--- /dev/null
+/*******************************************************************************
+ * Simplified Wrapper and Interface Generator (SWIG)
+ *
+ * Author : David Beazley
+ *
+ * Department of Computer Science
+ * University of Chicago
+ * 1100 E 58th Street
+ * Chicago, IL 60637
+ * beazley@cs.uchicago.edu
+ *
+ * Please read the file LICENSE for the copyright and terms by which SWIG
+ * can be used and distributed.
+ *******************************************************************************/
+
+/**********************************************************************
+ * $Header$
+ *
+ * python.cxx
+ *
+ * Python module.
+ **************************************************************************/
+
+
+#include "swig.h"
+#include "python.h"
+
+// Structures for managing doc strings
+
+struct DocString {
+ DocEntry *de;
+ char *name;
+ DocString *next;
+};
+
+static int doc_index = 0;
+static DocString *doc_strings = 0;
+
+static char *usage = "\
+Python Options (available with -python)\n\
+ -docstring - Produce docstrings (only applies to shadow classes)\n\
+ -globals name - Set name used to access C global variable ('cvar' by default).\n\
+ -module name - Set module name\n\
+ -keyword - Use keyword arguments\n\
+ -shadow - Generate shadow classes. \n\n";
+
+static String pragma_include;
+
+// ---------------------------------------------------------------------
+// PYTHON::parse_args(int argc, char *argv[])
+//
+// ---------------------------------------------------------------------
+
+void PYTHON::parse_args(int argc, char *argv[]) {
+
+ int i = 1;
+
+ sprintf(LibDir,"%s",path);
+
+ docstring = 0;
+
+ // Look for additional command line options.
+ for (i = 1; i < argc; i++) {
+ if (argv[i]) {
+ if(strcmp(argv[i],"-module") == 0) {
+ if (argv[i+1]) {
+ module = new char[strlen(argv[i+1])+2];
+ strcpy(module, argv[i+1]);
+ mark_arg(i);
+ mark_arg(i+1);
+ i+=1;
+ } else {
+ arg_error();
+ }
+ } else if (strcmp(argv[i],"-globals") == 0) {
+ if (argv[i+1]) {
+ global_name = new char[strlen(argv[i+1])+1];
+ strcpy(global_name, argv[i+1]);
+ mark_arg(i);
+ mark_arg(i+1);
+ i++;
+ } else {
+ arg_error();
+ }
+ } else if (strcmp(argv[i],"-shadow") == 0) {
+ shadow = 1;
+ mark_arg(i);
+ } else if (strcmp(argv[i],"-docstring") == 0) {
+ docstring = 1;
+ mark_arg(i);
+ } else if (strcmp(argv[i],"-keyword") == 0) {
+ use_kw = 1;
+ mark_arg(i);
+ } else if (strcmp(argv[i],"-help") == 0) {
+ fputs(usage,stderr);
+ }
+ }
+ }
+ // Create a symbol for this language
+ add_symbol("SWIGPYTHON",0,0);
+
+ // Set name of typemaps
+
+ typemap_lang = "python";
+
+}
+
+// ---------------------------------------------------------------------
+// PYTHON::parse()
+//
+// Parse the interface file
+// ---------------------------------------------------------------------
+
+void
+PYTHON::parse() {
+
+ printf("Generating wrappers for Python\n");
+ headers();
+
+ // Run the SWIG parser
+
+ yyparse();
+}
+
+// ---------------------------------------------------------------------
+// PYTHON::set_module(char *mod_name, char **mod_list)
+//
+// Sets the module name.
+// Does nothing if it's already set (so it can be overridden as a command
+// line option).
+//
+//----------------------------------------------------------------------
+
+void PYTHON::set_module(char *mod_name, char **mod_list) {
+ int i;
+
+ // If an "import" method has been set and we're in shadow class mode,
+ // output a python command to load the module
+
+ if (import_file) {
+ if (!(strcmp(import_file,input_file+strlen(input_file)-strlen(import_file)))) {
+ if (shadow) {
+ fprintf(f_shadow,"\nfrom %s import *\n", mod_name);
+ }
+ delete import_file;
+ import_file = 0;
+ }
+ }
+
+ if (module) return;
+
+ module = new char[strlen(mod_name)+1];
+ strcpy(module,mod_name);
+
+ // If there was a mod_list specified, make this incredible hack
+ if (mod_list) {
+ modinit << "#define SWIGMODINIT ";
+ modextern << "#ifdef __cplusplus\n"
+ << "extern \"C\" {\n"
+ << "#endif\n";
+ i = 0;
+ while(mod_list[i]) {
+ modinit << "swig_add_module(\"" << mod_list[i] << "\",init"
+ << mod_list[i] << "); \\\n";
+
+ modextern << "extern void init" << mod_list[i] << "();\n";
+ i++;
+ }
+ modextern << "#ifdef __cplusplus\n"
+ << "}\n"
+ << "#endif\n";
+ modinit << "/* End of extern module initialization */\n";
+
+ }
+}
+
+// ---------------------------------------------------------------------
+// PYTHON::set_init(char *iname)
+//
+// Sets the initialization function name.
+// Does nothing if it's already set
+//
+//----------------------------------------------------------------------
+
+void PYTHON::set_init(char *iname) {
+ set_module(iname,0);
+}
+
+
+// ---------------------------------------------------------------------
+// PYTHON::import(char *filename)
+//
+// Imports a SWIG module as a separate file.
+//----------------------------------------------------------------------
+
+void PYTHON::import(char *filename) {
+ if (import_file) delete import_file;
+ import_file = copy_string(filename);
+}
+
+// ----------------------------------------------------------------------
+// PYTHON::add_method(char *name, char *function)
+//
+// Add some symbols to the methods table
+// ----------------------------------------------------------------------
+
+void PYTHON::add_method(char *name, char *function) {
+
+ Method *n;
+
+ n = new Method;
+ n->name = new char[strlen(name)+1];
+ strcpy(n->name,name);
+ n->function = new char[strlen(function)+1];
+ strcpy(n->function, function);
+
+ n->next = head;
+ head = n;
+}
+
+// ---------------------------------------------------------------------
+// PYTHON::print_methods()
+//
+// Prints out the method array.
+// ---------------------------------------------------------------------
+
+void PYTHON::print_methods() {
+
+ Method *n;
+
+ fprintf(f_wrappers,"static PyMethodDef %sMethods[] = {\n", module);
+ n = head;
+ while (n) {
+ if (!use_kw) {
+ fprintf(f_wrappers,"\t { \"%s\", %s, METH_VARARGS },\n", n->name, n->function);
+ } else {
+ fprintf(f_wrappers,"\t { \"%s\", (PyCFunction) %s, METH_VARARGS | METH_KEYWORDS },\n", n->name, n->function);
+ }
+ n = n->next;
+ }
+ fprintf(f_wrappers,"\t { NULL, NULL }\n");
+ fprintf(f_wrappers,"};\n");
+ fprintf(f_wrappers,"#ifdef __cplusplus\n");
+ fprintf(f_wrappers,"}\n");
+ fprintf(f_wrappers,"#endif\n");
+}
+
+// ---------------------------------------------------------------------
+// char *PYTHON::add_docstring(DocEntry *de)
+//
+// Adds a documentation entry to the doc-string generator. Returns a
+// unique character symbol that will be used to fill in the doc-string
+// at a later time.
+// ---------------------------------------------------------------------
+
+char *PYTHON::add_docstring(DocEntry *de) {
+ DocString *s;
+ String str;
+
+ str = "@doc";
+ str << doc_index << "@";
+
+ s = new DocString();
+ s->de = de;
+ s->name = copy_string(str);
+ s->next = doc_strings;
+ doc_strings = s;
+ doc_index++;
+ return s->name;
+}
+
+// ---------------------------------------------------------------------
+// PYTHON::headers(void)
+//
+// ----------------------------------------------------------------------
+
+void PYTHON::headers(void)
+{
+
+ emit_banner(f_header);
+
+ fprintf(f_header,"/* Implementation : PYTHON */\n\n");
+ fprintf(f_header,"#define SWIGPYTHON\n");
+
+ if (!NoInclude) {
+ if (insert_file("python.swg", f_header) == -1) {
+ fprintf(stderr,"SWIG : Fatal error. Unable to locate python.swg. (Possible installation problem).\n");
+ SWIG_exit(1);
+ }
+ } else {
+ if (insert_file("pyexp.swg", f_header) == -1) {
+ fprintf(stderr,"SWIG : Fatal error. Unable to locate pyexp.swg. (Possible installation problem).\n");
+ SWIG_exit(1);
+ }
+ }
+}
+
+
+// --------------------------------------------------------------------
+// PYTHON::initialize(void)
+//
+// This function outputs the starting code for a function to initialize
+// your interface. It is only called once by the parser.
+//
+// ---------------------------------------------------------------------
+
+void PYTHON::initialize(void)
+{
+
+ char filen[256];
+ char *temp;
+ char *oldmodule = 0;
+
+ if (!module) {
+ module = "swig";
+ fprintf(stderr,"SWIG : *** Warning. No module name specified.\n");
+ }
+
+ // If shadow classing is enabled, we're going to change the module
+ // name to "modulec"
+
+ if (shadow) {
+ temp = new char[strlen(module)+2];
+ sprintf(temp,"%sc",module);
+ oldmodule = module;
+ module = temp;
+ }
+ /* Initialize the C code for the module */
+ initialize_cmodule();
+ /* Create a shadow file (if enabled).*/
+ if (shadow) {
+ sprintf(filen,"%s%s.py", output_dir, oldmodule);
+ if ((f_shadow = fopen(filen,"w")) == 0) {
+ fprintf(stderr,"Unable to open %s\n", filen);
+ SWIG_exit(0);
+ }
+ fprintf(f_shadow,"# This file was created automatically by SWIG.\n");
+ fprintf(f_shadow,"import %s\n", module);
+ }
+
+ // Dump out external module declarations
+
+ if (strlen(modinit.get()) > 0) {
+ fprintf(f_header,"%s\n",modinit.get());
+ }
+ if (strlen(modextern.get()) > 0) {
+ fprintf(f_header,"%s\n",modextern.get());
+ }
+ fprintf(f_wrappers,"#ifdef __cplusplus\n");
+ fprintf(f_wrappers,"extern \"C\" {\n");
+ fprintf(f_wrappers,"#endif\n");
+}
+
+// ---------------------------------------------------------------------
+// PYTHON::initialize_cmodule(void)
+//
+// Initializes the C module.
+//
+// ---------------------------------------------------------------------
+void PYTHON::initialize_cmodule(void)
+{
+ int i;
+ fprintf(f_header,"#define SWIG_init init%s\n\n", module);
+ fprintf(f_header,"#define SWIG_name \"%s\"\n", module);
+
+ // Output the start of the init function.
+ // Modify this to use the proper return type and arguments used
+ // by the target Language
+
+ fprintf(f_init,"static PyObject *SWIG_globals;\n");
+
+ fprintf(f_init,"#ifdef __cplusplus\n");
+ fprintf(f_init,"extern \"C\" \n");
+ fprintf(f_init,"#endif\n");
+
+ fprintf(f_init,"SWIGEXPORT(void) init%s() {\n",module);
+ fprintf(f_init,"\t PyObject *m, *d;\n");
+
+ if (InitNames) {
+ i = 0;
+ while (InitNames[i]) {
+ fprintf(f_init,"\t %s();\n", InitNames[i]);
+ i++;
+ }
+ }
+ fprintf(f_init,"\t SWIG_globals = SWIG_newvarlink();\n");
+ fprintf(f_init,"\t m = Py_InitModule(\"%s\", %sMethods);\n", module, module);
+ fprintf(f_init,"\t d = PyModule_GetDict(m);\n");
+}
+
+
+// ---------------------------------------------------------------------
+// PYTHON::close(void)
+//
+// Called when the end of the interface file is reached. Closes the
+// initialization function and performs cleanup as necessary.
+// ---------------------------------------------------------------------
+
+void PYTHON::close(void)
+{
+
+ print_methods();
+ close_cmodule();
+ if ((doc_entry) && (module)){
+ String temp;
+ temp << "Python Module : ";
+ if (shadow) {
+ module[strlen(module)-1] = 0;
+ }
+ temp << module;
+ doc_entry->cinfo << temp;
+ }
+ if (shadow) {
+ String fullshadow;
+ fullshadow << classes
+ << "\n\n#-------------- FUNCTION WRAPPERS ------------------\n\n"
+ << func
+ << "\n\n#-------------- VARIABLE WRAPPERS ------------------\n\n"
+ << vars;
+
+ if (strlen(pragma_include) > 0) {
+ fullshadow << "\n\n#-------------- USER INCLUDE -----------------------\n\n"
+ << pragma_include;
+ }
+
+ // Go through all of the docstrings and replace the docstrings
+
+ DocString *s;
+ s = doc_strings;
+ while (s) {
+ fullshadow.replace(s->name, s->de->text);
+ s = s->next;
+ }
+ /*
+ fprintf(f_shadow,"\n\n#-------------- FUNCTION WRAPPERS ------------------\n\n");
+ fprintf(f_shadow,"%s",func.get());
+ fprintf(f_shadow,"\n\n#-------------- VARIABLE WRAPPERS ------------------\n\n");
+ fprintf(f_shadow,"%s",vars.get());
+ if (strlen(pragma_include) > 0) {
+ fprintf(f_shadow,"\n\n#-------------- USER INCLUDE -----------------------\n\n");
+ fprintf(f_shadow,"%s",pragma_include.get());
+ }
+ */
+ fprintf(f_shadow, "%s", fullshadow.get());
+ fclose(f_shadow);
+ }
+}
+
+// --------------------------------------------------------------------
+// PYTHON::close_cmodule(void)
+//
+// Called to cleanup the C module code
+// --------------------------------------------------------------------
+void PYTHON::close_cmodule(void)
+{
+ emit_ptr_equivalence(f_init);
+ fprintf(f_init,"}\n");
+}
+
+// ----------------------------------------------------------------------
+// PYTHON::get_pointer(char *iname, char *srcname, char *src, char *target,
+// DataType *t, WrapperFunction &f, char *ret)
+//
+// Emits code to get a pointer and do type checking.
+// iname = name of the function/method (used for error messages)
+// srcname = Name of source (used for error message reporting).
+// src = name of variable where source string is located.
+// dest = name of variable where pointer value is stored.
+// t = Expected datatype of the parameter
+// f = Wrapper function object being used to generate code.
+// ret = return code upon failure.
+//
+// Note : pointers are stored as strings so you first need to get
+// a string and then call _swig_get_hex() to extract a point.
+//
+// This module is pretty ugly, but type checking is kind of nasty
+// anyways.
+// ----------------------------------------------------------------------
+
+void
+PYTHON::get_pointer(char *iname, char *srcname, char *src, char *dest,
+ DataType *t, String &f, char *ret)
+{
+
+ // Now get the pointer value from the string and save in dest
+
+ f << tab4 << "if (" << src << ") {\n"
+ << tab8 << "if (" << src << " == Py_None) { " << dest << " = NULL; }\n"
+ << tab8 << "else if (SWIG_GetPtrObj(" << src << ",(void **) &" << dest << ",";
+
+ // If we're passing a void pointer, we give the pointer conversion a NULL
+ // pointer, otherwise pass in the expected type.
+
+ if (t->type == T_VOID) f << "(char *) 0 )) {\n";
+ else
+ f << "\"" << t->print_mangle() << "\")) {\n";
+
+ // This part handles the type checking according to three different
+ // levels. 0 = no checking, 1 = warning message, 2 = strict.
+
+ switch(TypeStrict) {
+ case 0: // No type checking
+ f << tab8 << "}\n";
+ break;
+
+ case 1: // Warning message only
+
+ // Change this part to how you want to handle a type-mismatch warning.
+ // By default, it will just print to stderr.
+
+ f << tab8 << tab4 << "fprintf(stderr,\"Warning : type mismatch in " << srcname
+ << " of " << iname << ". Expected " << t->print_mangle()
+ << ", received %s\\n\"," << src << ");\n"
+ << tab8 << "}\n";
+
+ break;
+ case 2: // Super strict mode.
+
+ // Change this part to return an error.
+
+ f << tab8 << tab4 << "PyErr_SetString(PyExc_TypeError,\"Type error in " << srcname
+ << " of " << iname << ". Expected " << t->print_mangle() << ".\");\n"
+ << tab8 << "return " << ret << ";\n"
+ << tab8 << "}\n";
+ break;
+
+ default :
+ fprintf(stderr,"SWIG Error. Unknown strictness level\n");
+ break;
+ }
+ f << tab4 << "}\n";
+}
+
+// ----------------------------------------------------------------------
+// PYTHON::emit_function_header()
+//
+// Return the code to be used as a function header
+// ----------------------------------------------------------------------
+void PYTHON::emit_function_header(WrapperFunction &emit_to, char *wname)
+{
+ if (!use_kw) {
+ emit_to.def << "static PyObject *" << wname
+ << "(PyObject *self, PyObject *args) {";
+ } else {
+ emit_to.def << "static PyObject *" << wname
+ << "(PyObject *self, PyObject *args, PyObject *kwargs) {";
+ }
+ emit_to.code << tab4 << "self = self;\n";
+}
+
+// ----------------------------------------------------------------------
+// PYTHON::convert_self()
+//
+// Called during the function generation process, to determine what to
+// use as the "self" variable during the call. Derived classes may emit code
+// to convert the real self pointer into a usable pointer.
+//
+// Returns the name of the variable to use as the self pointer
+// ----------------------------------------------------------------------
+char *PYTHON::convert_self(WrapperFunction &)
+{
+ // Default behaviour is no translation
+ return "";
+}
+
+// ----------------------------------------------------------------------
+// PYTHON::make_funcname_wrapper()
+//
+// Called to create a name for a wrapper function
+// ----------------------------------------------------------------------
+char *PYTHON::make_funcname_wrapper(char *fnName)
+{
+ return name_wrapper(fnName,"");
+}
+
+// ----------------------------------------------------------------------
+// PYTHON::create_command(char *cname, char *iname)
+//
+// Create a new command in the interpreter. Used for C++ inheritance
+// stuff.
+// ----------------------------------------------------------------------
+
+void PYTHON::create_command(char *cname, char *iname) {
+
+ // Create the name of the wrapper function
+
+ char *wname = name_wrapper(cname,"");
+
+ // Now register the function with the interpreter.
+
+ add_method(iname, wname);
+
+}
+
+// ----------------------------------------------------------------------
+// PYTHON::create_function(char *name, char *iname, DataType *d,
+// ParmList *l)
+//
+// This function creates a wrapper function and registers it with the
+// interpreter.
+//
+// Inputs :
+// name = actual name of the function that's being wrapped
+// iname = name of the function in the interpreter (may be different)
+// d = Return datatype of the functions.
+// l = A linked list containing function parameter information.
+//
+// ----------------------------------------------------------------------
+
+void PYTHON::create_function(char *name, char *iname, DataType *d, ParmList *l)
+{
+ Parm *p;
+ int pcount,i,j;
+ String wname, self_name, call_name;
+ char source[64], target[64], temp[256], argnum[20];
+ char *usage = 0;
+ WrapperFunction f;
+ String parse_args;
+ String arglist;
+ String get_pointers;
+ String cleanup, outarg;
+ String check;
+ String build;
+ String kwargs;
+
+ int have_build = 0;
+ char *tm;
+ int numopt = 0;
+
+ have_output = 0;
+
+ // Make a valid name for this function. This removes special symbols
+ // that would cause problems in the C compiler.
+
+ wname = make_funcname_wrapper(iname);
+
+ // Now emit the function declaration for the wrapper function. You
+ // should modify this to return the appropriate types and use the
+ // appropriate parameters.
+
+ emit_function_header(f, wname);
+
+ f.add_local("PyObject *","_resultobj");
+
+ // Get the function usage string for later use
+
+ usage = usage_func(iname,d,l);
+
+ // Write code to extract function parameters.
+ // This is done in one pass, but we need to construct three independent
+ // pieces.
+ // 1. Python format string such as "iis"
+ // 2. The actual arguments to put values into
+ // 3. Pointer conversion code.
+ //
+ // If there is a type mapping, we will extract the Python argument
+ // as a raw PyObject and let the user deal with it.
+ //
+
+ pcount = emit_args(d, l, f);
+ if (!use_kw) {
+ parse_args << tab4 << "if(!PyArg_ParseTuple(args,\"";
+ } else {
+ parse_args << tab4 << "if(!PyArg_ParseTupleAndKeywords(args,kwargs,\"";
+ arglist << ",_kwnames";
+ }
+
+ i = 0;
+ j = 0;
+ numopt = l->numopt(); // Get number of optional arguments
+ if (numopt) have_defarg = 1;
+ p = l->get_first();
+
+ kwargs << "{ ";
+ while (p != 0) {
+
+ // Generate source and target strings
+ sprintf(source,"_obj%d",i);
+ sprintf(target,"_arg%d",i);
+ sprintf(argnum,"%d",j+1);
+
+ // Only consider this argument if it's not ignored
+
+ if (!p->ignore) {
+ arglist << ",";
+ // Add an optional argument separator if needed
+
+ if (j == pcount-numopt) {
+ parse_args << "|";
+ }
+
+ if (strlen(p->name)) {
+ kwargs << "\"" << p->name << "\",";
+ } else {
+ kwargs << "\"arg" << j+1 << "\",";
+ // kwargs << "\"\",";
+ }
+
+ // Look for input typemap
+
+ if ((tm = typemap_lookup("in","python",p->t,p->name,source,target,&f))) {
+ parse_args << "O"; // Grab the argument as a raw PyObject
+ f.add_local("PyObject *",source,"0");
+ arglist << "&" << source;
+ if (i >= (pcount-numopt))
+ get_pointers << tab4 << "if (" << source << ")\n";
+ get_pointers << tm << "\n";
+ get_pointers.replace("$argnum", argnum);
+ get_pointers.replace("$arg",source);
+ } else {
+
+ // Check if this parameter is a pointer. If not, we'll get values
+
+ if (!p->t->is_pointer) {
+ // Extract a parameter by "value"
+
+ switch(p->t->type) {
+
+ // Handle integers here. Usually this can be done as a single
+ // case if you appropriate cast things. However, if you have
+ // special cases, you'll need to add more code.
+
+ case T_INT : case T_UINT: case T_SINT:
+ parse_args << "i";
+ break;
+ case T_SHORT: case T_USHORT: case T_SSHORT:
+ parse_args << "h";
+ break;
+ case T_LONG : case T_ULONG: case T_SLONG :
+ parse_args << "l";
+ break;
+ case T_SCHAR : case T_UCHAR :
+ parse_args << "b";
+ break;
+ case T_CHAR:
+ parse_args << "c";
+ break;
+ case T_FLOAT :
+ parse_args << "f";
+ break;
+ case T_DOUBLE:
+ parse_args << "d";
+ break;
+
+ case T_BOOL:
+ {
+ String tempb;
+ String tempval;
+ if (p->defvalue) {
+ tempval << "(int) " << p->defvalue;
+ }
+ tempb << "tempbool" << i;
+ parse_args << "i";
+ if (!p->defvalue)
+ f.add_local("int",tempb.get());
+ else
+ f.add_local("int",tempb.get(),tempval.get());
+ get_pointers << tab4 << target << " = " << p->t->print_cast() << " " << tempb << ";\n";
+ arglist << "&" << tempb;
+ }
+ break;
+
+ // Void.. Do nothing.
+
+ case T_VOID :
+ break;
+
+ // User defined. This is usually invalid. No way to pass a
+ // complex type by "value". We'll just pass into the unsupported
+ // datatype case.
+
+ case T_USER:
+
+ // Unsupported data type
+
+ default :
+ fprintf(stderr,"%s : Line %d. Unable to use type %s as a function argument.\n",input_file, line_number, p->t->print_type());
+ break;
+ }
+
+ // Emit code for parameter list
+
+ if ((p->t->type != T_VOID) && (p->t->type != T_BOOL))
+ arglist << "&_arg" << i;
+
+ } else {
+
+ // Is some other kind of variable.
+
+ if ((p->t->type == T_CHAR) && (p->t->is_pointer == 1)) {
+ parse_args << "s";
+ arglist << "&_arg" << i;
+ } else {
+
+ // Have some sort of pointer variable. Create a temporary local
+ // variable for the string and read the pointer value into it.
+
+ parse_args << "O";
+ sprintf(source,"_argo%d", i);
+ sprintf(target,"_arg%d", i);
+ sprintf(temp,"argument %d",i+1);
+
+ f.add_local("PyObject *", source,"0");
+ arglist << "&" << source;
+ get_pointer(iname, temp, source, target, p->t, get_pointers, "NULL");
+ }
+ }
+ }
+ j++;
+ }
+ // Check if there was any constraint code
+ if ((tm = typemap_lookup("check","python",p->t,p->name,source,target))) {
+ check << tm << "\n";
+ check.replace("$argnum", argnum);
+ }
+ // Check if there was any cleanup code
+ if ((tm = typemap_lookup("freearg","python",p->t,p->name,target,source))) {
+ cleanup << tm << "\n";
+ cleanup.replace("$argnum", argnum);
+ cleanup.replace("$arg",source);
+ }
+ if ((tm = typemap_lookup("argout","python",p->t,p->name,target,"_resultobj"))) {
+ outarg << tm << "\n";
+ outarg.replace("$argnum", argnum);
+ outarg.replace("$arg",source);
+ have_output++;
+ }
+ if ((tm = typemap_lookup("build","python",p->t,p->name,source,target))) {
+ build << tm << "\n";
+ have_build = 1;
+ }
+ p = l->get_next();
+ i++;
+ }
+
+ kwargs << " NULL }";
+ if (use_kw) {
+ f.locals << tab4 << "char *_kwnames[] = " << kwargs << ";\n";
+ }
+
+ parse_args << ":" << iname << "\""; // No additional arguments
+ parse_args << arglist << ")) \n"
+ << tab8 << "return NULL;\n";
+
+ self_name = convert_self(f);
+
+ /* Now slap the whole first part of the wrapper function together */
+
+ f.code << parse_args << get_pointers << check;
+
+
+ // Special handling for build values
+
+ if (have_build) {
+ char temp1[256];
+ char temp2[256];
+ l->sub_parmnames(build); // Replace all parameter names
+ for (i = 0; i < l->nparms; i++) {
+ p = l->get(i);
+ if (strlen(p->name) > 0) {
+ sprintf(temp1,"_in_%s", p->name);
+ } else {
+ sprintf(temp1,"_in_arg%d", i);
+ }
+ sprintf(temp2,"_obj%d",i);
+ build.replaceid(temp1,temp2);
+ }
+ f.code << build;
+ }
+
+ // This function emits code to call the real function. Assuming you read
+ // the parameters in correctly, this will work.
+
+ call_name = "";
+ call_name << self_name << name;
+ emit_func_call(call_name,d,l,f);
+
+ // Now emit code to return the functions return value (if any).
+ // If there was a result, it was saved in _result.
+ // If the function is a void type, don't do anything.
+
+ if ((strncmp(name, "new_", 4) != 0) && // don't use the out typemap for constructors
+ (tm = typemap_lookup("out","python",d,iname,"_result","_resultobj"))) {
+ // Yep. Use it instead of the default
+ f.code << tm << "\n";
+ } else {
+
+ if ((d->type != T_VOID) || (d->is_pointer)) {
+ // Now have return value, figure out what to do with it.
+
+ if (!d->is_pointer) {
+
+ // Function returns a "value"
+
+ switch(d->type) {
+
+ // Return an integer type
+
+ case T_INT: case T_SINT: case T_UINT: case T_BOOL:
+ f.code << tab4 << "_resultobj = Py_BuildValue(\"i\",_result);\n";
+ break;
+ case T_SHORT: case T_SSHORT: case T_USHORT:
+ f.code << tab4 << "_resultobj = Py_BuildValue(\"h\",_result);\n";
+ break;
+ case T_LONG : case T_SLONG : case T_ULONG:
+ f.code << tab4 << "_resultobj = Py_BuildValue(\"l\",_result);\n";
+ break;
+ case T_SCHAR: case T_UCHAR :
+ f.code << tab4 << "_resultobj = Py_BuildValue(\"b\",_result);\n";
+ break;
+
+ // Return a floating point value
+
+ case T_DOUBLE :
+ f.code << tab4 << "_resultobj = Py_BuildValue(\"d\",_result);\n";
+ break;
+ case T_FLOAT :
+ f.code << tab4 << "_resultobj = Py_BuildValue(\"f\",_result);\n";
+ break;
+
+ // Return a single ASCII value. Usually we need to convert
+ // it to a NULL-terminate string and return that instead.
+
+ case T_CHAR :
+ f.code << tab4 << "_resultobj = Py_BuildValue(\"c\",_result);\n";
+ break;
+
+ case T_USER :
+
+ // Return something by value
+ // We're living dangerously here, but life is short...play hard
+
+ // Oops. Need another local variable
+ f.add_local("char","_ptemp[128]");
+
+ d->is_pointer++;
+ f.code << tab4 << "SWIG_MakePtr(_ptemp, (void *) _result,\""
+ << d->print_mangle() << "\");\n";
+ d->is_pointer--;
+ // Return a character string containing our pointer.
+
+ f.code << tab4 << "_resultobj = Py_BuildValue(\"s\",_ptemp);\n";
+ break;
+ default :
+ fprintf(stderr,"%s: Line %d. Unable to use return type %s in function %s.\n", input_file, line_number, d->print_type(), name);
+ break;
+ }
+ } else {
+
+ // Return type is a pointer. We'll see if it's a char * and return
+ // a string. Otherwise, we'll convert it into a SWIG pointer and return
+ // that.
+
+ if ((d->type == T_CHAR) && (d->is_pointer == 1)) {
+
+ // Return a character string
+ f.code << tab4 << "_resultobj = Py_BuildValue(\"s\", _result);\n";
+
+ // If declared as a new object, free the result
+
+ } else {
+
+ // Build a SWIG pointer.
+ f.add_local("char","_ptemp[128]");
+ f.code << tab4 << "if (_result) {\n"
+ << tab8 << "SWIG_MakePtr(_ptemp, (char *) _result,\""
+ << d->print_mangle() << "\");\n";
+
+ // Return a character string containing our pointer.
+ f.code << tab8 << "_resultobj = Py_BuildValue(\"s\",_ptemp);\n";
+ f.code << tab4 << "} else {\n"
+ << tab8 << "Py_INCREF(Py_None);\n"
+ << tab8 << "_resultobj = Py_None;\n"
+ << tab4 << "}\n";
+ }
+ }
+ } else {
+ // no return value and no output args
+ //if (!have_output) {
+ f.code << tab4 << "Py_INCREF(Py_None);\n";
+ f.code << tab4 << "_resultobj = Py_None;\n";
+ //}
+ }
+ }
+
+ // Check to see if there were any output arguments, if so we're going to
+ // create a Python list object out of the current result
+
+ f.code << outarg;
+
+ // If there was any other cleanup needed, do that
+
+ f.code << cleanup;
+
+ // Look to see if there is any newfree cleanup code
+
+ if (NewObject) {
+ if ((tm = typemap_lookup("newfree","python",d,iname,"_result",""))) {
+ f.code << tm << "\n";
+ }
+ }
+
+ // See if there is any argument cleanup code
+
+ if ((tm = typemap_lookup("ret","python",d,iname,"_result",""))) {
+ // Yep. Use it instead of the default
+ f.code << tm << "\n";
+ }
+
+ f.code << tab4 << "return _resultobj;\n";
+ f.code << "}\n";
+
+ // Substitute the cleanup code
+ f.code.replace("$cleanup",cleanup);
+
+ // Substitute the function name
+ f.code.replace("$name",iname);
+
+ // Dump the function out
+ f.print(f_wrappers);
+
+ // Now register the function with the interpreter.
+
+ add_method(iname, wname);
+
+ // Create a documentation entry for this
+
+ if (doc_entry) {
+ static DocEntry *last_doc_entry = 0;
+ doc_entry->usage << usage;
+ if (last_doc_entry != doc_entry) {
+ doc_entry->cinfo << "returns " << d->print_type();
+ last_doc_entry = doc_entry;
+ }
+ }
+
+ // ---------------------------------------------------------------------------
+ // Create a shadow for this function (if enabled and not in a member function)
+ // ---------------------------------------------------------------------------
+
+ if ((shadow) && (!(shadow & PYSHADOW_MEMBER))) {
+ String translate;
+
+ int need_wrapper = 0;
+ int munge_return = 0;
+ int have_optional = 0;
+
+ // Check return code for modification
+ if ((hash.lookup(d->name)) && (d->is_pointer <=1)) {
+ need_wrapper = 1;
+ munge_return = 1;
+ }
+
+ if (docstring && doc_entry)
+ need_wrapper = 1;
+
+ // If no modification is needed. We're just going to play some
+ // symbol table games instead
+
+ if (!need_wrapper) {
+ func << iname << " = " << module << "." << iname << "\n\n";
+ } else {
+ func << "def " << iname << "(*_args, **_kwargs):\n";
+
+ // Create a docstring for this
+ if (docstring && doc_entry) {
+ func << tab4 << "\"\"\"" << add_docstring(doc_entry) << "\"\"\"\n";
+ }
+
+ func << tab4 << "val = apply(" << module << "." << iname << ",_args,_kwargs)\n";
+
+ if (munge_return) {
+ // If the output of this object has been remapped in any way, we're
+ // going to return it as a bare object.
+
+ if (!typemap_check("out",typemap_lang,d,iname)) {
+
+ // If there are output arguments, we are going to return the value
+ // unchanged. Otherwise, emit some shadow class conversion code.
+
+ if (!have_output) {
+ func << tab4 << "if val: val = " << (char *) hash.lookup(d->name) << "Ptr(val)";
+ if (((hash.lookup(d->name)) && (d->is_pointer < 1)) ||
+ ((hash.lookup(d->name)) && (d->is_pointer == 1) && NewObject))
+ func << "; val.thisown = 1\n";
+ else
+ func << "\n";
+ } else {
+ // Does nothing--returns the value unmolested
+ }
+ }
+ }
+ func << tab4 << "return val\n\n";
+ }
+ }
+}
+
+// -----------------------------------------------------------------------
+// PYTHON::link_variable(char *name, char *iname, DataType *d)
+//
+// Input variables:
+// name = the real name of the variable being linked
+// iname = Name of the variable in the interpreter (may be different)
+// d = Datatype of the variable.
+//
+// This creates a pair of functions for evaluating/setting the value
+// of a variable. These are then added to the special SWIG global
+// variable type.
+// -----------------------------------------------------------------------
+
+void PYTHON::link_variable(char *name, char *iname, DataType *t) {
+
+ char *wname;
+ static int have_globals = 0;
+ char *tm;
+
+ WrapperFunction getf, setf;
+
+ // If this is our first call, add the globals variable to the
+ // Python dictionary.
+
+ if (!have_globals) {
+ fprintf(f_init,"\t PyDict_SetItemString(d,\"%s\", SWIG_globals);\n",global_name);
+ have_globals=1;
+ if ((shadow) && (!(shadow & PYSHADOW_MEMBER))) {
+ vars << global_name << " = " << module << "." << global_name << "\n";
+ }
+ }
+ // First make a sanitized version of the function name (in case it's some
+ // funky C++ thing).
+
+ wname = name_wrapper(name,"");
+
+ // ---------------------------------------------------------------------
+ // Create a function for setting the value of the variable
+ // ---------------------------------------------------------------------
+
+ setf.def << "static int " << wname << "_set(PyObject *val) {";
+ if (!(Status & STAT_READONLY)) {
+ if ((tm = typemap_lookup("varin","python",t,name,"val",name))) {
+ setf.code << tm << "\n";
+ setf.code.replace("$name",iname);
+ } else {
+ if ((t->type != T_VOID) || (t->is_pointer)) {
+ if (!t->is_pointer) {
+
+ // Have a real value here
+
+ switch(t->type) {
+ case T_INT: case T_SHORT: case T_LONG :
+ case T_UINT: case T_USHORT: case T_ULONG:
+ case T_SINT: case T_SSHORT: case T_SLONG:
+ case T_SCHAR: case T_UCHAR: case T_BOOL:
+ // Get an integer value
+ setf.add_local(t->print_type(), "tval");
+ setf.code << tab4 << "tval = " << t->print_cast() << "PyInt_AsLong(val);\n"
+ << tab4 << "if (PyErr_Occurred()) {\n"
+ << tab8 << "PyErr_SetString(PyExc_TypeError,\"C variable '"
+ << iname << "'(" << t->print_type() << ")\");\n"
+ << tab8 << "return 1; \n"
+ << tab4 << "}\n"
+ << tab4 << name << " = tval;\n";
+ break;
+
+ case T_FLOAT: case T_DOUBLE:
+ // Get a floating point value
+ setf.add_local(t->print_type(), "tval");
+ setf.code << tab4 << "tval = " << t->print_cast() << "PyFloat_AsDouble(val);\n"
+ << tab4 << "if (PyErr_Occurred()) {\n"
+ << tab8 << "PyErr_SetString(PyExc_TypeError,\"C variable '"
+ << iname << "'(" << t->print_type() << ")\");\n"
+ << tab8 << "return 1; \n"
+ << tab4 << "}\n"
+ << tab4 << name << " = tval;\n";
+ break;
+
+ // A single ascii character
+
+ case T_CHAR:
+ setf.add_local("char *", "tval");
+ setf.code << tab4 << "tval = (char *) PyString_AsString(val);\n"
+ << tab4 << "if (PyErr_Occurred()) {\n"
+ << tab8 << "PyErr_SetString(PyExc_TypeError,\"C variable '"
+ << iname << "'(" << t->print_type() << ")\");\n"
+ << tab8 << "return 1; \n"
+ << tab4 << "}\n"
+ << tab4 << name << " = *tval;\n";
+ break;
+ case T_USER:
+ t->is_pointer++;
+ setf.add_local(t->print_type(),"temp");
+ get_pointer(iname,"value","val","temp",t,setf.code,"1");
+ setf.code << tab4 << name << " = *temp;\n";
+ t->is_pointer--;
+ break;
+ default:
+ fprintf(stderr,"%s : Line %d. Unable to link with type %s.\n", input_file, line_number, t->print_type());
+ }
+ } else {
+
+ // Parse a pointer value
+
+ if ((t->type == T_CHAR) && (t->is_pointer == 1)) {
+ setf.add_local("char *", "tval");
+ setf.code << tab4 << "tval = (char *) PyString_AsString(val);\n"
+ << tab4 << "if (PyErr_Occurred()) {\n"
+ << tab8 << "PyErr_SetString(PyExc_TypeError,\"C variable '"
+ << iname << "'(" << t->print_type() << ")\");\n"
+ << tab8 << "return 1; \n"
+ << tab4 << "}\n";
+
+ if (CPlusPlus) {
+ setf.code << tab4 << "if (" << name << ") delete [] " << name << ";\n"
+ << tab4 << name << " = new char[strlen(tval)+1];\n"
+ << tab4 << "strcpy((char *)" << name << ",tval);\n";
+ } else {
+ setf.code << tab4 << "if (" << name << ") free(" << name << ");\n"
+ << tab4 << name << " = (char *) malloc(strlen(tval)+1);\n"
+ << tab4 << "strcpy((char *)" << name << ",tval);\n";
+ }
+ } else {
+
+ // Is a generic pointer value.
+
+ setf.add_local(t->print_type(),"temp");
+ get_pointer(iname,"value","val","temp",t,setf.code,"1");
+ setf.code << tab4 << name << " = temp;\n";
+ }
+ }
+ }
+ }
+ setf.code << tab4 << "return 0;\n";
+ } else {
+ // Is a readonly variable. Issue an error
+ setf.code << tab4 << "PyErr_SetString(PyExc_TypeError,\"Variable " << iname
+ << " is read-only.\");\n"
+ << tab4 << "return 1;\n";
+ }
+
+ setf.code << "}\n";
+
+ // Dump out function for setting value
+
+ setf.print(f_wrappers);
+
+ // ----------------------------------------------------------------
+ // Create a function for getting the value of a variable
+ // ----------------------------------------------------------------
+
+ getf.def << "static PyObject *" << wname << "_get() {";
+ getf.add_local("PyObject *","pyobj");
+ if ((tm = typemap_lookup("varout","python",t,name,name,"pyobj"))) {
+ getf.code << tm << "\n";
+ getf.code.replace("$name",iname);
+ } else if ((tm = typemap_lookup("out","python",t,name,name,"pyobj"))) {
+ getf.code << tm << "\n";
+ getf.code.replace("$name",iname);
+ } else {
+ if ((t->type != T_VOID) || (t->is_pointer)) {
+ if (!t->is_pointer) {
+
+ /* Is a normal datatype */
+ switch(t->type) {
+ case T_INT: case T_SINT: case T_UINT:
+ case T_SHORT: case T_SSHORT: case T_USHORT:
+ case T_LONG: case T_SLONG: case T_ULONG:
+ case T_SCHAR: case T_UCHAR: case T_BOOL:
+ getf.code << tab4 << "pyobj = PyInt_FromLong((long) " << name << ");\n";
+ break;
+ case T_FLOAT: case T_DOUBLE:
+ getf.code << tab4 << "pyobj = PyFloat_FromDouble((double) " << name << ");\n";
+ break;
+ case T_CHAR:
+ getf.add_local("char","ptemp[2]");
+ getf.code << tab4 << "ptemp[0] = " << name << ";\n"
+ << tab4 << "ptemp[1] = 0;\n"
+ << tab4 << "pyobj = PyString_FromString(ptemp);\n";
+ break;
+ case T_USER:
+ // Hack this into a pointer
+ getf.add_local("char", "ptemp[128]");
+ t->is_pointer++;
+ getf.code << tab4 << "SWIG_MakePtr(ptemp,(char *) &" << name
+ << "," << quote << t->print_mangle() << quote << ");\n"
+ << tab4 << "pyobj = PyString_FromString(ptemp);\n";
+ t->is_pointer--;
+ break;
+ default:
+ fprintf(stderr,"Unable to link with type %s\n", t->print_type());
+ break;
+ }
+ } else {
+
+ // Is some sort of pointer value
+ if ((t->type == T_CHAR) && (t->is_pointer == 1)) {
+ getf.code << tab4 << "if (" << name << ")\n"
+ << tab8 << "pyobj = PyString_FromString(" << name << ");\n"
+ << tab4 << "else pyobj = PyString_FromString(\"(NULL)\");\n";
+ } else {
+ getf.add_local("char","ptemp[128]");
+ getf.code << tab4 << "SWIG_MakePtr(ptemp, (char *) " << name << ",\""
+ << t->print_mangle() << "\");\n"
+ << tab4 << "pyobj = PyString_FromString(ptemp);\n";
+ }
+ }
+ }
+ }
+
+ getf.code << tab4 << "return pyobj;\n"
+ << "}\n";
+
+ getf.print(f_wrappers);
+
+ // Now add this to the variable linking mechanism
+
+ fprintf(f_init,"\t SWIG_addvarlink(SWIG_globals,\"%s\",%s_get, %s_set);\n", iname, wname, wname);
+
+
+ // Fill in the documentation entry
+
+ if (doc_entry) {
+ doc_entry->usage << usage_var(iname, t);
+ doc_entry->cinfo << "Global : " << t->print_type() << " " << name;
+ }
+
+ // ----------------------------------------------------------
+ // Output a shadow variable. (If applicable and possible)
+ // ----------------------------------------------------------
+ if ((shadow) && (!(shadow & PYSHADOW_MEMBER))) {
+ if ((hash.lookup(t->name)) && (t->is_pointer <= 1)) {
+ vars << iname << " = " << (char *) hash.lookup(t->name) << "Ptr(" << module << "." << global_name
+ << "." << iname << ")\n";
+ }
+ }
+}
+
+// -----------------------------------------------------------------------
+// PYTHON::declare_const(char *name, char *iname, DataType *type, char *value)
+//
+// Makes a constant as defined with #define. Constants are added to the
+// module's dictionary and are **NOT** guaranteed to be read-only,
+// sorry.
+//
+// ------------------------------------------------------------------------
+
+void PYTHON::declare_const(char *name, char *, DataType *type, char *value) {
+
+ char *tm;
+
+ // Make a static python object
+
+ if ((tm = typemap_lookup("const","python",type,name,value,name))) {
+ fprintf(f_init,"%s\n",tm);
+ } else {
+
+ if ((type->type == T_USER) && (!type->is_pointer)) {
+ fprintf(stderr,"%s : Line %d. Unsupported constant value.\n", input_file, line_number);
+ return;
+ }
+
+ if (type->is_pointer == 0) {
+ switch(type->type) {
+ case T_INT:case T_SINT: case T_UINT: case T_BOOL:
+ case T_SHORT: case T_SSHORT: case T_USHORT:
+ case T_LONG: case T_SLONG: case T_ULONG:
+ case T_SCHAR: case T_UCHAR:
+ fprintf(f_init,"\t PyDict_SetItemString(d,\"%s\", PyInt_FromLong((long) %s));\n",name,value);
+ break;
+ case T_DOUBLE:
+ case T_FLOAT:
+ fprintf(f_init,"\t PyDict_SetItemString(d,\"%s\", PyFloat_FromDouble((double) %s));\n",name,value);
+ break;
+ case T_CHAR :
+ fprintf(f_init,"\t PyDict_SetItemString(d,\"%s\", PyString_FromString(\"%s\"));\n",name,value);
+ break;
+ default:
+ fprintf(stderr,"%s : Line %d. Unsupported constant value.\n", input_file, line_number);
+ break;
+ }
+ } else {
+ if ((type->type == T_CHAR) && (type->is_pointer == 1)) {
+ fprintf(f_init,"\t PyDict_SetItemString(d,\"%s\", PyString_FromString(\"%s\"));\n",name,value);
+ } else {
+ // A funky user-defined type. We're going to munge it into a string pointer value
+ fprintf(f_init,"\t {\n");
+ fprintf(f_init,"\t\t char %s_char[%d];\n", name, (int) strlen(type->print_mangle()) + 20);
+ fprintf(f_init,"\t\t SWIG_MakePtr(%s_char, (void *) (%s),\"%s\");\n",
+ name, value, type->print_mangle());
+ fprintf(f_init,"\t\t PyDict_SetItemString(d,\"%s\", PyString_FromString(%s_char));\n",name,name);
+ fprintf(f_init,"\t }\n");
+ }
+ }
+ }
+ if ((shadow) && (!(shadow & PYSHADOW_MEMBER))) {
+ vars << name << " = " << module << "." << name << "\n";
+ }
+ if (doc_entry) {
+ doc_entry->usage = "";
+ doc_entry->usage << usage_const(name,type,value);
+ doc_entry->cinfo = "";
+ doc_entry->cinfo << "Constant: " << type->print_type();
+ }
+}
+
+// ----------------------------------------------------------------------
+// PYTHON::usage_var(char *iname, DataType *t)
+//
+// This function produces a string indicating how to use a variable.
+// It is called by the documentation system to produce syntactically
+// correct documentation entires.
+//
+// s is a pointer to a character pointer. You should create
+// a string and set this pointer to point to it.
+// ----------------------------------------------------------------------
+
+char *PYTHON::usage_var(char *iname, DataType *) {
+
+ static String temp;
+
+ temp = "";
+ temp << global_name << "." << iname;
+
+ // Create result. Don't modify this
+
+ return temp.get();
+}
+
+// ---------------------------------------------------------------------------
+// PYTHON::usage_func(char *iname, DataType *t, ParmList *l)
+//
+// Produces a string indicating how to call a function in the target
+// language.
+//
+// ---------------------------------------------------------------------------
+
+char *PYTHON::usage_func(char *iname, DataType *, ParmList *l) {
+
+ static String temp;
+ Parm *p;
+ int i;
+
+ temp = "";
+ temp << iname << "(";
+
+ // Now go through and print parameters
+ // You probably don't need to change this
+
+ i = 0;
+ p = l->get_first();
+ while (p != 0) {
+ if (!p->ignore) {
+ i++;
+ /* If parameter has been named, use that. Otherwise, just print a type */
+
+ if ((p->t->type != T_VOID) || (p->t->is_pointer)) {
+ if (strlen(p->name) > 0) {
+ temp << p->name;
+ } else {
+ temp << p->t->print_type();
+ }
+ }
+ p = l->get_next();
+ if (p != 0) {
+ if (!p->ignore)
+ temp << ",";
+ }
+ } else {
+ p = l->get_next();
+ if (p) {
+ if ((!p->ignore) && (i > 0))
+ temp << ",";
+ }
+ }
+ }
+
+ temp << ")";
+
+ // Create result. Don't change this
+
+ return temp.get();
+
+}
+
+
+// ----------------------------------------------------------------------
+// PYTHON::usage_const(char *iname, DataType *type, char *value)
+//
+// Produces a string for a constant. Really about the same as
+// usage_var() except we'll indicate the value of the constant.
+// ----------------------------------------------------------------------
+
+char *PYTHON::usage_const(char *iname, DataType *, char *value) {
+
+ static String temp;
+ temp = "";
+ temp << iname << " = " << value;
+
+ return temp.get();
+}
+
+// -----------------------------------------------------------------------
+// PYTHON::add_native(char *name, char *funcname)
+//
+// Add a native module name to the methods list.
+// -----------------------------------------------------------------------
+
+void PYTHON::add_native(char *name, char *funcname) {
+ add_method(name, funcname);
+ if (shadow) {
+ func << name << " = " << module << "." << name << "\n\n";
+ }
+}
+
+// -----------------------------------------------------------------------
+// PYTHON::cpp_class_decl(char *name, char *rename, char *type)
+//
+// Treatment of an empty class definition. Used to handle
+// shadow classes across modules.
+// -----------------------------------------------------------------------
+
+void PYTHON::cpp_class_decl(char *name, char *rename, char *type) {
+ char temp[256];
+ if (shadow) {
+ hash.add(name,copy_string(rename));
+ // Add full name of datatype to the hash table
+ if (strlen(type) > 0) {
+ sprintf(temp,"%s %s", type, name);
+ hash.add(temp,copy_string(rename));
+ }
+ }
+}
+
+// -----------------------------------------------------------------------
+// PYTHON::pragma(char *name, char *type)
+//
+// Pragma directive. Used to do various python specific things
+// -----------------------------------------------------------------------
+
+void PYTHON::pragma(char *lang, char *cmd, char *value) {
+
+ if (strcmp(lang,"python") == 0) {
+ if (strcmp(cmd,"CODE") == 0) {
+ if (shadow) {
+ fprintf(f_shadow,"%s\n",value);
+ }
+ } else if (strcmp(cmd,"code") == 0) {
+ if (shadow) {
+ fprintf(f_shadow,"%s\n",value);
+ }
+ } else if (strcmp(cmd,"include") == 0) {
+ if (shadow) {
+ if (value) {
+ if (get_file(value,pragma_include) == -1) {
+ fprintf(stderr,"%s : Line %d. Unable to locate file %s\n", input_file, line_number, value);
+ }
+ }
+ }
+ } else {
+ fprintf(stderr,"%s : Line %d. Unrecognized pragma.\n", input_file, line_number);
+ }
+ }
+}
+
+
+struct PyPragma {
+ PyPragma(char *method, char *text) : m_method(method), m_text(text), next(0) { }
+ ~PyPragma() { if (next) delete next; }
+ String m_method;
+ String m_text;
+ PyPragma *next;
+};
+
+static PyPragma *pragmas = 0;
+
+// -----------------------------------------------------------------------------
+// PYTHON::cpp_pragma(Pragma *plist)
+//
+// Handle C++ pragmas
+// -----------------------------------------------------------------------------
+
+void PYTHON::cpp_pragma(Pragma *plist) {
+ PyPragma *pyp1 = 0, *pyp2 = 0;
+ if (pragmas) {
+ delete pragmas;
+ pragmas = 0;
+ }
+ while (plist) {
+ if (strcmp(plist->lang,"python") == 0) {
+ if (strcmp(plist->name,"addtomethod") == 0) {
+ // parse value, expected to be in the form "methodName:line"
+ String temp = plist->value;
+ char* txtptr = strchr(temp.get(), ':');
+ if (txtptr) {
+ // add name and line to a list in current_class
+ *txtptr = 0;
+ txtptr++;
+ pyp1 = new PyPragma(temp,txtptr);
+ if (pyp2) {
+ pyp2->next = pyp1;
+ pyp2 = pyp1;
+ } else {
+ pragmas = pyp1;
+ pyp2 = pragmas;
+ }
+ } else {
+ fprintf(stderr,"%s : Line %d. Malformed addtomethod pragma. Should be \"methodName:text\"\n",
+ plist->filename.get(),plist->lineno);
+ }
+ } else if (strcmp(plist->name, "addtoclass") == 0) {
+ pyp1 = new PyPragma("__class__",plist->value);
+ if (pyp2) {
+ pyp2->next = pyp1;
+ pyp2 = pyp1;
+ } else {
+ pragmas = pyp1;
+ pyp2 = pragmas;
+ }
+ }
+ }
+ plist = plist->next;
+ }
+}
+
+// --------------------------------------------------------------------------------
+// PYTHON::emitAddPragmas(String& output, char* name, char* spacing);
+//
+// Search the current class pragma for any text belonging to name.
+// Append the text properly spaced to the output string.
+// --------------------------------------------------------------------------------
+
+void PYTHON::emitAddPragmas(String& output, char* name, char* spacing)
+{
+ PyPragma *p = pragmas;
+ while (p) {
+ if (strcmp(p->m_method,name) == 0) {
+ output << spacing << p->m_text << "\n";
+ }
+ p = p->next;
+ }
+}