+ char *lo = base_ptr;
+ char *hi = &lo[size * (total_elems - 1)];
+ stack_node stack[STACK_SIZE];
+ stack_node *top = stack;
+
+ PUSH (NULL, NULL);
+
+ while (STACK_NOT_EMPTY)
+ {
+ char *left_ptr;
+ char *right_ptr;
+
+ /* Select median value from among LO, MID, and HI. Rearrange
+ LO and HI so the three values are sorted. This lowers the
+ probability of picking a pathological pivot value and
+ skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
+
+ char *mid = lo + size * ((hi - lo) / size >> 1);
+
+ if ((*cmp) ((void *) mid, (void *) lo, user_data) < 0)
+ SWAP (mid, lo, size);
+ if ((*cmp) ((void *) hi, (void *) mid, user_data) < 0)
+ SWAP (mid, hi, size);
+ else
+ goto jump_over;
+ if ((*cmp) ((void *) mid, (void *) lo, user_data) < 0)
+ SWAP (mid, lo, size);
+ jump_over:;
+ left_ptr = lo + size;
+ right_ptr = hi - size;
+
+ /* Here's the famous ``collapse the walls'' section of quicksort.
+ Gotta like those tight inner loops! They are the main reason
+ that this algorithm runs much faster than others. */
+ do
+ {
+ while ((*cmp) ((void *) left_ptr, (void *) mid, user_data) < 0)
+ left_ptr += size;
+
+ while ((*cmp) ((void *) mid, (void *) right_ptr, user_data) < 0)
+ right_ptr -= size;
+
+ if (left_ptr < right_ptr)
+ {
+ SWAP (left_ptr, right_ptr, size);
+ if (mid == left_ptr)
+ mid = right_ptr;
+ else if (mid == right_ptr)
+ mid = left_ptr;
+ left_ptr += size;
+ right_ptr -= size;
+ }
+ else if (left_ptr == right_ptr)
+ {
+ left_ptr += size;
+ right_ptr -= size;
+ break;
+ }
+ }
+ while (left_ptr <= right_ptr);
+
+ /* Set up pointers for next iteration. First determine whether
+ left and right partitions are below the threshold size. If so,
+ ignore one or both. Otherwise, push the larger partition's
+ bounds on the stack and continue sorting the smaller one. */
+
+ if ((size_t) (right_ptr - lo) <= max_thresh)
+ {
+ if ((size_t) (hi - left_ptr) <= max_thresh)
+ /* Ignore both small partitions. */
+ POP (lo, hi);
+ else
+ /* Ignore small left partition. */
+ lo = left_ptr;
+ }
+ else if ((size_t) (hi - left_ptr) <= max_thresh)
+ /* Ignore small right partition. */
+ hi = right_ptr;
+ else if ((right_ptr - lo) > (hi - left_ptr))
+ {
+ /* Push larger left partition indices. */
+ PUSH (lo, right_ptr);
+ lo = left_ptr;
+ }
+ else
+ {
+ /* Push larger right partition indices. */
+ PUSH (left_ptr, hi);
+ hi = right_ptr;
+ }
+ }
+ }
+
+ /* Once the BASE_PTR array is partially sorted by quicksort the rest
+ is completely sorted using insertion sort, since this is efficient
+ for partitions below MAX_THRESH size. BASE_PTR points to the beginning
+ of the array to sort, and END_PTR points at the very last element in
+ the array (*not* one beyond it!). */
+
+ {
+ char *const end_ptr = &base_ptr[size * (total_elems - 1)];
+ char *tmp_ptr = base_ptr;
+ char *thresh = base_ptr + max_thresh;
+ if ( thresh > end_ptr )
+ thresh = end_ptr;
+ register char *run_ptr;
+
+ /* Find smallest element in first threshold and place it at the
+ array's beginning. This is the smallest array element,
+ and the operation speeds up insertion sort's inner loop. */
+
+ for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
+ if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, user_data) < 0)
+ tmp_ptr = run_ptr;
+
+ if (tmp_ptr != base_ptr)
+ SWAP (tmp_ptr, base_ptr, size);
+
+ /* Insertion sort, running from left-hand-side up to right-hand-side. */
+
+ run_ptr = base_ptr + size;
+ while ((run_ptr += size) <= end_ptr)
+ {
+ tmp_ptr = run_ptr - size;
+ while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, user_data) < 0)
+ tmp_ptr -= size;
+
+ tmp_ptr += size;
+ if (tmp_ptr != run_ptr)
+ {
+ char *trav;
+
+ trav = run_ptr + size;
+ while (--trav >= run_ptr)
+ {
+ char c = *trav;
+ char *hi, *lo;
+
+ for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
+ *hi = *lo;
+ *hi = c;
+ }
+ }
+ }
+ }