file_cmds-45.tar.gz
[apple/file_cmds.git] / pax / tables.c
1 /* $OpenBSD: tables.c,v 1.9 1997/09/01 18:30:00 deraadt Exp $ */
2 /* $NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $ */
3
4 /*-
5 * Copyright (c) 1992 Keith Muller.
6 * Copyright (c) 1992, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * Keith Muller of the University of California, San Diego.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 */
40
41 #ifndef lint
42 #if 0
43 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93";
44 #else
45 static char rcsid[] __attribute__((__unused__)) = "$OpenBSD: tables.c,v 1.9 1997/09/01 18:30:00 deraadt Exp $";
46 #endif
47 #endif /* not lint */
48
49 #include <sys/types.h>
50 #include <sys/time.h>
51 #include <sys/stat.h>
52 #include <sys/param.h>
53 #include <sys/fcntl.h>
54 #include <stdio.h>
55 #include <string.h>
56 #include <unistd.h>
57 #include <errno.h>
58 #include <stdlib.h>
59 #include "pax.h"
60 #include "tables.h"
61 #include "extern.h"
62
63 /*
64 * Routines for controlling the contents of all the different databases pax
65 * keeps. Tables are dynamically created only when they are needed. The
66 * goal was speed and the ability to work with HUGE archives. The databases
67 * were kept simple, but do have complex rules for when the contents change.
68 * As of this writing, the posix library functions were more complex than
69 * needed for this application (pax databases have very short lifetimes and
70 * do not survive after pax is finished). Pax is required to handle very
71 * large archives. These database routines carefully combine memory usage and
72 * temporary file storage in ways which will not significantly impact runtime
73 * performance while allowing the largest possible archives to be handled.
74 * Trying to force the fit to the posix databases routines was not considered
75 * time well spent.
76 */
77
78 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
79 static FTM **ftab = NULL; /* file time table for updating arch */
80 static NAMT **ntab = NULL; /* interactive rename storage table */
81 static DEVT **dtab = NULL; /* device/inode mapping tables */
82 static ATDIR **atab = NULL; /* file tree directory time reset table */
83 static int dirfd = -1; /* storage for setting created dir time/mode */
84 static u_long dircnt; /* entries in dir time/mode storage */
85 static int ffd = -1; /* tmp file for file time table name storage */
86
87 static DEVT *chk_dev __P((dev_t, int));
88
89 /*
90 * hard link table routines
91 *
92 * The hard link table tries to detect hard links to files using the device and
93 * inode values. We do this when writing an archive, so we can tell the format
94 * write routine that this file is a hard link to another file. The format
95 * write routine then can store this file in whatever way it wants (as a hard
96 * link if the format supports that like tar, or ignore this info like cpio).
97 * (Actually a field in the format driver table tells us if the format wants
98 * hard link info. if not, we do not waste time looking for them). We also use
99 * the same table when reading an archive. In that situation, this table is
100 * used by the format read routine to detect hard links from stored dev and
101 * inode numbers (like cpio). This will allow pax to create a link when one
102 * can be detected by the archive format.
103 */
104
105 /*
106 * lnk_start
107 * Creates the hard link table.
108 * Return:
109 * 0 if created, -1 if failure
110 */
111
112 #ifdef __STDC__
113 int
114 lnk_start(void)
115 #else
116 int
117 lnk_start()
118 #endif
119 {
120 if (ltab != NULL)
121 return(0);
122 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
123 paxwarn(1, "Cannot allocate memory for hard link table");
124 return(-1);
125 }
126 return(0);
127 }
128
129 /*
130 * chk_lnk()
131 * Looks up entry in hard link hash table. If found, it copies the name
132 * of the file it is linked to (we already saw that file) into ln_name.
133 * lnkcnt is decremented and if goes to 1 the node is deleted from the
134 * database. (We have seen all the links to this file). If not found,
135 * we add the file to the database if it has the potential for having
136 * hard links to other files we may process (it has a link count > 1)
137 * Return:
138 * if found returns 1; if not found returns 0; -1 on error
139 */
140
141 #ifdef __STDC__
142 int
143 chk_lnk(register ARCHD *arcn)
144 #else
145 int
146 chk_lnk(arcn)
147 register ARCHD *arcn;
148 #endif
149 {
150 register HRDLNK *pt;
151 register HRDLNK **ppt;
152 register u_int indx;
153
154 if (ltab == NULL)
155 return(-1);
156 /*
157 * ignore those nodes that cannot have hard links
158 */
159 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
160 return(0);
161
162 /*
163 * hash inode number and look for this file
164 */
165 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
166 if ((pt = ltab[indx]) != NULL) {
167 /*
168 * it's hash chain in not empty, walk down looking for it
169 */
170 ppt = &(ltab[indx]);
171 while (pt != NULL) {
172 if ((pt->ino == arcn->sb.st_ino) &&
173 (pt->dev == arcn->sb.st_dev))
174 break;
175 ppt = &(pt->fow);
176 pt = pt->fow;
177 }
178
179 if (pt != NULL) {
180 /*
181 * found a link. set the node type and copy in the
182 * name of the file it is to link to. we need to
183 * handle hardlinks to regular files differently than
184 * other links.
185 */
186 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
187 sizeof(arcn->ln_name) - 1);
188 arcn->ln_name[arcn->ln_nlen] = '\0';
189 if (arcn->type == PAX_REG)
190 arcn->type = PAX_HRG;
191 else
192 arcn->type = PAX_HLK;
193
194 /*
195 * if we have found all the links to this file, remove
196 * it from the database
197 */
198 if (--pt->nlink <= 1) {
199 *ppt = pt->fow;
200 (void)free((char *)pt->name);
201 (void)free((char *)pt);
202 }
203 return(1);
204 }
205 }
206
207 /*
208 * we never saw this file before. It has links so we add it to the
209 * front of this hash chain
210 */
211 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
212 if ((pt->name = strdup(arcn->name)) != NULL) {
213 pt->dev = arcn->sb.st_dev;
214 pt->ino = arcn->sb.st_ino;
215 pt->nlink = arcn->sb.st_nlink;
216 pt->fow = ltab[indx];
217 ltab[indx] = pt;
218 return(0);
219 }
220 (void)free((char *)pt);
221 }
222
223 paxwarn(1, "Hard link table out of memory");
224 return(-1);
225 }
226
227 /*
228 * purg_lnk
229 * remove reference for a file that we may have added to the data base as
230 * a potential source for hard links. We ended up not using the file, so
231 * we do not want to accidently point another file at it later on.
232 */
233
234 #ifdef __STDC__
235 void
236 purg_lnk(register ARCHD *arcn)
237 #else
238 void
239 purg_lnk(arcn)
240 register ARCHD *arcn;
241 #endif
242 {
243 register HRDLNK *pt;
244 register HRDLNK **ppt;
245 register u_int indx;
246
247 if (ltab == NULL)
248 return;
249 /*
250 * do not bother to look if it could not be in the database
251 */
252 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
253 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
254 return;
255
256 /*
257 * find the hash chain for this inode value, if empty return
258 */
259 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
260 if ((pt = ltab[indx]) == NULL)
261 return;
262
263 /*
264 * walk down the list looking for the inode/dev pair, unlink and
265 * free if found
266 */
267 ppt = &(ltab[indx]);
268 while (pt != NULL) {
269 if ((pt->ino == arcn->sb.st_ino) &&
270 (pt->dev == arcn->sb.st_dev))
271 break;
272 ppt = &(pt->fow);
273 pt = pt->fow;
274 }
275 if (pt == NULL)
276 return;
277
278 /*
279 * remove and free it
280 */
281 *ppt = pt->fow;
282 (void)free((char *)pt->name);
283 (void)free((char *)pt);
284 }
285
286 /*
287 * lnk_end()
288 * pull apart a existing link table so we can reuse it. We do this between
289 * read and write phases of append with update. (The format may have
290 * used the link table, and we need to start with a fresh table for the
291 * write phase
292 */
293
294 #ifdef __STDC__
295 void
296 lnk_end(void)
297 #else
298 void
299 lnk_end()
300 #endif
301 {
302 register int i;
303 register HRDLNK *pt;
304 register HRDLNK *ppt;
305
306 if (ltab == NULL)
307 return;
308
309 for (i = 0; i < L_TAB_SZ; ++i) {
310 if (ltab[i] == NULL)
311 continue;
312 pt = ltab[i];
313 ltab[i] = NULL;
314
315 /*
316 * free up each entry on this chain
317 */
318 while (pt != NULL) {
319 ppt = pt;
320 pt = ppt->fow;
321 (void)free((char *)ppt->name);
322 (void)free((char *)ppt);
323 }
324 }
325 return;
326 }
327
328 /*
329 * modification time table routines
330 *
331 * The modification time table keeps track of last modification times for all
332 * files stored in an archive during a write phase when -u is set. We only
333 * add a file to the archive if it is newer than a file with the same name
334 * already stored on the archive (if there is no other file with the same
335 * name on the archive it is added). This applies to writes and appends.
336 * An append with an -u must read the archive and store the modification time
337 * for every file on that archive before starting the write phase. It is clear
338 * that this is one HUGE database. To save memory space, the actual file names
339 * are stored in a scatch file and indexed by an in memory hash table. The
340 * hash table is indexed by hashing the file path. The nodes in the table store
341 * the length of the filename and the lseek offset within the scratch file
342 * where the actual name is stored. Since there are never any deletions to this
343 * table, fragmentation of the scratch file is never a issue. Lookups seem to
344 * not exhibit any locality at all (files in the database are rarely
345 * looked up more than once...). So caching is just a waste of memory. The
346 * only limitation is the amount of scatch file space available to store the
347 * path names.
348 */
349
350 /*
351 * ftime_start()
352 * create the file time hash table and open for read/write the scratch
353 * file. (after created it is unlinked, so when we exit we leave
354 * no witnesses).
355 * Return:
356 * 0 if the table and file was created ok, -1 otherwise
357 */
358
359 #ifdef __STDC__
360 int
361 ftime_start(void)
362 #else
363 int
364 ftime_start()
365 #endif
366 {
367 char *pt;
368
369 if (ftab != NULL)
370 return(0);
371 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
372 paxwarn(1, "Cannot allocate memory for file time table");
373 return(-1);
374 }
375
376 /*
377 * get random name and create temporary scratch file, unlink name
378 * so it will get removed on exit
379 */
380 pt = strdup("/tmp/paxXXXXXX");
381 if ((ffd = mkstemp(pt)) < 0) {
382 syswarn(1, errno, "Unable to create temporary file: %s", pt);
383 free(pt);
384 return(-1);
385 }
386 (void)unlink(pt);
387 free(pt);
388
389 return(0);
390 }
391
392 /*
393 * chk_ftime()
394 * looks up entry in file time hash table. If not found, the file is
395 * added to the hash table and the file named stored in the scratch file.
396 * If a file with the same name is found, the file times are compared and
397 * the most recent file time is retained. If the new file was younger (or
398 * was not in the database) the new file is selected for storage.
399 * Return:
400 * 0 if file should be added to the archive, 1 if it should be skipped,
401 * -1 on error
402 */
403
404 #ifdef __STDC__
405 int
406 chk_ftime(register ARCHD *arcn)
407 #else
408 int
409 chk_ftime(arcn)
410 register ARCHD *arcn;
411 #endif
412 {
413 register FTM *pt;
414 register int namelen;
415 register u_int indx;
416 char ckname[PAXPATHLEN+1];
417
418 /*
419 * no info, go ahead and add to archive
420 */
421 if (ftab == NULL)
422 return(0);
423
424 /*
425 * hash the pathname and look up in table
426 */
427 namelen = arcn->nlen;
428 indx = st_hash(arcn->name, namelen, F_TAB_SZ);
429 if ((pt = ftab[indx]) != NULL) {
430 /*
431 * the hash chain is not empty, walk down looking for match
432 * only read up the path names if the lengths match, speeds
433 * up the search a lot
434 */
435 while (pt != NULL) {
436 if (pt->namelen == namelen) {
437 /*
438 * potential match, have to read the name
439 * from the scratch file.
440 */
441 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
442 syswarn(1, errno,
443 "Failed ftime table seek");
444 return(-1);
445 }
446 if (read(ffd, ckname, namelen) != namelen) {
447 syswarn(1, errno,
448 "Failed ftime table read");
449 return(-1);
450 }
451
452 /*
453 * if the names match, we are done
454 */
455 if (!strncmp(ckname, arcn->name, namelen))
456 break;
457 }
458
459 /*
460 * try the next entry on the chain
461 */
462 pt = pt->fow;
463 }
464
465 if (pt != NULL) {
466 /*
467 * found the file, compare the times, save the newer
468 */
469 if (arcn->sb.st_mtime > pt->mtime) {
470 /*
471 * file is newer
472 */
473 pt->mtime = arcn->sb.st_mtime;
474 return(0);
475 }
476 /*
477 * file is older
478 */
479 return(1);
480 }
481 }
482
483 /*
484 * not in table, add it
485 */
486 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
487 /*
488 * add the name at the end of the scratch file, saving the
489 * offset. add the file to the head of the hash chain
490 */
491 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
492 if (write(ffd, arcn->name, namelen) == namelen) {
493 pt->mtime = arcn->sb.st_mtime;
494 pt->namelen = namelen;
495 pt->fow = ftab[indx];
496 ftab[indx] = pt;
497 return(0);
498 }
499 syswarn(1, errno, "Failed write to file time table");
500 } else
501 syswarn(1, errno, "Failed seek on file time table");
502 } else
503 paxwarn(1, "File time table ran out of memory");
504
505 if (pt != NULL)
506 (void)free((char *)pt);
507 return(-1);
508 }
509
510 /*
511 * Interactive rename table routines
512 *
513 * The interactive rename table keeps track of the new names that the user
514 * assignes to files from tty input. Since this map is unique for each file
515 * we must store it in case there is a reference to the file later in archive
516 * (a link). Otherwise we will be unable to find the file we know was
517 * extracted. The remapping of these files is stored in a memory based hash
518 * table (it is assumed since input must come from /dev/tty, it is unlikely to
519 * be a very large table).
520 */
521
522 /*
523 * name_start()
524 * create the interactive rename table
525 * Return:
526 * 0 if successful, -1 otherwise
527 */
528
529 #ifdef __STDC__
530 int
531 name_start(void)
532 #else
533 int
534 name_start()
535 #endif
536 {
537 if (ntab != NULL)
538 return(0);
539 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
540 paxwarn(1, "Cannot allocate memory for interactive rename table");
541 return(-1);
542 }
543 return(0);
544 }
545
546 /*
547 * add_name()
548 * add the new name to old name mapping just created by the user.
549 * If an old name mapping is found (there may be duplicate names on an
550 * archive) only the most recent is kept.
551 * Return:
552 * 0 if added, -1 otherwise
553 */
554
555 #ifdef __STDC__
556 int
557 add_name(register char *oname, int onamelen, char *nname)
558 #else
559 int
560 add_name(oname, onamelen, nname)
561 register char *oname;
562 int onamelen;
563 char *nname;
564 #endif
565 {
566 register NAMT *pt;
567 register u_int indx;
568
569 if (ntab == NULL) {
570 /*
571 * should never happen
572 */
573 paxwarn(0, "No interactive rename table, links may fail\n");
574 return(0);
575 }
576
577 /*
578 * look to see if we have already mapped this file, if so we
579 * will update it
580 */
581 indx = st_hash(oname, onamelen, N_TAB_SZ);
582 if ((pt = ntab[indx]) != NULL) {
583 /*
584 * look down the has chain for the file
585 */
586 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
587 pt = pt->fow;
588
589 if (pt != NULL) {
590 /*
591 * found an old mapping, replace it with the new one
592 * the user just input (if it is different)
593 */
594 if (strcmp(nname, pt->nname) == 0)
595 return(0);
596
597 (void)free((char *)pt->nname);
598 if ((pt->nname = strdup(nname)) == NULL) {
599 paxwarn(1, "Cannot update rename table");
600 return(-1);
601 }
602 return(0);
603 }
604 }
605
606 /*
607 * this is a new mapping, add it to the table
608 */
609 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
610 if ((pt->oname = strdup(oname)) != NULL) {
611 if ((pt->nname = strdup(nname)) != NULL) {
612 pt->fow = ntab[indx];
613 ntab[indx] = pt;
614 return(0);
615 }
616 (void)free((char *)pt->oname);
617 }
618 (void)free((char *)pt);
619 }
620 paxwarn(1, "Interactive rename table out of memory");
621 return(-1);
622 }
623
624 /*
625 * sub_name()
626 * look up a link name to see if it points at a file that has been
627 * remapped by the user. If found, the link is adjusted to contain the
628 * new name (oname is the link to name)
629 */
630
631 #ifdef __STDC__
632 void
633 sub_name(register char *oname, int *onamelen, size_t onamesize)
634 #else
635 void
636 sub_name(oname, onamelen, onamesize)
637 register char *oname;
638 int *onamelen;
639 size_t onamesize;
640 #endif
641 {
642 register NAMT *pt;
643 register u_int indx;
644
645 if (ntab == NULL)
646 return;
647 /*
648 * look the name up in the hash table
649 */
650 indx = st_hash(oname, *onamelen, N_TAB_SZ);
651 if ((pt = ntab[indx]) == NULL)
652 return;
653
654 while (pt != NULL) {
655 /*
656 * walk down the hash chain looking for a match
657 */
658 if (strcmp(oname, pt->oname) == 0) {
659 /*
660 * found it, replace it with the new name
661 * and return (we know that oname has enough space)
662 */
663 *onamelen = l_strncpy(oname, pt->nname, onamesize - 1);
664 oname[*onamelen] = '\0';
665 return;
666 }
667 pt = pt->fow;
668 }
669
670 /*
671 * no match, just return
672 */
673 return;
674 }
675
676 /*
677 * device/inode mapping table routines
678 * (used with formats that store device and inodes fields)
679 *
680 * device/inode mapping tables remap the device field in a archive header. The
681 * device/inode fields are used to determine when files are hard links to each
682 * other. However these values have very little meaning outside of that. This
683 * database is used to solve one of two different problems.
684 *
685 * 1) when files are appended to an archive, while the new files may have hard
686 * links to each other, you cannot determine if they have hard links to any
687 * file already stored on the archive from a prior run of pax. We must assume
688 * that these inode/device pairs are unique only within a SINGLE run of pax
689 * (which adds a set of files to an archive). So we have to make sure the
690 * inode/dev pairs we add each time are always unique. We do this by observing
691 * while the inode field is very dense, the use of the dev field is fairly
692 * sparse. Within each run of pax, we remap any device number of a new archive
693 * member that has a device number used in a prior run and already stored in a
694 * file on the archive. During the read phase of the append, we store the
695 * device numbers used and mark them to not be used by any file during the
696 * write phase. If during write we go to use one of those old device numbers,
697 * we remap it to a new value.
698 *
699 * 2) Often the fields in the archive header used to store these values are
700 * too small to store the entire value. The result is an inode or device value
701 * which can be truncated. This really can foul up an archive. With truncation
702 * we end up creating links between files that are really not links (after
703 * truncation the inodes are the same value). We address that by detecting
704 * truncation and forcing a remap of the device field to split truncated
705 * inodes away from each other. Each truncation creates a pattern of bits that
706 * are removed. We use this pattern of truncated bits to partition the inodes
707 * on a single device to many different devices (each one represented by the
708 * truncated bit pattern). All inodes on the same device that have the same
709 * truncation pattern are mapped to the same new device. Two inodes that
710 * truncate to the same value clearly will always have different truncation
711 * bit patterns, so they will be split from away each other. When we spot
712 * device truncation we remap the device number to a non truncated value.
713 * (for more info see table.h for the data structures involved).
714 */
715
716 /*
717 * dev_start()
718 * create the device mapping table
719 * Return:
720 * 0 if successful, -1 otherwise
721 */
722
723 #ifdef __STDC__
724 int
725 dev_start(void)
726 #else
727 int
728 dev_start()
729 #endif
730 {
731 if (dtab != NULL)
732 return(0);
733 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
734 paxwarn(1, "Cannot allocate memory for device mapping table");
735 return(-1);
736 }
737 return(0);
738 }
739
740 /*
741 * add_dev()
742 * add a device number to the table. this will force the device to be
743 * remapped to a new value if it be used during a write phase. This
744 * function is called during the read phase of an append to prohibit the
745 * use of any device number already in the archive.
746 * Return:
747 * 0 if added ok, -1 otherwise
748 */
749
750 #ifdef __STDC__
751 int
752 add_dev(register ARCHD *arcn)
753 #else
754 int
755 add_dev(arcn)
756 register ARCHD *arcn;
757 #endif
758 {
759 if (chk_dev(arcn->sb.st_dev, 1) == NULL)
760 return(-1);
761 return(0);
762 }
763
764 /*
765 * chk_dev()
766 * check for a device value in the device table. If not found and the add
767 * flag is set, it is added. This does NOT assign any mapping values, just
768 * adds the device number as one that need to be remapped. If this device
769 * is alread mapped, just return with a pointer to that entry.
770 * Return:
771 * pointer to the entry for this device in the device map table. Null
772 * if the add flag is not set and the device is not in the table (it is
773 * not been seen yet). If add is set and the device cannot be added, null
774 * is returned (indicates an error).
775 */
776
777 #ifdef __STDC__
778 static DEVT *
779 chk_dev(dev_t dev, int add)
780 #else
781 static DEVT *
782 chk_dev(dev, add)
783 dev_t dev;
784 int add;
785 #endif
786 {
787 register DEVT *pt;
788 register u_int indx;
789
790 if (dtab == NULL)
791 return(NULL);
792 /*
793 * look to see if this device is already in the table
794 */
795 indx = ((unsigned)dev) % D_TAB_SZ;
796 if ((pt = dtab[indx]) != NULL) {
797 while ((pt != NULL) && (pt->dev != dev))
798 pt = pt->fow;
799
800 /*
801 * found it, return a pointer to it
802 */
803 if (pt != NULL)
804 return(pt);
805 }
806
807 /*
808 * not in table, we add it only if told to as this may just be a check
809 * to see if a device number is being used.
810 */
811 if (add == 0)
812 return(NULL);
813
814 /*
815 * allocate a node for this device and add it to the front of the hash
816 * chain. Note we do not assign remaps values here, so the pt->list
817 * list must be NULL.
818 */
819 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
820 paxwarn(1, "Device map table out of memory");
821 return(NULL);
822 }
823 pt->dev = dev;
824 pt->list = NULL;
825 pt->fow = dtab[indx];
826 dtab[indx] = pt;
827 return(pt);
828 }
829 /*
830 * map_dev()
831 * given an inode and device storage mask (the mask has a 1 for each bit
832 * the archive format is able to store in a header), we check for inode
833 * and device truncation and remap the device as required. Device mapping
834 * can also occur when during the read phase of append a device number was
835 * seen (and was marked as do not use during the write phase). WE ASSUME
836 * that unsigned longs are the same size or bigger than the fields used
837 * for ino_t and dev_t. If not the types will have to be changed.
838 * Return:
839 * 0 if all ok, -1 otherwise.
840 */
841
842 #ifdef __STDC__
843 int
844 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
845 #else
846 int
847 map_dev(arcn, dev_mask, ino_mask)
848 register ARCHD *arcn;
849 u_long dev_mask;
850 u_long ino_mask;
851 #endif
852 {
853 register DEVT *pt;
854 register DLIST *dpt;
855 static dev_t lastdev = 0; /* next device number to try */
856 int trc_ino = 0;
857 int trc_dev = 0;
858 ino_t trunc_bits = 0;
859 ino_t nino;
860
861 if (dtab == NULL)
862 return(0);
863 /*
864 * check for device and inode truncation, and extract the truncated
865 * bit pattern.
866 */
867 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
868 ++trc_dev;
869 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
870 ++trc_ino;
871 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
872 }
873
874 /*
875 * see if this device is already being mapped, look up the device
876 * then find the truncation bit pattern which applies
877 */
878 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
879 /*
880 * this device is already marked to be remapped
881 */
882 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
883 if (dpt->trunc_bits == trunc_bits)
884 break;
885
886 if (dpt != NULL) {
887 /*
888 * we are being remapped for this device and pattern
889 * change the device number to be stored and return
890 */
891 arcn->sb.st_dev = dpt->dev;
892 arcn->sb.st_ino = nino;
893 return(0);
894 }
895 } else {
896 /*
897 * this device is not being remapped YET. if we do not have any
898 * form of truncation, we do not need a remap
899 */
900 if (!trc_ino && !trc_dev)
901 return(0);
902
903 /*
904 * we have truncation, have to add this as a device to remap
905 */
906 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
907 goto bad;
908
909 /*
910 * if we just have a truncated inode, we have to make sure that
911 * all future inodes that do not truncate (they have the
912 * truncation pattern of all 0's) continue to map to the same
913 * device number. We probably have already written inodes with
914 * this device number to the archive with the truncation
915 * pattern of all 0's. So we add the mapping for all 0's to the
916 * same device number.
917 */
918 if (!trc_dev && (trunc_bits != 0)) {
919 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
920 goto bad;
921 dpt->trunc_bits = 0;
922 dpt->dev = arcn->sb.st_dev;
923 dpt->fow = pt->list;
924 pt->list = dpt;
925 }
926 }
927
928 /*
929 * look for a device number not being used. We must watch for wrap
930 * around on lastdev (so we do not get stuck looking forever!)
931 */
932 while (++lastdev > 0) {
933 if (chk_dev(lastdev, 0) != NULL)
934 continue;
935 /*
936 * found an unused value. If we have reached truncation point
937 * for this format we are hosed, so we give up. Otherwise we
938 * mark it as being used.
939 */
940 if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
941 (chk_dev(lastdev, 1) == NULL))
942 goto bad;
943 break;
944 }
945
946 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
947 goto bad;
948
949 /*
950 * got a new device number, store it under this truncation pattern.
951 * change the device number this file is being stored with.
952 */
953 dpt->trunc_bits = trunc_bits;
954 dpt->dev = lastdev;
955 dpt->fow = pt->list;
956 pt->list = dpt;
957 arcn->sb.st_dev = lastdev;
958 arcn->sb.st_ino = nino;
959 return(0);
960
961 bad:
962 paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
963 arcn->name);
964 paxwarn(0, "Archive may create improper hard links when extracted");
965 return(0);
966 }
967
968 /*
969 * directory access/mod time reset table routines (for directories READ by pax)
970 *
971 * The pax -t flag requires that access times of archive files to be the same
972 * before being read by pax. For regular files, access time is restored after
973 * the file has been copied. This database provides the same functionality for
974 * directories read during file tree traversal. Restoring directory access time
975 * is more complex than files since directories may be read several times until
976 * all the descendants in their subtree are visited by fts. Directory access
977 * and modification times are stored during the fts pre-order visit (done
978 * before any descendants in the subtree is visited) and restored after the
979 * fts post-order visit (after all the descendants have been visited). In the
980 * case of premature exit from a subtree (like from the effects of -n), any
981 * directory entries left in this database are reset during final cleanup
982 * operations of pax. Entries are hashed by inode number for fast lookup.
983 */
984
985 /*
986 * atdir_start()
987 * create the directory access time database for directories READ by pax.
988 * Return:
989 * 0 is created ok, -1 otherwise.
990 */
991
992 #ifdef __STDC__
993 int
994 atdir_start(void)
995 #else
996 int
997 atdir_start()
998 #endif
999 {
1000 if (atab != NULL)
1001 return(0);
1002 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
1003 paxwarn(1,"Cannot allocate space for directory access time table");
1004 return(-1);
1005 }
1006 return(0);
1007 }
1008
1009
1010 /*
1011 * atdir_end()
1012 * walk through the directory access time table and reset the access time
1013 * of any directory who still has an entry left in the database. These
1014 * entries are for directories READ by pax
1015 */
1016
1017 #ifdef __STDC__
1018 void
1019 atdir_end(void)
1020 #else
1021 void
1022 atdir_end()
1023 #endif
1024 {
1025 register ATDIR *pt;
1026 register int i;
1027
1028 if (atab == NULL)
1029 return;
1030 /*
1031 * for each non-empty hash table entry reset all the directories
1032 * chained there.
1033 */
1034 for (i = 0; i < A_TAB_SZ; ++i) {
1035 if ((pt = atab[i]) == NULL)
1036 continue;
1037 /*
1038 * remember to force the times, set_ftime() looks at pmtime
1039 * and patime, which only applies to things CREATED by pax,
1040 * not read by pax. Read time reset is controlled by -t.
1041 */
1042 for (; pt != NULL; pt = pt->fow)
1043 set_ftime(pt->name, pt->mtime, pt->atime, 1);
1044 }
1045 }
1046
1047 /*
1048 * add_atdir()
1049 * add a directory to the directory access time table. Table is hashed
1050 * and chained by inode number. This is for directories READ by pax
1051 */
1052
1053 #ifdef __STDC__
1054 void
1055 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1056 #else
1057 void
1058 add_atdir(fname, dev, ino, mtime, atime)
1059 char *fname;
1060 dev_t dev;
1061 ino_t ino;
1062 time_t mtime;
1063 time_t atime;
1064 #endif
1065 {
1066 register ATDIR *pt;
1067 register u_int indx;
1068
1069 if (atab == NULL)
1070 return;
1071
1072 /*
1073 * make sure this directory is not already in the table, if so just
1074 * return (the older entry always has the correct time). The only
1075 * way this will happen is when the same subtree can be traversed by
1076 * different args to pax and the -n option is aborting fts out of a
1077 * subtree before all the post-order visits have been made).
1078 */
1079 indx = ((unsigned)ino) % A_TAB_SZ;
1080 if ((pt = atab[indx]) != NULL) {
1081 while (pt != NULL) {
1082 if ((pt->ino == ino) && (pt->dev == dev))
1083 break;
1084 pt = pt->fow;
1085 }
1086
1087 /*
1088 * oops, already there. Leave it alone.
1089 */
1090 if (pt != NULL)
1091 return;
1092 }
1093
1094 /*
1095 * add it to the front of the hash chain
1096 */
1097 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1098 if ((pt->name = strdup(fname)) != NULL) {
1099 pt->dev = dev;
1100 pt->ino = ino;
1101 pt->mtime = mtime;
1102 pt->atime = atime;
1103 pt->fow = atab[indx];
1104 atab[indx] = pt;
1105 return;
1106 }
1107 (void)free((char *)pt);
1108 }
1109
1110 paxwarn(1, "Directory access time reset table ran out of memory");
1111 return;
1112 }
1113
1114 /*
1115 * get_atdir()
1116 * look up a directory by inode and device number to obtain the access
1117 * and modification time you want to set to. If found, the modification
1118 * and access time parameters are set and the entry is removed from the
1119 * table (as it is no longer needed). These are for directories READ by
1120 * pax
1121 * Return:
1122 * 0 if found, -1 if not found.
1123 */
1124
1125 #ifdef __STDC__
1126 int
1127 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1128 #else
1129 int
1130 get_atdir(dev, ino, mtime, atime)
1131 dev_t dev;
1132 ino_t ino;
1133 time_t *mtime;
1134 time_t *atime;
1135 #endif
1136 {
1137 register ATDIR *pt;
1138 register ATDIR **ppt;
1139 register u_int indx;
1140
1141 if (atab == NULL)
1142 return(-1);
1143 /*
1144 * hash by inode and search the chain for an inode and device match
1145 */
1146 indx = ((unsigned)ino) % A_TAB_SZ;
1147 if ((pt = atab[indx]) == NULL)
1148 return(-1);
1149
1150 ppt = &(atab[indx]);
1151 while (pt != NULL) {
1152 if ((pt->ino == ino) && (pt->dev == dev))
1153 break;
1154 /*
1155 * no match, go to next one
1156 */
1157 ppt = &(pt->fow);
1158 pt = pt->fow;
1159 }
1160
1161 /*
1162 * return if we did not find it.
1163 */
1164 if (pt == NULL)
1165 return(-1);
1166
1167 /*
1168 * found it. return the times and remove the entry from the table.
1169 */
1170 *ppt = pt->fow;
1171 *mtime = pt->mtime;
1172 *atime = pt->atime;
1173 (void)free((char *)pt->name);
1174 (void)free((char *)pt);
1175 return(0);
1176 }
1177
1178 /*
1179 * directory access mode and time storage routines (for directories CREATED
1180 * by pax).
1181 *
1182 * Pax requires that extracted directories, by default, have their access/mod
1183 * times and permissions set to the values specified in the archive. During the
1184 * actions of extracting (and creating the destination subtree during -rw copy)
1185 * directories extracted may be modified after being created. Even worse is
1186 * that these directories may have been created with file permissions which
1187 * prohibits any descendants of these directories from being extracted. When
1188 * directories are created by pax, access rights may be added to permit the
1189 * creation of files in their subtree. Every time pax creates a directory, the
1190 * times and file permissions specified by the archive are stored. After all
1191 * files have been extracted (or copied), these directories have their times
1192 * and file modes reset to the stored values. The directory info is restored in
1193 * reverse order as entries were added to the data file from root to leaf. To
1194 * restore atime properly, we must go backwards. The data file consists of
1195 * records with two parts, the file name followed by a DIRDATA trailer. The
1196 * fixed sized trailer contains the size of the name plus the off_t location in
1197 * the file. To restore we work backwards through the file reading the trailer
1198 * then the file name.
1199 */
1200
1201 /*
1202 * dir_start()
1203 * set up the directory time and file mode storage for directories CREATED
1204 * by pax.
1205 * Return:
1206 * 0 if ok, -1 otherwise
1207 */
1208
1209 #ifdef __STDC__
1210 int
1211 dir_start(void)
1212 #else
1213 int
1214 dir_start()
1215 #endif
1216 {
1217 char *pt;
1218
1219 if (dirfd != -1)
1220 return(0);
1221
1222 /*
1223 * unlink the file so it goes away at termination by itself
1224 */
1225 pt = strdup("/tmp/paxXXXXXX");
1226 if ((dirfd = mkstemp(pt)) >= 0) {
1227 (void)unlink(pt);
1228 free(pt);
1229 return(0);
1230 }
1231 paxwarn(1, "Unable to create temporary file for directory times: %s", pt);
1232 free(pt);
1233 return(-1);
1234 }
1235
1236 /*
1237 * add_dir()
1238 * add the mode and times for a newly CREATED directory
1239 * name is name of the directory, psb the stat buffer with the data in it,
1240 * frc_mode is a flag that says whether to force the setting of the mode
1241 * (ignoring the user set values for preserving file mode). Frc_mode is
1242 * for the case where we created a file and found that the resulting
1243 * directory was not writeable and the user asked for file modes to NOT
1244 * be preserved. (we have to preserve what was created by default, so we
1245 * have to force the setting at the end. this is stated explicitly in the
1246 * pax spec)
1247 */
1248
1249 #ifdef __STDC__
1250 void
1251 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1252 #else
1253 void
1254 add_dir(name, nlen, psb, frc_mode)
1255 char *name;
1256 int nlen;
1257 struct stat *psb;
1258 int frc_mode;
1259 #endif
1260 {
1261 DIRDATA dblk;
1262
1263 if (dirfd < 0)
1264 return;
1265
1266 /*
1267 * get current position (where file name will start) so we can store it
1268 * in the trailer
1269 */
1270 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1271 paxwarn(1,"Unable to store mode and times for directory: %s",name);
1272 return;
1273 }
1274
1275 /*
1276 * write the file name followed by the trailer
1277 */
1278 dblk.nlen = nlen + 1;
1279 dblk.mode = psb->st_mode & 0xffff;
1280 dblk.mtime = psb->st_mtime;
1281 dblk.atime = psb->st_atime;
1282 dblk.frc_mode = frc_mode;
1283 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1284 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1285 ++dircnt;
1286 return;
1287 }
1288
1289 paxwarn(1,"Unable to store mode and times for created directory: %s",name);
1290 return;
1291 }
1292
1293 /*
1294 * proc_dir()
1295 * process all file modes and times stored for directories CREATED
1296 * by pax
1297 */
1298
1299 #ifdef __STDC__
1300 void
1301 proc_dir(void)
1302 #else
1303 void
1304 proc_dir()
1305 #endif
1306 {
1307 char name[PAXPATHLEN+1];
1308 DIRDATA dblk;
1309 u_long cnt;
1310
1311 if (dirfd < 0)
1312 return;
1313 /*
1314 * read backwards through the file and process each directory
1315 */
1316 for (cnt = 0; cnt < dircnt; ++cnt) {
1317 /*
1318 * read the trailer, then the file name, if this fails
1319 * just give up.
1320 */
1321 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1322 break;
1323 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1324 break;
1325 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1326 break;
1327 if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1328 break;
1329 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1330 break;
1331
1332 /*
1333 * frc_mode set, make sure we set the file modes even if
1334 * the user didn't ask for it (see file_subs.c for more info)
1335 */
1336 if (pmode || dblk.frc_mode)
1337 set_pmode(name, dblk.mode);
1338 if (patime || pmtime)
1339 set_ftime(name, dblk.mtime, dblk.atime, 0);
1340 }
1341
1342 (void)close(dirfd);
1343 dirfd = -1;
1344 if (cnt != dircnt)
1345 paxwarn(1,"Unable to set mode and times for created directories");
1346 return;
1347 }
1348
1349 /*
1350 * database independent routines
1351 */
1352
1353 /*
1354 * st_hash()
1355 * hashes filenames to a u_int for hashing into a table. Looks at the tail
1356 * end of file, as this provides far better distribution than any other
1357 * part of the name. For performance reasons we only care about the last
1358 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1359 * name). Was tested on 500,000 name file tree traversal from the root
1360 * and gave almost a perfectly uniform distribution of keys when used with
1361 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1362 * chars at a time and pads with 0 for last addition.
1363 * Return:
1364 * the hash value of the string MOD (%) the table size.
1365 */
1366
1367 #ifdef __STDC__
1368 u_int
1369 st_hash(char *name, int len, int tabsz)
1370 #else
1371 u_int
1372 st_hash(name, len, tabsz)
1373 char *name;
1374 int len;
1375 int tabsz;
1376 #endif
1377 {
1378 register char *pt;
1379 register char *dest;
1380 register char *end;
1381 register int i;
1382 register u_int key = 0;
1383 register int steps;
1384 register int res;
1385 u_int val;
1386
1387 /*
1388 * only look at the tail up to MAXKEYLEN, we do not need to waste
1389 * time here (remember these are pathnames, the tail is what will
1390 * spread out the keys)
1391 */
1392 if (len > MAXKEYLEN) {
1393 pt = &(name[len - MAXKEYLEN]);
1394 len = MAXKEYLEN;
1395 } else
1396 pt = name;
1397
1398 /*
1399 * calculate the number of u_int size steps in the string and if
1400 * there is a runt to deal with
1401 */
1402 steps = len/sizeof(u_int);
1403 res = len % sizeof(u_int);
1404
1405 /*
1406 * add up the value of the string in unsigned integer sized pieces
1407 * too bad we cannot have unsigned int aligned strings, then we
1408 * could avoid the expensive copy.
1409 */
1410 for (i = 0; i < steps; ++i) {
1411 end = pt + sizeof(u_int);
1412 dest = (char *)&val;
1413 while (pt < end)
1414 *dest++ = *pt++;
1415 key += val;
1416 }
1417
1418 /*
1419 * add in the runt padded with zero to the right
1420 */
1421 if (res) {
1422 val = 0;
1423 end = pt + res;
1424 dest = (char *)&val;
1425 while (pt < end)
1426 *dest++ = *pt++;
1427 key += val;
1428 }
1429
1430 /*
1431 * return the result mod the table size
1432 */
1433 return(key % tabsz);
1434 }