ucnv_safeClone() of the sub-converter may additionally align | |
3526 | * currentConverter inside the cloneStruct, for which we need the deadSpace | |
3527 | * after currentConverter. | |
3528 | * This is because UAlignedMemory may be larger than the actually | |
3529 | * necessary alignment size for the platform. | |
3530 | * The other cloneStruct fields will not be moved around, | |
3531 | * and are aligned properly with cloneStruct's alignment. | |
3532 | */ | |
b75a7d8f A |
3533 | struct cloneStruct |
3534 | { | |
3535 | UConverter cnv; | |
374ca955 | 3536 | UConverter currentConverter; |
73c04bcf A |
3537 | UAlignedMemory deadSpace; |
3538 | UConverterDataISO2022 mydata; | |
b75a7d8f A |
3539 | }; |
3540 | ||
3541 | ||
46f4442e | 3542 | static UConverter * |
b75a7d8f | 3543 | _ISO_2022_SafeClone( |
46f4442e A |
3544 | const UConverter *cnv, |
3545 | void *stackBuffer, | |
3546 | int32_t *pBufferSize, | |
b75a7d8f A |
3547 | UErrorCode *status) |
3548 | { | |
3549 | struct cloneStruct * localClone; | |
374ca955 A |
3550 | UConverterDataISO2022 *cnvData; |
3551 | int32_t i, size; | |
b75a7d8f A |
3552 | |
3553 | if (*pBufferSize == 0) { /* 'preflighting' request - set needed size into *pBufferSize */ | |
374ca955 A |
3554 | *pBufferSize = (int32_t)sizeof(struct cloneStruct); |
3555 | return NULL; | |
b75a7d8f A |
3556 | } |
3557 | ||
374ca955 | 3558 | cnvData = (UConverterDataISO2022 *)cnv->extraInfo; |
b75a7d8f | 3559 | localClone = (struct cloneStruct *)stackBuffer; |
b75a7d8f | 3560 | |
374ca955 | 3561 | /* ucnv.c/ucnv_safeClone() copied the main UConverter already */ |
b75a7d8f | 3562 | |
374ca955 | 3563 | uprv_memcpy(&localClone->mydata, cnvData, sizeof(UConverterDataISO2022)); |
73c04bcf A |
3564 | localClone->cnv.extraInfo = &localClone->mydata; /* set pointer to extra data */ |
3565 | localClone->cnv.isExtraLocal = TRUE; | |
b75a7d8f | 3566 | |
374ca955 | 3567 | /* share the subconverters */ |
b75a7d8f | 3568 | |
374ca955 | 3569 | if(cnvData->currentConverter != NULL) { |
73c04bcf | 3570 | size = (int32_t)(sizeof(UConverter) + sizeof(UAlignedMemory)); /* include size of padding */ |
374ca955 A |
3571 | localClone->mydata.currentConverter = |
3572 | ucnv_safeClone(cnvData->currentConverter, | |
3573 | &localClone->currentConverter, | |
3574 | &size, status); | |
3575 | if(U_FAILURE(*status)) { | |
3576 | return NULL; | |
b75a7d8f | 3577 | } |
b75a7d8f A |
3578 | } |
3579 | ||
374ca955 A |
3580 | for(i=0; i<UCNV_2022_MAX_CONVERTERS; ++i) { |
3581 | if(cnvData->myConverterArray[i] != NULL) { | |
3582 | ucnv_incrementRefCount(cnvData->myConverterArray[i]); | |
3583 | } | |
b75a7d8f A |
3584 | } |
3585 | ||
b75a7d8f A |
3586 | return &localClone->cnv; |
3587 | } | |
3588 | ||
3589 | static void | |
3590 | _ISO_2022_GetUnicodeSet(const UConverter *cnv, | |
73c04bcf | 3591 | const USetAdder *sa, |
b75a7d8f A |
3592 | UConverterUnicodeSet which, |
3593 | UErrorCode *pErrorCode) | |
3594 | { | |
3595 | int32_t i; | |
b75a7d8f A |
3596 | UConverterDataISO2022* cnvData; |
3597 | ||
3598 | if (U_FAILURE(*pErrorCode)) { | |
3599 | return; | |
3600 | } | |
374ca955 | 3601 | #ifdef U_ENABLE_GENERIC_ISO_2022 |
b75a7d8f A |
3602 | if (cnv->sharedData == &_ISO2022Data) { |
3603 | /* We use UTF-8 in this case */ | |
374ca955 A |
3604 | sa->addRange(sa->set, 0, 0xd7FF); |
3605 | sa->addRange(sa->set, 0xE000, 0x10FFFF); | |
b75a7d8f A |
3606 | return; |
3607 | } | |
374ca955 | 3608 | #endif |
b75a7d8f A |
3609 | |
3610 | cnvData = (UConverterDataISO2022*)cnv->extraInfo; | |
b75a7d8f | 3611 | |
374ca955 A |
3612 | /* open a set and initialize it with code points that are algorithmically round-tripped */ |
3613 | switch(cnvData->locale[0]){ | |
3614 | case 'j': | |
46f4442e A |
3615 | /* include JIS X 0201 which is hardcoded */ |
3616 | sa->add(sa->set, 0xa5); | |
3617 | sa->add(sa->set, 0x203e); | |
374ca955 A |
3618 | if(jpCharsetMasks[cnvData->version]&CSM(ISO8859_1)) { |
3619 | /* include Latin-1 for some variants of JP */ | |
3620 | sa->addRange(sa->set, 0, 0xff); | |
3621 | } else { | |
3622 | /* include ASCII for JP */ | |
3623 | sa->addRange(sa->set, 0, 0x7f); | |
3624 | } | |
46f4442e A |
3625 | if(cnvData->version==3 || cnvData->version==4 || which==UCNV_ROUNDTRIP_AND_FALLBACK_SET) { |
3626 | /* | |
3627 | * Do not test (jpCharsetMasks[cnvData->version]&CSM(HWKANA_7BIT))!=0 | |
3628 | * because the bit is on for all JP versions although only versions 3 & 4 (JIS7 & JIS8) | |
3629 | * use half-width Katakana. | |
3630 | * This is because all ISO-2022-JP variants are lenient in that they accept (in toUnicode) | |
3631 | * half-width Katakana via the ESC ( I sequence. | |
3632 | * However, we only emit (fromUnicode) half-width Katakana according to the | |
3633 | * definition of each variant. | |
3634 | * | |
3635 | * When including fallbacks, | |
3636 | * we need to include half-width Katakana Unicode code points for all JP variants because | |
3637 | * JIS X 0208 has hardcoded fallbacks for them (which map to full-width Katakana). | |
3638 | */ | |
374ca955 | 3639 | /* include half-width Katakana for JP */ |
46f4442e | 3640 | sa->addRange(sa->set, HWKANA_START, HWKANA_END); |
374ca955 A |
3641 | } |
3642 | break; | |
3643 | case 'c': | |
3644 | case 'z': | |
3645 | /* include ASCII for CN */ | |
3646 | sa->addRange(sa->set, 0, 0x7f); | |
3647 | break; | |
3648 | case 'k': | |
3649 | /* there is only one converter for KR, and it is not in the myConverterArray[] */ | |
3650 | cnvData->currentConverter->sharedData->impl->getUnicodeSet( | |
3651 | cnvData->currentConverter, sa, which, pErrorCode); | |
73c04bcf A |
3652 | /* the loop over myConverterArray[] will simply not find another converter */ |
3653 | break; | |
374ca955 A |
3654 | default: |
3655 | break; | |
b75a7d8f A |
3656 | } |
3657 | ||
46f4442e | 3658 | #if 0 /* Replaced by ucnv_MBCSGetFilteredUnicodeSetForUnicode() until we implement ucnv_getUnicodeSet() with reverse fallbacks. */ |
374ca955 A |
3659 | if( (cnvData->locale[0]=='c' || cnvData->locale[0]=='z') && |
3660 | cnvData->version==0 && i==CNS_11643 | |
3661 | ) { | |
3662 | /* special handling for non-EXT ISO-2022-CN: add only code points for CNS planes 1 and 2 */ | |
3663 | ucnv_MBCSGetUnicodeSetForBytes( | |
3664 | cnvData->myConverterArray[i], | |
3665 | sa, UCNV_ROUNDTRIP_SET, | |
3666 | 0, 0x81, 0x82, | |
3667 | pErrorCode); | |
46f4442e A |
3668 | } |
3669 | #endif | |
3670 | ||
3671 | for (i=0; i<UCNV_2022_MAX_CONVERTERS; i++) { | |
3672 | UConverterSetFilter filter; | |
3673 | if(cnvData->myConverterArray[i]!=NULL) { | |
3674 | if( (cnvData->locale[0]=='c' || cnvData->locale[0]=='z') && | |
3675 | cnvData->version==0 && i==CNS_11643 | |
3676 | ) { | |
3677 | /* | |
3678 | * Version-specific for CN: | |
3679 | * CN version 0 does not map CNS planes 3..7 although | |
3680 | * they are all available in the CNS conversion table; | |
3681 | * CN version 1 (-EXT) does map them all. | |
3682 | * The two versions create different Unicode sets. | |
3683 | */ | |
3684 | filter=UCNV_SET_FILTER_2022_CN; | |
3685 | } else if(cnvData->locale[0]=='j' && i==JISX208) { | |
3686 | /* | |
3687 | * Only add code points that map to Shift-JIS codes | |
3688 | * corresponding to JIS X 0208. | |
3689 | */ | |
3690 | filter=UCNV_SET_FILTER_SJIS; | |
3691 | } else if(i==KSC5601) { | |
3692 | /* | |
3693 | * Some of the KSC 5601 tables (convrtrs.txt has this aliases on multiple tables) | |
3694 | * are broader than GR94. | |
3695 | */ | |
3696 | filter=UCNV_SET_FILTER_GR94DBCS; | |
374ca955 | 3697 | } else { |
46f4442e | 3698 | filter=UCNV_SET_FILTER_NONE; |
374ca955 | 3699 | } |
46f4442e | 3700 | ucnv_MBCSGetFilteredUnicodeSetForUnicode(cnvData->myConverterArray[i], sa, which, filter, pErrorCode); |
374ca955 | 3701 | } |
b75a7d8f | 3702 | } |
73c04bcf A |
3703 | |
3704 | /* | |
3705 | * ISO 2022 converters must not convert SO/SI/ESC despite what | |
3706 | * sub-converters do by themselves. | |
3707 | * Remove these characters from the set. | |
3708 | */ | |
3709 | sa->remove(sa->set, 0x0e); | |
3710 | sa->remove(sa->set, 0x0f); | |
3711 | sa->remove(sa->set, 0x1b); | |
46f4442e A |
3712 | |
3713 | /* ISO 2022 converters do not convert C1 controls either */ | |
3714 | sa->removeRange(sa->set, 0x80, 0x9f); | |
b75a7d8f A |
3715 | } |
3716 | ||
374ca955 A |
3717 | static const UConverterImpl _ISO2022Impl={ |
3718 | UCNV_ISO_2022, | |
3719 | ||
3720 | NULL, | |
3721 | NULL, | |
3722 | ||
3723 | _ISO2022Open, | |
3724 | _ISO2022Close, | |
3725 | _ISO2022Reset, | |
3726 | ||
3727 | #ifdef U_ENABLE_GENERIC_ISO_2022 | |
3728 | T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC, | |
3729 | T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC, | |
3730 | ucnv_fromUnicode_UTF8, | |
3731 | ucnv_fromUnicode_UTF8_OFFSETS_LOGIC, | |
3732 | #else | |
3733 | NULL, | |
3734 | NULL, | |
3735 | NULL, | |
3736 | NULL, | |
3737 | #endif | |
3738 | NULL, | |
3739 | ||
3740 | NULL, | |
3741 | _ISO2022getName, | |
3742 | _ISO_2022_WriteSub, | |
3743 | _ISO_2022_SafeClone, | |
4388f060 A |
3744 | _ISO_2022_GetUnicodeSet, |
3745 | ||
3746 | NULL, | |
3747 | NULL | |
374ca955 A |
3748 | }; |
3749 | static const UConverterStaticData _ISO2022StaticData={ | |
3750 | sizeof(UConverterStaticData), | |
3751 | "ISO_2022", | |
3752 | 2022, | |
3753 | UCNV_IBM, | |
3754 | UCNV_ISO_2022, | |
3755 | 1, | |
3756 | 3, /* max 3 bytes per UChar from UTF-8 (4 bytes from surrogate _pair_) */ | |
3757 | { 0x1a, 0, 0, 0 }, | |
3758 | 1, | |
3759 | FALSE, | |
3760 | FALSE, | |
3761 | 0, | |
3762 | 0, | |
3763 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ | |
3764 | }; | |
3765 | const UConverterSharedData _ISO2022Data={ | |
3766 | sizeof(UConverterSharedData), | |
3767 | ~((uint32_t) 0), | |
3768 | NULL, | |
3769 | NULL, | |
3770 | &_ISO2022StaticData, | |
3771 | FALSE, | |
3772 | &_ISO2022Impl, | |
4388f060 | 3773 | 0, UCNV_MBCS_TABLE_INITIALIZER |
374ca955 A |
3774 | }; |
3775 | ||
3776 | /*************JP****************/ | |
3777 | static const UConverterImpl _ISO2022JPImpl={ | |
3778 | UCNV_ISO_2022, | |
3779 | ||
3780 | NULL, | |
3781 | NULL, | |
3782 | ||
3783 | _ISO2022Open, | |
3784 | _ISO2022Close, | |
3785 | _ISO2022Reset, | |
3786 | ||
3787 | UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC, | |
3788 | UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC, | |
3789 | UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC, | |
3790 | UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC, | |
3791 | NULL, | |
3792 | ||
3793 | NULL, | |
3794 | _ISO2022getName, | |
3795 | _ISO_2022_WriteSub, | |
3796 | _ISO_2022_SafeClone, | |
4388f060 A |
3797 | _ISO_2022_GetUnicodeSet, |
3798 | ||
3799 | NULL, | |
3800 | NULL | |
374ca955 A |
3801 | }; |
3802 | static const UConverterStaticData _ISO2022JPStaticData={ | |
3803 | sizeof(UConverterStaticData), | |
3804 | "ISO_2022_JP", | |
3805 | 0, | |
3806 | UCNV_IBM, | |
3807 | UCNV_ISO_2022, | |
3808 | 1, | |
3809 | 6, /* max 6 bytes per UChar: 4-byte escape sequence + DBCS */ | |
3810 | { 0x1a, 0, 0, 0 }, | |
3811 | 1, | |
3812 | FALSE, | |
3813 | FALSE, | |
3814 | 0, | |
3815 | 0, | |
3816 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ | |
3817 | }; | |
4388f060 A |
3818 | |
3819 | namespace { | |
3820 | ||
3821 | const UConverterSharedData _ISO2022JPData={ | |
374ca955 A |
3822 | sizeof(UConverterSharedData), |
3823 | ~((uint32_t) 0), | |
3824 | NULL, | |
3825 | NULL, | |
3826 | &_ISO2022JPStaticData, | |
3827 | FALSE, | |
3828 | &_ISO2022JPImpl, | |
4388f060 | 3829 | 0, UCNV_MBCS_TABLE_INITIALIZER |
374ca955 A |
3830 | }; |
3831 | ||
4388f060 A |
3832 | } // namespace |
3833 | ||
374ca955 A |
3834 | /************* KR ***************/ |
3835 | static const UConverterImpl _ISO2022KRImpl={ | |
3836 | UCNV_ISO_2022, | |
3837 | ||
3838 | NULL, | |
3839 | NULL, | |
3840 | ||
3841 | _ISO2022Open, | |
3842 | _ISO2022Close, | |
3843 | _ISO2022Reset, | |
3844 | ||
3845 | UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC, | |
3846 | UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC, | |
3847 | UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC, | |
3848 | UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC, | |
3849 | NULL, | |
3850 | ||
3851 | NULL, | |
3852 | _ISO2022getName, | |
3853 | _ISO_2022_WriteSub, | |
3854 | _ISO_2022_SafeClone, | |
4388f060 A |
3855 | _ISO_2022_GetUnicodeSet, |
3856 | ||
3857 | NULL, | |
3858 | NULL | |
374ca955 A |
3859 | }; |
3860 | static const UConverterStaticData _ISO2022KRStaticData={ | |
3861 | sizeof(UConverterStaticData), | |
3862 | "ISO_2022_KR", | |
3863 | 0, | |
3864 | UCNV_IBM, | |
3865 | UCNV_ISO_2022, | |
3866 | 1, | |
3867 | 3, /* max 3 bytes per UChar: SO+DBCS */ | |
3868 | { 0x1a, 0, 0, 0 }, | |
3869 | 1, | |
3870 | FALSE, | |
3871 | FALSE, | |
3872 | 0, | |
3873 | 0, | |
3874 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ | |
3875 | }; | |
4388f060 A |
3876 | |
3877 | namespace { | |
3878 | ||
3879 | const UConverterSharedData _ISO2022KRData={ | |
374ca955 A |
3880 | sizeof(UConverterSharedData), |
3881 | ~((uint32_t) 0), | |
3882 | NULL, | |
3883 | NULL, | |
3884 | &_ISO2022KRStaticData, | |
3885 | FALSE, | |
3886 | &_ISO2022KRImpl, | |
4388f060 | 3887 | 0, UCNV_MBCS_TABLE_INITIALIZER |
374ca955 A |
3888 | }; |
3889 | ||
4388f060 A |
3890 | } // namespace |
3891 | ||
374ca955 A |
3892 | /*************** CN ***************/ |
3893 | static const UConverterImpl _ISO2022CNImpl={ | |
3894 | ||
3895 | UCNV_ISO_2022, | |
3896 | ||
3897 | NULL, | |
3898 | NULL, | |
3899 | ||
3900 | _ISO2022Open, | |
3901 | _ISO2022Close, | |
3902 | _ISO2022Reset, | |
3903 | ||
3904 | UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC, | |
3905 | UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC, | |
3906 | UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC, | |
3907 | UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC, | |
3908 | NULL, | |
3909 | ||
3910 | NULL, | |
3911 | _ISO2022getName, | |
3912 | _ISO_2022_WriteSub, | |
3913 | _ISO_2022_SafeClone, | |
4388f060 A |
3914 | _ISO_2022_GetUnicodeSet, |
3915 | ||
3916 | NULL, | |
3917 | NULL | |
374ca955 A |
3918 | }; |
3919 | static const UConverterStaticData _ISO2022CNStaticData={ | |
3920 | sizeof(UConverterStaticData), | |
3921 | "ISO_2022_CN", | |
3922 | 0, | |
3923 | UCNV_IBM, | |
3924 | UCNV_ISO_2022, | |
73c04bcf | 3925 | 1, |
374ca955 A |
3926 | 8, /* max 8 bytes per UChar: 4-byte CNS designator + 2 bytes for SS2/SS3 + DBCS */ |
3927 | { 0x1a, 0, 0, 0 }, | |
3928 | 1, | |
3929 | FALSE, | |
3930 | FALSE, | |
3931 | 0, | |
3932 | 0, | |
3933 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ | |
3934 | }; | |
4388f060 A |
3935 | |
3936 | namespace { | |
3937 | ||
3938 | const UConverterSharedData _ISO2022CNData={ | |
374ca955 A |
3939 | sizeof(UConverterSharedData), |
3940 | ~((uint32_t) 0), | |
3941 | NULL, | |
3942 | NULL, | |
3943 | &_ISO2022CNStaticData, | |
3944 | FALSE, | |
3945 | &_ISO2022CNImpl, | |
4388f060 | 3946 | 0, UCNV_MBCS_TABLE_INITIALIZER |
374ca955 A |
3947 | }; |
3948 | ||
4388f060 | 3949 | } // namespace |
374ca955 | 3950 | |
b75a7d8f | 3951 | #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ |