1 /////////////////////////////////////////////////////////////////////////////
3 // Purpose: interface of wxEvtHandler, wxEventBlocker and many
4 // wxEvent-derived classes
5 // Author: wxWidgets team
7 // Licence: wxWindows licence
8 /////////////////////////////////////////////////////////////////////////////
11 The predefined constants for the number of times we propagate event
12 upwards window child-parent chain.
14 enum wxEventPropagation
16 /// don't propagate it at all
17 wxEVENT_PROPAGATE_NONE
= 0,
19 /// propagate it until it is processed
20 wxEVENT_PROPAGATE_MAX
= INT_MAX
24 The different categories for a wxEvent; see wxEvent::GetEventCategory.
26 @note They are used as OR-combinable flags by wxEventLoopBase::YieldFor.
31 This is the category for those events which are generated to update
32 the appearance of the GUI but which (usually) do not comport data
33 processing, i.e. which do not provide input or output data
34 (e.g. size events, scroll events, etc).
35 They are events NOT directly generated by the user's input devices.
37 wxEVT_CATEGORY_UI
= 1,
40 This category groups those events which are generated directly from the
41 user through input devices like mouse and keyboard and usually result in
42 data to be processed from the application
43 (e.g. mouse clicks, key presses, etc).
45 wxEVT_CATEGORY_USER_INPUT
= 2,
47 /// This category is for wxSocketEvent
48 wxEVT_CATEGORY_SOCKET
= 4,
50 /// This category is for wxTimerEvent
51 wxEVT_CATEGORY_TIMER
= 8,
54 This category is for any event used to send notifications from the
55 secondary threads to the main one or in general for notifications among
56 different threads (which may or may not be user-generated).
57 See e.g. wxThreadEvent.
59 wxEVT_CATEGORY_THREAD
= 16,
62 This mask is used in wxEventLoopBase::YieldFor to specify that all event
63 categories should be processed.
66 wxEVT_CATEGORY_UI
|wxEVT_CATEGORY_USER_INPUT
|wxEVT_CATEGORY_SOCKET
| \
67 wxEVT_CATEGORY_TIMER
|wxEVT_CATEGORY_THREAD
73 An event is a structure holding information about an event passed to a
74 callback or member function.
76 wxEvent used to be a multipurpose event object, and is an abstract base class
77 for other event classes (see below).
79 For more information about events, see the @ref overview_events overview.
82 In wxPerl custom event classes should be derived from
83 @c Wx::PlEvent and @c Wx::PlCommandEvent.
89 @see wxCommandEvent, wxMouseEvent
91 class wxEvent
: public wxObject
97 Notice that events are usually created by wxWidgets itself and creating
98 e.g. a wxPaintEvent in your code and sending it to e.g. a wxTextCtrl
99 will not usually affect it at all as native controls have no specific
100 knowledge about wxWidgets events. However you may construct objects of
101 specific types and pass them to wxEvtHandler::ProcessEvent() if you
102 want to create your own custom control and want to process its events
103 in the same manner as the standard ones.
105 Also please notice that the order of parameters in this constructor is
106 different from almost all the derived classes which specify the event
107 type as the first argument.
110 The identifier of the object (window, timer, ...) which generated
113 The unique type of event, e.g. @c wxEVT_PAINT, @c wxEVT_SIZE or
114 @c wxEVT_COMMAND_BUTTON_CLICKED.
116 wxEvent(int id
= 0, wxEventType eventType
= wxEVT_NULL
);
119 Returns a copy of the event.
121 Any event that is posted to the wxWidgets event system for later action
122 (via wxEvtHandler::AddPendingEvent, wxEvtHandler::QueueEvent or wxPostEvent())
123 must implement this method.
125 All wxWidgets events fully implement this method, but any derived events
126 implemented by the user should also implement this method just in case they
127 (or some event derived from them) are ever posted.
129 All wxWidgets events implement a copy constructor, so the easiest way of
130 implementing the Clone function is to implement a copy constructor for
131 a new event (call it MyEvent) and then define the Clone function like this:
134 wxEvent *Clone() const { return new MyEvent(*this); }
137 virtual wxEvent
* Clone() const = 0;
140 Returns the object (usually a window) associated with the event, if any.
142 wxObject
* GetEventObject() const;
145 Returns the identifier of the given event type, such as @c wxEVT_COMMAND_BUTTON_CLICKED.
147 wxEventType
GetEventType() const;
150 Returns a generic category for this event.
151 wxEvent implementation returns @c wxEVT_CATEGORY_UI by default.
153 This function is used to selectively process events in wxEventLoopBase::YieldFor.
155 virtual wxEventCategory
GetEventCategory() const;
158 Returns the identifier associated with this event, such as a button command id.
163 Returns @true if the event handler should be skipped, @false otherwise.
165 bool GetSkipped() const;
168 Gets the timestamp for the event. The timestamp is the time in milliseconds
169 since some fixed moment (not necessarily the standard Unix Epoch, so only
170 differences between the timestamps and not their absolute values usually make sense).
173 wxWidgets returns a non-NULL timestamp only for mouse and key events
174 (see wxMouseEvent and wxKeyEvent).
176 long GetTimestamp() const;
179 Returns @true if the event is or is derived from wxCommandEvent else it returns @false.
181 @note exists only for optimization purposes.
183 bool IsCommandEvent() const;
186 Sets the propagation level to the given value (for example returned from an
187 earlier call to wxEvent::StopPropagation).
189 void ResumePropagation(int propagationLevel
);
192 Sets the originating object.
194 void SetEventObject(wxObject
* object
);
199 void SetEventType(wxEventType type
);
202 Sets the identifier associated with this event, such as a button command id.
207 Sets the timestamp for the event.
209 void SetTimestamp(long timeStamp
= 0);
212 Test if this event should be propagated or not, i.e. if the propagation level
213 is currently greater than 0.
215 bool ShouldPropagate() const;
218 This method can be used inside an event handler to control whether further
219 event handlers bound to this event will be called after the current one returns.
221 Without Skip() (or equivalently if Skip(@false) is used), the event will not
222 be processed any more. If Skip(@true) is called, the event processing system
223 continues searching for a further handler function for this event, even though
224 it has been processed already in the current handler.
226 In general, it is recommended to skip all non-command events to allow the
227 default handling to take place. The command events are, however, normally not
228 skipped as usually a single command such as a button click or menu item
229 selection must only be processed by one handler.
231 void Skip(bool skip
= true);
234 Stop the event from propagating to its parent window.
236 Returns the old propagation level value which may be later passed to
237 ResumePropagation() to allow propagating the event again.
239 int StopPropagation();
243 Indicates how many levels the event can propagate.
245 This member is protected and should typically only be set in the constructors
246 of the derived classes. It may be temporarily changed by StopPropagation()
247 and ResumePropagation() and tested with ShouldPropagate().
249 The initial value is set to either @c wxEVENT_PROPAGATE_NONE (by default)
250 meaning that the event shouldn't be propagated at all or to
251 @c wxEVENT_PROPAGATE_MAX (for command events) meaning that it should be
252 propagated as much as necessary.
254 Any positive number means that the event should be propagated but no more than
255 the given number of times. E.g. the propagation level may be set to 1 to
256 propagate the event to its parent only, but not to its grandparent.
258 int m_propagationLevel
;
262 @class wxEventBlocker
264 This class is a special event handler which allows to discard
265 any event (or a set of event types) directed to a specific window.
270 void MyWindow::DoSomething()
273 // block all events directed to this window while
274 // we do the 1000 FunctionWhichSendsEvents() calls
275 wxEventBlocker blocker(this);
277 for ( int i = 0; i 1000; i++ )
278 FunctionWhichSendsEvents(i);
280 } // ~wxEventBlocker called, old event handler is restored
282 // the event generated by this call will be processed:
283 FunctionWhichSendsEvents(0)
290 @see @ref overview_events_processing, wxEvtHandler
292 class wxEventBlocker
: public wxEvtHandler
296 Constructs the blocker for the given window and for the given event type.
298 If @a type is @c wxEVT_ANY, then all events for that window are blocked.
299 You can call Block() after creation to add other event types to the list
302 Note that the @a win window @b must remain alive until the
303 wxEventBlocker object destruction.
305 wxEventBlocker(wxWindow
* win
, wxEventType type
= -1);
308 Destructor. The blocker will remove itself from the chain of event handlers for
309 the window provided in the constructor, thus restoring normal processing of events.
311 virtual ~wxEventBlocker();
314 Adds to the list of event types which should be blocked the given @a eventType.
316 void Block(wxEventType eventType
);
324 A class that can handle events from the windowing system.
325 wxWindow is (and therefore all window classes are) derived from this class.
327 When events are received, wxEvtHandler invokes the method listed in the
328 event table using itself as the object. When using multiple inheritance
329 <b>it is imperative that the wxEvtHandler(-derived) class is the first
330 class inherited</b> such that the @c this pointer for the overall object
331 will be identical to the @c this pointer of the wxEvtHandler portion.
336 @see @ref overview_events_processing, wxEventBlocker, wxEventLoopBase
338 class wxEvtHandler
: public wxObject
, public wxTrackable
349 If the handler is part of a chain, the destructor will unlink itself
352 virtual ~wxEvtHandler();
356 @name Event queuing and processing
361 Queue event for a later processing.
363 This method is similar to ProcessEvent() but while the latter is
364 synchronous, i.e. the event is processed immediately, before the
365 function returns, this one is asynchronous and returns immediately
366 while the event will be processed at some later time (usually during
367 the next event loop iteration).
369 Another important difference is that this method takes ownership of the
370 @a event parameter, i.e. it will delete it itself. This implies that
371 the event should be allocated on the heap and that the pointer can't be
372 used any more after the function returns (as it can be deleted at any
375 QueueEvent() can be used for inter-thread communication from the worker
376 threads to the main thread, it is safe in the sense that it uses
377 locking internally and avoids the problem mentioned in AddPendingEvent()
378 documentation by ensuring that the @a event object is not used by the
379 calling thread any more. Care should still be taken to avoid that some
380 fields of this object are used by it, notably any wxString members of
381 the event object must not be shallow copies of another wxString object
382 as this would result in them still using the same string buffer behind
383 the scenes. For example:
385 void FunctionInAWorkerThread(const wxString& str)
387 wxCommandEvent* evt = new wxCommandEvent;
389 // NOT evt->SetString(str) as this would be a shallow copy
390 evt->SetString(str.c_str()); // make a deep copy
392 wxTheApp->QueueEvent( evt );
396 Note that you can use wxThreadEvent instead of wxCommandEvent
397 to avoid this problem:
399 void FunctionInAWorkerThread(const wxString& str)
404 // wxThreadEvent::Clone() makes sure that the internal wxString
405 // member is not shared by other wxString instances:
406 wxTheApp->QueueEvent( evt.Clone() );
410 Finally notice that this method automatically wakes up the event loop
411 if it is currently idle by calling ::wxWakeUpIdle() so there is no need
412 to do it manually when using it.
417 A heap-allocated event to be queued, QueueEvent() takes ownership
418 of it. This parameter shouldn't be @c NULL.
420 virtual void QueueEvent(wxEvent
*event
);
423 Post an event to be processed later.
425 This function is similar to QueueEvent() but can't be used to post
426 events from worker threads for the event objects with wxString fields
427 (i.e. in practice most of them) because of an unsafe use of the same
428 wxString object which happens because the wxString field in the
429 original @a event object and its copy made internally by this function
430 share the same string buffer internally. Use QueueEvent() to avoid
433 A copy of @a event is made by the function, so the original can be deleted
434 as soon as function returns (it is common that the original is created
435 on the stack). This requires that the wxEvent::Clone() method be
436 implemented by event so that it can be duplicated and stored until it
440 Event to add to the pending events queue.
442 virtual void AddPendingEvent(const wxEvent
& event
);
445 Processes an event, searching event tables and calling zero or more suitable
446 event handler function(s).
448 Normally, your application would not call this function: it is called in the
449 wxWidgets implementation to dispatch incoming user interface events to the
450 framework (and application).
452 However, you might need to call it if implementing new functionality
453 (such as a new control) where you define new event types, as opposed to
454 allowing the user to override virtual functions.
456 Notice that you don't usually need to override ProcessEvent() to
457 customize the event handling, overriding the specially provided
458 TryBefore() and TryAfter() functions is usually enough. For example,
459 wxMDIParentFrame may override TryBefore() to ensure that the menu
460 events are processed in the active child frame before being processed
461 in the parent frame itself.
463 The normal order of event table searching is as follows:
464 -# wxApp::FilterEvent() is called. If it returns anything but @c -1
465 (default) the processing stops here.
466 -# TryBefore() is called (this is where wxValidator are taken into
467 account for wxWindow objects). If this returns @true, the function exits.
468 -# If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled)
469 the function skips to step (7).
470 -# Dynamic event table of the handlers bound using Bind<>() is
471 searched. If a handler is found, it is executed and the function
472 returns @true unless the handler used wxEvent::Skip() to indicate
473 that it didn't handle the event in which case the search continues.
474 -# Static events table of the handlers bound using event table
475 macros is searched for this event handler. If this fails, the base
476 class event table is tried, and so on until no more tables
477 exist or an appropriate function was found. If a handler is found,
478 the same logic as in the previous step applies.
479 -# The search is applied down the entire chain of event handlers (usually the
480 chain has a length of one). This chain can be formed using wxEvtHandler::SetNextHandler():
481 @image html overview_events_chain.png
482 (referring to the image, if @c A->ProcessEvent is called and it doesn't handle
483 the event, @c B->ProcessEvent will be called and so on...).
484 Note that in the case of wxWindow you can build a stack of event handlers
485 (see wxWindow::PushEventHandler() for more info).
486 If any of the handlers of the chain return @true, the function exits.
487 -# TryAfter() is called: for the wxWindow object this may propagate the
488 event to the window parent (recursively). If the event is still not
489 processed, ProcessEvent() on wxTheApp object is called as the last
492 Notice that steps (2)-(6) are performed in ProcessEventLocally()
493 which is called by this function.
498 @true if a suitable event handler function was found and executed,
499 and the function did not call wxEvent::Skip.
501 @see SearchEventTable()
503 virtual bool ProcessEvent(wxEvent
& event
);
506 Try to process the event in this handler and all those chained to it.
508 As explained in ProcessEvent() documentation, the event handlers may be
509 chained in a doubly-linked list. This function tries to process the
510 event in this handler (including performing any pre-processing done in
511 TryBefore(), e.g. applying validators) and all those following it in
512 the chain until the event is processed or the chain is exhausted.
514 This function is called from ProcessEvent() and, in turn, calls
515 TryThis() for each handler in turn. It is not virtual and so cannot be
516 overridden but can, and should, be called to forward an event to
517 another handler instead of ProcessEvent() which would result in a
518 duplicate call to TryAfter(), e.g. resulting in all unprocessed events
519 being sent to the application object multiple times.
526 @true if this handler of one of those chained to it processed the
529 bool ProcessEventLocally(wxEvent
& event
);
532 Processes an event by calling ProcessEvent() and handles any exceptions
533 that occur in the process.
534 If an exception is thrown in event handler, wxApp::OnExceptionInMainLoop is called.
539 @return @true if the event was processed, @false if no handler was found
540 or an exception was thrown.
542 @see wxWindow::HandleWindowEvent
544 bool SafelyProcessEvent(wxEvent
& event
);
547 Processes the pending events previously queued using QueueEvent() or
548 AddPendingEvent(); you must call this function only if you are sure
549 there are pending events for this handler, otherwise a @c wxCHECK
552 The real processing still happens in ProcessEvent() which is called by this
555 Note that this function needs a valid application object (see
556 wxAppConsole::GetInstance()) because wxApp holds the list of the event
557 handlers with pending events and this function manipulates that list.
559 void ProcessPendingEvents();
562 Deletes all events queued on this event handler using QueueEvent() or
565 Use with care because the events which are deleted are (obviously) not
566 processed and this may have unwanted consequences (e.g. user actions events
569 void DeletePendingEvents();
572 Searches the event table, executing an event handler function if an appropriate
576 Event table to be searched.
578 Event to be matched against an event table entry.
580 @return @true if a suitable event handler function was found and
581 executed, and the function did not call wxEvent::Skip.
583 @remarks This function looks through the object's event table and tries
584 to find an entry that will match the event.
585 An entry will match if:
586 @li The event type matches, and
587 @li the identifier or identifier range matches, or the event table
588 entry's identifier is zero.
590 If a suitable function is called but calls wxEvent::Skip, this
591 function will fail, and searching will continue.
593 @todo this function in the header is listed as an "implementation only" function;
594 are we sure we want to document it?
598 virtual bool SearchEventTable(wxEventTable
& table
,
605 @name Connecting and disconnecting
610 Connects the given function dynamically with the event handler, id and
613 Notice that Bind() provides a more flexible and safer way to do the
614 same thing as Connect(), please use it in any new code -- while
615 Connect() is not formally deprecated due to its existing widespread
616 usage, it has no advantages compared to Bind().
618 This is an alternative to the use of static event tables. It is more
619 flexible as it allows to connect events generated by some object to an
620 event handler defined in a different object of a different class (which
621 is impossible to do directly with the event tables -- the events can be
622 only handled in another object if they are propagated upwards to it).
623 Do make sure to specify the correct @a eventSink when connecting to an
624 event of a different object.
626 See @ref overview_events_bind for more detailed explanation
627 of this function and the @ref page_samples_event sample for usage
630 This specific overload allows you to connect an event handler to a @e range
632 Do not confuse @e source IDs with event @e types: source IDs identify the
633 event generator objects (typically wxMenuItem or wxWindow objects) while the
634 event @e type identify which type of events should be handled by the
635 given @e function (an event generator object may generate many different
639 The first ID of the identifier range to be associated with the event
642 The last ID of the identifier range to be associated with the event
645 The event type to be associated with this event handler.
647 The event handler function. Note that this function should
648 be explicitly converted to the correct type which can be done using a macro
649 called @c wxFooEventHandler for the handler for any @c wxFooEvent.
651 Data to be associated with the event table entry.
653 Object whose member function should be called. It must be specified
654 when connecting an event generated by one object to a member
655 function of a different object. If it is omitted, @c this is used.
658 In wxPerl this function takes 4 arguments: @a id, @a lastid,
659 @a type, @a method; if @a method is undef, the handler is
665 void Connect(int id
, int lastId
, wxEventType eventType
,
666 wxObjectEventFunction function
,
667 wxObject
* userData
= NULL
,
668 wxEvtHandler
* eventSink
= NULL
);
671 See the Connect(int, int, wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
672 overload for more info.
674 This overload can be used to attach an event handler to a single source ID:
678 frame->Connect( wxID_EXIT,
679 wxEVT_COMMAND_MENU_SELECTED,
680 wxCommandEventHandler(MyFrame::OnQuit) );
684 Not supported by wxPerl.
687 void Connect(int id
, wxEventType eventType
,
688 wxObjectEventFunction function
,
689 wxObject
* userData
= NULL
,
690 wxEvtHandler
* eventSink
= NULL
);
693 See the Connect(int, int, wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
694 overload for more info.
696 This overload will connect the given event handler so that regardless of the
697 ID of the event source, the handler will be called.
700 Not supported by wxPerl.
703 void Connect(wxEventType eventType
,
704 wxObjectEventFunction function
,
705 wxObject
* userData
= NULL
,
706 wxEvtHandler
* eventSink
= NULL
);
709 Disconnects the given function dynamically from the event handler, using the
710 specified parameters as search criteria and returning @true if a matching
711 function has been found and removed.
713 This method can only disconnect functions which have been added using the
714 Connect() method. There is no way to disconnect functions connected using
715 the (static) event tables.
718 The event type associated with this event handler.
720 The event handler function.
722 Data associated with the event table entry.
724 Object whose member function should be called.
727 Not supported by wxPerl.
730 bool Disconnect(wxEventType eventType
,
731 wxObjectEventFunction function
,
732 wxObject
* userData
= NULL
,
733 wxEvtHandler
* eventSink
= NULL
);
736 See the Disconnect(wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
737 overload for more info.
739 This overload takes the additional @a id parameter.
742 Not supported by wxPerl.
745 bool Disconnect(int id
= wxID_ANY
,
746 wxEventType eventType
= wxEVT_NULL
,
747 wxObjectEventFunction function
= NULL
,
748 wxObject
* userData
= NULL
,
749 wxEvtHandler
* eventSink
= NULL
);
752 See the Disconnect(wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
753 overload for more info.
755 This overload takes an additional range of source IDs.
758 In wxPerl this function takes 3 arguments: @a id,
762 bool Disconnect(int id
, int lastId
,
763 wxEventType eventType
,
764 wxObjectEventFunction function
= NULL
,
765 wxObject
* userData
= NULL
,
766 wxEvtHandler
* eventSink
= NULL
);
771 @name Binding and Unbinding
776 Binds the given function, functor or method dynamically with the event.
778 This offers basically the same functionality as Connect(), but it is
779 more flexible as it also allows you to use ordinary functions and
780 arbitrary functors as event handlers. It is also less restrictive then
781 Connect() because you can use an arbitrary method as an event handler,
782 whereas Connect() requires a wxEvtHandler derived handler.
784 See @ref overview_events_bind for more detailed explanation
785 of this function and the @ref page_samples_event sample for usage
789 The event type to be associated with this event handler.
791 The event handler functor. This can be an ordinary function but also
792 an arbitrary functor like boost::function<>.
794 The first ID of the identifier range to be associated with the event
797 The last ID of the identifier range to be associated with the event
800 Data to be associated with the event table entry.
802 @see @ref overview_cpp_rtti_disabled
806 template <typename EventTag
, typename Functor
>
807 void Bind(const EventTag
& eventType
,
810 int lastId
= wxID_ANY
,
811 wxObject
*userData
= NULL
);
814 See the Bind<>(const EventTag&, Functor, int, int, wxObject*) overload for
817 This overload will bind the given method as the event handler.
820 The event type to be associated with this event handler.
822 The event handler method. This can be an arbitrary method (doesn't need
823 to be from a wxEvtHandler derived class).
825 Object whose method should be called. It must always be specified
826 so it can be checked at compile time whether the given method is an
827 actual member of the given handler.
829 The first ID of the identifier range to be associated with the event
832 The last ID of the identifier range to be associated with the event
835 Data to be associated with the event table entry.
837 @see @ref overview_cpp_rtti_disabled
841 template <typename EventTag
, typename Class
, typename EventArg
, typename EventHandler
>
842 void Bind(const EventTag
&eventType
,
843 void (Class::*method
)(EventArg
&),
844 EventHandler
*handler
,
846 int lastId
= wxID_ANY
,
847 wxObject
*userData
= NULL
);
849 Unbinds the given function, functor or method dynamically from the
850 event handler, using the specified parameters as search criteria and
851 returning @true if a matching function has been found and removed.
853 This method can only unbind functions, functors or methods which have
854 been added using the Bind<>() method. There is no way to unbind
855 functions bound using the (static) event tables.
858 The event type associated with this event handler.
860 The event handler functor. This can be an ordinary function but also
861 an arbitrary functor like boost::function<>.
863 The first ID of the identifier range associated with the event
866 The last ID of the identifier range associated with the event
869 Data associated with the event table entry.
871 @see @ref overview_cpp_rtti_disabled
875 template <typename EventTag
, typename Functor
>
876 bool Unbind(const EventTag
& eventType
,
879 int lastId
= wxID_ANY
,
880 wxObject
*userData
= NULL
);
883 See the Unbind<>(const EventTag&, Functor, int, int, wxObject*)
884 overload for more info.
886 This overload unbinds the given method from the event..
889 The event type associated with this event handler.
891 The event handler method associated with this event.
893 Object whose method was called.
895 The first ID of the identifier range associated with the event
898 The last ID of the identifier range associated with the event
901 Data associated with the event table entry.
903 @see @ref overview_cpp_rtti_disabled
907 template <typename EventTag
, typename Class
, typename EventArg
, typename EventHandler
>
908 bool Unbind(const EventTag
&eventType
,
909 void (Class::*method
)(EventArg
&),
910 EventHandler
*handler
,
912 int lastId
= wxID_ANY
,
913 wxObject
*userData
= NULL
);
916 @name User-supplied data
921 Returns user-supplied client data.
923 @remarks Normally, any extra data the programmer wishes to associate with
924 the object should be made available by deriving a new class with
929 void* GetClientData() const;
932 Returns a pointer to the user-supplied client data object.
934 @see SetClientObject(), wxClientData
936 wxClientData
* GetClientObject() const;
939 Sets user-supplied client data.
942 Data to be associated with the event handler.
944 @remarks Normally, any extra data the programmer wishes to associate
945 with the object should be made available by deriving a new
946 class with new data members. You must not call this method
947 and SetClientObject on the same class - only one of them.
951 void SetClientData(void* data
);
954 Set the client data object. Any previous object will be deleted.
956 @see GetClientObject(), wxClientData
958 void SetClientObject(wxClientData
* data
);
964 @name Event handler chaining
966 wxEvtHandler can be arranged in a double-linked list of handlers
967 which is automatically iterated by ProcessEvent() if needed.
972 Returns @true if the event handler is enabled, @false otherwise.
974 @see SetEvtHandlerEnabled()
976 bool GetEvtHandlerEnabled() const;
979 Returns the pointer to the next handler in the chain.
981 @see SetNextHandler(), GetPreviousHandler(), SetPreviousHandler(),
982 wxWindow::PushEventHandler, wxWindow::PopEventHandler
984 wxEvtHandler
* GetNextHandler() const;
987 Returns the pointer to the previous handler in the chain.
989 @see SetPreviousHandler(), GetNextHandler(), SetNextHandler(),
990 wxWindow::PushEventHandler, wxWindow::PopEventHandler
992 wxEvtHandler
* GetPreviousHandler() const;
995 Enables or disables the event handler.
998 @true if the event handler is to be enabled, @false if it is to be disabled.
1000 @remarks You can use this function to avoid having to remove the event
1001 handler from the chain, for example when implementing a
1002 dialog editor and changing from edit to test mode.
1004 @see GetEvtHandlerEnabled()
1006 void SetEvtHandlerEnabled(bool enabled
);
1009 Sets the pointer to the next handler.
1012 See ProcessEvent() for more info about how the chains of event handlers
1013 are internally used.
1014 Also remember that wxEvtHandler uses double-linked lists and thus if you
1015 use this function, you should also call SetPreviousHandler() on the
1016 argument passed to this function:
1018 handlerA->SetNextHandler(handlerB);
1019 handlerB->SetPreviousHandler(handlerA);
1023 The event handler to be set as the next handler.
1026 @see @ref overview_events_processing
1028 virtual void SetNextHandler(wxEvtHandler
* handler
);
1031 Sets the pointer to the previous handler.
1032 All remarks about SetNextHandler() apply to this function as well.
1035 The event handler to be set as the previous handler.
1038 @see @ref overview_events_processing
1040 virtual void SetPreviousHandler(wxEvtHandler
* handler
);
1043 Unlinks this event handler from the chain it's part of (if any);
1044 then links the "previous" event handler to the "next" one
1045 (so that the chain won't be interrupted).
1047 E.g. if before calling Unlink() you have the following chain:
1048 @image html evthandler_unlink_before.png
1049 then after calling @c B->Unlink() you'll have:
1050 @image html evthandler_unlink_after.png
1057 Returns @true if the next and the previous handler pointers of this
1058 event handler instance are @NULL.
1062 @see SetPreviousHandler(), SetNextHandler()
1064 bool IsUnlinked() const;
1070 Method called by ProcessEvent() before examining this object event
1073 This method can be overridden to hook into the event processing logic
1074 as early as possible. You should usually call the base class version
1075 when overriding this method, even if wxEvtHandler itself does nothing
1076 here, some derived classes do use this method, e.g. wxWindow implements
1077 support for wxValidator in it.
1081 class MyClass : public BaseClass // inheriting from wxEvtHandler
1085 virtual bool TryBefore(wxEvent& event)
1087 if ( MyPreProcess(event) )
1090 return BaseClass::TryBefore(event);
1097 virtual bool TryBefore(wxEvent
& event
);
1100 Try to process the event in this event handler.
1102 This method is called from ProcessEventLocally() and thus, indirectly,
1103 from ProcessEvent(), please see the detailed description of the event
1104 processing logic there.
1106 It is currently @em not virtual and so may not be overridden.
1113 @true if this object itself defines a handler for this event and
1114 the handler didn't skip the event.
1116 bool TryThis(wxEvent
& event
);
1119 Method called by ProcessEvent() as last resort.
1121 This method can be overridden to implement post-processing for the
1122 events which were not processed anywhere else.
1124 The base class version handles forwarding the unprocessed events to
1125 wxApp at wxEvtHandler level and propagating them upwards the window
1126 child-parent chain at wxWindow level and so should usually be called
1127 when overriding this method:
1129 class MyClass : public BaseClass // inheriting from wxEvtHandler
1133 virtual bool TryAfter(wxEvent& event)
1135 if ( BaseClass::TryAfter(event) )
1138 return MyPostProcess(event);
1145 virtual bool TryAfter(wxEvent
& event
);
1150 Flags for categories of keys.
1152 These values are used by wxKeyEvent::IsKeyInCategory(). They may be
1153 combined via the bitwise operators |, &, and ~.
1157 enum wxKeyCategoryFlags
1159 /// arrow keys, on and off numeric keypads
1162 /// page up and page down keys, on and off numeric keypads
1163 WXK_CATEGORY_PAGING
,
1165 /// home and end keys, on and off numeric keypads
1168 /// tab key, on and off numeric keypads
1171 /// backspace and delete keys, on and off numeric keypads
1174 /// union of WXK_CATEGORY_ARROW, WXK_CATEGORY_PAGING, and WXK_CATEGORY_JUMP categories
1175 WXK_CATEGORY_NAVIGATION
1182 This event class contains information about key press and release events.
1184 The main information carried by this event is the key being pressed or
1185 released. It can be accessed using either GetKeyCode() function or
1186 GetUnicodeKey(). For the printable characters, the latter should be used as
1187 it works for any keys, including non-Latin-1 characters that can be entered
1188 when using national keyboard layouts. GetKeyCode() should be used to handle
1189 special characters (such as cursor arrows keys or @c HOME or @c INS and so
1190 on) which correspond to ::wxKeyCode enum elements above the @c WXK_START
1191 constant. While GetKeyCode() also returns the character code for Latin-1
1192 keys for compatibility, it doesn't work for Unicode characters in general
1193 and will return @c WXK_NONE for any non-Latin-1 ones. For this reason, it's
1194 recommended to always use GetUnicodeKey() and only fall back to GetKeyCode()
1195 if GetUnicodeKey() returned @c WXK_NONE meaning that the event corresponds
1196 to a non-printable special keys.
1198 While both of these functions can be used with the events of @c
1199 wxEVT_KEY_DOWN, @c wxEVT_KEY_UP and @c wxEVT_CHAR types, the values
1200 returned by them are different for the first two events and the last one.
1201 For the latter, the key returned corresponds to the character that would
1202 appear in e.g. a text zone if the user pressed the key in it. As such, its
1203 value depends on the current state of the Shift key and, for the letters,
1204 on the state of Caps Lock modifier. For example, if @c A key is pressed
1205 without Shift being held down, wxKeyEvent of type @c wxEVT_CHAR generated
1206 for this key press will return (from either GetKeyCode() or GetUnicodeKey()
1207 as their meanings coincide for ASCII characters) key code of 97
1208 corresponding the ASCII value of @c a. And if the same key is pressed but
1209 with Shift being held (or Caps Lock being active), then the key could would
1210 be 65, i.e. ASCII value of capital @c A.
1212 However for the key down and up events the returned key code will instead
1213 be @c A independently of the state of the modifier keys i.e. it depends
1214 only on physical key being pressed and is not translated to its logical
1215 representation using the current keyboard state. Such untranslated key
1216 codes are defined as follows:
1217 - For the letters they correspond to the @e upper case value of the
1219 - For the other alphanumeric keys (e.g. @c 7 or @c +), the untranslated
1220 key code corresponds to the character produced by the key when it is
1221 pressed without Shift. E.g. in standard US keyboard layout the
1222 untranslated key code for the key @c =/+ in the upper right corner of
1223 the keyboard is 61 which is the ASCII value of @c =.
1224 - For the rest of the keys (i.e. special non-printable keys) it is the
1225 same as the normal key code as no translation is used anyhow.
1227 Notice that the first rule applies to all Unicode letters, not just the
1228 usual Latin-1 ones. However for non-Latin-1 letters only GetUnicodeKey()
1229 can be used to retrieve the key code as GetKeyCode() just returns @c
1230 WXK_NONE in this case.
1232 To summarize: you should handle @c wxEVT_CHAR if you need the translated
1233 key and @c wxEVT_KEY_DOWN if you only need the value of the key itself,
1234 independent of the current keyboard state.
1236 @note Not all key down events may be generated by the user. As an example,
1237 @c wxEVT_KEY_DOWN with @c = key code can be generated using the
1238 standard US keyboard layout but not using the German one because the @c
1239 = key corresponds to Shift-0 key combination in this layout and the key
1240 code for it is @c 0, not @c =. Because of this you should avoid
1241 requiring your users to type key events that might be impossible to
1242 enter on their keyboard.
1245 Another difference between key and char events is that another kind of
1246 translation is done for the latter ones when the Control key is pressed:
1247 char events for ASCII letters in this case carry codes corresponding to the
1248 ASCII value of Ctrl-Latter, i.e. 1 for Ctrl-A, 2 for Ctrl-B and so on until
1249 26 for Ctrl-Z. This is convenient for terminal-like applications and can be
1250 completely ignored by all the other ones (if you need to handle Ctrl-A it
1251 is probably a better idea to use the key event rather than the char one).
1252 Notice that currently no translation is done for the presses of @c [, @c
1253 \\, @c ], @c ^ and @c _ keys which might be mapped to ASCII values from 27
1255 Since version 2.9.2, the enum values @c WXK_CONTROL_A - @c WXK_CONTROL_Z
1256 can be used instead of the non-descriptive constant values 1-26.
1258 Finally, modifier keys only generate key events but no char events at all.
1259 The modifiers keys are @c WXK_SHIFT, @c WXK_CONTROL, @c WXK_ALT and various
1260 @c WXK_WINDOWS_XXX from ::wxKeyCode enum.
1262 Modifier keys events are special in one additional aspect: usually the
1263 keyboard state associated with a key press is well defined, e.g.
1264 wxKeyboardState::ShiftDown() returns @c true only if the Shift key was held
1265 pressed when the key that generated this event itself was pressed. There is
1266 an ambiguity for the key press events for Shift key itself however. By
1267 convention, it is considered to be already pressed when it is pressed and
1268 already released when it is released. In other words, @c wxEVT_KEY_DOWN
1269 event for the Shift key itself will have @c wxMOD_SHIFT in GetModifiers()
1270 and ShiftDown() will return true while the @c wxEVT_KEY_UP event for Shift
1271 itself will not have @c wxMOD_SHIFT in its modifiers and ShiftDown() will
1275 @b Tip: You may discover the key codes and modifiers generated by all the
1276 keys on your system interactively by running the @ref
1277 page_samples_keyboard wxWidgets sample and pressing some keys in it.
1279 @note If a key down (@c EVT_KEY_DOWN) event is caught and the event handler
1280 does not call @c event.Skip() then the corresponding char event
1281 (@c EVT_CHAR) will not happen. This is by design and enables the
1282 programs that handle both types of events to avoid processing the
1283 same key twice. As a consequence, if you do not want to suppress the
1284 @c wxEVT_CHAR events for the keys you handle, always call @c
1285 event.Skip() in your @c wxEVT_KEY_DOWN handler. Not doing may also
1286 prevent accelerators defined using this key from working.
1288 @note If a key is maintained in a pressed state, you will typically get a
1289 lot of (automatically generated) key down events but only one key up
1290 one at the end when the key is released so it is wrong to assume that
1291 there is one up event corresponding to each down one.
1293 @note For Windows programmers: The key and char events in wxWidgets are
1294 similar to but slightly different from Windows @c WM_KEYDOWN and
1295 @c WM_CHAR events. In particular, Alt-x combination will generate a
1296 char event in wxWidgets (unless it is used as an accelerator) and
1297 almost all keys, including ones without ASCII equivalents, generate
1301 @beginEventTable{wxKeyEvent}
1302 @event{EVT_KEY_DOWN(func)}
1303 Process a @c wxEVT_KEY_DOWN event (any key has been pressed).
1304 @event{EVT_KEY_UP(func)}
1305 Process a @c wxEVT_KEY_UP event (any key has been released).
1306 @event{EVT_CHAR(func)}
1307 Process a @c wxEVT_CHAR event.
1308 @event{EVT_CHAR_HOOK(func)}
1309 Process a @c wxEVT_CHAR_HOOK event which is sent to the active
1310 wxTopLevelWindow (i.e. the one containing the currently focused window)
1311 or wxApp global object if there is no active window before any other
1312 keyboard events are generated giving the parent window the opportunity
1313 to intercept all the keyboard entry. If the event is handled, i.e. the
1314 handler doesn't call wxEvent::Skip(), no further keyboard events are
1315 generated. Notice that this event is not generated when the mouse is
1316 captured as it is considered that the window which has the capture
1317 should receive all the keyboard events too without allowing its parent
1318 wxTopLevelWindow to interfere with their processing. Also please note
1319 that currently this event is not generated by wxOSX/Cocoa port.
1322 @see wxKeyboardState
1327 class wxKeyEvent
: public wxEvent
,
1328 public wxKeyboardState
1333 Currently, the only valid event types are @c wxEVT_CHAR and @c wxEVT_CHAR_HOOK.
1335 wxKeyEvent(wxEventType keyEventType
= wxEVT_NULL
);
1338 Returns the key code of the key that generated this event.
1340 ASCII symbols return normal ASCII values, while events from special
1341 keys such as "left cursor arrow" (@c WXK_LEFT) return values outside of
1342 the ASCII range. See ::wxKeyCode for a full list of the virtual key
1345 Note that this method returns a meaningful value only for special
1346 non-alphanumeric keys or if the user entered a character that can be
1347 represented in current locale's default charset. Otherwise, e.g. if the
1348 user enters a Japanese character in a program not using Japanese
1349 locale, this method returns @c WXK_NONE and GetUnicodeKey() should be
1350 used to obtain the corresponding Unicode character.
1352 Using GetUnicodeKey() is in general the right thing to do if you are
1353 interested in the characters typed by the user, GetKeyCode() should be
1354 only used for special keys (for which GetUnicodeKey() returns @c
1355 WXK_NONE). To handle both kinds of keys you might write:
1357 void MyHandler::OnChar(wxKeyEvent& event)
1359 if ( event.GetUnicodeKey() != WXK_NONE )
1361 // It's a printable character
1362 wxLogMessage("You pressed '%c'", event.GetUnicodeKey());
1366 // It's a special key, deal with all the known ones:
1382 int GetKeyCode() const;
1385 Returns true if the key is in the given key category.
1388 A bitwise combination of named ::wxKeyCategoryFlags constants.
1392 bool IsKeyInCategory(int category
) const;
1396 Obtains the position (in client coordinates) at which the key was pressed.
1398 wxPoint
GetPosition() const;
1399 void GetPosition(long* x
, long* y
) const;
1403 Returns the raw key code for this event.
1405 The flags are platform-dependent and should only be used if the
1406 functionality provided by other wxKeyEvent methods is insufficient.
1408 Under MSW, the raw key code is the value of @c wParam parameter of the
1409 corresponding message.
1411 Under GTK, the raw key code is the @c keyval field of the corresponding
1414 Under OS X, the raw key code is the @c keyCode field of the
1415 corresponding NSEvent.
1417 @note Currently the raw key codes are not supported by all ports, use
1418 @ifdef_ wxHAS_RAW_KEY_CODES to determine if this feature is available.
1420 wxUint32
GetRawKeyCode() const;
1423 Returns the low level key flags for this event.
1425 The flags are platform-dependent and should only be used if the
1426 functionality provided by other wxKeyEvent methods is insufficient.
1428 Under MSW, the raw flags are just the value of @c lParam parameter of
1429 the corresponding message.
1431 Under GTK, the raw flags contain the @c hardware_keycode field of the
1432 corresponding GDK event.
1434 Under OS X, the raw flags contain the modifiers state.
1436 @note Currently the raw key flags are not supported by all ports, use
1437 @ifdef_ wxHAS_RAW_KEY_CODES to determine if this feature is available.
1439 wxUint32
GetRawKeyFlags() const;
1442 Returns the Unicode character corresponding to this key event.
1444 If the key pressed doesn't have any character value (e.g. a cursor key)
1445 this method will return @c WXK_NONE. In this case you should use
1446 GetKeyCode() to retrieve the value of the key.
1448 This function is only available in Unicode build, i.e. when
1449 @c wxUSE_UNICODE is 1.
1451 wxChar
GetUnicodeKey() const;
1454 Returns the X position (in client coordinates) of the event.
1456 wxCoord
GetX() const;
1459 Returns the Y position (in client coordinates) of the event.
1461 wxCoord
GetY() const;
1467 @class wxJoystickEvent
1469 This event class contains information about joystick events, particularly
1470 events received by windows.
1472 @beginEventTable{wxJoystickEvent}
1473 @event{EVT_JOY_BUTTON_DOWN(func)}
1474 Process a @c wxEVT_JOY_BUTTON_DOWN event.
1475 @event{EVT_JOY_BUTTON_UP(func)}
1476 Process a @c wxEVT_JOY_BUTTON_UP event.
1477 @event{EVT_JOY_MOVE(func)}
1478 Process a @c wxEVT_JOY_MOVE event.
1479 @event{EVT_JOY_ZMOVE(func)}
1480 Process a @c wxEVT_JOY_ZMOVE event.
1481 @event{EVT_JOYSTICK_EVENTS(func)}
1482 Processes all joystick events.
1490 class wxJoystickEvent
: public wxEvent
1496 wxJoystickEvent(wxEventType eventType
= wxEVT_NULL
, int state
= 0,
1497 int joystick
= wxJOYSTICK1
,
1501 Returns @true if the event was a down event from the specified button
1505 Can be @c wxJOY_BUTTONn where @c n is 1, 2, 3 or 4; or @c wxJOY_BUTTON_ANY to
1506 indicate any button down event.
1508 bool ButtonDown(int button
= wxJOY_BUTTON_ANY
) const;
1511 Returns @true if the specified button (or any button) was in a down state.
1514 Can be @c wxJOY_BUTTONn where @c n is 1, 2, 3 or 4; or @c wxJOY_BUTTON_ANY to
1515 indicate any button down event.
1517 bool ButtonIsDown(int button
= wxJOY_BUTTON_ANY
) const;
1520 Returns @true if the event was an up event from the specified button
1524 Can be @c wxJOY_BUTTONn where @c n is 1, 2, 3 or 4; or @c wxJOY_BUTTON_ANY to
1525 indicate any button down event.
1527 bool ButtonUp(int button
= wxJOY_BUTTON_ANY
) const;
1530 Returns the identifier of the button changing state.
1532 This is a @c wxJOY_BUTTONn identifier, where @c n is one of 1, 2, 3, 4.
1534 int GetButtonChange() const;
1537 Returns the down state of the buttons.
1539 This is a @c wxJOY_BUTTONn identifier, where @c n is one of 1, 2, 3, 4.
1541 int GetButtonState() const;
1544 Returns the identifier of the joystick generating the event - one of
1545 wxJOYSTICK1 and wxJOYSTICK2.
1547 int GetJoystick() const;
1550 Returns the x, y position of the joystick event.
1552 wxPoint
GetPosition() const;
1555 Returns the z position of the joystick event.
1557 int GetZPosition() const;
1560 Returns @true if this was a button up or down event
1561 (@e not 'is any button down?').
1563 bool IsButton() const;
1566 Returns @true if this was an x, y move event.
1568 bool IsMove() const;
1571 Returns @true if this was a z move event.
1573 bool IsZMove() const;
1579 @class wxScrollWinEvent
1581 A scroll event holds information about events sent from scrolling windows.
1583 Note that you can use the EVT_SCROLLWIN* macros for intercepting scroll window events
1584 from the receiving window.
1586 @beginEventTable{wxScrollWinEvent}
1587 @event{EVT_SCROLLWIN(func)}
1588 Process all scroll events.
1589 @event{EVT_SCROLLWIN_TOP(func)}
1590 Process @c wxEVT_SCROLLWIN_TOP scroll-to-top events.
1591 @event{EVT_SCROLLWIN_BOTTOM(func)}
1592 Process @c wxEVT_SCROLLWIN_BOTTOM scroll-to-bottom events.
1593 @event{EVT_SCROLLWIN_LINEUP(func)}
1594 Process @c wxEVT_SCROLLWIN_LINEUP line up events.
1595 @event{EVT_SCROLLWIN_LINEDOWN(func)}
1596 Process @c wxEVT_SCROLLWIN_LINEDOWN line down events.
1597 @event{EVT_SCROLLWIN_PAGEUP(func)}
1598 Process @c wxEVT_SCROLLWIN_PAGEUP page up events.
1599 @event{EVT_SCROLLWIN_PAGEDOWN(func)}
1600 Process @c wxEVT_SCROLLWIN_PAGEDOWN page down events.
1601 @event{EVT_SCROLLWIN_THUMBTRACK(func)}
1602 Process @c wxEVT_SCROLLWIN_THUMBTRACK thumbtrack events
1603 (frequent events sent as the user drags the thumbtrack).
1604 @event{EVT_SCROLLWIN_THUMBRELEASE(func)}
1605 Process @c wxEVT_SCROLLWIN_THUMBRELEASE thumb release events.
1612 @see wxScrollEvent, @ref overview_events
1614 class wxScrollWinEvent
: public wxEvent
1620 wxScrollWinEvent(wxEventType commandType
= wxEVT_NULL
, int pos
= 0,
1621 int orientation
= 0);
1624 Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
1627 @todo wxHORIZONTAL and wxVERTICAL should go in their own enum
1629 int GetOrientation() const;
1632 Returns the position of the scrollbar for the thumb track and release events.
1634 Note that this field can't be used for the other events, you need to query
1635 the window itself for the current position in that case.
1637 int GetPosition() const;
1639 void SetOrientation(int orient
);
1640 void SetPosition(int pos
);
1646 @class wxSysColourChangedEvent
1648 This class is used for system colour change events, which are generated
1649 when the user changes the colour settings using the control panel.
1650 This is only appropriate under Windows.
1653 The default event handler for this event propagates the event to child windows,
1654 since Windows only sends the events to top-level windows.
1655 If intercepting this event for a top-level window, remember to call the base
1656 class handler, or to pass the event on to the window's children explicitly.
1658 @beginEventTable{wxSysColourChangedEvent}
1659 @event{EVT_SYS_COLOUR_CHANGED(func)}
1660 Process a @c wxEVT_SYS_COLOUR_CHANGED event.
1666 @see @ref overview_events
1668 class wxSysColourChangedEvent
: public wxEvent
1674 wxSysColourChangedEvent();
1680 @class wxWindowCreateEvent
1682 This event is sent just after the actual window associated with a wxWindow
1683 object has been created.
1685 Since it is derived from wxCommandEvent, the event propagates up
1686 the window hierarchy.
1688 @beginEventTable{wxWindowCreateEvent}
1689 @event{EVT_WINDOW_CREATE(func)}
1690 Process a @c wxEVT_CREATE event.
1696 @see @ref overview_events, wxWindowDestroyEvent
1698 class wxWindowCreateEvent
: public wxCommandEvent
1704 wxWindowCreateEvent(wxWindow
* win
= NULL
);
1706 /// Return the window being created.
1707 wxWindow
*GetWindow() const;
1715 A paint event is sent when a window's contents needs to be repainted.
1717 The handler of this event must create a wxPaintDC object and use it for
1718 painting the window contents. For example:
1720 void MyWindow::OnPaint(wxPaintEvent& event)
1728 Notice that you must @e not create other kinds of wxDC (e.g. wxClientDC or
1729 wxWindowDC) in EVT_PAINT handlers and also don't create wxPaintDC outside
1730 of this event handlers.
1733 You can optimize painting by retrieving the rectangles that have been damaged
1734 and only repainting these. The rectangles are in terms of the client area,
1735 and are unscrolled, so you will need to do some calculations using the current
1736 view position to obtain logical, scrolled units.
1737 Here is an example of using the wxRegionIterator class:
1739 // Called when window needs to be repainted.
1740 void MyWindow::OnPaint(wxPaintEvent& event)
1744 // Find Out where the window is scrolled to
1745 int vbX,vbY; // Top left corner of client
1746 GetViewStart(&vbX,&vbY);
1748 int vX,vY,vW,vH; // Dimensions of client area in pixels
1749 wxRegionIterator upd(GetUpdateRegion()); // get the update rect list
1758 // Alternatively we can do this:
1759 // wxRect rect(upd.GetRect());
1761 // Repaint this rectangle
1770 Please notice that in general it is impossible to change the drawing of a
1771 standard control (such as wxButton) and so you shouldn't attempt to handle
1772 paint events for them as even if it might work on some platforms, this is
1773 inherently not portable and won't work everywhere.
1776 @beginEventTable{wxPaintEvent}
1777 @event{EVT_PAINT(func)}
1778 Process a @c wxEVT_PAINT event.
1784 @see @ref overview_events
1786 class wxPaintEvent
: public wxEvent
1792 wxPaintEvent(int id
= 0);
1798 @class wxMaximizeEvent
1800 An event being sent when a top level window is maximized. Notice that it is
1801 not sent when the window is restored to its original size after it had been
1802 maximized, only a normal wxSizeEvent is generated in this case.
1804 Currently this event is only generated in wxMSW, wxGTK, wxOSX/Cocoa and wxOS2
1805 ports so portable programs should only rely on receiving @c wxEVT_SIZE and
1806 not necessarily this event when the window is maximized.
1808 @beginEventTable{wxMaximizeEvent}
1809 @event{EVT_MAXIMIZE(func)}
1810 Process a @c wxEVT_MAXIMIZE event.
1816 @see @ref overview_events, wxTopLevelWindow::Maximize,
1817 wxTopLevelWindow::IsMaximized
1819 class wxMaximizeEvent
: public wxEvent
1823 Constructor. Only used by wxWidgets internally.
1825 wxMaximizeEvent(int id
= 0);
1829 The possibles modes to pass to wxUpdateUIEvent::SetMode().
1833 /** Send UI update events to all windows. */
1834 wxUPDATE_UI_PROCESS_ALL
,
1836 /** Send UI update events to windows that have
1837 the wxWS_EX_PROCESS_UI_UPDATES flag specified. */
1838 wxUPDATE_UI_PROCESS_SPECIFIED
1843 @class wxUpdateUIEvent
1845 This class is used for pseudo-events which are called by wxWidgets
1846 to give an application the chance to update various user interface elements.
1848 Without update UI events, an application has to work hard to check/uncheck,
1849 enable/disable, show/hide, and set the text for elements such as menu items
1850 and toolbar buttons. The code for doing this has to be mixed up with the code
1851 that is invoked when an action is invoked for a menu item or button.
1853 With update UI events, you define an event handler to look at the state of the
1854 application and change UI elements accordingly. wxWidgets will call your member
1855 functions in idle time, so you don't have to worry where to call this code.
1857 In addition to being a clearer and more declarative method, it also means you don't
1858 have to worry whether you're updating a toolbar or menubar identifier. The same
1859 handler can update a menu item and toolbar button, if the identifier is the same.
1860 Instead of directly manipulating the menu or button, you call functions in the event
1861 object, such as wxUpdateUIEvent::Check. wxWidgets will determine whether such a
1862 call has been made, and which UI element to update.
1864 These events will work for popup menus as well as menubars. Just before a menu is
1865 popped up, wxMenu::UpdateUI is called to process any UI events for the window that
1868 If you find that the overhead of UI update processing is affecting your application,
1869 you can do one or both of the following:
1870 @li Call wxUpdateUIEvent::SetMode with a value of wxUPDATE_UI_PROCESS_SPECIFIED,
1871 and set the extra style wxWS_EX_PROCESS_UI_UPDATES for every window that should
1872 receive update events. No other windows will receive update events.
1873 @li Call wxUpdateUIEvent::SetUpdateInterval with a millisecond value to set the delay
1874 between updates. You may need to call wxWindow::UpdateWindowUI at critical points,
1875 for example when a dialog is about to be shown, in case the user sees a slight
1876 delay before windows are updated.
1878 Note that although events are sent in idle time, defining a wxIdleEvent handler
1879 for a window does not affect this because the events are sent from wxWindow::OnInternalIdle
1880 which is always called in idle time.
1882 wxWidgets tries to optimize update events on some platforms.
1883 On Windows and GTK+, events for menubar items are only sent when the menu is about
1884 to be shown, and not in idle time.
1887 @beginEventTable{wxUpdateUIEvent}
1888 @event{EVT_UPDATE_UI(id, func)}
1889 Process a @c wxEVT_UPDATE_UI event for the command with the given id.
1890 @event{EVT_UPDATE_UI_RANGE(id1, id2, func)}
1891 Process a @c wxEVT_UPDATE_UI event for any command with id included in the given range.
1897 @see @ref overview_events
1899 class wxUpdateUIEvent
: public wxCommandEvent
1905 wxUpdateUIEvent(wxWindowID commandId
= 0);
1908 Returns @true if it is appropriate to update (send UI update events to)
1911 This function looks at the mode used (see wxUpdateUIEvent::SetMode),
1912 the wxWS_EX_PROCESS_UI_UPDATES flag in @a window, the time update events
1913 were last sent in idle time, and the update interval, to determine whether
1914 events should be sent to this window now. By default this will always
1915 return @true because the update mode is initially wxUPDATE_UI_PROCESS_ALL
1916 and the interval is set to 0; so update events will be sent as often as
1917 possible. You can reduce the frequency that events are sent by changing the
1918 mode and/or setting an update interval.
1920 @see ResetUpdateTime(), SetUpdateInterval(), SetMode()
1922 static bool CanUpdate(wxWindow
* window
);
1925 Check or uncheck the UI element.
1927 void Check(bool check
);
1930 Enable or disable the UI element.
1932 void Enable(bool enable
);
1935 Returns @true if the UI element should be checked.
1937 bool GetChecked() const;
1940 Returns @true if the UI element should be enabled.
1942 bool GetEnabled() const;
1945 Static function returning a value specifying how wxWidgets will send update
1946 events: to all windows, or only to those which specify that they will process
1951 static wxUpdateUIMode
GetMode();
1954 Returns @true if the application has called Check().
1955 For wxWidgets internal use only.
1957 bool GetSetChecked() const;
1960 Returns @true if the application has called Enable().
1961 For wxWidgets internal use only.
1963 bool GetSetEnabled() const;
1966 Returns @true if the application has called Show().
1967 For wxWidgets internal use only.
1969 bool GetSetShown() const;
1972 Returns @true if the application has called SetText().
1973 For wxWidgets internal use only.
1975 bool GetSetText() const;
1978 Returns @true if the UI element should be shown.
1980 bool GetShown() const;
1983 Returns the text that should be set for the UI element.
1985 wxString
GetText() const;
1988 Returns the current interval between updates in milliseconds.
1989 The value -1 disables updates, 0 updates as frequently as possible.
1991 @see SetUpdateInterval().
1993 static long GetUpdateInterval();
1996 Used internally to reset the last-updated time to the current time.
1998 It is assumed that update events are normally sent in idle time, so this
1999 is called at the end of idle processing.
2001 @see CanUpdate(), SetUpdateInterval(), SetMode()
2003 static void ResetUpdateTime();
2006 Specify how wxWidgets will send update events: to all windows, or only to
2007 those which specify that they will process the events.
2010 this parameter may be one of the ::wxUpdateUIMode enumeration values.
2011 The default mode is wxUPDATE_UI_PROCESS_ALL.
2013 static void SetMode(wxUpdateUIMode mode
);
2016 Sets the text for this UI element.
2018 void SetText(const wxString
& text
);
2021 Sets the interval between updates in milliseconds.
2023 Set to -1 to disable updates, or to 0 to update as frequently as possible.
2026 Use this to reduce the overhead of UI update events if your application
2027 has a lot of windows. If you set the value to -1 or greater than 0,
2028 you may also need to call wxWindow::UpdateWindowUI at appropriate points
2029 in your application, such as when a dialog is about to be shown.
2031 static void SetUpdateInterval(long updateInterval
);
2034 Show or hide the UI element.
2036 void Show(bool show
);
2042 @class wxClipboardTextEvent
2044 This class represents the events generated by a control (typically a
2045 wxTextCtrl but other windows can generate these events as well) when its
2046 content gets copied or cut to, or pasted from the clipboard.
2048 There are three types of corresponding events @c wxEVT_COMMAND_TEXT_COPY,
2049 @c wxEVT_COMMAND_TEXT_CUT and @c wxEVT_COMMAND_TEXT_PASTE.
2051 If any of these events is processed (without being skipped) by an event
2052 handler, the corresponding operation doesn't take place which allows to
2053 prevent the text from being copied from or pasted to a control. It is also
2054 possible to examine the clipboard contents in the PASTE event handler and
2055 transform it in some way before inserting in a control -- for example,
2056 changing its case or removing invalid characters.
2058 Finally notice that a CUT event is always preceded by the COPY event which
2059 makes it possible to only process the latter if it doesn't matter if the
2060 text was copied or cut.
2063 These events are currently only generated by wxTextCtrl under GTK+.
2064 They are generated by all controls under Windows.
2066 @beginEventTable{wxClipboardTextEvent}
2067 @event{EVT_TEXT_COPY(id, func)}
2068 Some or all of the controls content was copied to the clipboard.
2069 @event{EVT_TEXT_CUT(id, func)}
2070 Some or all of the controls content was cut (i.e. copied and
2072 @event{EVT_TEXT_PASTE(id, func)}
2073 Clipboard content was pasted into the control.
2082 class wxClipboardTextEvent
: public wxCommandEvent
2088 wxClipboardTextEvent(wxEventType commandType
= wxEVT_NULL
, int id
= 0);
2096 This event class contains information about the events generated by the mouse:
2097 they include mouse buttons press and release events and mouse move events.
2099 All mouse events involving the buttons use @c wxMOUSE_BTN_LEFT for the
2100 left mouse button, @c wxMOUSE_BTN_MIDDLE for the middle one and
2101 @c wxMOUSE_BTN_RIGHT for the right one. And if the system supports more
2102 buttons, the @c wxMOUSE_BTN_AUX1 and @c wxMOUSE_BTN_AUX2 events
2103 can also be generated. Note that not all mice have even a middle button so a
2104 portable application should avoid relying on the events from it (but the right
2105 button click can be emulated using the left mouse button with the control key
2106 under Mac platforms with a single button mouse).
2108 For the @c wxEVT_ENTER_WINDOW and @c wxEVT_LEAVE_WINDOW events
2109 purposes, the mouse is considered to be inside the window if it is in the
2110 window client area and not inside one of its children. In other words, the
2111 parent window receives @c wxEVT_LEAVE_WINDOW event not only when the
2112 mouse leaves the window entirely but also when it enters one of its children.
2114 The position associated with a mouse event is expressed in the window
2115 coordinates of the window which generated the event, you can use
2116 wxWindow::ClientToScreen() to convert it to screen coordinates and possibly
2117 call wxWindow::ScreenToClient() next to convert it to window coordinates of
2120 @note Note that under Windows CE mouse enter and leave events are not natively
2121 supported by the system but are generated by wxWidgets itself. This has several
2122 drawbacks: the LEAVE_WINDOW event might be received some time after the mouse
2123 left the window and the state variables for it may have changed during this time.
2125 @note Note the difference between methods like wxMouseEvent::LeftDown and
2126 the inherited wxMouseState::LeftIsDown: the former returns @true when
2127 the event corresponds to the left mouse button click while the latter
2128 returns @true if the left mouse button is currently being pressed.
2129 For example, when the user is dragging the mouse you can use
2130 wxMouseEvent::LeftIsDown to test whether the left mouse button is
2131 (still) depressed. Also, by convention, if wxMouseEvent::LeftDown
2132 returns @true, wxMouseEvent::LeftIsDown will also return @true in
2133 wxWidgets whatever the underlying GUI behaviour is (which is
2134 platform-dependent). The same applies, of course, to other mouse
2138 @beginEventTable{wxMouseEvent}
2139 @event{EVT_LEFT_DOWN(func)}
2140 Process a @c wxEVT_LEFT_DOWN event. The handler of this event should normally
2141 call event.Skip() to allow the default processing to take place as otherwise
2142 the window under mouse wouldn't get the focus.
2143 @event{EVT_LEFT_UP(func)}
2144 Process a @c wxEVT_LEFT_UP event.
2145 @event{EVT_LEFT_DCLICK(func)}
2146 Process a @c wxEVT_LEFT_DCLICK event.
2147 @event{EVT_MIDDLE_DOWN(func)}
2148 Process a @c wxEVT_MIDDLE_DOWN event.
2149 @event{EVT_MIDDLE_UP(func)}
2150 Process a @c wxEVT_MIDDLE_UP event.
2151 @event{EVT_MIDDLE_DCLICK(func)}
2152 Process a @c wxEVT_MIDDLE_DCLICK event.
2153 @event{EVT_RIGHT_DOWN(func)}
2154 Process a @c wxEVT_RIGHT_DOWN event.
2155 @event{EVT_RIGHT_UP(func)}
2156 Process a @c wxEVT_RIGHT_UP event.
2157 @event{EVT_RIGHT_DCLICK(func)}
2158 Process a @c wxEVT_RIGHT_DCLICK event.
2159 @event{EVT_MOUSE_AUX1_DOWN(func)}
2160 Process a @c wxEVT_AUX1_DOWN event.
2161 @event{EVT_MOUSE_AUX1_UP(func)}
2162 Process a @c wxEVT_AUX1_UP event.
2163 @event{EVT_MOUSE_AUX1_DCLICK(func)}
2164 Process a @c wxEVT_AUX1_DCLICK event.
2165 @event{EVT_MOUSE_AUX2_DOWN(func)}
2166 Process a @c wxEVT_AUX2_DOWN event.
2167 @event{EVT_MOUSE_AUX2_UP(func)}
2168 Process a @c wxEVT_AUX2_UP event.
2169 @event{EVT_MOUSE_AUX2_DCLICK(func)}
2170 Process a @c wxEVT_AUX2_DCLICK event.
2171 @event{EVT_MOTION(func)}
2172 Process a @c wxEVT_MOTION event.
2173 @event{EVT_ENTER_WINDOW(func)}
2174 Process a @c wxEVT_ENTER_WINDOW event.
2175 @event{EVT_LEAVE_WINDOW(func)}
2176 Process a @c wxEVT_LEAVE_WINDOW event.
2177 @event{EVT_MOUSEWHEEL(func)}
2178 Process a @c wxEVT_MOUSEWHEEL event.
2179 @event{EVT_MOUSE_EVENTS(func)}
2180 Process all mouse events.
2188 class wxMouseEvent
: public wxEvent
,
2193 Constructor. Valid event types are:
2195 @li @c wxEVT_ENTER_WINDOW
2196 @li @c wxEVT_LEAVE_WINDOW
2197 @li @c wxEVT_LEFT_DOWN
2198 @li @c wxEVT_LEFT_UP
2199 @li @c wxEVT_LEFT_DCLICK
2200 @li @c wxEVT_MIDDLE_DOWN
2201 @li @c wxEVT_MIDDLE_UP
2202 @li @c wxEVT_MIDDLE_DCLICK
2203 @li @c wxEVT_RIGHT_DOWN
2204 @li @c wxEVT_RIGHT_UP
2205 @li @c wxEVT_RIGHT_DCLICK
2206 @li @c wxEVT_AUX1_DOWN
2207 @li @c wxEVT_AUX1_UP
2208 @li @c wxEVT_AUX1_DCLICK
2209 @li @c wxEVT_AUX2_DOWN
2210 @li @c wxEVT_AUX2_UP
2211 @li @c wxEVT_AUX2_DCLICK
2213 @li @c wxEVT_MOUSEWHEEL
2215 wxMouseEvent(wxEventType mouseEventType
= wxEVT_NULL
);
2218 Returns @true if the event was a first extra button double click.
2220 bool Aux1DClick() const;
2223 Returns @true if the first extra button mouse button changed to down.
2225 bool Aux1Down() const;
2228 Returns @true if the first extra button mouse button changed to up.
2230 bool Aux1Up() const;
2233 Returns @true if the event was a second extra button double click.
2235 bool Aux2DClick() const;
2238 Returns @true if the second extra button mouse button changed to down.
2240 bool Aux2Down() const;
2243 Returns @true if the second extra button mouse button changed to up.
2245 bool Aux2Up() const;
2248 Returns @true if the event was generated by the specified button.
2250 @see wxMouseState::ButtoinIsDown()
2252 bool Button(wxMouseButton but
) const;
2255 If the argument is omitted, this returns @true if the event was a mouse
2256 double click event. Otherwise the argument specifies which double click event
2257 was generated (see Button() for the possible values).
2259 bool ButtonDClick(wxMouseButton but
= wxMOUSE_BTN_ANY
) const;
2262 If the argument is omitted, this returns @true if the event was a mouse
2263 button down event. Otherwise the argument specifies which button-down event
2264 was generated (see Button() for the possible values).
2266 bool ButtonDown(wxMouseButton but
= wxMOUSE_BTN_ANY
) const;
2269 If the argument is omitted, this returns @true if the event was a mouse
2270 button up event. Otherwise the argument specifies which button-up event
2271 was generated (see Button() for the possible values).
2273 bool ButtonUp(wxMouseButton but
= wxMOUSE_BTN_ANY
) const;
2276 Returns @true if this was a dragging event (motion while a button is depressed).
2280 bool Dragging() const;
2283 Returns @true if the mouse was entering the window.
2287 bool Entering() const;
2290 Returns the mouse button which generated this event or @c wxMOUSE_BTN_NONE
2291 if no button is involved (for mouse move, enter or leave event, for example).
2292 Otherwise @c wxMOUSE_BTN_LEFT is returned for the left button down, up and
2293 double click events, @c wxMOUSE_BTN_MIDDLE and @c wxMOUSE_BTN_RIGHT
2294 for the same events for the middle and the right buttons respectively.
2296 int GetButton() const;
2299 Returns the number of mouse clicks for this event: 1 for a simple click, 2
2300 for a double-click, 3 for a triple-click and so on.
2302 Currently this function is implemented only in wxMac and returns -1 for the
2303 other platforms (you can still distinguish simple clicks from double-clicks as
2304 they generate different kinds of events however).
2308 int GetClickCount() const;
2311 Returns the configured number of lines (or whatever) to be scrolled per
2312 wheel action. Defaults to three.
2314 int GetLinesPerAction() const;
2317 Returns the logical mouse position in pixels (i.e. translated according to the
2318 translation set for the DC, which usually indicates that the window has been
2321 wxPoint
GetLogicalPosition(const wxDC
& dc
) const;
2324 Get wheel delta, normally 120.
2326 This is the threshold for action to be taken, and one such action
2327 (for example, scrolling one increment) should occur for each delta.
2329 int GetWheelDelta() const;
2332 Get wheel rotation, positive or negative indicates direction of rotation.
2334 Current devices all send an event when rotation is at least +/-WheelDelta, but
2335 finer resolution devices can be created in the future.
2337 Because of this you shouldn't assume that one event is equal to 1 line, but you
2338 should be able to either do partial line scrolling or wait until several
2339 events accumulate before scrolling.
2341 int GetWheelRotation() const;
2344 Gets the axis the wheel operation concerns; @c 0 is the Y axis as on
2345 most mouse wheels, @c 1 is the X axis.
2347 Note that only some models of mouse have horizontal wheel axis.
2349 int GetWheelAxis() const;
2352 Returns @true if the event was a mouse button event (not necessarily a button
2353 down event - that may be tested using ButtonDown()).
2355 bool IsButton() const;
2358 Returns @true if the system has been setup to do page scrolling with
2359 the mouse wheel instead of line scrolling.
2361 bool IsPageScroll() const;
2364 Returns @true if the mouse was leaving the window.
2368 bool Leaving() const;
2371 Returns @true if the event was a left double click.
2373 bool LeftDClick() const;
2376 Returns @true if the left mouse button changed to down.
2378 bool LeftDown() const;
2381 Returns @true if the left mouse button changed to up.
2383 bool LeftUp() const;
2386 Returns @true if the Meta key was down at the time of the event.
2388 bool MetaDown() const;
2391 Returns @true if the event was a middle double click.
2393 bool MiddleDClick() const;
2396 Returns @true if the middle mouse button changed to down.
2398 bool MiddleDown() const;
2401 Returns @true if the middle mouse button changed to up.
2403 bool MiddleUp() const;
2406 Returns @true if this was a motion event and no mouse buttons were pressed.
2407 If any mouse button is held pressed, then this method returns @false and
2408 Dragging() returns @true.
2410 bool Moving() const;
2413 Returns @true if the event was a right double click.
2415 bool RightDClick() const;
2418 Returns @true if the right mouse button changed to down.
2420 bool RightDown() const;
2423 Returns @true if the right mouse button changed to up.
2425 bool RightUp() const;
2431 @class wxDropFilesEvent
2433 This class is used for drop files events, that is, when files have been dropped
2434 onto the window. This functionality is currently only available under Windows.
2436 The window must have previously been enabled for dropping by calling
2437 wxWindow::DragAcceptFiles().
2439 Important note: this is a separate implementation to the more general drag and drop
2440 implementation documented in the @ref overview_dnd. It uses the older, Windows
2441 message-based approach of dropping files.
2443 @beginEventTable{wxDropFilesEvent}
2444 @event{EVT_DROP_FILES(func)}
2445 Process a @c wxEVT_DROP_FILES event.
2453 @see @ref overview_events
2455 class wxDropFilesEvent
: public wxEvent
2461 wxDropFilesEvent(wxEventType id
= 0, int noFiles
= 0,
2462 wxString
* files
= NULL
);
2465 Returns an array of filenames.
2467 wxString
* GetFiles() const;
2470 Returns the number of files dropped.
2472 int GetNumberOfFiles() const;
2475 Returns the position at which the files were dropped.
2476 Returns an array of filenames.
2478 wxPoint
GetPosition() const;
2484 @class wxCommandEvent
2486 This event class contains information about command events, which originate
2487 from a variety of simple controls.
2489 Note that wxCommandEvents and wxCommandEvent-derived event classes by default
2490 and unlike other wxEvent-derived classes propagate upward from the source
2491 window (the window which emits the event) up to the first parent which processes
2492 the event. Be sure to read @ref overview_events_propagation.
2494 More complex controls, such as wxTreeCtrl, have separate command event classes.
2496 @beginEventTable{wxCommandEvent}
2497 @event{EVT_COMMAND(id, event, func)}
2498 Process a command, supplying the window identifier, command event identifier,
2499 and member function.
2500 @event{EVT_COMMAND_RANGE(id1, id2, event, func)}
2501 Process a command for a range of window identifiers, supplying the minimum and
2502 maximum window identifiers, command event identifier, and member function.
2503 @event{EVT_BUTTON(id, func)}
2504 Process a @c wxEVT_COMMAND_BUTTON_CLICKED command, which is generated by a wxButton control.
2505 @event{EVT_CHECKBOX(id, func)}
2506 Process a @c wxEVT_COMMAND_CHECKBOX_CLICKED command, which is generated by a wxCheckBox control.
2507 @event{EVT_CHOICE(id, func)}
2508 Process a @c wxEVT_COMMAND_CHOICE_SELECTED command, which is generated by a wxChoice control.
2509 @event{EVT_COMBOBOX(id, func)}
2510 Process a @c wxEVT_COMMAND_COMBOBOX_SELECTED command, which is generated by a wxComboBox control.
2511 @event{EVT_LISTBOX(id, func)}
2512 Process a @c wxEVT_COMMAND_LISTBOX_SELECTED command, which is generated by a wxListBox control.
2513 @event{EVT_LISTBOX_DCLICK(id, func)}
2514 Process a @c wxEVT_COMMAND_LISTBOX_DOUBLECLICKED command, which is generated by a wxListBox control.
2515 @event{EVT_CHECKLISTBOX(id, func)}
2516 Process a @c wxEVT_COMMAND_CHECKLISTBOX_TOGGLED command, which is generated by a wxCheckListBox control.
2517 @event{EVT_MENU(id, func)}
2518 Process a @c wxEVT_COMMAND_MENU_SELECTED command, which is generated by a menu item.
2519 @event{EVT_MENU_RANGE(id1, id2, func)}
2520 Process a @c wxEVT_COMMAND_MENU_RANGE command, which is generated by a range of menu items.
2521 @event{EVT_CONTEXT_MENU(func)}
2522 Process the event generated when the user has requested a popup menu to appear by
2523 pressing a special keyboard key (under Windows) or by right clicking the mouse.
2524 @event{EVT_RADIOBOX(id, func)}
2525 Process a @c wxEVT_COMMAND_RADIOBOX_SELECTED command, which is generated by a wxRadioBox control.
2526 @event{EVT_RADIOBUTTON(id, func)}
2527 Process a @c wxEVT_COMMAND_RADIOBUTTON_SELECTED command, which is generated by a wxRadioButton control.
2528 @event{EVT_SCROLLBAR(id, func)}
2529 Process a @c wxEVT_COMMAND_SCROLLBAR_UPDATED command, which is generated by a wxScrollBar
2530 control. This is provided for compatibility only; more specific scrollbar event macros
2531 should be used instead (see wxScrollEvent).
2532 @event{EVT_SLIDER(id, func)}
2533 Process a @c wxEVT_COMMAND_SLIDER_UPDATED command, which is generated by a wxSlider control.
2534 @event{EVT_TEXT(id, func)}
2535 Process a @c wxEVT_COMMAND_TEXT_UPDATED command, which is generated by a wxTextCtrl control.
2536 @event{EVT_TEXT_ENTER(id, func)}
2537 Process a @c wxEVT_COMMAND_TEXT_ENTER command, which is generated by a wxTextCtrl control.
2538 Note that you must use wxTE_PROCESS_ENTER flag when creating the control if you want it
2539 to generate such events.
2540 @event{EVT_TEXT_MAXLEN(id, func)}
2541 Process a @c wxEVT_COMMAND_TEXT_MAXLEN command, which is generated by a wxTextCtrl control
2542 when the user tries to enter more characters into it than the limit previously set
2543 with SetMaxLength().
2544 @event{EVT_TOGGLEBUTTON(id, func)}
2545 Process a @c wxEVT_COMMAND_TOGGLEBUTTON_CLICKED event.
2546 @event{EVT_TOOL(id, func)}
2547 Process a @c wxEVT_COMMAND_TOOL_CLICKED event (a synonym for @c wxEVT_COMMAND_MENU_SELECTED).
2548 Pass the id of the tool.
2549 @event{EVT_TOOL_RANGE(id1, id2, func)}
2550 Process a @c wxEVT_COMMAND_TOOL_CLICKED event for a range of identifiers. Pass the ids of the tools.
2551 @event{EVT_TOOL_RCLICKED(id, func)}
2552 Process a @c wxEVT_COMMAND_TOOL_RCLICKED event. Pass the id of the tool. (Not available on wxOSX.)
2553 @event{EVT_TOOL_RCLICKED_RANGE(id1, id2, func)}
2554 Process a @c wxEVT_COMMAND_TOOL_RCLICKED event for a range of ids. Pass the ids of the tools. (Not available on wxOSX.)
2555 @event{EVT_TOOL_ENTER(id, func)}
2556 Process a @c wxEVT_COMMAND_TOOL_ENTER event. Pass the id of the toolbar itself.
2557 The value of wxCommandEvent::GetSelection() is the tool id, or -1 if the mouse cursor
2558 has moved off a tool. (Not available on wxOSX.)
2559 @event{EVT_COMMAND_LEFT_CLICK(id, func)}
2560 Process a @c wxEVT_COMMAND_LEFT_CLICK command, which is generated by a control (wxMSW only).
2561 @event{EVT_COMMAND_LEFT_DCLICK(id, func)}
2562 Process a @c wxEVT_COMMAND_LEFT_DCLICK command, which is generated by a control (wxMSW only).
2563 @event{EVT_COMMAND_RIGHT_CLICK(id, func)}
2564 Process a @c wxEVT_COMMAND_RIGHT_CLICK command, which is generated by a control (wxMSW only).
2565 @event{EVT_COMMAND_SET_FOCUS(id, func)}
2566 Process a @c wxEVT_COMMAND_SET_FOCUS command, which is generated by a control (wxMSW only).
2567 @event{EVT_COMMAND_KILL_FOCUS(id, func)}
2568 Process a @c wxEVT_COMMAND_KILL_FOCUS command, which is generated by a control (wxMSW only).
2569 @event{EVT_COMMAND_ENTER(id, func)}
2570 Process a @c wxEVT_COMMAND_ENTER command, which is generated by a control.
2576 class wxCommandEvent
: public wxEvent
2582 wxCommandEvent(wxEventType commandEventType
= wxEVT_NULL
, int id
= 0);
2585 Returns client data pointer for a listbox or choice selection event
2586 (not valid for a deselection).
2588 void* GetClientData() const;
2591 Returns client object pointer for a listbox or choice selection event
2592 (not valid for a deselection).
2594 wxClientData
* GetClientObject() const;
2597 Returns extra information dependant on the event objects type.
2599 If the event comes from a listbox selection, it is a boolean
2600 determining whether the event was a selection (@true) or a
2601 deselection (@false). A listbox deselection only occurs for
2602 multiple-selection boxes, and in this case the index and string values
2603 are indeterminate and the listbox must be examined by the application.
2605 long GetExtraLong() const;
2608 Returns the integer identifier corresponding to a listbox, choice or
2609 radiobox selection (only if the event was a selection, not a deselection),
2610 or a boolean value representing the value of a checkbox.
2612 For a menu item, this method returns -1 if the item is not checkable or
2613 a boolean value (true or false) for checkable items indicating the new
2619 Returns item index for a listbox or choice selection event (not valid for
2622 int GetSelection() const;
2625 Returns item string for a listbox or choice selection event. If one
2626 or several items have been deselected, returns the index of the first
2627 deselected item. If some items have been selected and others deselected
2628 at the same time, it will return the index of the first selected item.
2630 wxString
GetString() const;
2633 This method can be used with checkbox and menu events: for the checkboxes, the
2634 method returns @true for a selection event and @false for a deselection one.
2635 For the menu events, this method indicates if the menu item just has become
2636 checked or unchecked (and thus only makes sense for checkable menu items).
2638 Notice that this method cannot be used with wxCheckListBox currently.
2640 bool IsChecked() const;
2643 For a listbox or similar event, returns @true if it is a selection, @false
2644 if it is a deselection. If some items have been selected and others deselected
2645 at the same time, it will return @true.
2647 bool IsSelection() const;
2650 Sets the client data for this event.
2652 void SetClientData(void* clientData
);
2655 Sets the client object for this event. The client object is not owned by the
2656 event object and the event object will not delete the client object in its destructor.
2658 The client object must be owned and deleted by another object (e.g. a control)
2659 that has longer life time than the event object.
2661 void SetClientObject(wxClientData
* clientObject
);
2664 Sets the @b m_extraLong member.
2666 void SetExtraLong(long extraLong
);
2669 Sets the @b m_commandInt member.
2671 void SetInt(int intCommand
);
2674 Sets the @b m_commandString member.
2676 void SetString(const wxString
& string
);
2682 @class wxActivateEvent
2684 An activate event is sent when a window or application is being activated
2687 @beginEventTable{wxActivateEvent}
2688 @event{EVT_ACTIVATE(func)}
2689 Process a @c wxEVT_ACTIVATE event.
2690 @event{EVT_ACTIVATE_APP(func)}
2691 Process a @c wxEVT_ACTIVATE_APP event.
2692 This event is received by the wxApp-derived instance only.
2693 @event{EVT_HIBERNATE(func)}
2694 Process a hibernate event, supplying the member function. This event applies
2695 to wxApp only, and only on Windows SmartPhone and PocketPC.
2696 It is generated when the system is low on memory; the application should free
2697 up as much memory as possible, and restore full working state when it receives
2698 a @c wxEVT_ACTIVATE or @c wxEVT_ACTIVATE_APP event.
2704 @see @ref overview_events, wxApp::IsActive
2706 class wxActivateEvent
: public wxEvent
2712 wxActivateEvent(wxEventType eventType
= wxEVT_NULL
, bool active
= true,
2716 Returns @true if the application or window is being activated, @false otherwise.
2718 bool GetActive() const;
2724 @class wxContextMenuEvent
2726 This class is used for context menu events, sent to give
2727 the application a chance to show a context (popup) menu for a wxWindow.
2729 Note that if wxContextMenuEvent::GetPosition returns wxDefaultPosition, this
2730 means that the event originated from a keyboard context button event, and you
2731 should compute a suitable position yourself, for example by calling wxGetMousePosition().
2733 When a keyboard context menu button is pressed on Windows, a right-click event
2734 with default position is sent first, and if this event is not processed, the
2735 context menu event is sent. So if you process mouse events and you find your
2736 context menu event handler is not being called, you could call wxEvent::Skip()
2737 for mouse right-down events.
2739 @beginEventTable{wxContextMenuEvent}
2740 @event{EVT_CONTEXT_MENU(func)}
2741 A right click (or other context menu command depending on platform) has been detected.
2748 @see wxCommandEvent, @ref overview_events
2750 class wxContextMenuEvent
: public wxCommandEvent
2756 wxContextMenuEvent(wxEventType type
= wxEVT_NULL
, int id
= 0,
2757 const wxPoint
& pos
= wxDefaultPosition
);
2760 Returns the position in screen coordinates at which the menu should be shown.
2761 Use wxWindow::ScreenToClient to convert to client coordinates.
2763 You can also omit a position from wxWindow::PopupMenu in order to use
2764 the current mouse pointer position.
2766 If the event originated from a keyboard event, the value returned from this
2767 function will be wxDefaultPosition.
2769 const wxPoint
& GetPosition() const;
2772 Sets the position at which the menu should be shown.
2774 void SetPosition(const wxPoint
& point
);
2782 An erase event is sent when a window's background needs to be repainted.
2784 On some platforms, such as GTK+, this event is simulated (simply generated just
2785 before the paint event) and may cause flicker. It is therefore recommended that
2786 you set the text background colour explicitly in order to prevent flicker.
2787 The default background colour under GTK+ is grey.
2789 To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table
2792 You must call wxEraseEvent::GetDC and use the returned device context if it is
2793 non-@NULL. If it is @NULL, create your own temporary wxClientDC object.
2796 Use the device context returned by GetDC to draw on, don't create
2797 a wxPaintDC in the event handler.
2799 @beginEventTable{wxEraseEvent}
2800 @event{EVT_ERASE_BACKGROUND(func)}
2801 Process a @c wxEVT_ERASE_BACKGROUND event.
2807 @see @ref overview_events
2809 class wxEraseEvent
: public wxEvent
2815 wxEraseEvent(int id
= 0, wxDC
* dc
= NULL
);
2818 Returns the device context associated with the erase event to draw on.
2820 wxDC
* GetDC() const;
2828 A focus event is sent when a window's focus changes. The window losing focus
2829 receives a "kill focus" event while the window gaining it gets a "set focus" one.
2831 Notice that the set focus event happens both when the user gives focus to the
2832 window (whether using the mouse or keyboard) and when it is done from the
2833 program itself using wxWindow::SetFocus.
2835 @beginEventTable{wxFocusEvent}
2836 @event{EVT_SET_FOCUS(func)}
2837 Process a @c wxEVT_SET_FOCUS event.
2838 @event{EVT_KILL_FOCUS(func)}
2839 Process a @c wxEVT_KILL_FOCUS event.
2845 @see @ref overview_events
2847 class wxFocusEvent
: public wxEvent
2853 wxFocusEvent(wxEventType eventType
= wxEVT_NULL
, int id
= 0);
2856 Returns the window associated with this event, that is the window which had the
2857 focus before for the @c wxEVT_SET_FOCUS event and the window which is
2858 going to receive focus for the @c wxEVT_KILL_FOCUS one.
2860 Warning: the window pointer may be @NULL!
2862 wxWindow
*GetWindow() const;
2864 void SetWindow(wxWindow
*win
);
2870 @class wxChildFocusEvent
2872 A child focus event is sent to a (parent-)window when one of its child windows
2873 gains focus, so that the window could restore the focus back to its corresponding
2874 child if it loses it now and regains later.
2876 Notice that child window is the direct child of the window receiving event.
2877 Use wxWindow::FindFocus() to retrieve the window which is actually getting focus.
2879 @beginEventTable{wxChildFocusEvent}
2880 @event{EVT_CHILD_FOCUS(func)}
2881 Process a @c wxEVT_CHILD_FOCUS event.
2887 @see @ref overview_events
2889 class wxChildFocusEvent
: public wxCommandEvent
2896 The direct child which is (or which contains the window which is) receiving
2899 wxChildFocusEvent(wxWindow
* win
= NULL
);
2902 Returns the direct child which receives the focus, or a (grand-)parent of the
2903 control receiving the focus.
2905 To get the actually focused control use wxWindow::FindFocus.
2907 wxWindow
*GetWindow() const;
2913 @class wxMouseCaptureLostEvent
2915 A mouse capture lost event is sent to a window that had obtained mouse capture,
2916 which was subsequently lost due to an "external" event (for example, when a dialog
2917 box is shown or if another application captures the mouse).
2919 If this happens, this event is sent to all windows that are on the capture stack
2920 (i.e. called CaptureMouse, but didn't call ReleaseMouse yet). The event is
2921 not sent if the capture changes because of a call to CaptureMouse or
2924 This event is currently emitted under Windows only.
2926 @beginEventTable{wxMouseCaptureLostEvent}
2927 @event{EVT_MOUSE_CAPTURE_LOST(func)}
2928 Process a @c wxEVT_MOUSE_CAPTURE_LOST event.
2936 @see wxMouseCaptureChangedEvent, @ref overview_events,
2937 wxWindow::CaptureMouse, wxWindow::ReleaseMouse, wxWindow::GetCapture
2939 class wxMouseCaptureLostEvent
: public wxEvent
2945 wxMouseCaptureLostEvent(wxWindowID windowId
= 0);
2950 class wxDisplayChangedEvent
: public wxEvent
2953 wxDisplayChangedEvent();
2957 class wxPaletteChangedEvent
: public wxEvent
2960 wxPaletteChangedEvent(wxWindowID winid
= 0);
2962 void SetChangedWindow(wxWindow
* win
);
2963 wxWindow
* GetChangedWindow() const;
2967 class wxQueryNewPaletteEvent
: public wxEvent
2970 wxQueryNewPaletteEvent(wxWindowID winid
= 0);
2972 void SetPaletteRealized(bool realized
);
2973 bool GetPaletteRealized();
2980 @class wxNotifyEvent
2982 This class is not used by the event handlers by itself, but is a base class
2983 for other event classes (such as wxBookCtrlEvent).
2985 It (or an object of a derived class) is sent when the controls state is being
2986 changed and allows the program to wxNotifyEvent::Veto() this change if it wants
2987 to prevent it from happening.
2992 @see wxBookCtrlEvent
2994 class wxNotifyEvent
: public wxCommandEvent
2998 Constructor (used internally by wxWidgets only).
3000 wxNotifyEvent(wxEventType eventType
= wxEVT_NULL
, int id
= 0);
3003 This is the opposite of Veto(): it explicitly allows the event to be processed.
3004 For most events it is not necessary to call this method as the events are allowed
3005 anyhow but some are forbidden by default (this will be mentioned in the corresponding
3011 Returns @true if the change is allowed (Veto() hasn't been called) or @false
3012 otherwise (if it was).
3014 bool IsAllowed() const;
3017 Prevents the change announced by this event from happening.
3019 It is in general a good idea to notify the user about the reasons for vetoing
3020 the change because otherwise the applications behaviour (which just refuses to
3021 do what the user wants) might be quite surprising.
3028 @class wxThreadEvent
3030 This class adds some simple functionality to wxEvent to facilitate
3031 inter-thread communication.
3033 This event is not natively emitted by any control/class: it is just
3034 a helper class for the user.
3035 Its most important feature is the GetEventCategory() implementation which
3036 allows thread events @b NOT to be processed by wxEventLoopBase::YieldFor calls
3037 (unless the @c wxEVT_CATEGORY_THREAD is specified - which is never in wx code).
3040 @category{events,threading}
3042 @see @ref overview_thread, wxEventLoopBase::YieldFor
3046 class wxThreadEvent
: public wxEvent
3052 wxThreadEvent(wxEventType eventType
= wxEVT_THREAD
, int id
= wxID_ANY
);
3055 Clones this event making sure that all internal members which use
3056 COW (only @c m_commandString for now; see @ref overview_refcount)
3057 are unshared (see wxObject::UnShare).
3059 virtual wxEvent
*Clone() const;
3062 Returns @c wxEVT_CATEGORY_THREAD.
3064 This is important to avoid unwanted processing of thread events
3065 when calling wxEventLoopBase::YieldFor().
3067 virtual wxEventCategory
GetEventCategory() const;
3070 Sets custom data payload.
3072 The @a payload argument may be of any type that wxAny can handle
3073 (i.e. pretty much anything). Note that T's copy constructor must be
3074 thread-safe, i.e. create a copy that doesn't share anything with
3075 the original (see Clone()).
3077 @note This method is not available with Visual C++ 6.
3081 @see GetPayload(), wxAny
3083 template<typename T
>
3084 void SetPayload(const T
& payload
);
3087 Get custom data payload.
3089 Correct type is checked in debug builds.
3091 @note This method is not available with Visual C++ 6.
3095 @see SetPayload(), wxAny
3097 template<typename T
>
3098 T
GetPayload() const;
3101 Returns extra information integer value.
3103 long GetExtraLong() const;
3106 Returns stored integer value.
3111 Returns stored string value.
3113 wxString
GetString() const;
3117 Sets the extra information value.
3119 void SetExtraLong(long extraLong
);
3122 Sets the integer value.
3124 void SetInt(int intCommand
);
3127 Sets the string value.
3129 void SetString(const wxString
& string
);
3136 A help event is sent when the user has requested context-sensitive help.
3137 This can either be caused by the application requesting context-sensitive help mode
3138 via wxContextHelp, or (on MS Windows) by the system generating a WM_HELP message when
3139 the user pressed F1 or clicked on the query button in a dialog caption.
3141 A help event is sent to the window that the user clicked on, and is propagated
3142 up the window hierarchy until the event is processed or there are no more event
3145 The application should call wxEvent::GetId to check the identity of the
3146 clicked-on window, and then either show some suitable help or call wxEvent::Skip()
3147 if the identifier is unrecognised.
3149 Calling Skip is important because it allows wxWidgets to generate further
3150 events for ancestors of the clicked-on window. Otherwise it would be impossible to
3151 show help for container windows, since processing would stop after the first window
3154 @beginEventTable{wxHelpEvent}
3155 @event{EVT_HELP(id, func)}
3156 Process a @c wxEVT_HELP event.
3157 @event{EVT_HELP_RANGE(id1, id2, func)}
3158 Process a @c wxEVT_HELP event for a range of ids.
3164 @see wxContextHelp, wxDialog, @ref overview_events
3166 class wxHelpEvent
: public wxCommandEvent
3170 Indicates how a wxHelpEvent was generated.
3174 Origin_Unknown
, /**< unrecognized event source. */
3175 Origin_Keyboard
, /**< event generated from F1 key press. */
3177 /** event generated by wxContextHelp or from the [?] button on
3178 the title bar (Windows). */
3185 wxHelpEvent(wxEventType type
= wxEVT_NULL
,
3186 wxWindowID winid
= 0,
3187 const wxPoint
& pt
= wxDefaultPosition
,
3188 wxHelpEvent::Origin origin
= Origin_Unknown
);
3191 Returns the origin of the help event which is one of the ::wxHelpEventOrigin
3194 The application may handle events generated using the keyboard or mouse
3195 differently, e.g. by using wxGetMousePosition() for the mouse events.
3199 wxHelpEvent::Origin
GetOrigin() const;
3202 Returns the left-click position of the mouse, in screen coordinates.
3203 This allows the application to position the help appropriately.
3205 const wxPoint
& GetPosition() const;
3208 Set the help event origin, only used internally by wxWidgets normally.
3212 void SetOrigin(wxHelpEvent::Origin origin
);
3215 Sets the left-click position of the mouse, in screen coordinates.
3217 void SetPosition(const wxPoint
& pt
);
3223 @class wxScrollEvent
3225 A scroll event holds information about events sent from stand-alone
3226 scrollbars (see wxScrollBar) and sliders (see wxSlider).
3228 Note that scrolled windows send the wxScrollWinEvent which does not derive from
3229 wxCommandEvent, but from wxEvent directly - don't confuse these two kinds of
3230 events and use the event table macros mentioned below only for the scrollbar-like
3233 @section scrollevent_diff The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED
3235 The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the thumb
3236 using the mouse and releasing it (This EVT_SCROLL_THUMBRELEASE event is also followed
3237 by an EVT_SCROLL_CHANGED event).
3239 The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the thumb
3240 position, and when clicking next to the thumb (In all these cases the EVT_SCROLL_THUMBRELEASE
3241 event does not happen).
3243 In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/ moving has finished
3244 independently of the way it had started. Please see the widgets sample ("Slider" page)
3245 to see the difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.
3248 Note that unless specifying a scroll control identifier, you will need to test for scrollbar
3249 orientation with wxScrollEvent::GetOrientation, since horizontal and vertical scroll events
3250 are processed using the same event handler.
3252 @beginEventTable{wxScrollEvent}
3253 You can use EVT_COMMAND_SCROLL... macros with window IDs for when intercepting
3254 scroll events from controls, or EVT_SCROLL... macros without window IDs for
3255 intercepting scroll events from the receiving window -- except for this, the
3256 macros behave exactly the same.
3257 @event{EVT_SCROLL(func)}
3258 Process all scroll events.
3259 @event{EVT_SCROLL_TOP(func)}
3260 Process @c wxEVT_SCROLL_TOP scroll-to-top events (minimum position).
3261 @event{EVT_SCROLL_BOTTOM(func)}
3262 Process @c wxEVT_SCROLL_BOTTOM scroll-to-bottom events (maximum position).
3263 @event{EVT_SCROLL_LINEUP(func)}
3264 Process @c wxEVT_SCROLL_LINEUP line up events.
3265 @event{EVT_SCROLL_LINEDOWN(func)}
3266 Process @c wxEVT_SCROLL_LINEDOWN line down events.
3267 @event{EVT_SCROLL_PAGEUP(func)}
3268 Process @c wxEVT_SCROLL_PAGEUP page up events.
3269 @event{EVT_SCROLL_PAGEDOWN(func)}
3270 Process @c wxEVT_SCROLL_PAGEDOWN page down events.
3271 @event{EVT_SCROLL_THUMBTRACK(func)}
3272 Process @c wxEVT_SCROLL_THUMBTRACK thumbtrack events (frequent events sent as the
3273 user drags the thumbtrack).
3274 @event{EVT_SCROLL_THUMBRELEASE(func)}
3275 Process @c wxEVT_SCROLL_THUMBRELEASE thumb release events.
3276 @event{EVT_SCROLL_CHANGED(func)}
3277 Process @c wxEVT_SCROLL_CHANGED end of scrolling events (MSW only).
3278 @event{EVT_COMMAND_SCROLL(id, func)}
3279 Process all scroll events.
3280 @event{EVT_COMMAND_SCROLL_TOP(id, func)}
3281 Process @c wxEVT_SCROLL_TOP scroll-to-top events (minimum position).
3282 @event{EVT_COMMAND_SCROLL_BOTTOM(id, func)}
3283 Process @c wxEVT_SCROLL_BOTTOM scroll-to-bottom events (maximum position).
3284 @event{EVT_COMMAND_SCROLL_LINEUP(id, func)}
3285 Process @c wxEVT_SCROLL_LINEUP line up events.
3286 @event{EVT_COMMAND_SCROLL_LINEDOWN(id, func)}
3287 Process @c wxEVT_SCROLL_LINEDOWN line down events.
3288 @event{EVT_COMMAND_SCROLL_PAGEUP(id, func)}
3289 Process @c wxEVT_SCROLL_PAGEUP page up events.
3290 @event{EVT_COMMAND_SCROLL_PAGEDOWN(id, func)}
3291 Process @c wxEVT_SCROLL_PAGEDOWN page down events.
3292 @event{EVT_COMMAND_SCROLL_THUMBTRACK(id, func)}
3293 Process @c wxEVT_SCROLL_THUMBTRACK thumbtrack events (frequent events sent
3294 as the user drags the thumbtrack).
3295 @event{EVT_COMMAND_SCROLL_THUMBRELEASE(func)}
3296 Process @c wxEVT_SCROLL_THUMBRELEASE thumb release events.
3297 @event{EVT_COMMAND_SCROLL_CHANGED(func)}
3298 Process @c wxEVT_SCROLL_CHANGED end of scrolling events (MSW only).
3304 @see wxScrollBar, wxSlider, wxSpinButton, wxScrollWinEvent, @ref overview_events
3306 class wxScrollEvent
: public wxCommandEvent
3312 wxScrollEvent(wxEventType commandType
= wxEVT_NULL
, int id
= 0, int pos
= 0,
3313 int orientation
= 0);
3316 Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
3319 int GetOrientation() const;
3322 Returns the position of the scrollbar.
3324 int GetPosition() const;
3327 void SetOrientation(int orient
);
3328 void SetPosition(int pos
);
3332 See wxIdleEvent::SetMode() for more info.
3336 /** Send idle events to all windows */
3339 /** Send idle events to windows that have the wxWS_EX_PROCESS_IDLE flag specified */
3340 wxIDLE_PROCESS_SPECIFIED
3347 This class is used for idle events, which are generated when the system becomes
3348 idle. Note that, unless you do something specifically, the idle events are not
3349 sent if the system remains idle once it has become it, e.g. only a single idle
3350 event will be generated until something else resulting in more normal events
3351 happens and only then is the next idle event sent again.
3353 If you need to ensure a continuous stream of idle events, you can either use
3354 wxIdleEvent::RequestMore method in your handler or call wxWakeUpIdle() periodically
3355 (for example from a timer event handler), but note that both of these approaches
3356 (and especially the first one) increase the system load and so should be avoided
3359 By default, idle events are sent to all windows (and also wxApp, as usual).
3360 If this is causing a significant overhead in your application, you can call
3361 wxIdleEvent::SetMode with the value wxIDLE_PROCESS_SPECIFIED, and set the
3362 wxWS_EX_PROCESS_IDLE extra window style for every window which should receive
3365 @beginEventTable{wxIdleEvent}
3366 @event{EVT_IDLE(func)}
3367 Process a @c wxEVT_IDLE event.
3373 @see @ref overview_events, wxUpdateUIEvent, wxWindow::OnInternalIdle
3375 class wxIdleEvent
: public wxEvent
3384 Static function returning a value specifying how wxWidgets will send idle
3385 events: to all windows, or only to those which specify that they
3386 will process the events.
3390 static wxIdleMode
GetMode();
3393 Returns @true if the OnIdle function processing this event requested more
3398 bool MoreRequested() const;
3401 Tells wxWidgets that more processing is required.
3403 This function can be called by an OnIdle handler for a window or window event
3404 handler to indicate that wxApp::OnIdle should forward the OnIdle event once
3405 more to the application windows.
3407 If no window calls this function during OnIdle, then the application will
3408 remain in a passive event loop (not calling OnIdle) until a new event is
3409 posted to the application by the windowing system.
3411 @see MoreRequested()
3413 void RequestMore(bool needMore
= true);
3416 Static function for specifying how wxWidgets will send idle events: to
3417 all windows, or only to those which specify that they will process the events.
3420 Can be one of the ::wxIdleMode values.
3421 The default is wxIDLE_PROCESS_ALL.
3423 static void SetMode(wxIdleMode mode
);
3429 @class wxInitDialogEvent
3431 A wxInitDialogEvent is sent as a dialog or panel is being initialised.
3432 Handlers for this event can transfer data to the window.
3434 The default handler calls wxWindow::TransferDataToWindow.
3436 @beginEventTable{wxInitDialogEvent}
3437 @event{EVT_INIT_DIALOG(func)}
3438 Process a @c wxEVT_INIT_DIALOG event.
3444 @see @ref overview_events
3446 class wxInitDialogEvent
: public wxEvent
3452 wxInitDialogEvent(int id
= 0);
3458 @class wxWindowDestroyEvent
3460 This event is sent as early as possible during the window destruction
3463 For the top level windows, as early as possible means that this is done by
3464 wxFrame or wxDialog destructor, i.e. after the destructor of the derived
3465 class was executed and so any methods specific to the derived class can't
3466 be called any more from this event handler. If you need to do this, you
3467 must call wxWindow::SendDestroyEvent() from your derived class destructor.
3469 For the child windows, this event is generated just before deleting the
3470 window from wxWindow::Destroy() (which is also called when the parent
3471 window is deleted) or from the window destructor if operator @c delete was
3472 used directly (which is not recommended for this very reason).
3474 It is usually pointless to handle this event in the window itself but it ca
3475 be very useful to receive notifications about the window destruction in the
3476 parent window or in any other object interested in this window.
3481 @see @ref overview_events, wxWindowCreateEvent
3483 class wxWindowDestroyEvent
: public wxCommandEvent
3489 wxWindowDestroyEvent(wxWindow
* win
= NULL
);
3491 /// Return the window being destroyed.
3492 wxWindow
*GetWindow() const;
3497 @class wxNavigationKeyEvent
3499 This event class contains information about navigation events,
3500 generated by navigation keys such as tab and page down.
3502 This event is mainly used by wxWidgets implementations.
3503 A wxNavigationKeyEvent handler is automatically provided by wxWidgets
3504 when you enable keyboard navigation inside a window by inheriting it from
3505 wxNavigationEnabled<>.
3507 @beginEventTable{wxNavigationKeyEvent}
3508 @event{EVT_NAVIGATION_KEY(func)}
3509 Process a navigation key event.
3515 @see wxWindow::Navigate, wxWindow::NavigateIn
3517 class wxNavigationKeyEvent
: public wxEvent
3521 Flags which can be used with wxNavigationKeyEvent.
3523 enum wxNavigationKeyEventFlags
3525 IsBackward
= 0x0000,
3531 wxNavigationKeyEvent();
3532 wxNavigationKeyEvent(const wxNavigationKeyEvent
& event
);
3535 Returns the child that has the focus, or @NULL.
3537 wxWindow
* GetCurrentFocus() const;
3540 Returns @true if the navigation was in the forward direction.
3542 bool GetDirection() const;
3545 Returns @true if the navigation event was from a tab key.
3546 This is required for proper navigation over radio buttons.
3548 bool IsFromTab() const;
3551 Returns @true if the navigation event represents a window change
3552 (for example, from Ctrl-Page Down in a notebook).
3554 bool IsWindowChange() const;
3557 Sets the current focus window member.
3559 void SetCurrentFocus(wxWindow
* currentFocus
);
3562 Sets the direction to forward if @a direction is @true, or backward
3565 void SetDirection(bool direction
);
3568 Sets the flags for this event.
3569 The @a flags can be a combination of the ::wxNavigationKeyEventFlags values.
3571 void SetFlags(long flags
);
3574 Marks the navigation event as from a tab key.
3576 void SetFromTab(bool fromTab
);
3579 Marks the event as a window change event.
3581 void SetWindowChange(bool windowChange
);
3587 @class wxMouseCaptureChangedEvent
3589 An mouse capture changed event is sent to a window that loses its
3590 mouse capture. This is called even if wxWindow::ReleaseMouse
3591 was called by the application code. Handling this event allows
3592 an application to cater for unexpected capture releases which
3593 might otherwise confuse mouse handling code.
3597 @beginEventTable{wxMouseCaptureChangedEvent}
3598 @event{EVT_MOUSE_CAPTURE_CHANGED(func)}
3599 Process a @c wxEVT_MOUSE_CAPTURE_CHANGED event.
3605 @see wxMouseCaptureLostEvent, @ref overview_events,
3606 wxWindow::CaptureMouse, wxWindow::ReleaseMouse, wxWindow::GetCapture
3608 class wxMouseCaptureChangedEvent
: public wxEvent
3614 wxMouseCaptureChangedEvent(wxWindowID windowId
= 0,
3615 wxWindow
* gainedCapture
= NULL
);
3618 Returns the window that gained the capture, or @NULL if it was a
3619 non-wxWidgets window.
3621 wxWindow
* GetCapturedWindow() const;
3629 This event class contains information about window and session close events.
3631 The handler function for EVT_CLOSE is called when the user has tried to close a
3632 a frame or dialog box using the window manager (X) or system menu (Windows).
3633 It can also be invoked by the application itself programmatically, for example by
3634 calling the wxWindow::Close function.
3636 You should check whether the application is forcing the deletion of the window
3637 using wxCloseEvent::CanVeto. If this is @false, you @e must destroy the window
3638 using wxWindow::Destroy.
3640 If the return value is @true, it is up to you whether you respond by destroying
3643 If you don't destroy the window, you should call wxCloseEvent::Veto to
3644 let the calling code know that you did not destroy the window.
3645 This allows the wxWindow::Close function to return @true or @false depending
3646 on whether the close instruction was honoured or not.
3648 Example of a wxCloseEvent handler:
3651 void MyFrame::OnClose(wxCloseEvent& event)
3653 if ( event.CanVeto() && m_bFileNotSaved )
3655 if ( wxMessageBox("The file has not been saved... continue closing?",
3657 wxICON_QUESTION | wxYES_NO) != wxYES )
3664 Destroy(); // you may also do: event.Skip();
3665 // since the default event handler does call Destroy(), too
3669 The EVT_END_SESSION event is slightly different as it is sent by the system
3670 when the user session is ending (e.g. because of log out or shutdown) and
3671 so all windows are being forcefully closed. At least under MSW, after the
3672 handler for this event is executed the program is simply killed by the
3673 system. Because of this, the default handler for this event provided by
3674 wxWidgets calls all the usual cleanup code (including wxApp::OnExit()) so
3675 that it could still be executed and exit()s the process itself, without
3676 waiting for being killed. If this behaviour is for some reason undesirable,
3677 make sure that you define a handler for this event in your wxApp-derived
3678 class and do not call @c event.Skip() in it (but be aware that the system
3679 will still kill your application).
3681 @beginEventTable{wxCloseEvent}
3682 @event{EVT_CLOSE(func)}
3683 Process a @c wxEVT_CLOSE_WINDOW command event, supplying the member function.
3684 This event applies to wxFrame and wxDialog classes.
3685 @event{EVT_QUERY_END_SESSION(func)}
3686 Process a @c wxEVT_QUERY_END_SESSION session event, supplying the member function.
3687 This event can be handled in wxApp-derived class only.
3688 @event{EVT_END_SESSION(func)}
3689 Process a @c wxEVT_END_SESSION session event, supplying the member function.
3690 This event can be handled in wxApp-derived class only.
3696 @see wxWindow::Close, @ref overview_windowdeletion
3698 class wxCloseEvent
: public wxEvent
3704 wxCloseEvent(wxEventType commandEventType
= wxEVT_NULL
, int id
= 0);
3707 Returns @true if you can veto a system shutdown or a window close event.
3708 Vetoing a window close event is not possible if the calling code wishes to
3709 force the application to exit, and so this function must be called to check this.
3711 bool CanVeto() const;
3714 Returns @true if the user is just logging off or @false if the system is
3715 shutting down. This method can only be called for end session and query end
3716 session events, it doesn't make sense for close window event.
3718 bool GetLoggingOff() const;
3721 Sets the 'can veto' flag.
3723 void SetCanVeto(bool canVeto
);
3726 Sets the 'logging off' flag.
3728 void SetLoggingOff(bool loggingOff
);
3731 Call this from your event handler to veto a system shutdown or to signal
3732 to the calling application that a window close did not happen.
3734 You can only veto a shutdown if CanVeto() returns @true.
3736 void Veto(bool veto
= true);
3744 This class is used for a variety of menu-related events. Note that
3745 these do not include menu command events, which are
3746 handled using wxCommandEvent objects.
3748 The default handler for @c wxEVT_MENU_HIGHLIGHT displays help
3749 text in the first field of the status bar.
3751 @beginEventTable{wxMenuEvent}
3752 @event{EVT_MENU_OPEN(func)}
3753 A menu is about to be opened. On Windows, this is only sent once for each
3754 navigation of the menubar (up until all menus have closed).
3755 @event{EVT_MENU_CLOSE(func)}
3756 A menu has been just closed.
3757 @event{EVT_MENU_HIGHLIGHT(id, func)}
3758 The menu item with the specified id has been highlighted: used to show
3759 help prompts in the status bar by wxFrame
3760 @event{EVT_MENU_HIGHLIGHT_ALL(func)}
3761 A menu item has been highlighted, i.e. the currently selected menu item has changed.
3767 @see wxCommandEvent, @ref overview_events
3769 class wxMenuEvent
: public wxEvent
3775 wxMenuEvent(wxEventType type
= wxEVT_NULL
, int id
= 0, wxMenu
* menu
= NULL
);
3778 Returns the menu which is being opened or closed. This method should only be
3779 used with the @c OPEN and @c CLOSE events and even for them the
3780 returned pointer may be @NULL in some ports.
3782 wxMenu
* GetMenu() const;
3785 Returns the menu identifier associated with the event.
3786 This method should be only used with the @c HIGHLIGHT events.
3788 int GetMenuId() const;
3791 Returns @true if the menu which is being opened or closed is a popup menu,
3792 @false if it is a normal one.
3794 This method should only be used with the @c OPEN and @c CLOSE events.
3796 bool IsPopup() const;
3802 An event being sent when the window is shown or hidden.
3803 The event is triggered by calls to wxWindow::Show(), and any user
3804 action showing a previously hidden window or vice versa (if allowed by
3805 the current platform and/or window manager).
3806 Notice that the event is not triggered when the application is iconized
3807 (minimized) or restored under wxMSW.
3809 @onlyfor{wxmsw,wxgtk,wxos2}
3811 @beginEventTable{wxShowEvent}
3812 @event{EVT_SHOW(func)}
3813 Process a @c wxEVT_SHOW event.
3819 @see @ref overview_events, wxWindow::Show,
3823 class wxShowEvent
: public wxEvent
3829 wxShowEvent(int winid
= 0, bool show
= false);
3832 Set whether the windows was shown or hidden.
3834 void SetShow(bool show
);
3837 Return @true if the window has been shown, @false if it has been
3840 bool IsShown() const;
3843 @deprecated This function is deprecated in favour of IsShown().
3845 bool GetShow() const;
3851 @class wxIconizeEvent
3853 An event being sent when the frame is iconized (minimized) or restored.
3855 Currently only wxMSW and wxGTK generate such events.
3857 @onlyfor{wxmsw,wxgtk}
3859 @beginEventTable{wxIconizeEvent}
3860 @event{EVT_ICONIZE(func)}
3861 Process a @c wxEVT_ICONIZE event.
3867 @see @ref overview_events, wxTopLevelWindow::Iconize,
3868 wxTopLevelWindow::IsIconized
3870 class wxIconizeEvent
: public wxEvent
3876 wxIconizeEvent(int id
= 0, bool iconized
= true);
3879 Returns @true if the frame has been iconized, @false if it has been
3882 bool IsIconized() const;
3885 @deprecated This function is deprecated in favour of IsIconized().
3887 bool Iconized() const;
3895 A move event holds information about wxTopLevelWindow move change events.
3897 These events are currently only generated by wxMSW port.
3899 @beginEventTable{wxMoveEvent}
3900 @event{EVT_MOVE(func)}
3901 Process a @c wxEVT_MOVE event, which is generated when a window is moved.
3902 @event{EVT_MOVE_START(func)}
3903 Process a @c wxEVT_MOVE_START event, which is generated when the user starts
3904 to move or size a window. wxMSW only.
3905 @event{EVT_MOVE_END(func)}
3906 Process a @c wxEVT_MOVE_END event, which is generated when the user stops
3907 moving or sizing a window. wxMSW only.
3913 @see wxPoint, @ref overview_events
3915 class wxMoveEvent
: public wxEvent
3921 wxMoveEvent(const wxPoint
& pt
, int id
= 0);
3924 Returns the position of the window generating the move change event.
3926 wxPoint
GetPosition() const;
3928 wxRect
GetRect() const;
3929 void SetRect(const wxRect
& rect
);
3930 void SetPosition(const wxPoint
& pos
);
3937 A size event holds information about size change events of wxWindow.
3939 The EVT_SIZE handler function will be called when the window has been resized.
3941 You may wish to use this for frames to resize their child windows as appropriate.
3943 Note that the size passed is of the whole window: call wxWindow::GetClientSize()
3944 for the area which may be used by the application.
3946 When a window is resized, usually only a small part of the window is damaged
3947 and you may only need to repaint that area. However, if your drawing depends on the
3948 size of the window, you may need to clear the DC explicitly and repaint the whole window.
3949 In which case, you may need to call wxWindow::Refresh to invalidate the entire window.
3951 @beginEventTable{wxSizeEvent}
3952 @event{EVT_SIZE(func)}
3953 Process a @c wxEVT_SIZE event.
3959 @see wxSize, @ref overview_events
3961 class wxSizeEvent
: public wxEvent
3967 wxSizeEvent(const wxSize
& sz
, int id
= 0);
3970 Returns the entire size of the window generating the size change event.
3972 This is the new total size of the window, i.e. the same size as would
3973 be returned by wxWindow::GetSize() if it were called now. Use
3974 wxWindow::GetClientSize() if you catch this event in a top level window
3975 such as wxFrame to find the size available for the window contents.
3977 wxSize
GetSize() const;
3978 void SetSize(wxSize size
);
3980 wxRect
GetRect() const;
3981 void SetRect(wxRect rect
);
3987 @class wxSetCursorEvent
3989 A wxSetCursorEvent is generated from wxWindow when the mouse cursor is about
3990 to be set as a result of mouse motion.
3992 This event gives the application the chance to perform specific mouse cursor
3993 processing based on the current position of the mouse within the window.
3994 Use wxSetCursorEvent::SetCursor to specify the cursor you want to be displayed.
3996 @beginEventTable{wxSetCursorEvent}
3997 @event{EVT_SET_CURSOR(func)}
3998 Process a @c wxEVT_SET_CURSOR event.
4004 @see ::wxSetCursor, wxWindow::wxSetCursor
4006 class wxSetCursorEvent
: public wxEvent
4010 Constructor, used by the library itself internally to initialize the event
4013 wxSetCursorEvent(wxCoord x
= 0, wxCoord y
= 0);
4016 Returns a reference to the cursor specified by this event.
4018 const wxCursor
& GetCursor() const;
4021 Returns the X coordinate of the mouse in client coordinates.
4023 wxCoord
GetX() const;
4026 Returns the Y coordinate of the mouse in client coordinates.
4028 wxCoord
GetY() const;
4031 Returns @true if the cursor specified by this event is a valid cursor.
4033 @remarks You cannot specify wxNullCursor with this event, as it is not
4034 considered a valid cursor.
4036 bool HasCursor() const;
4039 Sets the cursor associated with this event.
4041 void SetCursor(const wxCursor
& cursor
);
4046 // ============================================================================
4047 // Global functions/macros
4048 // ============================================================================
4050 /** @addtogroup group_funcmacro_events */
4054 A value uniquely identifying the type of the event.
4056 The values of this type should only be created using wxNewEventType().
4058 See the macro DEFINE_EVENT_TYPE() for more info.
4060 @see @ref overview_events_introduction
4062 typedef int wxEventType
;
4065 A special event type usually used to indicate that some wxEvent has yet
4068 wxEventType wxEVT_NULL
;
4070 wxEventType wxEVT_ANY
;
4073 Generates a new unique event type.
4075 Usually this function is only used by wxDEFINE_EVENT() and not called
4078 wxEventType
wxNewEventType();
4081 Define a new event type associated with the specified event class.
4083 This macro defines a new unique event type @a name associated with the
4088 wxDEFINE_EVENT(MY_COMMAND_EVENT, wxCommandEvent);
4090 class MyCustomEvent : public wxEvent { ... };
4091 wxDEFINE_EVENT(MY_CUSTOM_EVENT, MyCustomEvent);
4094 @see wxDECLARE_EVENT(), @ref overview_events_custom
4096 #define wxDEFINE_EVENT(name, cls) \
4097 const wxEventTypeTag< cls > name(wxNewEventType())
4100 Declares a custom event type.
4102 This macro declares a variable called @a name which must be defined
4103 elsewhere using wxDEFINE_EVENT().
4105 The class @a cls must be the wxEvent-derived class associated with the
4106 events of this type and its full declaration must be visible from the point
4107 of use of this macro.
4111 wxDECLARE_EVENT(MY_COMMAND_EVENT, wxCommandEvent);
4113 class MyCustomEvent : public wxEvent { ... };
4114 wxDECLARE_EVENT(MY_CUSTOM_EVENT, MyCustomEvent);
4117 #define wxDECLARE_EVENT(name, cls) \
4118 wxDECLARE_EXPORTED_EVENT(wxEMPTY_PARAMETER_VALUE, name, cls)
4121 Variant of wxDECLARE_EVENT() used for event types defined inside a shared
4124 This is mostly used by wxWidgets internally, e.g.
4126 wxDECLARE_EXPORTED_EVENT(WXDLLIMPEXP_CORE, wxEVT_COMMAND_BUTTON_CLICKED, wxCommandEvent)
4129 #define wxDECLARE_EXPORTED_EVENT( expdecl, name, cls ) \
4130 extern const expdecl wxEventTypeTag< cls > name;
4133 Helper macro for definition of custom event table macros.
4135 This macro must only be used if wxEVENTS_COMPATIBILITY_2_8 is 1, otherwise
4136 it is better and more clear to just use the address of the function
4137 directly as this is all this macro does in this case. However it needs to
4138 explicitly cast @a func to @a functype, which is the type of wxEvtHandler
4139 member function taking the custom event argument when
4140 wxEVENTS_COMPATIBILITY_2_8 is 0.
4142 See wx__DECLARE_EVT0 for an example of use.
4144 @see @ref overview_events_custom_ownclass
4146 #define wxEVENT_HANDLER_CAST(functype, func) (&func)
4149 This macro is used to define event table macros for handling custom
4154 class MyEvent : public wxEvent { ... };
4156 // note that this is not necessary unless using old compilers: for the
4157 // reasonably new ones just use &func instead of MyEventHandler(func)
4158 typedef void (wxEvtHandler::*MyEventFunction)(MyEvent&);
4159 #define MyEventHandler(func) wxEVENT_HANDLER_CAST(MyEventFunction, func)
4161 wxDEFINE_EVENT(MY_EVENT_TYPE, MyEvent);
4163 #define EVT_MY(id, func) \
4164 wx__DECLARE_EVT1(MY_EVENT_TYPE, id, MyEventHandler(func))
4168 wxBEGIN_EVENT_TABLE(MyFrame, wxFrame)
4169 EVT_MY(wxID_ANY, MyFrame::OnMyEvent)
4174 The event type to handle.
4176 The identifier of events to handle.
4178 The event handler method.
4180 #define wx__DECLARE_EVT1(evt, id, fn) \
4181 wx__DECLARE_EVT2(evt, id, wxID_ANY, fn)
4184 Generalized version of the wx__DECLARE_EVT1() macro taking a range of
4185 IDs instead of a single one.
4186 Argument @a id1 is the first identifier of the range, @a id2 is the
4187 second identifier of the range.
4189 #define wx__DECLARE_EVT2(evt, id1, id2, fn) \
4190 DECLARE_EVENT_TABLE_ENTRY(evt, id1, id2, fn, NULL),
4193 Simplified version of the wx__DECLARE_EVT1() macro, to be used when the
4194 event type must be handled regardless of the ID associated with the
4195 specific event instances.
4197 #define wx__DECLARE_EVT0(evt, fn) \
4198 wx__DECLARE_EVT1(evt, wxID_ANY, fn)
4201 Use this macro inside a class declaration to declare a @e static event table
4204 In the implementation file you'll need to use the wxBEGIN_EVENT_TABLE()
4205 and the wxEND_EVENT_TABLE() macros, plus some additional @c EVT_xxx macro
4208 Note that this macro requires a final semicolon.
4210 @see @ref overview_events_eventtables
4212 #define wxDECLARE_EVENT_TABLE()
4215 Use this macro in a source file to start listing @e static event handlers
4216 for a specific class.
4218 Use wxEND_EVENT_TABLE() to terminate the event-declaration block.
4220 @see @ref overview_events_eventtables
4222 #define wxBEGIN_EVENT_TABLE(theClass, baseClass)
4225 Use this macro in a source file to end listing @e static event handlers
4226 for a specific class.
4228 Use wxBEGIN_EVENT_TABLE() to start the event-declaration block.
4230 @see @ref overview_events_eventtables
4232 #define wxEND_EVENT_TABLE()
4235 In a GUI application, this function posts @a event to the specified @e dest
4236 object using wxEvtHandler::AddPendingEvent().
4238 Otherwise, it dispatches @a event immediately using
4239 wxEvtHandler::ProcessEvent(). See the respective documentation for details
4240 (and caveats). Because of limitation of wxEvtHandler::AddPendingEvent()
4241 this function is not thread-safe for event objects having wxString fields,
4242 use wxQueueEvent() instead.
4246 void wxPostEvent(wxEvtHandler
* dest
, const wxEvent
& event
);
4249 Queue an event for processing on the given object.
4251 This is a wrapper around wxEvtHandler::QueueEvent(), see its documentation
4257 The object to queue the event on, can't be @c NULL.
4259 The heap-allocated and non-@c NULL event to queue, the function takes
4262 void wxQueueEvent(wxEvtHandler
* dest
, wxEvent
*event
);
4266 wxEventType wxEVT_COMMAND_BUTTON_CLICKED
;
4267 wxEventType wxEVT_COMMAND_CHECKBOX_CLICKED
;
4268 wxEventType wxEVT_COMMAND_CHOICE_SELECTED
;
4269 wxEventType wxEVT_COMMAND_LISTBOX_SELECTED
;
4270 wxEventType wxEVT_COMMAND_LISTBOX_DOUBLECLICKED
;
4271 wxEventType wxEVT_COMMAND_CHECKLISTBOX_TOGGLED
;
4272 wxEventType wxEVT_COMMAND_MENU_SELECTED
;
4273 wxEventType wxEVT_COMMAND_SLIDER_UPDATED
;
4274 wxEventType wxEVT_COMMAND_RADIOBOX_SELECTED
;
4275 wxEventType wxEVT_COMMAND_RADIOBUTTON_SELECTED
;
4276 wxEventType wxEVT_COMMAND_SCROLLBAR_UPDATED
;
4277 wxEventType wxEVT_COMMAND_VLBOX_SELECTED
;
4278 wxEventType wxEVT_COMMAND_COMBOBOX_SELECTED
;
4279 wxEventType wxEVT_COMMAND_TOOL_RCLICKED
;
4280 wxEventType wxEVT_COMMAND_TOOL_DROPDOWN_CLICKED
;
4281 wxEventType wxEVT_COMMAND_TOOL_ENTER
;
4282 wxEventType wxEVT_COMMAND_COMBOBOX_DROPDOWN
;
4283 wxEventType wxEVT_COMMAND_COMBOBOX_CLOSEUP
;
4284 wxEventType wxEVT_THREAD
;
4285 wxEventType wxEVT_LEFT_DOWN
;
4286 wxEventType wxEVT_LEFT_UP
;
4287 wxEventType wxEVT_MIDDLE_DOWN
;
4288 wxEventType wxEVT_MIDDLE_UP
;
4289 wxEventType wxEVT_RIGHT_DOWN
;
4290 wxEventType wxEVT_RIGHT_UP
;
4291 wxEventType wxEVT_MOTION
;
4292 wxEventType wxEVT_ENTER_WINDOW
;
4293 wxEventType wxEVT_LEAVE_WINDOW
;
4294 wxEventType wxEVT_LEFT_DCLICK
;
4295 wxEventType wxEVT_MIDDLE_DCLICK
;
4296 wxEventType wxEVT_RIGHT_DCLICK
;
4297 wxEventType wxEVT_SET_FOCUS
;
4298 wxEventType wxEVT_KILL_FOCUS
;
4299 wxEventType wxEVT_CHILD_FOCUS
;
4300 wxEventType wxEVT_MOUSEWHEEL
;
4301 wxEventType wxEVT_AUX1_DOWN
;
4302 wxEventType wxEVT_AUX1_UP
;
4303 wxEventType wxEVT_AUX1_DCLICK
;
4304 wxEventType wxEVT_AUX2_DOWN
;
4305 wxEventType wxEVT_AUX2_UP
;
4306 wxEventType wxEVT_AUX2_DCLICK
;
4307 wxEventType wxEVT_CHAR
;
4308 wxEventType wxEVT_CHAR_HOOK
;
4309 wxEventType wxEVT_NAVIGATION_KEY
;
4310 wxEventType wxEVT_KEY_DOWN
;
4311 wxEventType wxEVT_KEY_UP
;
4312 wxEventType wxEVT_HOTKEY
;
4313 wxEventType wxEVT_SET_CURSOR
;
4314 wxEventType wxEVT_SCROLL_TOP
;
4315 wxEventType wxEVT_SCROLL_BOTTOM
;
4316 wxEventType wxEVT_SCROLL_LINEUP
;
4317 wxEventType wxEVT_SCROLL_LINEDOWN
;
4318 wxEventType wxEVT_SCROLL_PAGEUP
;
4319 wxEventType wxEVT_SCROLL_PAGEDOWN
;
4320 wxEventType wxEVT_SCROLL_THUMBTRACK
;
4321 wxEventType wxEVT_SCROLL_THUMBRELEASE
;
4322 wxEventType wxEVT_SCROLL_CHANGED
;
4323 wxEventType wxEVT_SPIN_UP
;
4324 wxEventType wxEVT_SPIN_DOWN
;
4325 wxEventType wxEVT_SPIN
;
4326 wxEventType wxEVT_SCROLLWIN_TOP
;
4327 wxEventType wxEVT_SCROLLWIN_BOTTOM
;
4328 wxEventType wxEVT_SCROLLWIN_LINEUP
;
4329 wxEventType wxEVT_SCROLLWIN_LINEDOWN
;
4330 wxEventType wxEVT_SCROLLWIN_PAGEUP
;
4331 wxEventType wxEVT_SCROLLWIN_PAGEDOWN
;
4332 wxEventType wxEVT_SCROLLWIN_THUMBTRACK
;
4333 wxEventType wxEVT_SCROLLWIN_THUMBRELEASE
;
4334 wxEventType wxEVT_SIZE
;
4335 wxEventType wxEVT_MOVE
;
4336 wxEventType wxEVT_CLOSE_WINDOW
;
4337 wxEventType wxEVT_END_SESSION
;
4338 wxEventType wxEVT_QUERY_END_SESSION
;
4339 wxEventType wxEVT_ACTIVATE_APP
;
4340 wxEventType wxEVT_ACTIVATE
;
4341 wxEventType wxEVT_CREATE
;
4342 wxEventType wxEVT_DESTROY
;
4343 wxEventType wxEVT_SHOW
;
4344 wxEventType wxEVT_ICONIZE
;
4345 wxEventType wxEVT_MAXIMIZE
;
4346 wxEventType wxEVT_MOUSE_CAPTURE_CHANGED
;
4347 wxEventType wxEVT_MOUSE_CAPTURE_LOST
;
4348 wxEventType wxEVT_PAINT
;
4349 wxEventType wxEVT_ERASE_BACKGROUND
;
4350 wxEventType wxEVT_NC_PAINT
;
4351 wxEventType wxEVT_MENU_OPEN
;
4352 wxEventType wxEVT_MENU_CLOSE
;
4353 wxEventType wxEVT_MENU_HIGHLIGHT
;
4354 wxEventType wxEVT_CONTEXT_MENU
;
4355 wxEventType wxEVT_SYS_COLOUR_CHANGED
;
4356 wxEventType wxEVT_DISPLAY_CHANGED
;
4357 wxEventType wxEVT_QUERY_NEW_PALETTE
;
4358 wxEventType wxEVT_PALETTE_CHANGED
;
4359 wxEventType wxEVT_JOY_BUTTON_DOWN
;
4360 wxEventType wxEVT_JOY_BUTTON_UP
;
4361 wxEventType wxEVT_JOY_MOVE
;
4362 wxEventType wxEVT_JOY_ZMOVE
;
4363 wxEventType wxEVT_DROP_FILES
;
4364 wxEventType wxEVT_INIT_DIALOG
;
4365 wxEventType wxEVT_IDLE
;
4366 wxEventType wxEVT_UPDATE_UI
;
4367 wxEventType wxEVT_SIZING
;
4368 wxEventType wxEVT_MOVING
;
4369 wxEventType wxEVT_MOVE_START
;
4370 wxEventType wxEVT_MOVE_END
;
4371 wxEventType wxEVT_HIBERNATE
;
4372 wxEventType wxEVT_COMMAND_TEXT_COPY
;
4373 wxEventType wxEVT_COMMAND_TEXT_CUT
;
4374 wxEventType wxEVT_COMMAND_TEXT_PASTE
;
4375 wxEventType wxEVT_COMMAND_LEFT_CLICK
;
4376 wxEventType wxEVT_COMMAND_LEFT_DCLICK
;
4377 wxEventType wxEVT_COMMAND_RIGHT_CLICK
;
4378 wxEventType wxEVT_COMMAND_RIGHT_DCLICK
;
4379 wxEventType wxEVT_COMMAND_SET_FOCUS
;
4380 wxEventType wxEVT_COMMAND_KILL_FOCUS
;
4381 wxEventType wxEVT_COMMAND_ENTER
;
4382 wxEventType wxEVT_HELP
;
4383 wxEventType wxEVT_DETAILED_HELP
;
4384 wxEventType wxEVT_COMMAND_TEXT_UPDATED
;
4385 wxEventType wxEVT_COMMAND_TOOL_CLICKED
;
4386 wxEventType wxEVT_WINDOW_MODAL_DIALOG_CLOSED
;