\helpref{wxGDIObject}{wxgdiobject}\\
\helpref{wxObject}{wxobject}
+\wxheading{Include files}
+
+<wx/iconbndl.h>
+
+\wxheading{Library}
+
+\helpref{wxCore}{librarieslist}
+
\wxheading{Predefined objects}
{\bf wxNullIconBundle}
\latexignore{\rtfignore{\wxheading{Members}}}
+
\membersection{wxIconBundle::wxIconBundle}\label{wxiconbundlewxiconbundle}
\func{}{wxIconBundle}{\void}
Copy constructor.
+
\membersection{wxIconBundle::\destruct{wxIconBundle}}\label{wxiconbundledtor}
\func{}{\destruct{wxIconBundle}}{\void}
Destructor.
+
\membersection{wxIconBundle::AddIcon}\label{wxiconbundleaddicon}
\func{void}{AddIcon}{\param{const wxString\& }{file}, \param{long }{type}}
contains an icon with the same width and height, it is
replaced by the new one.
+
\membersection{wxIconBundle::GetIcon}\label{wxiconbundlegeticon}
\constfunc{wxIcon}{GetIcon}{\param{const wxSize\& }{size}}
Same as GetIcon( wxSize( size, size ) ).
+
+\membersection{wxIconBundle::GetIconOfExactSize}\label{wxiconbundlegeticonofexactsize}
+
+\constfunc{wxIcon}{GetIconOfExactSize}{\param{const wxSize\& }{size}}
+
+Returns the icon with exactly the given size or \texttt{wxNullIcon} if this
+size is not available.
+
+
+\membersection{wxIconBundle::IsEmpty}\label{wxiconbundleisempty}
+
+\constfunc{bool}{IsEmpty}{\void}
+
+Returns \true if the bundle doesn't contain any icons, \false otherwise (in
+which case a call to \helpref{GetIcon()}{wxiconbundlegeticon} with default
+parameter should return a valid icon).
+
+
\membersection{wxIconBundle::operator $=$}\label{wxiconbundleoperatorassign}
\func{wxIconBundle\&}{operator $=$}{\param{const wxIconBundle\& }{ic}}
Assignment operator, using \helpref{reference counting}{trefcount}.
+
\membersection{wxIconBundle::operator $==$}\label{wxiconbundleoperatorequals}
\func{bool}{operator $==$}{\param{const wxIconBundle\& }{ic}}
Equality operator. This returns \true if two icon bundles are equal.
+
\membersection{wxIconBundle::operator $!=$}\label{wxiconbundleoperatornotequals}
\func{bool}{operator $!=$}{\param{const wxIconBundle\& }{ic}}