]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ***************************************************************************** | |
374ca955 | 3 | * Copyright (C) 1996-2004, International Business Machines Corporation and * |
b75a7d8f A |
4 | * others. All Rights Reserved. * |
5 | ***************************************************************************** | |
6 | */ | |
7 | ||
8 | #include "unicode/utypes.h" | |
9 | ||
10 | #if !UCONFIG_NO_NORMALIZATION | |
11 | ||
12 | #include "unicode/uset.h" | |
13 | #include "unicode/ustring.h" | |
14 | #include "hash.h" | |
15 | #include "unormimp.h" | |
16 | #include "unicode/caniter.h" | |
17 | #include "unicode/normlzr.h" | |
18 | #include "unicode/uchar.h" | |
19 | #include "cmemory.h" | |
20 | ||
21 | /** | |
22 | * This class allows one to iterate through all the strings that are canonically equivalent to a given | |
23 | * string. For example, here are some sample results: | |
24 | Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
25 | 1: \u0041\u030A\u0064\u0307\u0327 | |
26 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
27 | 2: \u0041\u030A\u0064\u0327\u0307 | |
28 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} | |
29 | 3: \u0041\u030A\u1E0B\u0327 | |
30 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} | |
31 | 4: \u0041\u030A\u1E11\u0307 | |
32 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} | |
33 | 5: \u00C5\u0064\u0307\u0327 | |
34 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
35 | 6: \u00C5\u0064\u0327\u0307 | |
36 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} | |
37 | 7: \u00C5\u1E0B\u0327 | |
38 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} | |
39 | 8: \u00C5\u1E11\u0307 | |
40 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} | |
41 | 9: \u212B\u0064\u0307\u0327 | |
42 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
43 | 10: \u212B\u0064\u0327\u0307 | |
44 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} | |
45 | 11: \u212B\u1E0B\u0327 | |
46 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} | |
47 | 12: \u212B\u1E11\u0307 | |
48 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} | |
49 | *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones, | |
50 | * since it has not been optimized for that situation. | |
51 | *@author M. Davis | |
52 | *@draft | |
53 | */ | |
54 | #if 0 | |
55 | static UBool PROGRESS = FALSE; | |
56 | ||
57 | #include <stdio.h> | |
58 | #include "unicode/translit.h" | |
59 | ||
60 | UErrorCode status = U_ZERO_ERROR; | |
61 | ||
62 | // Just for testing - remove, not thread safe. | |
63 | static const char* UToS(const UnicodeString &source) { | |
64 | static char buffer[256]; | |
65 | buffer[source.extract(0, source.length(), buffer)] = 0; | |
66 | return buffer; | |
67 | } | |
68 | ||
69 | static const UnicodeString &Tr(const UnicodeString &source) { | |
70 | static Transliterator *NAME = Transliterator::createInstance("name", UTRANS_FORWARD, status); | |
71 | static UnicodeString result; | |
72 | result = source; | |
73 | NAME->transliterate(result); | |
74 | return result; | |
75 | } | |
76 | #endif | |
77 | // public | |
78 | ||
79 | U_NAMESPACE_BEGIN | |
80 | ||
81 | // TODO: add boilerplate methods. | |
82 | ||
374ca955 | 83 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) |
b75a7d8f A |
84 | |
85 | /** | |
86 | *@param source string to get results for | |
87 | */ | |
88 | CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) : | |
89 | pieces(NULL), | |
90 | pieces_length(0), | |
91 | pieces_lengths(NULL), | |
92 | current(NULL), | |
93 | current_length(0) | |
94 | { | |
95 | if(U_SUCCESS(status)) { | |
96 | setSource(sourceStr, status); | |
97 | } | |
98 | } | |
99 | ||
100 | CanonicalIterator::~CanonicalIterator() { | |
101 | cleanPieces(); | |
102 | } | |
103 | ||
104 | void CanonicalIterator::cleanPieces() { | |
105 | int32_t i = 0; | |
106 | if(pieces != NULL) { | |
107 | for(i = 0; i < pieces_length; i++) { | |
108 | if(pieces[i] != NULL) { | |
109 | delete[] pieces[i]; | |
110 | } | |
111 | } | |
112 | uprv_free(pieces); | |
113 | pieces = NULL; | |
114 | if(pieces_lengths != NULL) { | |
115 | uprv_free(pieces_lengths); | |
116 | } | |
117 | pieces_lengths = NULL; | |
118 | if(current != NULL) { | |
119 | uprv_free(current); | |
120 | } | |
121 | current = NULL; | |
122 | } | |
123 | } | |
124 | ||
125 | /** | |
126 | *@return gets the source: NOTE: it is the NFD form of source | |
127 | */ | |
128 | UnicodeString CanonicalIterator::getSource() { | |
129 | return source; | |
130 | } | |
131 | ||
132 | /** | |
133 | * Resets the iterator so that one can start again from the beginning. | |
134 | */ | |
135 | void CanonicalIterator::reset() { | |
136 | done = FALSE; | |
137 | for (int i = 0; i < current_length; ++i) { | |
138 | current[i] = 0; | |
139 | } | |
140 | } | |
141 | ||
142 | /** | |
143 | *@return the next string that is canonically equivalent. The value null is returned when | |
144 | * the iteration is done. | |
145 | */ | |
146 | UnicodeString CanonicalIterator::next() { | |
147 | int32_t i = 0; | |
148 | ||
149 | if (done) { | |
150 | buffer.setToBogus(); | |
151 | return buffer; | |
152 | } | |
153 | ||
154 | // delete old contents | |
155 | buffer.remove(); | |
156 | ||
157 | // construct return value | |
158 | ||
159 | for (i = 0; i < pieces_length; ++i) { | |
160 | buffer.append(pieces[i][current[i]]); | |
161 | } | |
162 | //String result = buffer.toString(); // not needed | |
163 | ||
164 | // find next value for next time | |
165 | ||
166 | for (i = current_length - 1; ; --i) { | |
167 | if (i < 0) { | |
168 | done = TRUE; | |
169 | break; | |
170 | } | |
171 | current[i]++; | |
172 | if (current[i] < pieces_lengths[i]) break; // got sequence | |
173 | current[i] = 0; | |
174 | } | |
175 | return buffer; | |
176 | } | |
177 | ||
178 | /** | |
179 | *@param set the source string to iterate against. This allows the same iterator to be used | |
180 | * while changing the source string, saving object creation. | |
181 | */ | |
182 | void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) { | |
183 | Normalizer::normalize(newSource, UNORM_NFD, 0, source, status); | |
184 | if(U_FAILURE(status)) { | |
185 | return; | |
186 | } | |
187 | done = FALSE; | |
188 | ||
189 | cleanPieces(); | |
190 | ||
191 | // catch degenerate case | |
192 | if (newSource.length() == 0) { | |
193 | pieces_length = 1; | |
194 | pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); | |
195 | /* test for NULL */ | |
196 | if (pieces == NULL) { | |
197 | status = U_MEMORY_ALLOCATION_ERROR; | |
198 | return; | |
199 | } | |
200 | current_length = 1; | |
201 | current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); | |
202 | /* test for NULL */ | |
203 | if (current == NULL) { | |
204 | status = U_MEMORY_ALLOCATION_ERROR; | |
205 | uprv_free(pieces); | |
206 | pieces = NULL; | |
207 | return; | |
208 | } | |
209 | current[0] = 0; | |
210 | pieces[0] = new UnicodeString[1]; | |
211 | /* test for NULL */ | |
212 | if (pieces[0] == 0) { | |
213 | status = U_MEMORY_ALLOCATION_ERROR; | |
214 | uprv_free(pieces); | |
215 | pieces = NULL; | |
216 | uprv_free(current); | |
217 | return; | |
218 | } | |
374ca955 | 219 | pieces[0][0] = UnicodeString(); |
b75a7d8f A |
220 | pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
221 | /* test for NULL */ | |
222 | if (pieces_lengths == 0) { | |
223 | status = U_MEMORY_ALLOCATION_ERROR; | |
224 | uprv_free(pieces); | |
225 | pieces = NULL; | |
226 | uprv_free(current); | |
227 | return; | |
228 | } | |
229 | pieces_lengths[0] = 1; | |
230 | return; | |
231 | } | |
232 | ||
233 | ||
234 | UnicodeString *list = new UnicodeString[source.length()]; | |
235 | /* test for NULL */ | |
236 | if (list == 0) { | |
237 | status = U_MEMORY_ALLOCATION_ERROR; | |
238 | return; | |
239 | } | |
240 | ||
241 | int32_t list_length = 0; | |
242 | UChar32 cp = 0; | |
243 | int32_t start = 0; | |
244 | // i should initialy be the number of code units at the | |
245 | // start of the string | |
246 | int32_t i = UTF16_CHAR_LENGTH(source.char32At(0)); | |
247 | //int32_t i = 1; | |
248 | // find the segments | |
249 | // This code iterates through the source string and | |
250 | // extracts segments that end up on a codepoint that | |
251 | // doesn't start any decompositions. (Analysis is done | |
252 | // on the NFD form - see above). | |
253 | for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) { | |
254 | cp = source.char32At(i); | |
255 | if (unorm_isCanonSafeStart(cp)) { | |
256 | source.extract(start, i-start, list[list_length++]); // add up to i | |
257 | start = i; | |
258 | } | |
259 | } | |
260 | source.extract(start, i-start, list[list_length++]); // add last one | |
261 | ||
262 | ||
263 | // allocate the arrays, and find the strings that are CE to each segment | |
264 | pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)); | |
265 | /* test for NULL */ | |
266 | if (pieces == NULL) { | |
267 | status = U_MEMORY_ALLOCATION_ERROR; | |
268 | delete[] list; | |
269 | return; | |
270 | } | |
271 | pieces_length = list_length; | |
272 | pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); | |
273 | /* test for NULL */ | |
274 | if (pieces_lengths == 0) { | |
275 | status = U_MEMORY_ALLOCATION_ERROR; | |
276 | delete[] list; | |
277 | uprv_free(pieces); | |
278 | pieces = NULL; | |
279 | return; | |
280 | } | |
281 | ||
282 | current_length = list_length; | |
283 | current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); | |
284 | /* test for NULL */ | |
285 | if (current == 0) { | |
286 | status = U_MEMORY_ALLOCATION_ERROR; | |
287 | delete[] list; | |
288 | uprv_free(pieces); | |
289 | pieces = NULL; | |
290 | uprv_free(pieces_lengths); | |
291 | return; | |
292 | } | |
293 | for (i = 0; i < current_length; i++) { | |
294 | current[i] = 0; | |
295 | } | |
296 | // for each segment, get all the combinations that can produce | |
297 | // it after NFD normalization | |
298 | for (i = 0; i < pieces_length; ++i) { | |
299 | //if (PROGRESS) printf("SEGMENT\n"); | |
300 | pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); | |
301 | } | |
302 | ||
303 | delete[] list; | |
304 | } | |
305 | ||
306 | /** | |
307 | * Dumb recursive implementation of permutation. | |
308 | * TODO: optimize | |
309 | * @param source the string to find permutations for | |
310 | * @return the results in a set. | |
311 | */ | |
374ca955 | 312 | void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) { |
b75a7d8f A |
313 | if(U_FAILURE(status)) { |
314 | return; | |
315 | } | |
316 | //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); | |
317 | int32_t i = 0; | |
318 | ||
319 | // optimization: | |
320 | // if zero or one character, just return a set with it | |
321 | // we check for length < 2 to keep from counting code points all the time | |
322 | if (source.length() <= 2 && source.countChar32() <= 1) { | |
323 | UnicodeString *toPut = new UnicodeString(source); | |
324 | /* test for NULL */ | |
325 | if (toPut == 0) { | |
326 | status = U_MEMORY_ALLOCATION_ERROR; | |
327 | return; | |
328 | } | |
329 | result->put(source, toPut, status); | |
330 | return; | |
331 | } | |
332 | ||
333 | // otherwise iterate through the string, and recursively permute all the other characters | |
334 | UChar32 cp; | |
374ca955 | 335 | Hashtable *subpermute = new Hashtable(status); |
b75a7d8f A |
336 | /* test for NULL */ |
337 | if (subpermute == 0) { | |
338 | status = U_MEMORY_ALLOCATION_ERROR; | |
339 | return; | |
340 | } | |
341 | if (U_SUCCESS(status)) { | |
342 | subpermute->setValueDeleter(uhash_deleteUnicodeString); | |
343 | } | |
344 | ||
345 | for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) { | |
346 | cp = source.char32At(i); | |
347 | const UHashElement *ne = NULL; | |
348 | int32_t el = -1; | |
349 | UnicodeString subPermuteString = source; | |
350 | ||
351 | // optimization: | |
352 | // if the character is canonical combining class zero, | |
353 | // don't permute it | |
354 | if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { | |
355 | //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i))); | |
356 | continue; | |
357 | } | |
358 | ||
359 | subpermute->removeAll(); | |
360 | ||
361 | // see what the permutations of the characters before and after this one are | |
362 | //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp))); | |
363 | permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, subpermute, status); | |
364 | /* Test for buffer overflows */ | |
365 | if(U_FAILURE(status)) { | |
366 | delete subpermute; | |
367 | return; | |
368 | } | |
369 | // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents | |
370 | // of source at this point. | |
371 | ||
372 | // prefix this character to all of them | |
373 | ne = subpermute->nextElement(el); | |
374 | while (ne != NULL) { | |
375 | UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); | |
376 | UnicodeString *chStr = new UnicodeString(cp); | |
377 | //test for NULL | |
378 | if (chStr == NULL) { | |
379 | status = U_MEMORY_ALLOCATION_ERROR; | |
380 | delete subpermute; | |
381 | return; | |
382 | } | |
383 | chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); | |
384 | //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr)); | |
385 | result->put(*chStr, chStr, status); | |
386 | ne = subpermute->nextElement(el); | |
387 | } | |
388 | } | |
389 | delete subpermute; | |
390 | //return result; | |
391 | } | |
392 | ||
393 | // privates | |
394 | ||
395 | // we have a segment, in NFD. Find all the strings that are canonically equivalent to it. | |
396 | UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) { | |
397 | //private String[] getEquivalents(String segment) | |
398 | ||
374ca955 | 399 | Hashtable *result = new Hashtable(status); |
b75a7d8f A |
400 | /* test for NULL */ |
401 | if (result == 0) { | |
402 | status = U_MEMORY_ALLOCATION_ERROR; | |
403 | return 0; | |
404 | } | |
405 | if (U_SUCCESS(status)) { | |
406 | result->setValueDeleter(uhash_deleteUnicodeString); | |
407 | } | |
408 | UChar USeg[256]; | |
409 | int32_t segLen = segment.extract(USeg, 256, status); | |
410 | Hashtable *basic = getEquivalents2(USeg, segLen, status); | |
411 | //Hashtable *basic = getEquivalents2(segment, segLen, status); | |
412 | ||
413 | // now get all the permutations | |
414 | // add only the ones that are canonically equivalent | |
415 | // TODO: optimize by not permuting any class zero. | |
416 | ||
374ca955 | 417 | Hashtable *permutations = new Hashtable(status); |
b75a7d8f A |
418 | /* test for NULL */ |
419 | if (permutations == 0) { | |
420 | status = U_MEMORY_ALLOCATION_ERROR; | |
421 | delete result; | |
422 | delete basic; | |
423 | return 0; | |
424 | } | |
425 | if (U_SUCCESS(status)) { | |
426 | permutations->setValueDeleter(uhash_deleteUnicodeString); | |
427 | } | |
428 | ||
429 | const UHashElement *ne = NULL; | |
430 | int32_t el = -1; | |
431 | //Iterator it = basic.iterator(); | |
432 | ne = basic->nextElement(el); | |
433 | //while (it.hasNext()) | |
434 | while (ne != NULL) { | |
435 | //String item = (String) it.next(); | |
436 | UnicodeString item = *((UnicodeString *)(ne->value.pointer)); | |
437 | ||
438 | permutations->removeAll(); | |
439 | permute(item, CANITER_SKIP_ZEROES, permutations, status); | |
440 | const UHashElement *ne2 = NULL; | |
441 | int32_t el2 = -1; | |
442 | //Iterator it2 = permutations.iterator(); | |
443 | ne2 = permutations->nextElement(el2); | |
444 | //while (it2.hasNext()) | |
445 | while (ne2 != NULL) { | |
446 | //String possible = (String) it2.next(); | |
447 | //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer))); | |
448 | UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); | |
449 | UnicodeString attempt; | |
450 | Normalizer::normalize(possible, UNORM_NFD, 0, attempt, status); | |
451 | ||
452 | // TODO: check if operator == is semanticaly the same as attempt.equals(segment) | |
453 | if (attempt==segment) { | |
454 | //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible))); | |
455 | // TODO: use the hashtable just to catch duplicates - store strings directly (somehow). | |
456 | result->put(possible, new UnicodeString(possible), status); //add(possible); | |
457 | } else { | |
458 | //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible))); | |
459 | } | |
460 | ||
461 | ne2 = permutations->nextElement(el2); | |
462 | } | |
463 | ne = basic->nextElement(el); | |
464 | } | |
465 | ||
466 | /* Test for buffer overflows */ | |
467 | if(U_FAILURE(status)) { | |
468 | delete result; | |
469 | delete permutations; | |
470 | delete basic; | |
471 | return 0; | |
472 | } | |
473 | // convert into a String[] to clean up storage | |
474 | //String[] finalResult = new String[result.size()]; | |
475 | UnicodeString *finalResult = NULL; | |
476 | int32_t resultCount; | |
477 | if((resultCount = result->count())) { | |
478 | finalResult = new UnicodeString[resultCount]; | |
479 | } else { | |
480 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
481 | } | |
482 | /* test for NULL */ | |
483 | if (finalResult == 0) { | |
484 | if(U_SUCCESS(status)) { | |
485 | status = U_MEMORY_ALLOCATION_ERROR; | |
486 | } | |
487 | delete result; | |
488 | delete permutations; | |
489 | delete basic; | |
490 | return 0; | |
491 | } | |
492 | //result.toArray(finalResult); | |
493 | result_len = 0; | |
494 | el = -1; | |
495 | ne = result->nextElement(el); | |
496 | while(ne != NULL) { | |
497 | UnicodeString finResult = *((UnicodeString *)(ne->value.pointer)); | |
498 | finalResult[result_len++] = finResult; | |
499 | ne = result->nextElement(el); | |
500 | } | |
501 | ||
502 | ||
503 | delete permutations; | |
504 | delete basic; | |
505 | delete result; | |
506 | return finalResult; | |
507 | } | |
508 | ||
509 | Hashtable *CanonicalIterator::getEquivalents2(const UChar *segment, int32_t segLen, UErrorCode &status) { | |
510 | //Hashtable *CanonicalIterator::getEquivalents2(const UnicodeString &segment, int32_t segLen, UErrorCode &status) { | |
511 | ||
374ca955 | 512 | Hashtable *result = new Hashtable(status); |
b75a7d8f A |
513 | /* test for NULL */ |
514 | if (result == 0) { | |
515 | status = U_MEMORY_ALLOCATION_ERROR; | |
516 | return 0; | |
517 | } | |
518 | if (U_SUCCESS(status)) { | |
519 | result->setValueDeleter(uhash_deleteUnicodeString); | |
520 | } | |
521 | ||
522 | //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); | |
523 | ||
524 | UnicodeString toPut(segment, segLen); | |
525 | ||
526 | result->put(toPut, new UnicodeString(toPut), status); | |
527 | ||
528 | USerializedSet starts; | |
529 | ||
530 | // cycle through all the characters | |
531 | UChar32 cp, end = 0; | |
532 | int32_t i = 0, j; | |
533 | for (i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) { | |
534 | // see if any character is at the start of some decomposition | |
535 | UTF_GET_CHAR(segment, 0, i, segLen, cp); | |
536 | if (!unorm_getCanonStartSet(cp, &starts)) { | |
537 | continue; | |
538 | } | |
539 | // if so, see which decompositions match | |
540 | for(j = 0, cp = end+1; cp <= end || uset_getSerializedRange(&starts, j++, &cp, &end); ++cp) { | |
541 | //Hashtable *remainder = extract(cp, segment, segLen, i, status); | |
542 | Hashtable *remainder = extract(cp, segment, segLen, i, status); | |
543 | if (remainder == NULL) continue; | |
544 | ||
545 | // there were some matches, so add all the possibilities to the set. | |
546 | UnicodeString prefix(segment, i); | |
547 | prefix += cp; | |
548 | ||
549 | const UHashElement *ne = NULL; | |
550 | int32_t el = -1; | |
551 | ne = remainder->nextElement(el); | |
552 | while (ne != NULL) { | |
553 | UnicodeString item = *((UnicodeString *)(ne->value.pointer)); | |
554 | UnicodeString *toAdd = new UnicodeString(prefix); | |
555 | /* test for NULL */ | |
556 | if (toAdd == 0) { | |
557 | status = U_MEMORY_ALLOCATION_ERROR; | |
558 | delete result; | |
559 | delete remainder; | |
560 | return 0; | |
561 | } | |
562 | *toAdd += item; | |
563 | result->put(*toAdd, toAdd, status); | |
564 | ||
565 | //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); | |
566 | ||
567 | ne = remainder->nextElement(el); | |
568 | } | |
569 | ||
570 | delete remainder; | |
571 | } | |
572 | } | |
573 | ||
574 | /* Test for buffer overflows */ | |
575 | if(U_FAILURE(status)) { | |
576 | return 0; | |
577 | } | |
578 | return result; | |
579 | } | |
580 | ||
581 | /** | |
582 | * See if the decomposition of cp2 is at segment starting at segmentPos | |
583 | * (with canonical rearrangment!) | |
584 | * If so, take the remainder, and return the equivalents | |
585 | */ | |
586 | Hashtable *CanonicalIterator::extract(UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { | |
587 | //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { | |
588 | //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); | |
589 | //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); | |
590 | ||
591 | const int32_t bufSize = 256; | |
592 | int32_t bufLen = 0; | |
593 | UChar temp[bufSize]; | |
594 | ||
374ca955 A |
595 | int32_t inputLen = 0, decompLen; |
596 | UChar stackBuffer[4]; | |
597 | const UChar *decomp; | |
b75a7d8f A |
598 | |
599 | U16_APPEND_UNSAFE(temp, inputLen, comp); | |
374ca955 A |
600 | decomp = unorm_getCanonicalDecomposition(comp, stackBuffer, &decompLen); |
601 | if(decomp == NULL) { | |
602 | /* copy temp */ | |
603 | stackBuffer[0] = temp[0]; | |
604 | if(inputLen > 1) { | |
605 | stackBuffer[1] = temp[1]; | |
606 | } | |
607 | decomp = stackBuffer; | |
608 | decompLen = inputLen; | |
b75a7d8f A |
609 | } |
610 | ||
611 | UChar *buff = temp+inputLen; | |
612 | ||
613 | // See if it matches the start of segment (at segmentPos) | |
614 | UBool ok = FALSE; | |
615 | UChar32 cp; | |
616 | int32_t decompPos = 0; | |
617 | UChar32 decompCp; | |
618 | UTF_NEXT_CHAR(decomp, decompPos, decompLen, decompCp); | |
619 | ||
620 | int32_t i; | |
621 | UBool overflow = FALSE; | |
622 | ||
623 | i = segmentPos; | |
624 | while(i < segLen) { | |
625 | UTF_NEXT_CHAR(segment, i, segLen, cp); | |
626 | ||
627 | if (cp == decompCp) { // if equal, eat another cp from decomp | |
628 | ||
629 | //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp)))); | |
630 | ||
631 | if (decompPos == decompLen) { // done, have all decomp characters! | |
632 | //u_strcat(buff+bufLen, segment+i); | |
633 | uprv_memcpy(buff+bufLen, segment+i, (segLen-i)*sizeof(UChar)); | |
634 | bufLen+=segLen-i; | |
635 | ||
636 | ok = TRUE; | |
637 | break; | |
638 | } | |
639 | UTF_NEXT_CHAR(decomp, decompPos, decompLen, decompCp); | |
640 | } else { | |
641 | //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp)))); | |
642 | ||
643 | // brute force approach | |
644 | ||
645 | U16_APPEND(buff, bufLen, bufSize, cp, overflow); | |
646 | ||
647 | if(overflow) { | |
648 | /* | |
649 | * ### TODO handle buffer overflow | |
650 | * The buffer is large, but an overflow may still happen with | |
651 | * unusual input (many combining marks?). | |
652 | * Reallocate buffer and continue. | |
653 | * markus 20020929 | |
654 | */ | |
655 | ||
656 | overflow = FALSE; | |
657 | } | |
658 | ||
659 | /* TODO: optimize | |
660 | // since we know that the classes are monotonically increasing, after zero | |
661 | // e.g. 0 5 7 9 0 3 | |
662 | // we can do an optimization | |
663 | // there are only a few cases that work: zero, less, same, greater | |
664 | // if both classes are the same, we fail | |
665 | // if the decomp class < the segment class, we fail | |
666 | ||
667 | segClass = getClass(cp); | |
668 | if (decompClass <= segClass) return null; | |
669 | */ | |
670 | } | |
671 | } | |
672 | if (!ok) return NULL; // we failed, characters left over | |
673 | ||
674 | //if (PROGRESS) printf("Matches\n"); | |
675 | ||
676 | if (bufLen == 0) { | |
374ca955 | 677 | Hashtable *result = new Hashtable(status); |
b75a7d8f A |
678 | /* test for NULL */ |
679 | if (result == 0) { | |
680 | status = U_MEMORY_ALLOCATION_ERROR; | |
681 | return 0; | |
682 | } | |
683 | result->setValueDeleter(uhash_deleteUnicodeString); | |
684 | result->put(UnicodeString(), new UnicodeString(), status); | |
685 | return result; // succeed, but no remainder | |
686 | } | |
687 | ||
688 | // brute force approach | |
689 | // check to make sure result is canonically equivalent | |
690 | int32_t tempLen = inputLen + bufLen; | |
691 | ||
692 | UChar trial[bufSize]; | |
693 | unorm_decompose(trial, bufSize, temp, tempLen, FALSE, 0, &status); | |
694 | ||
695 | /* Test for buffer overflows */ | |
696 | if(U_FAILURE(status)) { | |
697 | return 0; | |
698 | } | |
699 | ||
700 | if(uprv_memcmp(segment+segmentPos, trial, (segLen - segmentPos)*sizeof(UChar)) != 0) { | |
701 | return NULL; | |
702 | } | |
703 | ||
704 | return getEquivalents2(buff, bufLen, status); | |
705 | } | |
706 | ||
707 | U_NAMESPACE_END | |
708 | ||
709 | #endif /* #if !UCONFIG_NO_NORMALIZATION */ |