]> git.saurik.com Git - wxWidgets.git/blobdiff - docs/doxygen/overviews/string.h
Added build/msw/wx_propgrid.dsp to vc manifest (I hope this fixes #10564)
[wxWidgets.git] / docs / doxygen / overviews / string.h
index c328f08a8d0e240242cd2afe055d7a08ef5a6a26..f74c6e3a2e07c712565d29dafb3bea3d5eb34835 100644 (file)
 /////////////////////////////////////////////////////////////////////////////
-// Name:        string
+// Name:        string.h
 // Purpose:     topic overview
 // Author:      wxWidgets team
 // RCS-ID:      $Id$
 // Licence:     wxWindows license
 /////////////////////////////////////////////////////////////////////////////
 
-/*!
- @page string_overview wxString overview
- Classes: #wxString, #wxArrayString, #wxStringTokenizer
- #Introduction
- @ref otherstringclasses_overview
- @ref stringadvices_overview
- @ref relatedtostring_overview
- @ref stringrefcount_overview
- @ref stringtuning_overview
- @section introductiontowxstring Introduction
- wxString is a class which represents a character string of arbitrary length (limited by 
- @e MAX_INT which is usually 2147483647 on 32 bit machines) and containing
- arbitrary characters. The ASCII NUL character is allowed, but be aware that
- in the current string implementation some methods might not work correctly
- in this case.
- wxString works with both ASCII (traditional, 7 or 8 bit, characters) as well as
- Unicode (wide characters) strings.
- This class has all the standard operations you can expect to find in a string class:
- dynamic memory management (string extends to accommodate new characters),
- construction from other strings, C strings and characters, assignment operators,
- access to individual characters, string concatenation and comparison, substring
- extraction, case conversion, trimming and padding (with spaces), searching and
- replacing and both C-like #Printf() and stream-like
- insertion functions as well as much more - see #wxString 
- for a list of all functions.
- @section otherstringclasses Comparison of wxString to other string classes
- The advantages of using a special string class instead of working directly with
- C strings are so obvious that there is a huge number of such classes available.
- The most important advantage is the need to always
- remember to allocate/free memory for C strings; working with fixed size buffers almost
- inevitably leads to buffer overflows. At last, C++ has a standard string class
- (std::string). So why the need for wxString?
- There are several advantages:
-  @b Efficiency This class was made to be as efficient as possible: both
- in terms of size (each wxString objects takes exactly the same space as a @e char * pointer, sing @ref stringrefcount_overview) and speed.
- It also provides performance @ref stringtuning_overview 
- which may be enabled to fine tune the memory allocation strategy for your
- particular application - and the gain might be quite big.
-  @b Compatibility This class tries to combine almost full compatibility
- with the old wxWidgets 1.xx wxString class, some reminiscence to MFC CString
- class and 90% of the functionality of std::string class.
-  @b Rich set of functions Some of the functions present in wxString are
- very useful but don't exist in most of other string classes: for example, 
- #AfterFirst, 
- #BeforeLast, #operator 
- or #Printf. Of course, all the standard string
- operations are supported as well.
-  @b Unicode wxString is Unicode friendly: it allows to easily convert
- to and from ANSI and Unicode strings in any build mode (see the 
- @ref unicode_overview for more details) and maps to either
- @c string or @c wstring transparently depending on the current mode.
-  @b Used by wxWidgets And, of course, this class is used everywhere
- inside wxWidgets so there is no performance loss which would result from
- conversions of objects of any other string class (including std::string) to
- wxString internally by wxWidgets.
- However, there are several problems as well. The most important one is probably
- that there are often several functions to do exactly the same thing: for
- example, to get the length of the string either one of 
- length(), #Len() or 
- #Length() may be used. The first function, as almost
- all the other functions in lowercase, is std::string compatible. The second one
- is "native" wxString version and the last one is wxWidgets 1.xx way. So the
- question is: which one is better to use? And the answer is that:
- @b The usage of std::string compatible functions is strongly advised! It will
- both make your code more familiar to other C++ programmers (who are supposed to
- have knowledge of std::string but not of wxString), let you reuse the same code
- in both wxWidgets and other programs (by just typedefing wxString as std::string
- when used outside wxWidgets) and by staying compatible with future versions of
- wxWidgets which will probably start using std::string sooner or later too.
- In the situations where there is no corresponding std::string function, please
- try to use the new wxString methods and not the old wxWidgets 1.xx variants
- which are deprecated and may disappear in future versions.
- @section wxstringadvices Some advice about using wxString
- Probably the main trap with using this class is the implicit conversion operator to 
- @e const char *. It is advised that you use #c_str()
- instead to clearly indicate when the conversion is done. Specifically, the
- danger of this implicit conversion may be seen in the following code fragment:
- @code
- // this function converts the input string to uppercase, output it to the screen
- // and returns the result
- const char *SayHELLO(const wxString& input)
- {
-     wxString output = input.Upper();
-     printf("Hello, %s!\n", output);
-     return output;
- }
- @endcode
- There are two nasty bugs in these three lines. First of them is in the call to the 
- @e printf() function. Although the implicit conversion to C strings is applied
- automatically by the compiler in the case of
- @code
- puts(output);
- @endcode
- because the argument of @e puts() is known to be of the type @e const char *,
- this is @b not done for @e printf() which is a function with variable
- number of arguments (and whose arguments are of unknown types). So this call may
- do anything at all (including displaying the correct string on screen), although
- the most likely result is a program crash. The solution is to use 
- #c_str(): just replace this line with
- @code
- printf("Hello, %s!\n", output.c_str());
- @endcode
- The second bug is that returning @e output doesn't work. The implicit cast is
- used again, so the code compiles, but as it returns a pointer to a buffer
- belonging to a local variable which is deleted as soon as the function exits,
- its contents is totally arbitrary. The solution to this problem is also easy:
- just make the function return wxString instead of a C string.
- This leads us to the following general advice: all functions taking string
- arguments should take @e const wxString (this makes assignment to the
- strings inside the function faster because of 
- @ref stringrefcount_overview) and all functions returning
- strings should return @e wxString - this makes it safe to return local
- variables.
- @section relatedtostring Other string related functions and classes
- As most programs use character strings, the standard C library provides quite
- a few functions to work with them. Unfortunately, some of them have rather
- counter-intuitive behaviour (like strncpy() which doesn't always terminate the
- resulting string with a @NULL) and are in general not very safe (passing @NULL
- to them will probably lead to program crash). Moreover, some very useful
- functions are not standard at all. This is why in addition to all wxString
- functions, there are also a few global string functions which try to correct
- these problems: #wxIsEmpty() verifies whether the string
- is empty (returning @true for @NULL pointers), 
- #wxStrlen() also handles @NULLs correctly and returns 0 for
- them and #wxStricmp() is just a platform-independent
- version of case-insensitive string comparison function known either as
- stricmp() or strcasecmp() on different platforms.
- The @c wx/string.h header also defines #wxSnprintf 
- and #wxVsnprintf functions which should be used instead
- of the inherently dangerous standard @c sprintf() and which use @c snprintf() instead which does buffer size checks whenever possible. Of
- course, you may also use wxString::Printf which is
- also safe.
- There is another class which might be useful when working with wxString: 
- #wxStringTokenizer. It is helpful when a string must
- be broken into tokens and replaces the standard C library @e strtok() function.
- And the very last string-related class is #wxArrayString: it
- is just a version of the "template" dynamic array class which is specialized to work
- with strings. Please note that this class is specially optimized (using its
- knowledge of the internal structure of wxString) for storing strings and so it is
- vastly better from a performance point of view than a wxObjectArray of wxStrings.
- @section wxstringrefcount Reference counting and why you shouldn't care about it
- All considerations for wxObject-derived @ref trefcount_overview objects
- are valid also for wxString, even if it does not derive from wxObject.
- Probably the unique case when you might want to think about reference
- counting is when a string character is taken from a string which is not a
- constant (or a constant reference). In this case, due to C++ rules, the
- "read-only" @e operator[] (which is the same as 
- #GetChar()) cannot be chosen and the "read/write" 
- @e operator[] (the same as 
- #GetWritableChar()) is used instead. As the
- call to this operator may modify the string, its data is unshared (COW is done)
- and so if the string was really shared there is some performance loss (both in
- terms of speed and memory consumption). In the rare cases when this may be
- important, you might prefer using #GetChar() instead
- of the array subscript operator for this reasons. Please note that 
- #at() method has the same problem as the subscript operator in
- this situation and so using it is not really better. Also note that if all
- string arguments to your functions are passed as @e const wxString (see the
- section @ref stringadvices_overview) this situation will almost
- never arise because for constant references the correct operator is called automatically.
- @section wxstringtuning Tuning wxString for your application
- @b Note: this section is strictly about performance issues and is
- absolutely not necessary to read for using wxString class. Please skip it unless
- you feel familiar with profilers and relative tools. If you do read it, please
- also read the preceding section about 
- @ref stringrefcount_overview.
- For the performance reasons wxString doesn't allocate exactly the amount of
- memory needed for each string. Instead, it adds a small amount of space to each
- allocated block which allows it to not reallocate memory (a relatively
- expensive operation) too often as when, for example, a string is constructed by
- subsequently adding one character at a time to it, as for example in:
- @code
- // delete all vowels from the string
- wxString DeleteAllVowels(const wxString& original)
- {
-     wxString result;
-     size_t len = original.length();
-     for ( size_t n = 0; n  len; n++ )
-     {
-         if ( strchr("aeuio", tolower(original[n])) == @NULL )
-             result += original[n];
-     }
-     return result;
- }
- @endcode
- This is quite a common situation and not allocating extra memory at all would
- lead to very bad performance in this case because there would be as many memory
- (re)allocations as there are consonants in the original string. Allocating too
- much extra memory would help to improve the speed in this situation, but due to
- a great number of wxString objects typically used in a program would also
- increase the memory consumption too much.
- The very best solution in precisely this case would be to use 
- #Alloc() function to preallocate, for example, len bytes
- from the beginning - this will lead to exactly one memory allocation being
- performed (because the result is at most as long as the original string).
- However, using Alloc() is tedious and so wxString tries to do its best. The
- default algorithm assumes that memory allocation is done in granularity of at
- least 16 bytes (which is the case on almost all of wide-spread platforms) and so
- nothing is lost if the amount of memory to allocate is rounded up to the next
- multiple of 16. Like this, no memory is lost and 15 iterations from 16 in the
- example above won't allocate memory but use the already allocated pool.
- The default approach is quite conservative. Allocating more memory may bring
- important performance benefits for programs using (relatively) few very long
- strings. The amount of memory allocated is configured by the setting of @e EXTRA_ALLOC in the file string.cpp during compilation (be sure to understand
- why its default value is what it is before modifying it!). You may try setting
- it to greater amount (say twice nLen) or to 0 (to see performance degradation
- which will follow) and analyse the impact of it on your program. If you do it,
- you will probably find it helpful to also define WXSTRING_STATISTICS symbol
- which tells the wxString class to collect performance statistics and to show
- them on stderr on program termination. This will show you the average length of
- strings your program manipulates, their average initial length and also the
- percent of times when memory wasn't reallocated when string concatenation was
- done but the already preallocated memory was used (this value should be about
- 98% for the default allocation policy, if it is less than 90% you should
- really consider fine tuning wxString for your application).
- It goes without saying that a profiler should be used to measure the precise
- difference the change to EXTRA_ALLOC makes to your program.
- */
+/**
+
+@page overview_string wxString Overview
+
+Classes: wxString, wxArrayString, wxStringTokenizer
+
+@li @ref overview_string_intro
+@li @ref overview_string_internal
+@li @ref overview_string_binary
+@li @ref overview_string_comparison
+@li @ref overview_string_advice
+@li @ref overview_string_related
+@li @ref overview_string_tuning
+@li @ref overview_string_settings
+
+
+<hr>
+
+
+@section overview_string_intro Introduction
+
+wxString is a class which represents a Unicode string of arbitrary length and
+containing arbitrary Unicode characters.
+
+This class has all the standard operations you can expect to find in a string
+class: dynamic memory management (string extends to accommodate new
+characters), construction from other strings, compatibility with C strings and
+wide character C strings, assignment operators, access to individual characters, string
+concatenation and comparison, substring extraction, case conversion, trimming and
+padding (with spaces), searching and replacing and both C-like @c printf (wxString::Printf)
+and stream-like insertion functions as well as much more - see wxString for a
+list of all functions.
+
+The wxString class has been completely rewritten for wxWidgets 3.0 but much work
+has been done to make existing code using ANSI string literals work as it did
+in previous versions.
+
+
+@section overview_string_internal Internal wxString encoding
+
+Since wxWidgets 3.0 wxString internally uses <b>UTF-16</b> (with Unicode
+code units stored in @c wchar_t) under Windows and <b>UTF-8</b> (with Unicode
+code units stored in @c char) under Unix, Linux and Mac OS X to store its content.
+
+For definitions of <em>code units</em> and <em>code points</em> terms, please
+see the @ref overview_unicode_encodings paragraph.
+
+For simplicity of implementation, wxString when <tt>wxUSE_UNICODE_WCHAR==1</tt>
+(e.g. on Windows) uses <em>per code unit indexing</em> instead of
+<em>per code point indexing</em> and doesn't know anything about surrogate pairs;
+in other words it always considers code points to be composed by 1 code unit,
+while this is really true only for characters in the @e BMP (Basic Multilingual Plane).
+Thus when iterating over a UTF-16 string stored in a wxString under Windows, the user
+code has to take care of <em>surrogate pairs</em> himself.
+(Note however that Windows itself has built-in support for surrogate pairs in UTF-16,
+such as for drawing strings on screen.)
+
+@remarks
+Note that while the behaviour of wxString when <tt>wxUSE_UNICODE_WCHAR==1</tt>
+resembles UCS-2 encoding, it's not completely correct to refer to wxString as
+UCS-2 encoded since you can encode code points outside the @e BMP in a wxString
+as two code units (i.e. as a surrogate pair; as already mentioned however wxString
+will "see" them as two different code points)
+
+When instead <tt>wxUSE_UNICODE_UTF8==1</tt> (e.g. on Linux and Mac OS X)
+wxString handles UTF8 multi-bytes sequences just fine also for characters outside
+the BMP (it implements <em>per code point indexing</em>), so that you can use
+UTF8 in a completely transparent way:
+
+Example:
+@code
+    // first test, using exotic characters outside of the Unicode BMP:
+
+    wxString test = wxString::FromUTF8("\xF0\x90\x8C\x80");
+        // U+10300 is "OLD ITALIC LETTER A" and is part of Unicode Plane 1
+        // in UTF8 it's encoded as 0xF0 0x90 0x8C 0x80
+
+    // it's a single Unicode code-point encoded as:
+    // - a UTF16 surrogate pair under Windows
+    // - a UTF8 multiple-bytes sequence under Linux
+    // (without considering the final NULL)
+
+    wxPrintf("wxString reports a length of %d character(s)", test.length());
+        // prints "wxString reports a length of 1 character(s)" on Linux
+        // prints "wxString reports a length of 2 character(s)" on Windows
+        // since wxString on Windows doesn't have surrogate pairs support!
+
+
+    // second test, this time using characters part of the Unicode BMP:
+
+    wxString test2 = wxString::FromUTF8("\x41\xC3\xA0\xE2\x82\xAC");
+        // this is the UTF8 encoding of capital letter A followed by
+        // 'small case letter a with grave' followed by the 'euro sign'
+
+    // they are 3 Unicode code-points encoded as:
+    // - 3 UTF16 code units under Windows
+    // - 6 UTF8 code units under Linux
+    // (without considering the final NULL)
+
+    wxPrintf("wxString reports a length of %d character(s)", test2.length());
+        // prints "wxString reports a length of 3 character(s)" on Linux
+        // prints "wxString reports a length of 3 character(s)" on Windows
+@endcode
+
+To better explain what stated above, consider the second string of the example
+above; it's composed by 3 characters and the final @c NULL:
+
+@image html overview_wxstring_encoding.png
+
+As you can see, UTF16 encoding is straightforward (for characters in the @e BMP)
+and in this example the UTF16-encoded wxString takes 8 bytes.
+UTF8 encoding is more elaborated and in this example takes 7 bytes.
+
+In general, for strings containing many latin characters UTF8 provides a big
+advantage with regards to the memory footprint respect UTF16, but requires some
+more processing for common operations like e.g. length calculation.
+
+Finally, note that the type used by wxString to store Unicode code units
+(@c wchar_t or @c char) is always @c typedef-ined to be ::wxStringCharType.
+
+
+@section overview_string_binary Using wxString to store binary data
+
+wxString can be used to store binary data (even if it contains @c NULs) using the
+functions wxString::To8BitData and wxString::From8BitData.
+
+Beware that even if @c NUL character is allowed, in the current string implementation
+some methods might not work correctly with them.
+
+Note however that other classes like wxMemoryBuffer are more suited to this task.
+For handling binary data you may also want to look at the wxStreamBuffer,
+wxMemoryOutputStream, wxMemoryInputStream classes.
+
+
+@section overview_string_comparison Comparison to Other String Classes
+
+The advantages of using a special string class instead of working directly with
+C strings are so obvious that there is a huge number of such classes available.
+The most important advantage is the need to always remember to allocate/free
+memory for C strings; working with fixed size buffers almost inevitably leads
+to buffer overflows. At last, C++ has a standard string class (@c std::string). So
+why the need for wxString? There are several advantages:
+
+@li <b>Efficiency:</b> Since wxWidgets 3.0 wxString uses @c std::string (in UTF8
+    mode under Linux, Unix and OS X) or @c std::wstring (in UTF16 mode under Windows)
+    internally by default to store its contents. wxString will therefore inherit the
+    performance characteristics from @c std::string.
+@li <b>Compatibility:</b> This class tries to combine almost full compatibility
+    with the old wxWidgets 1.xx wxString class, some reminiscence of MFC's
+    CString class and 90% of the functionality of @c std::string class.
+@li <b>Rich set of functions:</b> Some of the functions present in wxString are
+    very useful but don't exist in most of other string classes: for example,
+    wxString::AfterFirst, wxString::BeforeLast, wxString::Printf.
+    Of course, all the standard string operations are supported as well.
+@li <b>wxString is Unicode friendly:</b> it allows to easily convert to
+    and from ANSI and Unicode strings (see @ref overview_unicode
+    for more details) and maps to @c std::wstring transparently.
+@li <b>Used by wxWidgets:</b> And, of course, this class is used everywhere
+    inside wxWidgets so there is no performance loss which would result from
+    conversions of objects of any other string class (including @c std::string) to
+    wxString internally by wxWidgets.
+
+However, there are several problems as well. The most important one is probably
+that there are often several functions to do exactly the same thing: for
+example, to get the length of the string either one of wxString::length(),
+wxString::Len() or wxString::Length() may be used. The first function, as
+almost all the other functions in lowercase, is @c std::string compatible. The
+second one is the "native" wxString version and the last one is the wxWidgets
+1.xx way.
+
+So which is better to use? The usage of the @c std::string compatible functions is
+strongly advised! It will both make your code more familiar to other C++
+programmers (who are supposed to have knowledge of @c std::string but not of
+wxString), let you reuse the same code in both wxWidgets and other programs (by
+just typedefing wxString as @c std::string when used outside wxWidgets) and by
+staying compatible with future versions of wxWidgets which will probably start
+using @c std::string sooner or later too.
+
+In the situations where there is no corresponding @c std::string function, please
+try to use the new wxString methods and not the old wxWidgets 1.xx variants
+which are deprecated and may disappear in future versions.
+
+
+@section overview_string_advice Advice About Using wxString
+
+@subsection overview_string_implicitconv Implicit conversions
+
+Probably the main trap with using this class is the implicit conversion
+operator to <tt>const char*</tt>. It is advised that you use wxString::c_str()
+instead to clearly indicate when the conversion is done. Specifically, the
+danger of this implicit conversion may be seen in the following code fragment:
+
+@code
+// this function converts the input string to uppercase,
+// output it to the screen and returns the result
+const char *SayHELLO(const wxString& input)
+{
+    wxString output = input.Upper();
+    printf("Hello, %s!\n", output);
+    return output;
+}
+@endcode
+
+There are two nasty bugs in these three lines. The first is in the call to the
+@c printf() function. Although the implicit conversion to C strings is applied
+automatically by the compiler in the case of
+
+@code
+puts(output);
+@endcode
+
+because the argument of @c puts() is known to be of the type
+<tt>const char*</tt>, this is @b not done for @c printf() which is a function
+with variable number of arguments (and whose arguments are of unknown types).
+So this call may do any number of things (including displaying the correct
+string on screen), although the most likely result is a program crash.
+The solution is to use wxString::c_str(). Just replace this line with this:
+
+@code
+printf("Hello, %s!\n", output.c_str());
+@endcode
+
+The second bug is that returning @c output doesn't work. The implicit cast is
+used again, so the code compiles, but as it returns a pointer to a buffer
+belonging to a local variable which is deleted as soon as the function exits,
+its contents are completely arbitrary. The solution to this problem is also
+easy, just make the function return wxString instead of a C string.
+
+This leads us to the following general advice: all functions taking string
+arguments should take <tt>const wxString&</tt> (this makes assignment to the
+strings inside the function faster) and all functions returning strings
+should return wxString - this makes it safe to return local variables.
+
+Finally note that wxString uses the current locale encoding to convert any C string
+literal to Unicode. The same is done for converting to and from @c std::string
+and for the return value of c_str().
+For this conversion, the @a wxConvLibc class instance is used.
+See wxCSConv and wxMBConv.
+
+
+@subsection overview_string_iterating Iterating wxString's characters
+
+As previously described, when <tt>wxUSE_UNICODE_UTF8==1</tt>, wxString internally
+uses the variable-length UTF8 encoding.
+Accessing a UTF-8 string by index can be very @b inefficient because
+a single character is represented by a variable number of bytes so that
+the entire string has to be parsed in order to find the character.
+Since iterating over a string by index is a common programming technique and
+was also possible and encouraged by wxString using the access operator[]()
+wxString implements caching of the last used index so that iterating over
+a string is a linear operation even in UTF-8 mode.
+
+It is nonetheless recommended to use @b iterators (instead of index based
+access) like this:
+
+@code
+wxString s = "hello";
+wxString::const_iterator i;
+for (i = s.begin(); i != s.end(); ++i)
+{
+    wxUniChar uni_ch = *i;
+    // do something with it
+}
+@endcode
+
+
+
+@section overview_string_related String Related Functions and Classes
+
+As most programs use character strings, the standard C library provides quite
+a few functions to work with them. Unfortunately, some of them have rather
+counter-intuitive behaviour (like @c strncpy() which doesn't always terminate
+the resulting string with a @NULL) and are in general not very safe (passing
+@NULL to them will probably lead to program crash). Moreover, some very useful
+functions are not standard at all. This is why in addition to all wxString
+functions, there are also a few global string functions which try to correct
+these problems: wxIsEmpty() verifies whether the string is empty (returning
+@true for @NULL pointers), wxStrlen() also handles @NULL correctly and returns
+0 for them and wxStricmp() is just a platform-independent version of
+case-insensitive string comparison function known either as @c stricmp() or
+@c strcasecmp() on different platforms.
+
+The <tt>@<wx/string.h@></tt> header also defines ::wxSnprintf and ::wxVsnprintf
+functions which should be used instead of the inherently dangerous standard
+@c sprintf() and which use @c snprintf() instead which does buffer size checks
+whenever possible. Of course, you may also use wxString::Printf which is also
+safe.
+
+There is another class which might be useful when working with wxString:
+wxStringTokenizer. It is helpful when a string must be broken into tokens and
+replaces the standard C library @c strtok() function.
+
+And the very last string-related class is wxArrayString: it is just a version
+of the "template" dynamic array class which is specialized to work with
+strings. Please note that this class is specially optimized (using its
+knowledge of the internal structure of wxString) for storing strings and so it
+is vastly better from a performance point of view than a wxObjectArray of
+wxStrings.
+
+
+@section overview_string_tuning Tuning wxString for Your Application
+
+@note This section is strictly about performance issues and is absolutely not
+necessary to read for using wxString class. Please skip it unless you feel
+familiar with profilers and relative tools.
+
+For the performance reasons wxString doesn't allocate exactly the amount of
+memory needed for each string. Instead, it adds a small amount of space to each
+allocated block which allows it to not reallocate memory (a relatively
+expensive operation) too often as when, for example, a string is constructed by
+subsequently adding one character at a time to it, as for example in:
+
+@code
+// delete all vowels from the string
+wxString DeleteAllVowels(const wxString& original)
+{
+    wxString vowels( "aeuioAEIOU" );
+    wxString result;
+    wxString::const_iterator i;
+    for ( i = original.begin(); i != original.end(); ++i )
+    {
+        if (vowels.Find( *i ) == wxNOT_FOUND)
+            result += *i;
+    }
+
+    return result;
+}
+@endcode
+
+This is quite a common situation and not allocating extra memory at all would
+lead to very bad performance in this case because there would be as many memory
+(re)allocations as there are consonants in the original string. Allocating too
+much extra memory would help to improve the speed in this situation, but due to
+a great number of wxString objects typically used in a program would also
+increase the memory consumption too much.
+
+The very best solution in precisely this case would be to use wxString::Alloc()
+function to preallocate, for example, len bytes from the beginning - this will
+lead to exactly one memory allocation being performed (because the result is at
+most as long as the original string).
+
+However, using wxString::Alloc() is tedious and so wxString tries to do its
+best. The default algorithm assumes that memory allocation is done in
+granularity of at least 16 bytes (which is the case on almost all of
+wide-spread platforms) and so nothing is lost if the amount of memory to
+allocate is rounded up to the next multiple of 16. Like this, no memory is lost
+and 15 iterations from 16 in the example above won't allocate memory but use
+the already allocated pool.
+
+The default approach is quite conservative. Allocating more memory may bring
+important performance benefits for programs using (relatively) few very long
+strings. The amount of memory allocated is configured by the setting of
+@c EXTRA_ALLOC in the file string.cpp during compilation (be sure to understand
+why its default value is what it is before modifying it!). You may try setting
+it to greater amount (say twice nLen) or to 0 (to see performance degradation
+which will follow) and analyse the impact of it on your program. If you do it,
+you will probably find it helpful to also define @c WXSTRING_STATISTICS symbol
+which tells the wxString class to collect performance statistics and to show
+them on stderr on program termination. This will show you the average length of
+strings your program manipulates, their average initial length and also the
+percent of times when memory wasn't reallocated when string concatenation was
+done but the already preallocated memory was used (this value should be about
+98% for the default allocation policy, if it is less than 90% you should
+really consider fine tuning wxString for your application).
+
+It goes without saying that a profiler should be used to measure the precise
+difference the change to @c EXTRA_ALLOC makes to your program.
+
+
+@section overview_string_settings wxString Related Compilation Settings
+
+Much work has been done to make existing code using ANSI string literals
+work as before version 3.0.
+
+If you nonetheless need to have a wxString that uses @c wchar_t
+on Unix and Linux, too, you can specify this on the command line with the
+@c configure @c --disable-utf8 switch or you can consider using wxUString
+or @c std::wstring instead.
+
+@c wxUSE_UNICODE is now defined as @c 1 by default to indicate Unicode support.
+If UTF-8 is used for the internal storage in wxString, @c wxUSE_UNICODE_UTF8 is
+also defined, otherwise @c wxUSE_UNICODE_WCHAR is.
+See also @ref page_wxusedef_important.
+
+*/
+