// Purpose: topic overview
// Author: wxWidgets team
// RCS-ID: $Id$
-// Licence: wxWindows license
+// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
/**
@li @ref overview_unicode_supportin
@li @ref overview_unicode_pitfalls
@li @ref overview_unicode_supportout
-@li @ref overview_unicode_settings
<hr>
When working with Unicode, it's important to define the meaning of some terms.
-A @e glyph is a particular image that represents a @e character or part of a character.
+A <b><em>glyph</em></b> is a particular image (usually part of a font) that
+represents a character or part of a character.
Any character may have one or more glyph associated; e.g. some of the possible
glyphs for the capital letter 'A' are:
@image html overview_unicode_glyphs.png
Unicode assigns each character of almost any existing alphabet/script a number,
-which is called <em>code point</em>; it's typically indicated in documentation
+which is called <b><em>code point</em></b>; it's typically indicated in documentation
manuals and in the Unicode website as @c U+xxxx where @c xxxx is an hexadecimal number.
-The Unicode standard divides the space of all possible code points in @e planes;
+Note that typically one character is assigned exactly one code point, but there
+are exceptions; the so-called <em>precomposed characters</em>
+(see http://en.wikipedia.org/wiki/Precomposed_character) or the <em>ligatures</em>.
+In these cases a single "character" may be mapped to more than one code point or
+viceversa more characters may be mapped to a single code point.
+
+The Unicode standard divides the space of all possible code points in <b><em>planes</em></b>;
a plane is a range of 65,536 (1000016) contiguous Unicode code points.
Planes are numbered from 0 to 16, where the first one is the @e BMP, or Basic
Multilingual Plane.
+The BMP contains characters for all modern languages, and a large number of
+special characters. The other planes in fact contain mainly historic scripts,
+special-purpose characters or are unused.
Code points are represented in computer memory as a sequence of one or more
-<em>code units</em>, where a code unit is a unit of memory: 8, 16, or 32 bits.
+<b><em>code units</em></b>, where a code unit is a unit of memory: 8, 16, or 32 bits.
More precisely, a code unit is the minimal bit combination that can represent a
unit of encoded text for processing or interchange.
-The @e UTF or Unicode Transformation Formats are algorithms mapping the Unicode
+The <b><em>UTF</em></b> or Unicode Transformation Formats are algorithms mapping the Unicode
code points to code unit sequences. The simplest of them is <b>UTF-32</b> where
-each code unit is composed by 32 bits (4 bytes) and each code point is represented
-by a single code unit.
+each code unit is composed by 32 bits (4 bytes) and each code point is always
+represented by a single code unit (fixed length encoding).
(Note that even UTF-32 is still not completely trivial as the mapping is different
for little and big-endian architectures). UTF-32 is commonly used under Unix systems for
internal representation of Unicode strings.
it encodes the first (approximately) 64 thousands of Unicode code points
(the BMP plane) using 16-bit code units (2 bytes) and uses a pair of 16-bit code
units to encode the characters beyond this. These pairs are called @e surrogate.
+Thus UTF16 uses a variable number of code units to encode each code point.
Finally, the most widespread encoding used for the external Unicode storage
(e.g. files and network protocols) is <b>UTF-8</b> which is byte-oriented and so
@c char are 8bit wide on almost all systems; when using UTF16 typically code
units are stored into @c wchar_t types since @c wchar_t is at least 16bits on
all systems. This is also the approach used by wxString.
-See @ref overview_wxstring for more info.
+See @ref overview_string for more info.
See also http://unicode.org/glossary/ for the official definitions of the
terms reported above.
@section overview_unicode_supportin Unicode Support in wxWidgets
-Since wxWidgets 3.0 Unicode support is always enabled and building the library
-without it is not recommended any longer and will cease to be supported in the
-near future. This means that internally only Unicode strings are used and that,
-under Microsoft Windows, Unicode system API is used which means that wxWidgets
-programs require the Microsoft Layer for Unicode to run on Windows 95/98/ME.
+@subsection overview_unicode_support_default Unicode is Always Used by Default
+
+Since wxWidgets 3.0 Unicode support is always enabled and while building the
+library without it is still possible, it is not recommended any longer and will
+cease to be supported in the near future. This means that internally only
+Unicode strings are used and that, under Microsoft Windows, Unicode system API
+is used which means that wxWidgets programs require the Microsoft Layer for
+Unicode to run on Windows 95/98/ME.
However, unlike the Unicode build mode of the previous versions of wxWidgets, this
support is mostly transparent: you can still continue to work with the @b narrow
-(i.e. current-locale-encoded @c char*) strings even if @b wide
-(i.e. UTF16/UCS2-encoded @c wchar_t* or UTF8-encoded @c char) strings are also
+(i.e. current locale-encoded @c char*) strings even if @b wide
+(i.e. UTF16-encoded @c wchar_t* or UTF8-encoded @c char*) strings are also
supported. Any wxWidgets function accepts arguments of either type as both
kinds of strings are implicitly converted to wxString, so both
@code
@endcode
and the somewhat less usual
@code
-wxMessageBox(L"Salut \u00e0 toi!"); // 00E0 is "Latin Small Letter a with Grave"
+wxMessageBox(L"Salut \u00E0 toi!"); // U+00E0 is "Latin Small Letter a with Grave"
@endcode
work as expected.
modern Unix systems is UTF-8 and as the string above is not a valid UTF-8 byte
sequence, nothing would be displayed at all in this case. Thus it is important
to <b>never use 8-bit (instead of 7-bit) characters directly in the program source</b>
-but use wide strings or, alternatively, write
+but use wide strings or, alternatively, write:
@code
-wxMessageBox(wxString::FromUTF8("Salut \xc3\xa0 toi!"));
+wxMessageBox(wxString::FromUTF8("Salut \xC3\xA0 toi!"));
+ // in UTF8 the character U+00E0 is encoded as 0xC3A0
@endcode
In a similar way, wxString provides access to its contents as either @c wchar_t or
aware of the potential problems covered by the following section.
+@subsection overview_unicode_support_utf Choosing Unicode Representation
+
+wxWidgets uses the system @c wchar_t in wxString implementation by default
+under all systems. Thus, under Microsoft Windows, UCS-2 (simplified version of
+UTF-16 without support for surrogate characters) is used as @c wchar_t is 2
+bytes on this platform. Under Unix systems, including Mac OS X, UCS-4 (also
+known as UTF-32) is used by default, however it is also possible to build
+wxWidgets to use UTF-8 internally by passing @c --enable-utf8 option to
+configure.
+
+The interface provided by wxString is the same independently of the format used
+internally. However different formats have specific advantages and
+disadvantages. Notably, under Unix, the underlying graphical toolkit (e.g.
+GTK+) usually uses UTF-8 encoded strings and using the same representations for
+the strings in wxWidgets allows to avoid conversion from UTF-32 to UTF-8 and
+vice versa each time a string is shown in the UI or retrieved from it. The
+overhead of such conversions is usually negligible for small strings but may be
+important for some programs. If you believe that it would be advantageous to
+use UTF-8 for the strings in your particular application, you may rebuild
+wxWidgets to use UTF-8 as explained above (notice that this is currently not
+supported under Microsoft Windows and arguably doesn't make much sense there as
+Windows itself uses UTF-16 and not UTF-8) but be sure to be aware of the
+performance implications (see @ref overview_unicode_performance) of using UTF-8
+in wxString before doing this!
+
+Generally speaking you should only use non-default UTF-8 build in specific
+circumstances e.g. building for resource-constrained systems where the overhead
+of conversions (and also reduced memory usage of UTF-8 compared to UTF-32 for
+the European languages) can be important. If the environment in which your
+program is running is under your control -- as is quite often the case in such
+scenarios -- consider ensuring that the system always uses UTF-8 locale and
+use @c --enable-utf8only configure option to disable support for the other
+locales and consider all strings to be in UTF-8. This further reduces the code
+size and removes the need for conversions in more cases.
+
+
+@subsection overview_unicode_settings Unicode Related Preprocessor Symbols
+
+@c wxUSE_UNICODE is defined as 1 now to indicate Unicode support. It can be
+explicitly set to 0 in @c setup.h under MSW or you can use @c --disable-unicode
+under Unix but doing this is strongly discouraged. By default, @c
+wxUSE_UNICODE_WCHAR is also defined as 1, however in UTF-8 build (described in
+the previous section), it is set to 0 and @c wxUSE_UNICODE_UTF8, which is
+usually 0, is set to 1 instead. In the latter case, @c wxUSE_UTF8_LOCALE_ONLY
+can also be set to 1 to indicate that all strings are considered to be in UTF-8.
+
+
+
@section overview_unicode_pitfalls Potential Unicode Pitfalls
The problems can be separated into three broad classes:
n:
- Writing @code switch ( s[n] ) @endcode doesn't work because the argument of
- the switch statement must an integer expression so you need to replace
+ the switch statement must be an integer expression so you need to replace
@c s[n] with @code s[n].GetValue() @endcode. You may also force the
conversion to @c char or @c wchar_t by using an explicit cast but beware that
converting the value to char uses the conversion to current locale and may
- Using a cast to force the issue (listed only for completeness):
@code printf("Hello, %s", (const char *)s.c_str()) @endcode
- - The result of @c c_str() can not be cast to @c char* but only to @c const @c
+ - The result of @c c_str() cannot be cast to @c char* but only to @c const @c
@c char*. Of course, modifying the string via the pointer returned by this
method has never been possible but unfortunately it was occasionally useful
to use a @c const_cast here to pass the value to const-incorrect functions.
avoiding implicit conversions to @c char*.
-@subsection overview_unicode_performance Unicode Performance Implications
+@subsection overview_unicode_performance Performance Implications of Using UTF-8
-Under Unix systems wxString class uses variable-width UTF-8 encoding for
-internal representation and this implies that it can't guarantee constant-time
-access to N-th element of the string any longer as to find the position of this
-character in the string we have to examine all the preceding ones. Usually this
-doesn't matter much because most algorithms used on the strings examine them
-sequentially anyhow and because wxString implements a cache for iterating over
-the string by index but it can have serious consequences for algorithms
-using random access to string elements as they typically acquire O(N^2) time
-complexity instead of O(N) where N is the length of the string.
+As mentioned above, under Unix systems wxString class can use variable-width
+UTF-8 encoding for internal representation. In this case it can't guarantee
+constant-time access to N-th element of the string any longer as to find the
+position of this character in the string we have to examine all the preceding
+ones. Usually this doesn't matter much because most algorithms used on the
+strings examine them sequentially anyhow and because wxString implements a
+cache for iterating over the string by index but it can have serious
+consequences for algorithms using random access to string elements as they
+typically acquire O(N^2) time complexity instead of O(N) where N is the length
+of the string.
Even despite caching the index, indexed access should be replaced with
sequential access using string iterators. For example a typical loop:
representations and the wxString methods wxString::ToAscii(), wxString::ToUTF8()
(or its synonym wxString::utf8_str()), wxString::mb_str(), wxString::c_str() and
wxString::wc_str() can be used for this.
+
The first of them should be only used for the string containing 7-bit ASCII characters
only, anything else will be replaced by some substitution character.
wxString::mb_str() converts the string to the encoding used by the current locale
puts(p); // or call any other function taking const char *
@endcode
does @b not work because the temporary buffer returned by wxString::ToUTF8() is
-destroyed and @c p is left pointing nowhere. To correct this you may use
+destroyed and @c p is left pointing nowhere. To correct this you should use
@code
-wxCharBuffer p(s.ToUTF8());
+const wxScopedCharBuffer p(s.ToUTF8());
puts(p);
@endcode
-which does work but results in an unnecessary copy of string data in the build
-configurations when wxString::ToUTF8() returns the pointer to internal string buffer.
-If this inefficiency is important you may write
-@code
-const wxUTF8Buf p(s.ToUTF8());
-puts(p);
-@endcode
-where @c wxUTF8Buf is the type corresponding to the real return type of wxString::ToUTF8().
+which does work.
+
Similarly, wxWX2WCbuf can be used for the return type of wxString::wc_str().
But, once again, none of these cryptic types is really needed if you just pass
the return value of any of the functions mentioned in this section to another
function directly.
-@section overview_unicode_settings Unicode Related Compilation Settings
-
-@c wxUSE_UNICODE is now defined as 1 by default to indicate Unicode support.
-If UTF-8 is used for the internal storage in wxString, @c wxUSE_UNICODE_UTF8 is
-also defined, otherwise @c wxUSE_UNICODE_WCHAR is.
-
-You are encouraged to always use the default build settings of wxWidgets; this avoids
-the need of different builds of the same application/library because of different
-"build modes".
-
*/