]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/caniter.cpp
ICU-6.2.4.tar.gz
[apple/icu.git] / icuSources / common / caniter.cpp
1 /*
2 *****************************************************************************
3 * Copyright (C) 1996-2004, International Business Machines Corporation and *
4 * others. All Rights Reserved. *
5 *****************************************************************************
6 */
7
8 #include "unicode/utypes.h"
9
10 #if !UCONFIG_NO_NORMALIZATION
11
12 #include "unicode/uset.h"
13 #include "unicode/ustring.h"
14 #include "hash.h"
15 #include "unormimp.h"
16 #include "unicode/caniter.h"
17 #include "unicode/normlzr.h"
18 #include "unicode/uchar.h"
19 #include "cmemory.h"
20
21 /**
22 * This class allows one to iterate through all the strings that are canonically equivalent to a given
23 * string. For example, here are some sample results:
24 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
25 1: \u0041\u030A\u0064\u0307\u0327
26 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
27 2: \u0041\u030A\u0064\u0327\u0307
28 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
29 3: \u0041\u030A\u1E0B\u0327
30 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
31 4: \u0041\u030A\u1E11\u0307
32 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
33 5: \u00C5\u0064\u0307\u0327
34 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
35 6: \u00C5\u0064\u0327\u0307
36 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
37 7: \u00C5\u1E0B\u0327
38 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
39 8: \u00C5\u1E11\u0307
40 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
41 9: \u212B\u0064\u0307\u0327
42 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
43 10: \u212B\u0064\u0327\u0307
44 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
45 11: \u212B\u1E0B\u0327
46 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
47 12: \u212B\u1E11\u0307
48 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
49 *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
50 * since it has not been optimized for that situation.
51 *@author M. Davis
52 *@draft
53 */
54 #if 0
55 static UBool PROGRESS = FALSE;
56
57 #include <stdio.h>
58 #include "unicode/translit.h"
59
60 UErrorCode status = U_ZERO_ERROR;
61
62 // Just for testing - remove, not thread safe.
63 static const char* UToS(const UnicodeString &source) {
64 static char buffer[256];
65 buffer[source.extract(0, source.length(), buffer)] = 0;
66 return buffer;
67 }
68
69 static const UnicodeString &Tr(const UnicodeString &source) {
70 static Transliterator *NAME = Transliterator::createInstance("name", UTRANS_FORWARD, status);
71 static UnicodeString result;
72 result = source;
73 NAME->transliterate(result);
74 return result;
75 }
76 #endif
77 // public
78
79 U_NAMESPACE_BEGIN
80
81 // TODO: add boilerplate methods.
82
83 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
84
85 /**
86 *@param source string to get results for
87 */
88 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
89 pieces(NULL),
90 pieces_length(0),
91 pieces_lengths(NULL),
92 current(NULL),
93 current_length(0)
94 {
95 if(U_SUCCESS(status)) {
96 setSource(sourceStr, status);
97 }
98 }
99
100 CanonicalIterator::~CanonicalIterator() {
101 cleanPieces();
102 }
103
104 void CanonicalIterator::cleanPieces() {
105 int32_t i = 0;
106 if(pieces != NULL) {
107 for(i = 0; i < pieces_length; i++) {
108 if(pieces[i] != NULL) {
109 delete[] pieces[i];
110 }
111 }
112 uprv_free(pieces);
113 pieces = NULL;
114 if(pieces_lengths != NULL) {
115 uprv_free(pieces_lengths);
116 }
117 pieces_lengths = NULL;
118 if(current != NULL) {
119 uprv_free(current);
120 }
121 current = NULL;
122 }
123 }
124
125 /**
126 *@return gets the source: NOTE: it is the NFD form of source
127 */
128 UnicodeString CanonicalIterator::getSource() {
129 return source;
130 }
131
132 /**
133 * Resets the iterator so that one can start again from the beginning.
134 */
135 void CanonicalIterator::reset() {
136 done = FALSE;
137 for (int i = 0; i < current_length; ++i) {
138 current[i] = 0;
139 }
140 }
141
142 /**
143 *@return the next string that is canonically equivalent. The value null is returned when
144 * the iteration is done.
145 */
146 UnicodeString CanonicalIterator::next() {
147 int32_t i = 0;
148
149 if (done) {
150 buffer.setToBogus();
151 return buffer;
152 }
153
154 // delete old contents
155 buffer.remove();
156
157 // construct return value
158
159 for (i = 0; i < pieces_length; ++i) {
160 buffer.append(pieces[i][current[i]]);
161 }
162 //String result = buffer.toString(); // not needed
163
164 // find next value for next time
165
166 for (i = current_length - 1; ; --i) {
167 if (i < 0) {
168 done = TRUE;
169 break;
170 }
171 current[i]++;
172 if (current[i] < pieces_lengths[i]) break; // got sequence
173 current[i] = 0;
174 }
175 return buffer;
176 }
177
178 /**
179 *@param set the source string to iterate against. This allows the same iterator to be used
180 * while changing the source string, saving object creation.
181 */
182 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
183 Normalizer::normalize(newSource, UNORM_NFD, 0, source, status);
184 if(U_FAILURE(status)) {
185 return;
186 }
187 done = FALSE;
188
189 cleanPieces();
190
191 // catch degenerate case
192 if (newSource.length() == 0) {
193 pieces_length = 1;
194 pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
195 /* test for NULL */
196 if (pieces == NULL) {
197 status = U_MEMORY_ALLOCATION_ERROR;
198 return;
199 }
200 current_length = 1;
201 current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
202 /* test for NULL */
203 if (current == NULL) {
204 status = U_MEMORY_ALLOCATION_ERROR;
205 uprv_free(pieces);
206 pieces = NULL;
207 return;
208 }
209 current[0] = 0;
210 pieces[0] = new UnicodeString[1];
211 /* test for NULL */
212 if (pieces[0] == 0) {
213 status = U_MEMORY_ALLOCATION_ERROR;
214 uprv_free(pieces);
215 pieces = NULL;
216 uprv_free(current);
217 return;
218 }
219 pieces[0][0] = UnicodeString();
220 pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
221 /* test for NULL */
222 if (pieces_lengths == 0) {
223 status = U_MEMORY_ALLOCATION_ERROR;
224 uprv_free(pieces);
225 pieces = NULL;
226 uprv_free(current);
227 return;
228 }
229 pieces_lengths[0] = 1;
230 return;
231 }
232
233
234 UnicodeString *list = new UnicodeString[source.length()];
235 /* test for NULL */
236 if (list == 0) {
237 status = U_MEMORY_ALLOCATION_ERROR;
238 return;
239 }
240
241 int32_t list_length = 0;
242 UChar32 cp = 0;
243 int32_t start = 0;
244 // i should initialy be the number of code units at the
245 // start of the string
246 int32_t i = UTF16_CHAR_LENGTH(source.char32At(0));
247 //int32_t i = 1;
248 // find the segments
249 // This code iterates through the source string and
250 // extracts segments that end up on a codepoint that
251 // doesn't start any decompositions. (Analysis is done
252 // on the NFD form - see above).
253 for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
254 cp = source.char32At(i);
255 if (unorm_isCanonSafeStart(cp)) {
256 source.extract(start, i-start, list[list_length++]); // add up to i
257 start = i;
258 }
259 }
260 source.extract(start, i-start, list[list_length++]); // add last one
261
262
263 // allocate the arrays, and find the strings that are CE to each segment
264 pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
265 /* test for NULL */
266 if (pieces == NULL) {
267 status = U_MEMORY_ALLOCATION_ERROR;
268 delete[] list;
269 return;
270 }
271 pieces_length = list_length;
272 pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
273 /* test for NULL */
274 if (pieces_lengths == 0) {
275 status = U_MEMORY_ALLOCATION_ERROR;
276 delete[] list;
277 uprv_free(pieces);
278 pieces = NULL;
279 return;
280 }
281
282 current_length = list_length;
283 current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
284 /* test for NULL */
285 if (current == 0) {
286 status = U_MEMORY_ALLOCATION_ERROR;
287 delete[] list;
288 uprv_free(pieces);
289 pieces = NULL;
290 uprv_free(pieces_lengths);
291 return;
292 }
293 for (i = 0; i < current_length; i++) {
294 current[i] = 0;
295 }
296 // for each segment, get all the combinations that can produce
297 // it after NFD normalization
298 for (i = 0; i < pieces_length; ++i) {
299 //if (PROGRESS) printf("SEGMENT\n");
300 pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
301 }
302
303 delete[] list;
304 }
305
306 /**
307 * Dumb recursive implementation of permutation.
308 * TODO: optimize
309 * @param source the string to find permutations for
310 * @return the results in a set.
311 */
312 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
313 if(U_FAILURE(status)) {
314 return;
315 }
316 //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
317 int32_t i = 0;
318
319 // optimization:
320 // if zero or one character, just return a set with it
321 // we check for length < 2 to keep from counting code points all the time
322 if (source.length() <= 2 && source.countChar32() <= 1) {
323 UnicodeString *toPut = new UnicodeString(source);
324 /* test for NULL */
325 if (toPut == 0) {
326 status = U_MEMORY_ALLOCATION_ERROR;
327 return;
328 }
329 result->put(source, toPut, status);
330 return;
331 }
332
333 // otherwise iterate through the string, and recursively permute all the other characters
334 UChar32 cp;
335 Hashtable *subpermute = new Hashtable(status);
336 /* test for NULL */
337 if (subpermute == 0) {
338 status = U_MEMORY_ALLOCATION_ERROR;
339 return;
340 }
341 if (U_SUCCESS(status)) {
342 subpermute->setValueDeleter(uhash_deleteUnicodeString);
343 }
344
345 for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
346 cp = source.char32At(i);
347 const UHashElement *ne = NULL;
348 int32_t el = -1;
349 UnicodeString subPermuteString = source;
350
351 // optimization:
352 // if the character is canonical combining class zero,
353 // don't permute it
354 if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
355 //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
356 continue;
357 }
358
359 subpermute->removeAll();
360
361 // see what the permutations of the characters before and after this one are
362 //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
363 permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, subpermute, status);
364 /* Test for buffer overflows */
365 if(U_FAILURE(status)) {
366 delete subpermute;
367 return;
368 }
369 // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
370 // of source at this point.
371
372 // prefix this character to all of them
373 ne = subpermute->nextElement(el);
374 while (ne != NULL) {
375 UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
376 UnicodeString *chStr = new UnicodeString(cp);
377 //test for NULL
378 if (chStr == NULL) {
379 status = U_MEMORY_ALLOCATION_ERROR;
380 delete subpermute;
381 return;
382 }
383 chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
384 //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr));
385 result->put(*chStr, chStr, status);
386 ne = subpermute->nextElement(el);
387 }
388 }
389 delete subpermute;
390 //return result;
391 }
392
393 // privates
394
395 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
396 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
397 //private String[] getEquivalents(String segment)
398
399 Hashtable *result = new Hashtable(status);
400 /* test for NULL */
401 if (result == 0) {
402 status = U_MEMORY_ALLOCATION_ERROR;
403 return 0;
404 }
405 if (U_SUCCESS(status)) {
406 result->setValueDeleter(uhash_deleteUnicodeString);
407 }
408 UChar USeg[256];
409 int32_t segLen = segment.extract(USeg, 256, status);
410 Hashtable *basic = getEquivalents2(USeg, segLen, status);
411 //Hashtable *basic = getEquivalents2(segment, segLen, status);
412
413 // now get all the permutations
414 // add only the ones that are canonically equivalent
415 // TODO: optimize by not permuting any class zero.
416
417 Hashtable *permutations = new Hashtable(status);
418 /* test for NULL */
419 if (permutations == 0) {
420 status = U_MEMORY_ALLOCATION_ERROR;
421 delete result;
422 delete basic;
423 return 0;
424 }
425 if (U_SUCCESS(status)) {
426 permutations->setValueDeleter(uhash_deleteUnicodeString);
427 }
428
429 const UHashElement *ne = NULL;
430 int32_t el = -1;
431 //Iterator it = basic.iterator();
432 ne = basic->nextElement(el);
433 //while (it.hasNext())
434 while (ne != NULL) {
435 //String item = (String) it.next();
436 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
437
438 permutations->removeAll();
439 permute(item, CANITER_SKIP_ZEROES, permutations, status);
440 const UHashElement *ne2 = NULL;
441 int32_t el2 = -1;
442 //Iterator it2 = permutations.iterator();
443 ne2 = permutations->nextElement(el2);
444 //while (it2.hasNext())
445 while (ne2 != NULL) {
446 //String possible = (String) it2.next();
447 //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
448 UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
449 UnicodeString attempt;
450 Normalizer::normalize(possible, UNORM_NFD, 0, attempt, status);
451
452 // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
453 if (attempt==segment) {
454 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
455 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
456 result->put(possible, new UnicodeString(possible), status); //add(possible);
457 } else {
458 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
459 }
460
461 ne2 = permutations->nextElement(el2);
462 }
463 ne = basic->nextElement(el);
464 }
465
466 /* Test for buffer overflows */
467 if(U_FAILURE(status)) {
468 delete result;
469 delete permutations;
470 delete basic;
471 return 0;
472 }
473 // convert into a String[] to clean up storage
474 //String[] finalResult = new String[result.size()];
475 UnicodeString *finalResult = NULL;
476 int32_t resultCount;
477 if((resultCount = result->count())) {
478 finalResult = new UnicodeString[resultCount];
479 } else {
480 status = U_ILLEGAL_ARGUMENT_ERROR;
481 }
482 /* test for NULL */
483 if (finalResult == 0) {
484 if(U_SUCCESS(status)) {
485 status = U_MEMORY_ALLOCATION_ERROR;
486 }
487 delete result;
488 delete permutations;
489 delete basic;
490 return 0;
491 }
492 //result.toArray(finalResult);
493 result_len = 0;
494 el = -1;
495 ne = result->nextElement(el);
496 while(ne != NULL) {
497 UnicodeString finResult = *((UnicodeString *)(ne->value.pointer));
498 finalResult[result_len++] = finResult;
499 ne = result->nextElement(el);
500 }
501
502
503 delete permutations;
504 delete basic;
505 delete result;
506 return finalResult;
507 }
508
509 Hashtable *CanonicalIterator::getEquivalents2(const UChar *segment, int32_t segLen, UErrorCode &status) {
510 //Hashtable *CanonicalIterator::getEquivalents2(const UnicodeString &segment, int32_t segLen, UErrorCode &status) {
511
512 Hashtable *result = new Hashtable(status);
513 /* test for NULL */
514 if (result == 0) {
515 status = U_MEMORY_ALLOCATION_ERROR;
516 return 0;
517 }
518 if (U_SUCCESS(status)) {
519 result->setValueDeleter(uhash_deleteUnicodeString);
520 }
521
522 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
523
524 UnicodeString toPut(segment, segLen);
525
526 result->put(toPut, new UnicodeString(toPut), status);
527
528 USerializedSet starts;
529
530 // cycle through all the characters
531 UChar32 cp, end = 0;
532 int32_t i = 0, j;
533 for (i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) {
534 // see if any character is at the start of some decomposition
535 UTF_GET_CHAR(segment, 0, i, segLen, cp);
536 if (!unorm_getCanonStartSet(cp, &starts)) {
537 continue;
538 }
539 // if so, see which decompositions match
540 for(j = 0, cp = end+1; cp <= end || uset_getSerializedRange(&starts, j++, &cp, &end); ++cp) {
541 //Hashtable *remainder = extract(cp, segment, segLen, i, status);
542 Hashtable *remainder = extract(cp, segment, segLen, i, status);
543 if (remainder == NULL) continue;
544
545 // there were some matches, so add all the possibilities to the set.
546 UnicodeString prefix(segment, i);
547 prefix += cp;
548
549 const UHashElement *ne = NULL;
550 int32_t el = -1;
551 ne = remainder->nextElement(el);
552 while (ne != NULL) {
553 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
554 UnicodeString *toAdd = new UnicodeString(prefix);
555 /* test for NULL */
556 if (toAdd == 0) {
557 status = U_MEMORY_ALLOCATION_ERROR;
558 delete result;
559 delete remainder;
560 return 0;
561 }
562 *toAdd += item;
563 result->put(*toAdd, toAdd, status);
564
565 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
566
567 ne = remainder->nextElement(el);
568 }
569
570 delete remainder;
571 }
572 }
573
574 /* Test for buffer overflows */
575 if(U_FAILURE(status)) {
576 return 0;
577 }
578 return result;
579 }
580
581 /**
582 * See if the decomposition of cp2 is at segment starting at segmentPos
583 * (with canonical rearrangment!)
584 * If so, take the remainder, and return the equivalents
585 */
586 Hashtable *CanonicalIterator::extract(UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
587 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
588 //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
589 //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
590
591 const int32_t bufSize = 256;
592 int32_t bufLen = 0;
593 UChar temp[bufSize];
594
595 int32_t inputLen = 0, decompLen;
596 UChar stackBuffer[4];
597 const UChar *decomp;
598
599 U16_APPEND_UNSAFE(temp, inputLen, comp);
600 decomp = unorm_getCanonicalDecomposition(comp, stackBuffer, &decompLen);
601 if(decomp == NULL) {
602 /* copy temp */
603 stackBuffer[0] = temp[0];
604 if(inputLen > 1) {
605 stackBuffer[1] = temp[1];
606 }
607 decomp = stackBuffer;
608 decompLen = inputLen;
609 }
610
611 UChar *buff = temp+inputLen;
612
613 // See if it matches the start of segment (at segmentPos)
614 UBool ok = FALSE;
615 UChar32 cp;
616 int32_t decompPos = 0;
617 UChar32 decompCp;
618 UTF_NEXT_CHAR(decomp, decompPos, decompLen, decompCp);
619
620 int32_t i;
621 UBool overflow = FALSE;
622
623 i = segmentPos;
624 while(i < segLen) {
625 UTF_NEXT_CHAR(segment, i, segLen, cp);
626
627 if (cp == decompCp) { // if equal, eat another cp from decomp
628
629 //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp))));
630
631 if (decompPos == decompLen) { // done, have all decomp characters!
632 //u_strcat(buff+bufLen, segment+i);
633 uprv_memcpy(buff+bufLen, segment+i, (segLen-i)*sizeof(UChar));
634 bufLen+=segLen-i;
635
636 ok = TRUE;
637 break;
638 }
639 UTF_NEXT_CHAR(decomp, decompPos, decompLen, decompCp);
640 } else {
641 //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp))));
642
643 // brute force approach
644
645 U16_APPEND(buff, bufLen, bufSize, cp, overflow);
646
647 if(overflow) {
648 /*
649 * ### TODO handle buffer overflow
650 * The buffer is large, but an overflow may still happen with
651 * unusual input (many combining marks?).
652 * Reallocate buffer and continue.
653 * markus 20020929
654 */
655
656 overflow = FALSE;
657 }
658
659 /* TODO: optimize
660 // since we know that the classes are monotonically increasing, after zero
661 // e.g. 0 5 7 9 0 3
662 // we can do an optimization
663 // there are only a few cases that work: zero, less, same, greater
664 // if both classes are the same, we fail
665 // if the decomp class < the segment class, we fail
666
667 segClass = getClass(cp);
668 if (decompClass <= segClass) return null;
669 */
670 }
671 }
672 if (!ok) return NULL; // we failed, characters left over
673
674 //if (PROGRESS) printf("Matches\n");
675
676 if (bufLen == 0) {
677 Hashtable *result = new Hashtable(status);
678 /* test for NULL */
679 if (result == 0) {
680 status = U_MEMORY_ALLOCATION_ERROR;
681 return 0;
682 }
683 result->setValueDeleter(uhash_deleteUnicodeString);
684 result->put(UnicodeString(), new UnicodeString(), status);
685 return result; // succeed, but no remainder
686 }
687
688 // brute force approach
689 // check to make sure result is canonically equivalent
690 int32_t tempLen = inputLen + bufLen;
691
692 UChar trial[bufSize];
693 unorm_decompose(trial, bufSize, temp, tempLen, FALSE, 0, &status);
694
695 /* Test for buffer overflows */
696 if(U_FAILURE(status)) {
697 return 0;
698 }
699
700 if(uprv_memcmp(segment+segmentPos, trial, (segLen - segmentPos)*sizeof(UChar)) != 0) {
701 return NULL;
702 }
703
704 return getEquivalents2(buff, bufLen, status);
705 }
706
707 U_NAMESPACE_END
708
709 #endif /* #if !UCONFIG_NO_NORMALIZATION */