wxCHECK_RET( Ok(), wxT("invalid image") );
char unsigned *data = GetData();
-
+
const int w = GetWidth();
const int h = GetHeight();
for(i=0; i<width; i++ )
{
// was causing a code gen bug in cw : if( ( cr !=r) || (cg!=g) || (cb!=b) )
- unsigned char cr = (*(ptdata++)) ;
- unsigned char cg = (*(ptdata++)) ;
- unsigned char cb = (*(ptdata++)) ;
-
+ unsigned char cr = (*(ptdata++)) ;
+ unsigned char cg = (*(ptdata++)) ;
+ unsigned char cb = (*(ptdata++)) ;
+
if( ( cr !=r) || (cg!=g) || (cb!=b) )
{
*(ptbits++) = one;
int g_mask = GetMaskGreen();
int b_mask = GetMaskBlue();
- CGrafPtr origPort ;
- GDHandle origDevice ;
-
- GetGWorld( &origPort , &origDevice ) ;
- SetGWorld( bitmap.GetHBITMAP() , NULL ) ;
+ CGrafPtr origPort ;
+ GDHandle origDevice ;
+
+ GetGWorld( &origPort , &origDevice ) ;
+ SetGWorld( bitmap.GetHBITMAP() , NULL ) ;
register unsigned char* data = GetData();
{
for (int x = 0; x < width; x++)
{
- unsigned char r = data[index++];
- unsigned char g = data[index++];
- unsigned char b = data[index++];
- RGBColor color ;
- color.red = ( r << 8 ) + r ;
- color.green = ( g << 8 ) + g ;
- color.blue = ( b << 8 ) + b ;
- SetCPixel( x , y , &color ) ;
- }
+ unsigned char r = data[index++];
+ unsigned char g = data[index++];
+ unsigned char b = data[index++];
+ RGBColor color ;
+ color.red = ( r << 8 ) + r ;
+ color.green = ( g << 8 ) + g ;
+ color.blue = ( b << 8 ) + b ;
+ SetCPixel( x , y , &color ) ;
+ }
} // for height
SetGWorld( origPort , origDevice ) ;
ptbits += 3;
}
ptbits += padding;
- }
+ }
// similarly, set data according to the possible mask bitmap
if( bitmap.GetMask() && bitmap.GetMask()->GetMaskBitmap() )
bitmap.SetWidth( width );
bitmap.SetBitmap( gdk_pixmap_new( wxRootWindow->window, width, height, 1 ) );
-
+
bitmap.SetDepth( 1 );
GdkVisual *visual = gdk_window_get_visual( wxRootWindow->window );
wxASSERT( visual );
-
+
// Create picture image
unsigned char *data_data = (unsigned char*)malloc( ((width >> 3)+8) * height );
-
+
GdkImage *data_image =
gdk_image_new_bitmap( visual, data_data, width, height );
else
gdk_image_put_pixel( mask_image, x, y, 0 );
}
-
+
if ((r == red) && (b == blue) && (g == green))
gdk_image_put_pixel( data_image, x, y, 1 );
- else
+ else
gdk_image_put_pixel( data_image, x, y, 0 );
} // for
GdkVisual *visual = gdk_window_get_visual( wxRootWindow->window );
wxASSERT( visual );
-
+
int bpp = visual->depth;
bitmap.SetDepth( bpp );
int green_shift_left = 0;
int blue_shift_left = 0;
bool use_shift = FALSE;
-
+
if (bitmap.GetPixmap())
{
GdkVisual *visual = gdk_window_get_visual( bitmap.GetPixmap() );
green_shift_left = 8-visual->green_prec;
blue_shift_right = visual->blue_shift;
blue_shift_left = 8-visual->blue_prec;
-
+
use_shift = (visual->type == GDK_VISUAL_TRUE_COLOR) || (visual->type == GDK_VISUAL_DIRECT_COLOR);
}
if (bitmap.GetBitmap())
bpp = 1;
}
-
+
GdkColormap *cmap = gtk_widget_get_default_colormap();
long pos = 0;
data[pos] = (pixel >> red_shift_right) << red_shift_left;
data[pos+1] = (pixel >> green_shift_right) << green_shift_left;
data[pos+2] = (pixel >> blue_shift_right) << blue_shift_left;
- }
+ }
else if (cmap->colors)
{
data[pos] = cmap->colors[pixel].red >> 8;
data[pos+1] = cmap->colors[pixel].green >> 8;
data[pos+2] = cmap->colors[pixel].blue >> 8;
- }
+ }
else
{
wxFAIL_MSG( wxT("Image conversion failed. Unknown visual type.") );
- }
+ }
if (gdk_image_mask)
{
unsigned long wxImage::CountColours( unsigned long stopafter )
{
wxHashTable h;
- wxNode *node;
- wxHNode *hnode;
+ wxObject dummy;
unsigned char r, g, b, *p;
unsigned long size, nentries, key;
b = *(p++);
key = (r << 16) | (g << 8) | b;
- hnode = (wxHNode *) h.Get(key);
-
- if (!hnode)
+ if (h.Get(key) == NULL)
{
- h.Put(key, (wxObject *)(new wxHNode));
+ h.Put(key, &dummy);
nentries++;
}
}
- // delete all HNodes
- h.BeginFind();
- while ((node = h.Next()) != NULL)
- delete (wxHNode *)node->GetData();
-
return nentries;
}
* Rotation code by Carlos Moreno
*/
-struct wxRotationPixel
-{
- unsigned char rgb[3];
-};
-
-struct wxRotationPoint
-{
- wxRotationPoint (double _x, double _y) : x(_x), y(_y) {}
- wxRotationPoint (const wxPoint & p) : x(p.x), y(p.y) {}
- double x, y;
-};
+// GRG: I've removed wxRotationPoint - we already have wxRealPoint which
+// does exactly the same thing. And I also got rid of wxRotationPixel
+// bacause of potential problems in architectures where alignment
+// is an issue, so I had to rewrite parts of the code.
-static const wxRotationPixel gs_BlankPixel = {0,0,0};
static const double gs_Epsilon = 1e-10;
static inline int wxCint (double x)
// repeating the time-consuming calls to these functions -- sin/cos can
// be computed and stored in the calling function.
-inline wxRotationPoint rotated_point (const wxRotationPoint & p, double cos_angle, double sin_angle, const wxRotationPoint & p0)
+inline wxRealPoint rotated_point (const wxRealPoint & p, double cos_angle, double sin_angle, const wxRealPoint & p0)
{
- return wxRotationPoint (p0.x + (p.x - p0.x) * cos_angle - (p.y - p0.y) * sin_angle,
- p0.y + (p.y - p0.y) * cos_angle + (p.x - p0.x) * sin_angle);
+ return wxRealPoint (p0.x + (p.x - p0.x) * cos_angle - (p.y - p0.y) * sin_angle,
+ p0.y + (p.y - p0.y) * cos_angle + (p.x - p0.x) * sin_angle);
}
-inline wxRotationPoint rotated_point (double x, double y, double cos_angle, double sin_angle, const wxRotationPoint & p0)
+inline wxRealPoint rotated_point (double x, double y, double cos_angle, double sin_angle, const wxRealPoint & p0)
{
- return rotated_point (wxRotationPoint(x,y), cos_angle, sin_angle, p0);
+ return rotated_point (wxRealPoint(x,y), cos_angle, sin_angle, p0);
}
wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool interpolating, wxPoint * offset_after_rotation) const
{
- const wxImage& img = * this;
int i;
angle = -angle; // screen coordinates are a mirror image of "real" coordinates
- // Create pointer-based array to accelerate access to wxImage's data
- wxRotationPixel ** data = new wxRotationPixel * [img.GetHeight()];
+ // Create pointer-based array to accelerate access to wxImage's data
+ unsigned char ** data = new unsigned char * [GetHeight()];
- data[0] = (wxRotationPixel *) img.GetData();
+ data[0] = GetData();
- for (i = 1; i < img.GetHeight(); i++)
- {
- data[i] = data[i - 1] + img.GetWidth();
- }
+ for (i = 1; i < GetHeight(); i++)
+ data[i] = data[i - 1] + (3 * GetWidth());
- // pre-compute coefficients for rotation formula (sine and cosine of the angle)
+ // precompute coefficients for rotation formula
+ // (sine and cosine of the angle)
const double cos_angle = cos(angle);
const double sin_angle = sin(angle);
- // Create new Image to store the result
- // First, find rectangle that covers the rotated image; to do that,
- // rotate the four corners
+ // Create new Image to store the result
+ // First, find rectangle that covers the rotated image; to do that,
+ // rotate the four corners
- const wxRotationPoint p0 = centre_of_rotation;
+ const wxRealPoint p0(centre_of_rotation.x, centre_of_rotation.y);
- wxRotationPoint p1 = rotated_point (0, 0, cos_angle, sin_angle, p0);
- wxRotationPoint p2 = rotated_point (0, img.GetHeight(), cos_angle, sin_angle, p0);
- wxRotationPoint p3 = rotated_point (img.GetWidth(), 0, cos_angle, sin_angle, p0);
- wxRotationPoint p4 = rotated_point (img.GetWidth(), img.GetHeight(), cos_angle, sin_angle, p0);
+ wxRealPoint p1 = rotated_point (0, 0, cos_angle, sin_angle, p0);
+ wxRealPoint p2 = rotated_point (0, GetHeight(), cos_angle, sin_angle, p0);
+ wxRealPoint p3 = rotated_point (GetWidth(), 0, cos_angle, sin_angle, p0);
+ wxRealPoint p4 = rotated_point (GetWidth(), GetHeight(), cos_angle, sin_angle, p0);
- int x1 = floor (wxMin (wxMin(p1.x, p2.x), wxMin(p3.x, p4.x)));
- int y1 = floor (wxMin (wxMin(p1.y, p2.y), wxMin(p3.y, p4.y)));
-
- int x2 = ceil (wxMax (wxMax(p1.x, p2.x), wxMax(p3.x, p4.x)));
- int y2 = ceil (wxMax (wxMax(p1.y, p2.y), wxMax(p3.y, p4.y)));
+ int x1 = (int) floor (wxMin (wxMin(p1.x, p2.x), wxMin(p3.x, p4.x)));
+ int y1 = (int) floor (wxMin (wxMin(p1.y, p2.y), wxMin(p3.y, p4.y)));
+ int x2 = (int) ceil (wxMax (wxMax(p1.x, p2.x), wxMax(p3.x, p4.x)));
+ int y2 = (int) ceil (wxMax (wxMax(p1.y, p2.y), wxMax(p3.y, p4.y)));
wxImage rotated (x2 - x1 + 1, y2 - y1 + 1);
if (offset_after_rotation != NULL)
{
- *offset_after_rotation = wxPoint (x1, y1);
+ *offset_after_rotation = wxPoint (x1, y1);
}
+ // GRG: The rotated (destination) image is always accessed
+ // sequentially, so there is no need for a pointer-based
+ // array here (and in fact it would be slower).
+ //
+ unsigned char * dst = rotated.GetData();
- wxRotationPixel ** result_data = new wxRotationPixel * [rotated.GetHeight()];
-
- result_data[0] = (wxRotationPixel *) rotated.GetData();
+ // GRG: if the original image has a mask, use its RGB values
+ // as the blank pixel, else, fall back to default (black).
+ //
+ unsigned char blank_r = 0;
+ unsigned char blank_g = 0;
+ unsigned char blank_b = 0;
- for (i = 1; i < rotated.GetHeight(); i++)
+ if (HasMask())
{
- result_data[i] = result_data[i - 1] + rotated.GetWidth();
+ blank_r = GetMaskRed();
+ blank_g = GetMaskGreen();
+ blank_b = GetMaskBlue();
+ rotated.SetMaskColour( blank_r, blank_g, blank_b );
}
- // Now, for each point of the rotated image, find where it came from, by
- // performing an inverse rotation (a rotation of -angle) and getting the
- // pixel at those coordinates
+ // Now, for each point of the rotated image, find where it came from, by
+ // performing an inverse rotation (a rotation of -angle) and getting the
+ // pixel at those coordinates
+
+ // GRG: I've taken the (interpolating) test out of the loops, so that
+ // it is done only once, instead of repeating it for each pixel.
int x;
- for (x = 0; x < rotated.GetWidth(); x++)
+ if (interpolating)
{
for (int y = 0; y < rotated.GetHeight(); y++)
{
- wxRotationPoint src = rotated_point (x + x1, y + y1, cos_angle, -sin_angle, p0);
-
- if (interpolating)
+ for (x = 0; x < rotated.GetWidth(); x++)
{
- if (0 < src.x && src.x < img.GetWidth() - 1 &&
- 0 < src.y && src.y < img.GetHeight() - 1)
+ wxRealPoint src = rotated_point (x + x1, y + y1, cos_angle, -sin_angle, p0);
+
+ if (0 < src.x && src.x < GetWidth() - 1 &&
+ 0 < src.y && src.y < GetHeight() - 1)
{
- // interpolate using the 4 enclosing grid-points. Those
- // points can be obtained using floor and ceiling of the
- // exact coordinates of the point
+ // interpolate using the 4 enclosing grid-points. Those
+ // points can be obtained using floor and ceiling of the
+ // exact coordinates of the point
const int x1 = wxCint(floor(src.x));
const int y1 = wxCint(floor(src.y));
const int x2 = wxCint(ceil(src.x));
const int y2 = wxCint(ceil(src.y));
- // get four points and the distances (square of the distance,
- // for efficiency reasons) for the interpolation formula
- const wxRotationPixel & v1 = data[y1][x1];
- const wxRotationPixel & v2 = data[y1][x2];
- const wxRotationPixel & v3 = data[y2][x2];
- const wxRotationPixel & v4 = data[y2][x1];
+ // get four points and the distances (square of the distance,
+ // for efficiency reasons) for the interpolation formula
+
+ // GRG: Do not calculate the points until they are
+ // really needed -- this way we can calculate
+ // just one, instead of four, if d1, d2, d3
+ // or d4 are < gs_Epsilon
const double d1 = (src.x - x1) * (src.x - x1) + (src.y - y1) * (src.y - y1);
const double d2 = (src.x - x2) * (src.x - x2) + (src.y - y1) * (src.y - y1);
const double d3 = (src.x - x2) * (src.x - x2) + (src.y - y2) * (src.y - y2);
const double d4 = (src.x - x1) * (src.x - x1) + (src.y - y2) * (src.y - y2);
- // Now interpolate as a weighted average of the four surrounding
- // points, where the weights are the distances to each of those points
+ // Now interpolate as a weighted average of the four surrounding
+ // points, where the weights are the distances to each of those points
- // If the point is exactly at one point of the grid of the source
- // image, then don't interpolate -- just assign the pixel
+ // If the point is exactly at one point of the grid of the source
+ // image, then don't interpolate -- just assign the pixel
- if (d1 < gs_Epsilon) // d1,d2,d3,d4 are positive -- no need for abs()
+ if (d1 < gs_Epsilon) // d1,d2,d3,d4 are positive -- no need for abs()
{
- result_data[y][x] = v1;
+ unsigned char *p = data[y1] + (3 * x1);
+ *(dst++) = *(p++);
+ *(dst++) = *(p++);
+ *(dst++) = *(p++);
}
else if (d2 < gs_Epsilon)
{
- result_data[y][x] = v2;
+ unsigned char *p = data[y1] + (3 * x2);
+ *(dst++) = *(p++);
+ *(dst++) = *(p++);
+ *(dst++) = *(p++);
}
else if (d3 < gs_Epsilon)
{
- result_data[y][x] = v3;
+ unsigned char *p = data[y2] + (3 * x2);
+ *(dst++) = *(p++);
+ *(dst++) = *(p++);
+ *(dst++) = *(p++);
}
else if (d4 < gs_Epsilon)
{
- result_data[y][x] = v4;
+ unsigned char *p = data[y2] + (3 * x1);
+ *(dst++) = *(p++);
+ *(dst++) = *(p++);
+ *(dst++) = *(p++);
}
else
{
- // weights for the weighted average are proportional to the inverse of the distance
- const w1 = 1/d1, w2 = 1/d2, w3 = 1/d3, w4 = 1/d4;
-
- for (int i = 0; i < 3; i++) // repeat calculation for R, G, and B
- {
- result_data[y][x].rgb[i] =
- (unsigned char) ( (w1 * v1.rgb[i] + w2 * v2.rgb[i] +
- w3 * v3.rgb[i] + w4 * v4.rgb[i]) /
- (w1 + w2 + w3 + w4) );
- }
+ // weights for the weighted average are proportional to the inverse of the distance
+ unsigned char *v1 = data[y1] + (3 * x1);
+ unsigned char *v2 = data[y1] + (3 * x2);
+ unsigned char *v3 = data[y2] + (3 * x2);
+ unsigned char *v4 = data[y2] + (3 * x1);
+
+ const double w1 = 1/d1, w2 = 1/d2, w3 = 1/d3, w4 = 1/d4;
+
+ // GRG: Unrolled.
+
+ *(dst++) = (unsigned char)
+ ( (w1 * *(v1++) + w2 * *(v2++) +
+ w3 * *(v3++) + w4 * *(v4++)) /
+ (w1 + w2 + w3 + w4) );
+ *(dst++) = (unsigned char)
+ ( (w1 * *(v1++) + w2 * *(v2++) +
+ w3 * *(v3++) + w4 * *(v4++)) /
+ (w1 + w2 + w3 + w4) );
+ *(dst++) = (unsigned char)
+ ( (w1 * *(v1++) + w2 * *(v2++) +
+ w3 * *(v3++) + w4 * *(v4++)) /
+ (w1 + w2 + w3 + w4) );
}
}
else
{
- result_data[y][x] = gs_BlankPixel;
+ *(dst++) = blank_r;
+ *(dst++) = blank_g;
+ *(dst++) = blank_b;
}
}
- else
+ }
+ }
+ else // not interpolating
+ {
+ for (int y = 0; y < rotated.GetHeight(); y++)
+ {
+ for (x = 0; x < rotated.GetWidth(); x++)
{
- const int xs = wxCint (src.x); // wxCint performs rounding to the
+ wxRealPoint src = rotated_point (x + x1, y + y1, cos_angle, -sin_angle, p0);
+
+ const int xs = wxCint (src.x); // wxCint rounds to the
const int ys = wxCint (src.y); // closest integer
- if (0 <= xs && xs < img.GetWidth() &&
- 0 <= ys && ys < img.GetHeight())
+ if (0 <= xs && xs < GetWidth() &&
+ 0 <= ys && ys < GetHeight())
{
- result_data[y][x] = data[ys][xs];
+ unsigned char *p = data[ys] + (3 * xs);
+ *(dst++) = *(p++);
+ *(dst++) = *(p++);
+ *(dst++) = *(p++);
}
else
{
- result_data[y][x] = gs_BlankPixel;
+ *(dst++) = blank_r;
+ *(dst++) = blank_g;
+ *(dst++) = blank_b;
}
}
}
}
+ delete [] data;
+
return rotated;
}