# Licence: wxWindows license
#----------------------------------------------------------------------------
-from __future__ import division
import math
import wx
# Interpret %n and 10 or 13 as a new line.
def FormatText(dc, text, width, height, formatMode):
i = 0
- word=""
+ word = ""
word_list = []
end_word = False
new_line = False
- while i<len(text):
- if text[i]=="%":
+ while i < len(text):
+ if text[i] == "%":
i += 1
if i == len(text):
- word+="%"
+ word += "%"
else:
- if text[i]=="n":
+ if text[i] == "n":
new_line = True
end_word = True
i += 1
else:
- word+="%"+text[i]
+ word += "%" + text[i]
i += 1
elif text[i] in ["\012","\015"]:
new_line = True
end_word = True
i += 1
- elif text[i]==" ":
+ elif text[i] == " ":
end_word = True
i += 1
else:
if end_word:
word_list.append(word)
- word=""
+ word = ""
end_word = False
if new_line:
word_list.append(None)
# Now, make a list of strings which can fit in the box
string_list = []
- buffer=""
+ buffer = ""
for s in word_list:
oldBuffer = buffer
if s is None:
# FORCE NEW LINE
- if len(buffer)>0:
+ if len(buffer) > 0:
string_list.append(buffer)
- buffer=""
+ buffer = ""
else:
if len(buffer):
- buffer+=" "
+ buffer += " "
buffer += s
x, y = dc.GetTextExtent(buffer)
# Don't fit within the bounding box if we're fitting
# shape to contents
- if (x>width) and not (formatMode & FORMAT_SIZE_TO_CONTENTS):
+ if (x > width) and not (formatMode & FORMAT_SIZE_TO_CONTENTS):
# Deal with first word being wider than box
if len(oldBuffer):
string_list.append(oldBuffer)
max_width = 0
for line in text_list:
- current_width, char_height = dc.GetTextExtent(line)
- if current_width>max_width:
+ current_width, char_height = dc.GetTextExtent(line.GetText())
+ if current_width > max_width:
max_width = current_width
return max_width, len(text_list) * char_height
for line in text_list:
current_width, char_height = dc.GetTextExtent(line.GetText())
widths.append(current_width)
- if current_width>max_width:
+ if current_width > max_width:
max_width = current_width
max_height = len(text_list) * char_height
if formatMode & FORMAT_CENTRE_VERT:
- if max_height<height:
- yoffset = ypos - height / 2 + (height - max_height) / 2
+ if max_height < height:
+ yoffset = ypos - height / 2.0 + (height - max_height) / 2.0
else:
- yoffset = ypos - height / 2
+ yoffset = ypos - height / 2.0
yOffset = ypos
else:
yoffset = 0.0
yOffset = 0.0
if formatMode & FORMAT_CENTRE_HORIZ:
- xoffset = xpos - width / 2
+ xoffset = xpos - width / 2.0
xOffset = xpos
else:
xoffset = 0.0
xOffset = 0.0
for i, line in enumerate(text_list):
- if formatMode & FORMAT_CENTRE_HORIZ and widths[i]<width:
- x = (width - widths[i]) / 2 + xoffset
+ if formatMode & FORMAT_CENTRE_HORIZ and widths[i] < width:
+ x = (width - widths[i]) / 2.0 + xoffset
else:
x = xoffset
y = i * char_height + yoffset
if formatMode & FORMAT_CENTRE_HORIZ:
xoffset = xpos
else:
- xoffset = xpos - width / 2
+ xoffset = xpos - width / 2.0
if formatMode & FORMAT_CENTRE_VERT:
yoffset = ypos
else:
- yoffset = ypos - height / 2
+ yoffset = ypos - height / 2.0
# +1 to allow for rounding errors
- dc.SetClippingRegion(xpos - width / 2, ypos - height / 2, width + 1, height + 1)
+ dc.SetClippingRegion(xpos - width / 2.0, ypos - height / 2.0, width + 1, height + 1)
for line in text_list:
dc.DrawText(line.GetText(), xoffset + line.GetX(), yoffset + line.GetY())
def RoughlyEqual(val1, val2, tol = 0.00001):
- return val1<(val2 + tol) and val1>(val2 - tol) and \
- val2<(val1 + tol) and val2>(val1 - tol)
+ return val1 < (val2 + tol) and val1 > (val2 - tol) and \
+ val2 < (val1 + tol) and val2 > (val1 - tol)
def FindEndForBox(width, height, x1, y1, x2, y2):
- xvec = [x1 - width / 2, x1 - width / 2, x1 + width / 2, x1 + width / 2, x1 - width / 2]
- yvec = [y1 - height / 2, y1 + height / 2, y1 + height / 2, y1 - height / 2, y1 - height / 2]
+ xvec = [x1 - width / 2.0, x1 - width / 2.0, x1 + width / 2.0, x1 + width / 2.0, x1 - width / 2.0]
+ yvec = [y1 - height / 2.0, y1 + height / 2.0, y1 + height / 2.0, y1 - height / 2.0, y1 - height / 2.0]
return FindEndForPolyline(xvec, yvec, x2, y2, x1, y1)
k_line = 1.0
# Check for parallel lines
- if denominator_term<0.005 and denominator_term>-0.005:
- line_constant=-1.0
+ if denominator_term < 0.005 and denominator_term > -0.005:
+ line_constant = -1.0
else:
line_constant = float(numerator_term) / denominator_term
# Check for intersection
- if line_constant<1.0 and line_constant>0.0:
+ if line_constant < 1.0 and line_constant > 0.0:
# Now must check that other line hits
- if (y4 - y3)<0.005 and (y4 - y3)>-0.005:
+ if (y4 - y3) < 0.005 and (y4 - y3) > -0.005:
k_line = (x1 - x3 + line_constant * (x2 - x1)) / (x4 - x3)
else:
k_line = (y1 - y3 + line_constant * (y2 - y1)) / (y4 - y3)
- if k_line >= 0 and k_line<1:
+ if k_line >= 0 and k_line < 1:
length_ratio = line_constant
else:
k_line = 1
lastx = xvec[i]
lasty = yvec[i]
- if line_ratio<min_ratio:
+ if line_ratio < min_ratio:
min_ratio = line_ratio
# Do last (implicit) line if last and first doubles are not identical
if not (xvec[0] == lastx and yvec[0] == lasty):
line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[0], yvec[0])
- if line_ratio<min_ratio:
+ if line_ratio < min_ratio:
min_ratio = line_ratio
return x1 + (x2 - x1) * min_ratio, y1 + (y2 - y1) * min_ratio
lastx = xvec[i]
lasty = yvec[i]
- if line_ratio<min_ratio:
+ if line_ratio < min_ratio:
min_ratio = line_ratio
# Do last (implicit) line if last and first doubles are not identical
if dx == 0:
return
- elif abs(dy / dx)>1:
+ elif abs(float(dy) / dx) > 1:
point2[0] = point1[0]
else:
- point2[1] = point1[0]
+ point2[1] = point1[1]
def GetPointOnLine(x1, y1, x2, y2, length):
l = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
- if l<0.01:
+ if l < 0.01:
l = 0.01
i_bar = (x2 - x1) / l
j_bar = (y2 - y1) / l
- return -length * i_bar + x2,-length * j_bar + y2
+ return -length * i_bar + x2, -length * j_bar + y2
def GetArrowPoints(x1, y1, x2, y2, length, width):
l = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
- if l<0.01:
+ if l < 0.01:
l = 0.01
i_bar = (x2 - x1) / l
j_bar = (y2 - y1) / l
- x3=-length * i_bar + x2
- y3=-length * j_bar + y2
+ x3 = -length * i_bar + x2
+ y3 = -length * j_bar + y2
- return x2, y2, width*-j_bar + x3, width * i_bar + y3,-width*-j_bar + x3,-width * i_bar + y3
+ return x2, y2, width * -j_bar + x3, width * i_bar + y3, -width * -j_bar + x3, -width * i_bar + y3
def DrawArcToEllipse(x1, y1, width1, height1, x2, y2, x3, y3):
- a1 = width1 / 2
- b1 = height1 / 2
+ a1 = width1 / 2.0
+ b1 = height1 / 2.0
# Check that x2 != x3
- if abs(x2 - x3)<0.05:
+ if abs(x2 - x3) < 0.05:
x4 = x2
- if y3>y2:
+ if y3 > y2:
y4 = y1 - math.sqrt((b1 * b1 - (((x2 - x1) * (x2 - x1)) * (b1 * b1) / (a1 * a1))))
else:
y4 = y1 + math.sqrt((b1 * b1 - (((x2 - x1) * (x2 - x1)) * (b1 * b1) / (a1 * a1))))
E = (A + B)
F = (C - (2 * A * x1) - (2 * B * x2))
G = ((A * x1 * x1) + (B * x2 * x2) - (C * x2) + D - 1)
- H = ((y3 - y2) / (x2 - x2))
+ H = (float(y3 - y2) / (x3 - x2))
K = ((F * F) - (4 * E * G))
if K >= 0:
# In this case the line intersects the ellipse, so calculate intersection
if x2 >= x1:
- ellipse1_x = ((F*-1) + math.sqrt(K)) / (2 * E)
+ ellipse1_x = ((F * -1) + math.sqrt(K)) / (2 * E)
ellipse1_y = ((H * (ellipse1_x - x2)) + y2)
else:
- ellipse1_x = (((F*-1) - math.sqrt(K)) / (2 * E))
+ ellipse1_x = (((F * -1) - math.sqrt(K)) / (2 * E))
ellipse1_y = ((H * (ellipse1_x - x2)) + y2)
else:
# in this case, arc does not intersect ellipse, so just draw arc