/* crc32.c -- compute the CRC-32 of a data stream
- * Copyright (C) 1995-2003 Mark Adler
+ * Copyright (C) 1995-2005 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*
* Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
* tables for updating the shift register in one step with three exclusive-ors
- * instead of four steps with four exclusive-ors. This results about a factor
- * of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
+ * instead of four steps with four exclusive-ors. This results in about a
+ * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
*/
/* @(#) $Id$ */
# define TBLS 1
#endif /* BYFOUR */
+/* Local functions for crc concatenation */
+local unsigned long gf2_matrix_times OF((unsigned long *mat,
+ unsigned long vec));
+local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
+
#ifdef DYNAMIC_CRC_TABLE
local volatile int crc_table_empty = 1;
#ifdef MAKECRCH
local void write_table OF((FILE *, const unsigned long FAR *));
#endif /* MAKECRCH */
-
/*
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
len--;
}
- buf4 = (const u4 FAR *)buf;
+ buf4 = (const u4 FAR *)(const void FAR *)buf;
while (len >= 32) {
DOLIT32;
len -= 32;
len--;
}
- buf4 = (const u4 FAR *)buf;
+ buf4 = (const u4 FAR *)(const void FAR *)buf;
buf4--;
while (len >= 32) {
DOBIG32;
}
#endif /* BYFOUR */
+
+#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
+
+/* ========================================================================= */
+local unsigned long gf2_matrix_times(mat, vec)
+ unsigned long *mat;
+ unsigned long vec;
+{
+ unsigned long sum;
+
+ sum = 0;
+ while (vec) {
+ if (vec & 1)
+ sum ^= *mat;
+ vec >>= 1;
+ mat++;
+ }
+ return sum;
+}
+
+/* ========================================================================= */
+local void gf2_matrix_square(square, mat)
+ unsigned long *square;
+ unsigned long *mat;
+{
+ int n;
+
+ for (n = 0; n < GF2_DIM; n++)
+ square[n] = gf2_matrix_times(mat, mat[n]);
+}
+
+/* ========================================================================= */
+uLong ZEXPORT crc32_combine(crc1, crc2, len2)
+ uLong crc1;
+ uLong crc2;
+ z_off_t len2;
+{
+ int n;
+ unsigned long row;
+ unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
+ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
+
+ /* degenerate case */
+ if (len2 == 0)
+ return crc1;
+
+ /* put operator for one zero bit in odd */
+ odd[0] = 0xedb88320L; /* CRC-32 polynomial */
+ row = 1;
+ for (n = 1; n < GF2_DIM; n++) {
+ odd[n] = row;
+ row <<= 1;
+ }
+
+ /* put operator for two zero bits in even */
+ gf2_matrix_square(even, odd);
+
+ /* put operator for four zero bits in odd */
+ gf2_matrix_square(odd, even);
+
+ /* apply len2 zeros to crc1 (first square will put the operator for one
+ zero byte, eight zero bits, in even) */
+ do {
+ /* apply zeros operator for this bit of len2 */
+ gf2_matrix_square(even, odd);
+ if (len2 & 1)
+ crc1 = gf2_matrix_times(even, crc1);
+ len2 >>= 1;
+
+ /* if no more bits set, then done */
+ if (len2 == 0)
+ break;
+
+ /* another iteration of the loop with odd and even swapped */
+ gf2_matrix_square(odd, even);
+ if (len2 & 1)
+ crc1 = gf2_matrix_times(odd, crc1);
+ len2 >>= 1;
+
+ /* if no more bits set, then done */
+ } while (len2 != 0);
+
+ /* return combined crc */
+ crc1 ^= crc2;
+ return crc1;
+}