// Name: matrix.cpp
// Purpose: wxTransformMatrix class
// Author: Chris Breeze, Julian Smart
-// Modified by:
+// Modified by: Klaas Holwerda
// Created: 01/02/97
// RCS-ID: $Id$
// Copyright: (c) Julian Smart and Markus Holzem
-// Licence: wxWindows licence
+// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
#ifdef __GNUG__
wxTransformMatrix::wxTransformMatrix(void)
{
- m_isIdentity = FALSE;
+ m_isIdentity = FALSE;
- Identity();
+ Identity();
}
wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat)
{
- (*this) = mat;
+ (*this) = mat;
}
-double wxTransformMatrix::GetValue(int row, int col) const
+double wxTransformMatrix::GetValue(int col, int row) const
{
- if (row < 0 || row > 2 || col < 0 || col > 2)
- return 0.0;
+ if (row < 0 || row > 2 || col < 0 || col > 2)
+ return 0.0;
- return m_matrix[row][col];
+ return m_matrix[col][row];
}
-void wxTransformMatrix::SetValue(int row, int col, double value)
+void wxTransformMatrix::SetValue(int col, int row, double value)
{
- if (row < 0 || row > 2 || col < 0 || col > 2)
- return;
+ if (row < 0 || row > 2 || col < 0 || col > 2)
+ return;
- m_matrix[row][col] = value;
+ m_matrix[col][row] = value;
+ m_isIdentity = IsIdentity1();
}
void wxTransformMatrix::operator = (const wxTransformMatrix& mat)
{
- int i, j;
- for (i = 0; i < 3; i++)
- {
- for (j = 0; j < 3; j++)
- {
- m_matrix[i][j] = mat.m_matrix[i][j];
- }
- }
- m_isIdentity = mat.m_isIdentity;
+ int i, j;
+ for (i = 0; i < 3; i++)
+ {
+ for (j = 0; j < 3; j++)
+ {
+ m_matrix[i][j] = mat.m_matrix[i][j];
+ }
+ }
+ m_isIdentity = mat.m_isIdentity;
}
bool wxTransformMatrix::operator == (const wxTransformMatrix& mat)
{
- int i, j;
- for (i = 0; i < 3; i++)
- {
- for (j = 0; j < 3; j++)
- {
- if (m_matrix[i][j] != mat.m_matrix[i][j])
- return FALSE;
- }
- }
- return TRUE;
+ if (m_isIdentity==TRUE && mat.m_isIdentity==TRUE)
+ return TRUE;
+
+ int i, j;
+ for (i = 0; i < 3; i++)
+ {
+ for (j = 0; j < 3; j++)
+ {
+ if (m_matrix[i][j] != mat.m_matrix[i][j])
+ return FALSE;
+ }
+ }
+ return TRUE;
}
bool wxTransformMatrix::operator != (const wxTransformMatrix& mat)
{
- return (! ((*this) == mat));
+ return (! ((*this) == mat));
}
-double& wxTransformMatrix::operator()(int row, int col)
+double& wxTransformMatrix::operator()(int col, int row)
{
- if (row < 0 || row > 2 || col < 0 || col > 2)
- return m_matrix[0][0];
+ if (row < 0 || row > 2 || col < 0 || col > 2)
+ return m_matrix[0][0];
- return m_matrix[row][col];
+ return m_matrix[col][row];
}
-double wxTransformMatrix::operator()(int row, int col) const
+double wxTransformMatrix::operator()(int col, int row) const
{
- if (row < 0 || row > 2 || col < 0 || col > 2)
- return 0.0;
+ if (row < 0 || row > 2 || col < 0 || col > 2)
+ return 0.0;
- return m_matrix[row][col];
+ return m_matrix[col][row];
}
// Invert matrix
bool wxTransformMatrix::Invert(void)
{
- double inverseMatrix[3][3];
-
- // calculate the adjoint
- inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]);
- inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]);
- inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]);
-
- inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]);
- inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]);
- inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]);
-
- inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]);
- inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]);
- inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]);
-
- // now divide by the determinant
- double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0];
- if (det != 0.0)
- {
- inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det;
- inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det;
- inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det;
-
- int i, j;
- for (i = 0; i < 3; i++)
- {
- for (j = 0; j < 3; j++)
- {
- m_matrix[i][j] = inverseMatrix[i][j];
- }
- }
- m_isIdentity = IsIdentity1();
- return TRUE;
- }
- else
- {
- return FALSE;
- }
+ double inverseMatrix[3][3];
+
+ // calculate the adjoint
+ inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]);
+ inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]);
+ inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]);
+
+ inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]);
+ inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]);
+ inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]);
+
+ inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]);
+ inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]);
+ inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]);
+
+ // now divide by the determinant
+ double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0];
+ if (det != 0.0)
+ {
+ inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det;
+ inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det;
+ inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det;
+
+ int i, j;
+ for (i = 0; i < 3; i++)
+ {
+ for (j = 0; j < 3; j++)
+ {
+ m_matrix[i][j] = inverseMatrix[i][j];
+ }
+ }
+ m_isIdentity = IsIdentity1();
+ return TRUE;
+ }
+ else
+ {
+ return FALSE;
+ }
}
// Make into identity matrix
bool wxTransformMatrix::Identity(void)
{
- m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0;
- m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0;
- m_isIdentity = TRUE;
+ m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0;
+ m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0;
+ m_isIdentity = TRUE;
- return TRUE;
+ return TRUE;
}
// Scale by scale (isotropic scaling i.e. the same in x and y):
//
bool wxTransformMatrix::Scale(double scale)
{
- int i, j;
- for (i = 0; i < 3; i++)
- {
- for (j = 0; j < 3; j++)
- {
- m_matrix[i][j] *= scale;
- }
- }
- m_isIdentity = IsIdentity1();
+ int i, j;
+ for (i = 0; i < 3; i++)
+ {
+ for (j = 0; j < 3; j++)
+ {
+ m_matrix[i][j] *= scale;
+ }
+ }
+ m_isIdentity = IsIdentity1();
+
+ return TRUE;
+}
+
+
+// scale a matrix in 2D
+//
+// xs 0 xc(1-xs)
+// 0 ys yc(1-ys)
+// 0 0 1
+//
+wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc)
+{
+ double r00,r10,r20,r01,r11,r21;
+
+ if (m_isIdentity)
+ {
+ double tx =xc*(1-xs);
+ double ty =yc*(1-ys);
+ r00 = xs;
+ r10 = 0;
+ r20 = tx;
+ r01 = 0;
+ r11 = ys;
+ r21 = ty;
+ }
+ else if (xc!=0 || yc!=0)
+ {
+ double tx =xc*(1-xs);
+ double ty =yc*(1-ys);
+ r00 = xs * m_matrix[0][0];
+ r10 = xs * m_matrix[1][0];
+ r20 = xs * m_matrix[2][0] + tx;
+ r01 = ys * m_matrix[0][1];
+ r11 = ys * m_matrix[1][1];
+ r21 = ys * m_matrix[2][1] + ty;
+ }
+ else
+ {
+ r00 = xs * m_matrix[0][0];
+ r10 = xs * m_matrix[1][0];
+ r20 = xs * m_matrix[2][0];
+ r01 = ys * m_matrix[0][1];
+ r11 = ys * m_matrix[1][1];
+ r21 = ys * m_matrix[2][1];
+ }
+
+ m_matrix[0][0] = r00;
+ m_matrix[1][0] = r10;
+ m_matrix[2][0] = r20;
+ m_matrix[0][1] = r01;
+ m_matrix[1][1] = r11;
+ m_matrix[2][1] = r21;
+
+/* or like this
+ // first translate to origin O
+ (*this).Translate(-x_cen, -y_cen);
+
+ // now do the scaling
+ wxTransformMatrix scale;
+ scale.m_matrix[0][0] = x_fac;
+ scale.m_matrix[1][1] = y_fac;
+ scale.m_isIdentity = IsIdentity1();
+
+ *this = scale * (*this);
+
+ // translate back from origin to x_cen, y_cen
+ (*this).Translate(x_cen, y_cen);
+*/
+
+ m_isIdentity = IsIdentity1();
+
+ return *this;
+}
+
- return TRUE;
+// mirror a matrix in x, y
+//
+// -1 0 0 Y-mirror
+// 0 -1 0 X-mirror
+// 0 0 -1 Z-mirror
+wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y)
+{
+ wxTransformMatrix temp;
+ if (x)
+ {
+ temp.m_matrix[1][1] = -1;
+ temp.m_isIdentity=false;
+ }
+ if (y)
+ {
+ temp.m_matrix[0][0] = -1;
+ temp.m_isIdentity=false;
+ }
+
+ *this = temp * (*this);
+ m_isIdentity = IsIdentity1();
+ return *this;
}
// Translate by dx, dy:
//
bool wxTransformMatrix::Translate(double dx, double dy)
{
- int i;
- for (i = 0; i < 3; i++)
- m_matrix[i][0] += dx * m_matrix[i][2];
- for (i = 0; i < 3; i++)
- m_matrix[i][1] += dy * m_matrix[i][2];
+ int i;
+ for (i = 0; i < 3; i++)
+ m_matrix[i][0] += dx * m_matrix[i][2];
+ for (i = 0; i < 3; i++)
+ m_matrix[i][1] += dy * m_matrix[i][2];
- m_isIdentity = IsIdentity1();
+ m_isIdentity = IsIdentity1();
- return TRUE;
+ return TRUE;
}
-// Rotate by the given number of degrees:
+// Rotate clockwise by the given number of degrees:
// | cos sin 0 |
// matrix' = | -sin cos 0 | x matrix
// | 0 0 1 |
-//
bool wxTransformMatrix::Rotate(double degrees)
{
- double angle = degrees * pi / 180.0;
- double s = sin(angle);
- double c = cos(angle);
-
- m_matrix[0][0] = c * m_matrix[0][0] + s * m_matrix[0][1];
- m_matrix[1][0] = c * m_matrix[1][0] + s * m_matrix[1][1];
- m_matrix[2][0] = c * m_matrix[2][0] + s * m_matrix[2][1];
- m_matrix[0][2] = c * m_matrix[0][1] - s * m_matrix[0][0];
- m_matrix[1][2] = c * m_matrix[1][1] - s * m_matrix[1][0];
- m_matrix[2][2] = c * m_matrix[2][1] - s * m_matrix[2][0];
-
- m_isIdentity = IsIdentity1();
+ Rotate(-degrees,0,0);
+ return TRUE;
+}
- return TRUE;
+// counter clockwise rotate around a point
+//
+// cos(r) -sin(r) x(1-cos(r))+y(sin(r)
+// sin(r) cos(r) y(1-cos(r))-x(sin(r)
+// 0 0 1
+wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y)
+{
+ double angle = degrees * pi / 180.0;
+ double c = cos(angle);
+ double s = sin(angle);
+ double r00,r10,r20,r01,r11,r21;
+
+ if (m_isIdentity)
+ {
+ double tx = x*(1-c)+y*s;
+ double ty = y*(1-c)-x*s;
+ r00 = c ;
+ r10 = -s;
+ r20 = tx;
+ r01 = s;
+ r11 = c;
+ r21 = ty;
+ }
+ else if (x!=0 || y!=0)
+ {
+ double tx = x*(1-c)+y*s;
+ double ty = y*(1-c)-x*s;
+ r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2];
+ r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2];
+ r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2];
+ r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2];
+ r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2];
+ r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2];
+ }
+ else
+ {
+ r00 = c * m_matrix[0][0] - s * m_matrix[0][1];
+ r10 = c * m_matrix[1][0] - s * m_matrix[1][1];
+ r20 = c * m_matrix[2][0] - s * m_matrix[2][1];
+ r01 = c * m_matrix[0][1] + s * m_matrix[0][0];
+ r11 = c * m_matrix[1][1] + s * m_matrix[1][0];
+ r21 = c * m_matrix[2][1] + s * m_matrix[2][0];
+ }
+
+ m_matrix[0][0] = r00;
+ m_matrix[1][0] = r10;
+ m_matrix[2][0] = r20;
+ m_matrix[0][1] = r01;
+ m_matrix[1][1] = r11;
+ m_matrix[2][1] = r21;
+
+/* or like this
+ wxTransformMatrix rotate;
+ rotate.m_matrix[2][0] = tx;
+ rotate.m_matrix[2][1] = ty;
+
+ rotate.m_matrix[0][0] = c;
+ rotate.m_matrix[0][1] = s;
+
+ rotate.m_matrix[1][0] = -s;
+ rotate.m_matrix[1][1] = c;
+
+ rotate.m_isIdentity=false;
+ *this = rotate * (*this);
+*/
+ m_isIdentity = IsIdentity1();
+
+ return *this;
}
// Transform a point from logical to device coordinates
bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const
{
- if (IsIdentity())
- {
- tx = x; ty = y; return TRUE;
- }
+ if (IsIdentity())
+ {
+ tx = x; ty = y; return TRUE;
+ }
- tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0];
- ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1];
+ tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0];
+ ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1];
- return TRUE;
+ return TRUE;
}
// Transform a point from device to logical coordinates.
// dc.LogicalToDevice(x, y, x1, y1);
// The latter is slightly less efficient if we're doing several
// conversions, since the matrix is inverted several times.
-
bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const
{
- if (IsIdentity())
- {
- tx = x; ty = y; return TRUE;
- }
-
- double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2];
- if (z == 0.0)
- {
-// z = 0.0000001;
- return FALSE;
- }
- tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0];
- ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1];
- return TRUE;
+ if (IsIdentity())
+ {
+ tx = x; ty = y; return TRUE;
+ }
+
+ double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2];
+ if (z == 0.0)
+ {
+// z = 0.0000001;
+ return FALSE;
+ }
+ tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0];
+ ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1];
+ return TRUE;
+}
+
+wxTransformMatrix& wxTransformMatrix::operator*=(const double& t)
+{
+ for (int i = 0; i < 3; i++)
+ for (int j = 0; j < 3; j++)
+ m_matrix[i][j]*= t;
+ m_isIdentity = IsIdentity1();
+ return *this;
+}
+
+wxTransformMatrix& wxTransformMatrix::operator/=(const double& t)
+{
+ for (int i = 0; i < 3; i++)
+ for (int j = 0; j < 3; j++)
+ m_matrix[i][j]/= t;
+ m_isIdentity = IsIdentity1();
+ return *this;
+}
+
+wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat)
+{
+ for (int i = 0; i < 3; i++)
+ for (int j = 0; j < 3; j++)
+ m_matrix[i][j] += mat.m_matrix[i][j];
+ m_isIdentity = IsIdentity1();
+ return *this;
+}
+
+wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat)
+{
+ for (int i = 0; i < 3; i++)
+ for (int j = 0; j < 3; j++)
+ m_matrix[i][j] -= mat.m_matrix[i][j];
+ m_isIdentity = IsIdentity1();
+ return *this;
+}
+
+wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat)
+{
+
+ if (mat.m_isIdentity)
+ return *this;
+ if (m_isIdentity)
+ {
+ *this = mat;
+ return *this;
+ }
+ else
+ {
+ wxTransformMatrix result;
+ for (int i = 0; i < 3; i++)
+ {
+ for (int j = 0; j < 3; j++)
+ {
+ double sum = 0;
+ for (int k = 0; k < 3; k++)
+ sum += m_matrix[k][i] * mat.m_matrix[j][k];
+ result.m_matrix[j][i] = sum;
+ }
+ }
+ *this = result;
+ }
+
+ m_isIdentity = IsIdentity1();
+ return *this;
+}
+
+
+// constant operators
+wxTransformMatrix wxTransformMatrix::operator*(const double& t) const
+{
+ wxTransformMatrix result = *this;
+ result *= t;
+ result.m_isIdentity = result.IsIdentity1();
+ return result;
+}
+
+wxTransformMatrix wxTransformMatrix::operator/(const double& t) const
+{
+ wxTransformMatrix result = *this;
+// wxASSERT(t!=0);
+ result /= t;
+ result.m_isIdentity = result.IsIdentity1();
+ return result;
+}
+
+wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const
+{
+ wxTransformMatrix result = *this;
+ result += m;
+ result.m_isIdentity = result.IsIdentity1();
+ return result;
+}
+
+wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const
+{
+ wxTransformMatrix result = *this;
+ result -= m;
+ result.m_isIdentity = result.IsIdentity1();
+ return result;
+}
+
+
+wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const
+{
+ wxTransformMatrix result = *this;
+ result *= m;
+ result.m_isIdentity = result.IsIdentity1();
+ return result;
+}
+
+
+wxTransformMatrix wxTransformMatrix::operator-() const
+{
+ wxTransformMatrix result = *this;
+ for (int i = 0; i < 3; i++)
+ for (int j = 0; j < 3; j++)
+ result.m_matrix[i][j] = -(this->m_matrix[i][j]);
+ result.m_isIdentity = result.IsIdentity1();
+ return result;
+}
+
+static double CheckInt(double getal)
+{
+ // check if the number is very close to an integer
+ if ( (ceil(getal) - getal) < 0.0001)
+ return ceil(getal);
+
+ else if ( (getal - floor(getal)) < 0.0001)
+ return floor(getal);
+
+ return getal;
+
+}
+
+double wxTransformMatrix::Get_scaleX()
+{
+ double scale_factor;
+ double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi);
+ if (rot_angle != 90 && rot_angle != -90)
+ scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi);
+ else
+ scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden !
+
+ scale_factor = CheckInt(scale_factor);
+ if (scale_factor < 0)
+ scale_factor = -scale_factor;
+
+ return scale_factor;
+}
+
+double wxTransformMatrix::Get_scaleY()
+{
+ double scale_factor;
+ double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi);
+ if (rot_angle != 90 && rot_angle != -90)
+ scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi);
+ else
+ scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden !
+
+ scale_factor = CheckInt(scale_factor);
+ if (scale_factor < 0)
+
+ scale_factor = -scale_factor;
+
+ return scale_factor;
+
+}
+
+double wxTransformMatrix::GetRotation()
+{
+ double temp1 = GetValue(0,0); // for angle calculation
+ double temp2 = GetValue(0,1); //
+
+ // Rotation
+ double rot_angle = atan2(temp2,temp1)*180/pi;
+
+ rot_angle = CheckInt(rot_angle);
+ return rot_angle;
+}
+
+void wxTransformMatrix::SetRotation(double rotation)
+{
+ double x=GetValue(2,0);
+ double y=GetValue(2,1);
+ Rotate(-GetRotation(), x, y);
+ Rotate(rotation, x, y);
}