+A mutex object is a synchronization object whose state is set to signaled when
+it is not owned by any thread, and nonsignaled when it is owned. Its name comes
+from its usefulness in coordinating mutually-exclusive access to a shared
+resource as only one thread at a time can own a mutex object.
+
+Mutexes may be recursive in the sense that a thread can lock a mutex which it
+had already locked before (instead of dead locking the entire process in this
+situation by starting to wait on a mutex which will never be released while the
+thread is waiting) but using them is not recommended and they are {\bf not}
+recursive by default. The reason for this is that recursive mutexes are not
+supported by all Unix flavours and, worse, they cannot be used with
+\helpref{wxCondition}{wxcondition}.
+
+For example, when several thread use the data stored in the linked list,
+modifications to the list should be only allowed to one thread at a time
+because during a new node addition the list integrity is temporarily broken
+(this is also called {\it program invariant}).
+
+\wxheading{Example}
+
+{\small%
+\begin{verbatim}
+ // this variable has an "s_" prefix because it is static: seeing an "s_" in
+ // a multithreaded program is in general a good sign that you should use a
+ // mutex (or a critical section)
+ static wxMutex *s_mutexProtectingTheGlobalData;
+
+ // we store some numbers in this global array which is presumably used by
+ // several threads simultaneously
+ wxArrayInt s_data;
+
+ void MyThread::AddNewNode(int num)
+ {
+ // ensure that no other thread accesses the list
+ s_mutexProtectingTheGlobalList->Lock();
+
+ s_data.Add(num);
+
+ s_mutexProtectingTheGlobalList->Unlock();
+ }
+
+ // return true the given number is greater than all array elements
+ bool MyThread::IsGreater(int num)
+ {
+ // before using the list we must acquire the mutex
+ wxMutexLocker lock(s_mutexProtectingTheGlobalData);
+
+ size_t count = s_data.Count();
+ for ( size_t n = 0; n < count; n++ )
+ {
+ if ( s_data[n] > num )
+ return false;
+ }
+
+ return true;
+ }
+\end{verbatim}
+}
+
+Notice how wxMutexLocker was used in the second function to ensure that the
+mutex is unlocked in any case: whether the function returns true or false
+(because the destructor of the local object {\it lock} is always called). Using
+this class instead of directly using wxMutex is, in general safer and is even
+more so if your program uses C++ exceptions.
+
+\wxheading{Constants}
+
+\begin{verbatim}
+enum wxMutexType
+{
+ // normal mutex: try to always use this one
+ wxMUTEX_DEFAULT,
+
+ // recursive mutex: don't use these ones with wxCondition
+ wxMUTEX_RECURSIVE
+};
+\end{verbatim}