// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
-#if defined(__GNUG__) && !defined(NO_GCC_PRAGMA)
-#pragma implementation "sizer.h"
-#endif
-
// For compilers that support precompilation, includes "wx.h".
#include "wx/wxprec.h"
#ifndef WX_PRECOMP
#include "wx/string.h"
#include "wx/intl.h"
+ #include "wx/math.h"
#endif // WX_PRECOMP
#include "wx/sizer.h"
IMPLEMENT_CLASS(wxStdDialogButtonSizer, wxBoxSizer)
#endif
-WX_DEFINE_EXPORTED_LIST( wxSizerItemList );
+WX_DEFINE_EXPORTED_LIST( wxSizerItemList )
/*
TODO PROPERTIES
// if we have to preserve aspect ratio _AND_ this is
// the first-time calculation, consider ret to be initial size
- if ((m_flag & wxSHAPED) && !m_ratio)
+ if ( (m_flag & wxSHAPED) && wxIsNullDouble(m_ratio) )
SetRatio(m_minSize);
}
else if ( IsWindow() )
}
-void wxSizerItem::SetDimension( wxPoint pos, wxSize size )
+void wxSizerItem::SetDimension( const wxPoint& pos_, const wxSize& size_ )
{
+ wxPoint pos = pos_;
+ wxSize size = size_;
if (m_flag & wxSHAPED)
{
// adjust aspect ratio
return m_window->IsShown();
case Item_Sizer:
- return m_sizer->IsShown();
+ // arbitrarily decide that if at least one of our elements is
+ // shown, so are we (this arbitrariness is the reason for
+ // deprecating this function)
+ {
+ for ( wxSizerItemList::compatibility_iterator
+ node = m_sizer->GetChildren().GetFirst();
+ node;
+ node = node->GetNext() )
+ {
+ if ( node->GetData()->IsShown() )
+ return true;
+ }
+ }
+ return false;
case Item_Spacer:
return m_spacer->IsShown();
// wxSizer
//---------------------------------------------------------------------------
-wxSizer::wxSizer()
-{
- m_isShown = true;
-}
-
wxSizer::~wxSizer()
{
WX_CLEAR_LIST(wxSizerItemList, m_children);
wxArrayInt& array = m_flexDirection == wxVERTICAL ? m_colWidths
: m_rowHeights;
- const int count = array.GetCount();
+ const size_t count = array.GetCount();
// find the largest value in this array
- int n, largest = 0;
+ size_t n;
+ int largest = 0;
+
for ( n = 0; n < count; ++n )
{
if ( array[n] > largest )