/////////////////////////////////////////////////////////////////////////////
-// Name: thread
+// Name: thread.h
// Purpose: topic overview
// Author: wxWidgets team
// RCS-ID: $Id$
// Licence: wxWindows license
/////////////////////////////////////////////////////////////////////////////
-/*!
-
- @page overview_thread Multithreading overview
-
- Classes: #wxThread, #wxMutex,
- #wxCriticalSection,
- #wxCondition
-
- wxWidgets provides a complete set of classes encapsulating objects necessary in
- multithreaded (MT) programs: the #thread class itself and different
- synchronization objects: #mutexes and
- @ref criticalsection_overview with
- #conditions. The thread API in wxWidgets resembles to
- POSIX1.c threads API (a.k.a. pthreads), although several functions have
- different names and some features inspired by Win32 thread API are there as
- well.
-
- These classes will hopefully make writing MT programs easier and they also
- provide some extra error checking (compared to the native (be it Win32 or Posix)
- thread API), however it is still a non-trivial undertaking especially for large
- projects. Before starting an MT application (or starting to add MT features to
- an existing one) it is worth asking oneself if there is no easier and safer way
- to implement the same functionality. Of course, in some situations threads
- really make sense (classical example is a server application which launches a
- new thread for each new client), but in others it might be a very poor choice
- (example: launching a separate thread when doing a long computation to show a
- progress dialog). Other implementation choices are available: for the progress
- dialog example it is far better to do the calculations in the
- @ref idleevent_overview or even simply do everything at once
- but call wxWindow::Update() periodically to update
- the screen.
-
- If you do decide to use threads in your application, it is strongly recommended
- that no more than one thread calls GUI functions. The thread sample shows that
- it @e is possible for many different threads to call GUI functions at once
- (all the threads created in the sample access GUI), but it is a very poor design
- choice for anything except an example. The design which uses one GUI thread and
- several worker threads which communicate with the main one using events is much
- more robust and will undoubtedly save you countless problems (example: under
- Win32 a thread can only access GDI objects such as pens, brushes, c created by
- itself and not by the other threads).
-
- For communication between secondary threads and the main thread, you may use
- wxEvtHandler::AddPendingEvent
- or its short version #wxPostEvent. These functions
- have a thread-safe implementation so that they can be used as they are for
- sending events from one thread to another. However there is no built in method
- to send messages to the worker threads and you will need to use the available
- synchronization classes to implement the solution which suits your needs
- yourself. In particular, please note that it is not enough to derive
- your class from #wxThread and
- #wxEvtHandler to send messages to it: in fact, this does
- not work at all.
-
- */
-
+/**
+
+@page overview_thread Multithreading
+
+Classes: wxThread, wxMutex, wxCriticalSection, wxCondition
+
+wxWidgets provides a complete set of classes encapsulating objects necessary in
+multithreaded (MT) programs: the wxThread class itself and different
+synchronization objects: mutexes (see wxMutex) and critical sections (see
+wxCriticalSection) with conditions (see wxCondition). The thread API i
+wxWidgets resembles to POSIX1.c threads API (a.k.a. pthreads), although several
+functions have different names and some features inspired by Win32 thread API
+are there as well.
+
+These classes will hopefully make writing MT programs easier and they also
+provide some extra error checking (compared to the native (be it Win32 or
+Posix) thread API), however it is still a non-trivial undertaking especially
+for large projects. Before starting an MT application (or starting to add MT
+features to an existing one) it is worth asking oneself if there is no easier
+and safer way to implement the same functionality. Of course, in some
+situations threads really make sense (classical example is a server application
+which launches a new thread for each new client), but in others it might be a
+very poor choice (example: launching a separate thread when doing a long
+computation to show a progress dialog). Other implementation choices are
+available: for the progress dialog example it is far better to do the
+calculations in the idle handler (see wxIdleEvent) or even simply do everything
+at once but call wxWindow::Update() periodically to update the screen.
+
+If you do decide to use threads in your application, it is strongly recommended
+that no more than one thread calls GUI functions. The thread sample shows that
+it @e is possible for many different threads to call GUI functions at once (all
+the threads created in the sample access GUI), but it is a very poor design
+choice for anything except an example. The design which uses one GUI thread and
+several worker threads which communicate with the main one using events is much
+more robust and will undoubtedly save you countless problems (example: under
+Win32 a thread can only access GDI objects such as pens, brushes, c created by
+itself and not by the other threads).
+
+For communication between secondary threads and the main thread, you may use
+wxEvtHandler::QueueEvent or its short version ::wxQueueEvent. These functions
+have a thread-safe implementation so that they can be used as they are for
+sending events from one thread to another. However there is no built in method
+to send messages to the worker threads and you will need to use the available
+synchronization classes to implement the solution which suits your needs
+yourself. In particular, please note that it is not enough to derive
+your class from wxThread and wxEvtHandler to send messages to it: in fact, this
+does not work at all.
+
+*/