1 /////////////////////////////////////////////////////////////////////////////
3 // Purpose: interface of wxEvtHandler, wxEventBlocker and many
4 // wxEvent-derived classes
5 // Author: wxWidgets team
7 // Licence: wxWindows licence
8 /////////////////////////////////////////////////////////////////////////////
11 The predefined constants for the number of times we propagate event
12 upwards window child-parent chain.
14 enum wxEventPropagation
16 /// don't propagate it at all
17 wxEVENT_PROPAGATE_NONE
= 0,
19 /// propagate it until it is processed
20 wxEVENT_PROPAGATE_MAX
= INT_MAX
24 The different categories for a wxEvent; see wxEvent::GetEventCategory.
26 @note They are used as OR-combinable flags by wxEventLoopBase::YieldFor.
31 This is the category for those events which are generated to update
32 the appearance of the GUI but which (usually) do not comport data
33 processing, i.e. which do not provide input or output data
34 (e.g. size events, scroll events, etc).
35 They are events NOT directly generated by the user's input devices.
37 wxEVT_CATEGORY_UI
= 1,
40 This category groups those events which are generated directly from the
41 user through input devices like mouse and keyboard and usually result in
42 data to be processed from the application
43 (e.g. mouse clicks, key presses, etc).
45 wxEVT_CATEGORY_USER_INPUT
= 2,
47 /// This category is for wxSocketEvent
48 wxEVT_CATEGORY_SOCKET
= 4,
50 /// This category is for wxTimerEvent
51 wxEVT_CATEGORY_TIMER
= 8,
54 This category is for any event used to send notifications from the
55 secondary threads to the main one or in general for notifications among
56 different threads (which may or may not be user-generated).
57 See e.g. wxThreadEvent.
59 wxEVT_CATEGORY_THREAD
= 16,
62 This mask is used in wxEventLoopBase::YieldFor to specify that all event
63 categories should be processed.
66 wxEVT_CATEGORY_UI
|wxEVT_CATEGORY_USER_INPUT
|wxEVT_CATEGORY_SOCKET
| \
67 wxEVT_CATEGORY_TIMER
|wxEVT_CATEGORY_THREAD
73 An event is a structure holding information about an event passed to a
74 callback or member function.
76 wxEvent used to be a multipurpose event object, and is an abstract base class
77 for other event classes (see below).
79 For more information about events, see the @ref overview_events overview.
82 In wxPerl custom event classes should be derived from
83 @c Wx::PlEvent and @c Wx::PlCommandEvent.
89 @see wxCommandEvent, wxMouseEvent
91 class wxEvent
: public wxObject
97 Notice that events are usually created by wxWidgets itself and creating
98 e.g. a wxPaintEvent in your code and sending it to e.g. a wxTextCtrl
99 will not usually affect it at all as native controls have no specific
100 knowledge about wxWidgets events. However you may construct objects of
101 specific types and pass them to wxEvtHandler::ProcessEvent() if you
102 want to create your own custom control and want to process its events
103 in the same manner as the standard ones.
105 Also please notice that the order of parameters in this constructor is
106 different from almost all the derived classes which specify the event
107 type as the first argument.
110 The identifier of the object (window, timer, ...) which generated
113 The unique type of event, e.g. wxEVT_PAINT, wxEVT_SIZE or
114 wxEVT_COMMAND_BUTTON_CLICKED.
116 wxEvent(int id
= 0, wxEventType eventType
= wxEVT_NULL
);
119 Returns a copy of the event.
121 Any event that is posted to the wxWidgets event system for later action
122 (via wxEvtHandler::AddPendingEvent, wxEvtHandler::QueueEvent or wxPostEvent())
123 must implement this method.
125 All wxWidgets events fully implement this method, but any derived events
126 implemented by the user should also implement this method just in case they
127 (or some event derived from them) are ever posted.
129 All wxWidgets events implement a copy constructor, so the easiest way of
130 implementing the Clone function is to implement a copy constructor for
131 a new event (call it MyEvent) and then define the Clone function like this:
134 wxEvent *Clone() const { return new MyEvent(*this); }
137 virtual wxEvent
* Clone() const = 0;
140 Returns the object (usually a window) associated with the event, if any.
142 wxObject
* GetEventObject() const;
145 Returns the identifier of the given event type, such as @c wxEVT_COMMAND_BUTTON_CLICKED.
147 wxEventType
GetEventType() const;
150 Returns a generic category for this event.
151 wxEvent implementation returns @c wxEVT_CATEGORY_UI by default.
153 This function is used to selectively process events in wxEventLoopBase::YieldFor.
155 virtual wxEventCategory
GetEventCategory() const;
158 Returns the identifier associated with this event, such as a button command id.
163 Returns @true if the event handler should be skipped, @false otherwise.
165 bool GetSkipped() const;
168 Gets the timestamp for the event. The timestamp is the time in milliseconds
169 since some fixed moment (not necessarily the standard Unix Epoch, so only
170 differences between the timestamps and not their absolute values usually make sense).
173 wxWidgets returns a non-NULL timestamp only for mouse and key events
174 (see wxMouseEvent and wxKeyEvent).
176 long GetTimestamp() const;
179 Returns @true if the event is or is derived from wxCommandEvent else it returns @false.
181 @note exists only for optimization purposes.
183 bool IsCommandEvent() const;
186 Sets the propagation level to the given value (for example returned from an
187 earlier call to wxEvent::StopPropagation).
189 void ResumePropagation(int propagationLevel
);
192 Sets the originating object.
194 void SetEventObject(wxObject
* object
);
199 void SetEventType(wxEventType type
);
202 Sets the identifier associated with this event, such as a button command id.
207 Sets the timestamp for the event.
209 void SetTimestamp(long timeStamp
= 0);
212 Test if this event should be propagated or not, i.e. if the propagation level
213 is currently greater than 0.
215 bool ShouldPropagate() const;
218 This method can be used inside an event handler to control whether further
219 event handlers bound to this event will be called after the current one returns.
221 Without Skip() (or equivalently if Skip(@false) is used), the event will not
222 be processed any more. If Skip(@true) is called, the event processing system
223 continues searching for a further handler function for this event, even though
224 it has been processed already in the current handler.
226 In general, it is recommended to skip all non-command events to allow the
227 default handling to take place. The command events are, however, normally not
228 skipped as usually a single command such as a button click or menu item
229 selection must only be processed by one handler.
231 void Skip(bool skip
= true);
234 Stop the event from propagating to its parent window.
236 Returns the old propagation level value which may be later passed to
237 ResumePropagation() to allow propagating the event again.
239 int StopPropagation();
243 Indicates how many levels the event can propagate.
245 This member is protected and should typically only be set in the constructors
246 of the derived classes. It may be temporarily changed by StopPropagation()
247 and ResumePropagation() and tested with ShouldPropagate().
249 The initial value is set to either @c wxEVENT_PROPAGATE_NONE (by default)
250 meaning that the event shouldn't be propagated at all or to
251 @c wxEVENT_PROPAGATE_MAX (for command events) meaning that it should be
252 propagated as much as necessary.
254 Any positive number means that the event should be propagated but no more than
255 the given number of times. E.g. the propagation level may be set to 1 to
256 propagate the event to its parent only, but not to its grandparent.
258 int m_propagationLevel
;
262 @class wxEventBlocker
264 This class is a special event handler which allows to discard
265 any event (or a set of event types) directed to a specific window.
270 void MyWindow::DoSomething()
273 // block all events directed to this window while
274 // we do the 1000 FunctionWhichSendsEvents() calls
275 wxEventBlocker blocker(this);
277 for ( int i = 0; i 1000; i++ )
278 FunctionWhichSendsEvents(i);
280 } // ~wxEventBlocker called, old event handler is restored
282 // the event generated by this call will be processed:
283 FunctionWhichSendsEvents(0)
290 @see @ref overview_events_processing, wxEvtHandler
292 class wxEventBlocker
: public wxEvtHandler
296 Constructs the blocker for the given window and for the given event type.
298 If @a type is @c wxEVT_ANY, then all events for that window are blocked.
299 You can call Block() after creation to add other event types to the list
302 Note that the @a win window @b must remain alive until the
303 wxEventBlocker object destruction.
305 wxEventBlocker(wxWindow
* win
, wxEventType type
= -1);
308 Destructor. The blocker will remove itself from the chain of event handlers for
309 the window provided in the constructor, thus restoring normal processing of events.
311 virtual ~wxEventBlocker();
314 Adds to the list of event types which should be blocked the given @a eventType.
316 void Block(wxEventType eventType
);
324 A class that can handle events from the windowing system.
325 wxWindow is (and therefore all window classes are) derived from this class.
327 When events are received, wxEvtHandler invokes the method listed in the
328 event table using itself as the object. When using multiple inheritance
329 <b>it is imperative that the wxEvtHandler(-derived) class is the first
330 class inherited</b> such that the @c this pointer for the overall object
331 will be identical to the @c this pointer of the wxEvtHandler portion.
336 @see @ref overview_events_processing, wxEventBlocker, wxEventLoopBase
338 class wxEvtHandler
: public wxObject
, public wxTrackable
349 If the handler is part of a chain, the destructor will unlink itself
352 virtual ~wxEvtHandler();
356 @name Event queuing and processing
361 Queue event for a later processing.
363 This method is similar to ProcessEvent() but while the latter is
364 synchronous, i.e. the event is processed immediately, before the
365 function returns, this one is asynchronous and returns immediately
366 while the event will be processed at some later time (usually during
367 the next event loop iteration).
369 Another important difference is that this method takes ownership of the
370 @a event parameter, i.e. it will delete it itself. This implies that
371 the event should be allocated on the heap and that the pointer can't be
372 used any more after the function returns (as it can be deleted at any
375 QueueEvent() can be used for inter-thread communication from the worker
376 threads to the main thread, it is safe in the sense that it uses
377 locking internally and avoids the problem mentioned in AddPendingEvent()
378 documentation by ensuring that the @a event object is not used by the
379 calling thread any more. Care should still be taken to avoid that some
380 fields of this object are used by it, notably any wxString members of
381 the event object must not be shallow copies of another wxString object
382 as this would result in them still using the same string buffer behind
383 the scenes. For example:
385 void FunctionInAWorkerThread(const wxString& str)
387 wxCommandEvent* evt = new wxCommandEvent;
389 // NOT evt->SetString(str) as this would be a shallow copy
390 evt->SetString(str.c_str()); // make a deep copy
392 wxTheApp->QueueEvent( evt );
396 Note that you can use wxThreadEvent instead of wxCommandEvent
397 to avoid this problem:
399 void FunctionInAWorkerThread(const wxString& str)
404 // wxThreadEvent::Clone() makes sure that the internal wxString
405 // member is not shared by other wxString instances:
406 wxTheApp->QueueEvent( evt.Clone() );
410 Finally notice that this method automatically wakes up the event loop
411 if it is currently idle by calling ::wxWakeUpIdle() so there is no need
412 to do it manually when using it.
417 A heap-allocated event to be queued, QueueEvent() takes ownership
418 of it. This parameter shouldn't be @c NULL.
420 virtual void QueueEvent(wxEvent
*event
);
423 Post an event to be processed later.
425 This function is similar to QueueEvent() but can't be used to post
426 events from worker threads for the event objects with wxString fields
427 (i.e. in practice most of them) because of an unsafe use of the same
428 wxString object which happens because the wxString field in the
429 original @a event object and its copy made internally by this function
430 share the same string buffer internally. Use QueueEvent() to avoid
433 A copy of @a event is made by the function, so the original can be deleted
434 as soon as function returns (it is common that the original is created
435 on the stack). This requires that the wxEvent::Clone() method be
436 implemented by event so that it can be duplicated and stored until it
440 Event to add to the pending events queue.
442 virtual void AddPendingEvent(const wxEvent
& event
);
445 Processes an event, searching event tables and calling zero or more suitable
446 event handler function(s).
448 Normally, your application would not call this function: it is called in the
449 wxWidgets implementation to dispatch incoming user interface events to the
450 framework (and application).
452 However, you might need to call it if implementing new functionality
453 (such as a new control) where you define new event types, as opposed to
454 allowing the user to override virtual functions.
456 Notice that you don't usually need to override ProcessEvent() to
457 customize the event handling, overriding the specially provided
458 TryBefore() and TryAfter() functions is usually enough. For example,
459 wxMDIParentFrame may override TryBefore() to ensure that the menu
460 events are processed in the active child frame before being processed
461 in the parent frame itself.
463 The normal order of event table searching is as follows:
464 -# wxApp::FilterEvent() is called. If it returns anything but @c -1
465 (default) the processing stops here.
466 -# TryBefore() is called (this is where wxValidator are taken into
467 account for wxWindow objects). If this returns @true, the function exits.
468 -# If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled)
469 the function skips to step (7).
470 -# Dynamic event table of the handlers bound using Bind<>() is
471 searched. If a handler is found, it is executed and the function
472 returns @true unless the handler used wxEvent::Skip() to indicate
473 that it didn't handle the event in which case the search continues.
474 -# Static events table of the handlers bound using event table
475 macros is searched for this event handler. If this fails, the base
476 class event table table is tried, and so on until no more tables
477 exist or an appropriate function was found. If a handler is found,
478 the same logic as in the previous step applies.
479 -# The search is applied down the entire chain of event handlers (usually the
480 chain has a length of one). This chain can be formed using wxEvtHandler::SetNextHandler():
481 @image html overview_events_chain.png
482 (referring to the image, if @c A->ProcessEvent is called and it doesn't handle
483 the event, @c B->ProcessEvent will be called and so on...).
484 Note that in the case of wxWindow you can build a stack of event handlers
485 (see wxWindow::PushEventHandler() for more info).
486 If any of the handlers of the chain return @true, the function exits.
487 -# TryAfter() is called: for the wxWindow object this may propagate the
488 event to the window parent (recursively). If the event is still not
489 processed, ProcessEvent() on wxTheApp object is called as the last
492 Notice that steps (2)-(6) are performed in ProcessEventLocally()
493 which is called by this function.
498 @true if a suitable event handler function was found and executed,
499 and the function did not call wxEvent::Skip.
501 @see SearchEventTable()
503 virtual bool ProcessEvent(wxEvent
& event
);
506 Try to process the event in this handler and all those chained to it.
508 As explained in ProcessEvent() documentation, the event handlers may be
509 chained in a doubly-linked list. This function tries to process the
510 event in this handler (including performing any pre-processing done in
511 TryBefore(), e.g. applying validators) and all those following it in
512 the chain until the event is processed or the chain is exhausted.
514 This function is called from ProcessEvent() and, in turn, calls
515 TryThis() for each handler in turn. It is not virtual and so cannot be
516 overridden but can, and should, be called to forward an event to
517 another handler instead of ProcessEvent() which would result in a
518 duplicate call to TryAfter(), e.g. resulting in all unprocessed events
519 being sent to the application object multiple times.
526 @true if this handler of one of those chained to it processed the
529 bool ProcessEventLocally(wxEvent
& event
);
532 Processes an event by calling ProcessEvent() and handles any exceptions
533 that occur in the process.
534 If an exception is thrown in event handler, wxApp::OnExceptionInMainLoop is called.
539 @return @true if the event was processed, @false if no handler was found
540 or an exception was thrown.
542 @see wxWindow::HandleWindowEvent
544 bool SafelyProcessEvent(wxEvent
& event
);
547 Processes the pending events previously queued using QueueEvent() or
548 AddPendingEvent(); you must call this function only if you are sure
549 there are pending events for this handler, otherwise a @c wxCHECK
552 The real processing still happens in ProcessEvent() which is called by this
555 Note that this function needs a valid application object (see
556 wxAppConsole::GetInstance()) because wxApp holds the list of the event
557 handlers with pending events and this function manipulates that list.
559 void ProcessPendingEvents();
562 Deletes all events queued on this event handler using QueueEvent() or
565 Use with care because the events which are deleted are (obviously) not
566 processed and this may have unwanted consequences (e.g. user actions events
569 void DeletePendingEvents();
572 Searches the event table, executing an event handler function if an appropriate
576 Event table to be searched.
578 Event to be matched against an event table entry.
580 @return @true if a suitable event handler function was found and
581 executed, and the function did not call wxEvent::Skip.
583 @remarks This function looks through the object's event table and tries
584 to find an entry that will match the event.
585 An entry will match if:
586 @li The event type matches, and
587 @li the identifier or identifier range matches, or the event table
588 entry's identifier is zero.
590 If a suitable function is called but calls wxEvent::Skip, this
591 function will fail, and searching will continue.
593 @todo this function in the header is listed as an "implementation only" function;
594 are we sure we want to document it?
598 virtual bool SearchEventTable(wxEventTable
& table
,
605 @name Connecting and disconnecting
610 Connects the given function dynamically with the event handler, id and
613 Notice that Bind() provides a more flexible and safer way to do the
614 same thing as Connect(), please use it in any new code -- while
615 Connect() is not formally deprecated due to its existing widespread
616 usage, it has no advantages compared to Bind().
618 This is an alternative to the use of static event tables. It is more
619 flexible as it allows to connect events generated by some object to an
620 event handler defined in a different object of a different class (which
621 is impossible to do directly with the event tables -- the events can be
622 only handled in another object if they are propagated upwards to it).
623 Do make sure to specify the correct @a eventSink when connecting to an
624 event of a different object.
626 See @ref overview_events_bind for more detailed explanation
627 of this function and the @ref page_samples_event sample for usage
630 This specific overload allows you to connect an event handler to a @e range
632 Do not confuse @e source IDs with event @e types: source IDs identify the
633 event generator objects (typically wxMenuItem or wxWindow objects) while the
634 event @e type identify which type of events should be handled by the
635 given @e function (an event generator object may generate many different
639 The first ID of the identifier range to be associated with the event
642 The last ID of the identifier range to be associated with the event
645 The event type to be associated with this event handler.
647 The event handler function. Note that this function should
648 be explicitly converted to the correct type which can be done using a macro
649 called @c wxFooEventHandler for the handler for any @c wxFooEvent.
651 Data to be associated with the event table entry.
653 Object whose member function should be called. It must be specified
654 when connecting an event generated by one object to a member
655 function of a different object. If it is omitted, @c this is used.
658 In wxPerl this function takes 4 arguments: @a id, @a lastid,
659 @a type, @a method; if @a method is undef, the handler is
665 void Connect(int id
, int lastId
, wxEventType eventType
,
666 wxObjectEventFunction function
,
667 wxObject
* userData
= NULL
,
668 wxEvtHandler
* eventSink
= NULL
);
671 See the Connect(int, int, wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
672 overload for more info.
674 This overload can be used to attach an event handler to a single source ID:
678 frame->Connect( wxID_EXIT,
679 wxEVT_COMMAND_MENU_SELECTED,
680 wxCommandEventHandler(MyFrame::OnQuit) );
684 Not supported by wxPerl.
687 void Connect(int id
, wxEventType eventType
,
688 wxObjectEventFunction function
,
689 wxObject
* userData
= NULL
,
690 wxEvtHandler
* eventSink
= NULL
);
693 See the Connect(int, int, wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
694 overload for more info.
696 This overload will connect the given event handler so that regardless of the
697 ID of the event source, the handler will be called.
700 Not supported by wxPerl.
703 void Connect(wxEventType eventType
,
704 wxObjectEventFunction function
,
705 wxObject
* userData
= NULL
,
706 wxEvtHandler
* eventSink
= NULL
);
709 Disconnects the given function dynamically from the event handler, using the
710 specified parameters as search criteria and returning @true if a matching
711 function has been found and removed.
713 This method can only disconnect functions which have been added using the
714 Connect() method. There is no way to disconnect functions connected using
715 the (static) event tables.
718 The event type associated with this event handler.
720 The event handler function.
722 Data associated with the event table entry.
724 Object whose member function should be called.
727 Not supported by wxPerl.
730 bool Disconnect(wxEventType eventType
,
731 wxObjectEventFunction function
,
732 wxObject
* userData
= NULL
,
733 wxEvtHandler
* eventSink
= NULL
);
736 See the Disconnect(wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
737 overload for more info.
739 This overload takes the additional @a id parameter.
742 Not supported by wxPerl.
745 bool Disconnect(int id
= wxID_ANY
,
746 wxEventType eventType
= wxEVT_NULL
,
747 wxObjectEventFunction function
= NULL
,
748 wxObject
* userData
= NULL
,
749 wxEvtHandler
* eventSink
= NULL
);
752 See the Disconnect(wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
753 overload for more info.
755 This overload takes an additional range of source IDs.
758 In wxPerl this function takes 3 arguments: @a id,
762 bool Disconnect(int id
, int lastId
,
763 wxEventType eventType
,
764 wxObjectEventFunction function
= NULL
,
765 wxObject
* userData
= NULL
,
766 wxEvtHandler
* eventSink
= NULL
);
771 @name Binding and Unbinding
776 Binds the given function, functor or method dynamically with the event.
778 This offers basically the same functionality as Connect(), but it is
779 more flexible as it also allows you to use ordinary functions and
780 arbitrary functors as event handlers. It is also less restrictive then
781 Connect() because you can use an arbitrary method as an event handler,
782 where as Connect() requires a wxEvtHandler derived handler.
784 See @ref overview_events_bind for more detailed explanation
785 of this function and the @ref page_samples_event sample for usage
789 The event type to be associated with this event handler.
791 The event handler functor. This can be an ordinary function but also
792 an arbitrary functor like boost::function<>.
794 The first ID of the identifier range to be associated with the event
797 The last ID of the identifier range to be associated with the event
800 Data to be associated with the event table entry.
802 @see @ref overview_cpp_rtti_disabled
806 template <typename EventTag
, typename Functor
>
807 void Bind(const EventTag
& eventType
,
810 int lastId
= wxID_ANY
,
811 wxObject
*userData
= NULL
);
814 See the Bind<>(const EventTag&, Functor, int, int, wxObject*) overload for
817 This overload will bind the given method as the event handler.
820 The event type to be associated with this event handler.
822 The event handler method. This can be an arbitrary method (doesn't need
823 to be from a wxEvtHandler derived class).
825 Object whose method should be called. It must always be specified
826 so it can be checked at compile time whether the given method is an
827 actual member of the given handler.
829 The first ID of the identifier range to be associated with the event
832 The last ID of the identifier range to be associated with the event
835 Data to be associated with the event table entry.
837 @see @ref overview_cpp_rtti_disabled
841 template <typename EventTag
, typename Class
, typename EventArg
, typename EventHandler
>
842 void Bind(const EventTag
&eventType
,
843 void (Class::*method
)(EventArg
&),
844 EventHandler
*handler
,
846 int lastId
= wxID_ANY
,
847 wxObject
*userData
= NULL
);
849 Unbinds the given function, functor or method dynamically from the
850 event handler, using the specified parameters as search criteria and
851 returning @true if a matching function has been found and removed.
853 This method can only unbind functions, functors or methods which have
854 been added using the Bind<>() method. There is no way to unbind
855 functions bound using the (static) event tables.
858 The event type associated with this event handler.
860 The event handler functor. This can be an ordinary function but also
861 an arbitrary functor like boost::function<>.
863 The first ID of the identifier range associated with the event
866 The last ID of the identifier range associated with the event
869 Data associated with the event table entry.
871 @see @ref overview_cpp_rtti_disabled
875 template <typename EventTag
, typename Functor
>
876 bool Unbind(const EventTag
& eventType
,
879 int lastId
= wxID_ANY
,
880 wxObject
*userData
= NULL
);
883 See the Unbind<>(const EventTag&, Functor, int, int, wxObject*)
884 overload for more info.
886 This overload unbinds the given method from the event..
889 The event type associated with this event handler.
891 The event handler method associated with this event.
893 Object whose method was called.
895 The first ID of the identifier range associated with the event
898 The last ID of the identifier range associated with the event
901 Data associated with the event table entry.
903 @see @ref overview_cpp_rtti_disabled
907 template <typename EventTag
, typename Class
, typename EventArg
, typename EventHandler
>
908 bool Unbind(const EventTag
&eventType
,
909 void (Class::*method
)(EventArg
&),
910 EventHandler
*handler
,
912 int lastId
= wxID_ANY
,
913 wxObject
*userData
= NULL
);
916 @name User-supplied data
921 Returns user-supplied client data.
923 @remarks Normally, any extra data the programmer wishes to associate with
924 the object should be made available by deriving a new class with
929 void* GetClientData() const;
932 Returns a pointer to the user-supplied client data object.
934 @see SetClientObject(), wxClientData
936 wxClientData
* GetClientObject() const;
939 Sets user-supplied client data.
942 Data to be associated with the event handler.
944 @remarks Normally, any extra data the programmer wishes to associate
945 with the object should be made available by deriving a new
946 class with new data members. You must not call this method
947 and SetClientObject on the same class - only one of them.
951 void SetClientData(void* data
);
954 Set the client data object. Any previous object will be deleted.
956 @see GetClientObject(), wxClientData
958 void SetClientObject(wxClientData
* data
);
964 @name Event handler chaining
966 wxEvtHandler can be arranged in a double-linked list of handlers
967 which is automatically iterated by ProcessEvent() if needed.
972 Returns @true if the event handler is enabled, @false otherwise.
974 @see SetEvtHandlerEnabled()
976 bool GetEvtHandlerEnabled() const;
979 Returns the pointer to the next handler in the chain.
981 @see SetNextHandler(), GetPreviousHandler(), SetPreviousHandler(),
982 wxWindow::PushEventHandler, wxWindow::PopEventHandler
984 wxEvtHandler
* GetNextHandler() const;
987 Returns the pointer to the previous handler in the chain.
989 @see SetPreviousHandler(), GetNextHandler(), SetNextHandler(),
990 wxWindow::PushEventHandler, wxWindow::PopEventHandler
992 wxEvtHandler
* GetPreviousHandler() const;
995 Enables or disables the event handler.
998 @true if the event handler is to be enabled, @false if it is to be disabled.
1000 @remarks You can use this function to avoid having to remove the event
1001 handler from the chain, for example when implementing a
1002 dialog editor and changing from edit to test mode.
1004 @see GetEvtHandlerEnabled()
1006 void SetEvtHandlerEnabled(bool enabled
);
1009 Sets the pointer to the next handler.
1012 See ProcessEvent() for more info about how the chains of event handlers
1013 are internally used.
1014 Also remember that wxEvtHandler uses double-linked lists and thus if you
1015 use this function, you should also call SetPreviousHandler() on the
1016 argument passed to this function:
1018 handlerA->SetNextHandler(handlerB);
1019 handlerB->SetPreviousHandler(handlerA);
1023 The event handler to be set as the next handler.
1026 @see @ref overview_events_processing
1028 virtual void SetNextHandler(wxEvtHandler
* handler
);
1031 Sets the pointer to the previous handler.
1032 All remarks about SetNextHandler() apply to this function as well.
1035 The event handler to be set as the previous handler.
1038 @see @ref overview_events_processing
1040 virtual void SetPreviousHandler(wxEvtHandler
* handler
);
1043 Unlinks this event handler from the chain it's part of (if any);
1044 then links the "previous" event handler to the "next" one
1045 (so that the chain won't be interrupted).
1047 E.g. if before calling Unlink() you have the following chain:
1048 @image html evthandler_unlink_before.png
1049 then after calling @c B->Unlink() you'll have:
1050 @image html evthandler_unlink_after.png
1057 Returns @true if the next and the previous handler pointers of this
1058 event handler instance are @NULL.
1062 @see SetPreviousHandler(), SetNextHandler()
1064 bool IsUnlinked() const;
1070 Method called by ProcessEvent() before examining this object event
1073 This method can be overridden to hook into the event processing logic
1074 as early as possible. You should usually call the base class version
1075 when overriding this method, even if wxEvtHandler itself does nothing
1076 here, some derived classes do use this method, e.g. wxWindow implements
1077 support for wxValidator in it.
1081 class MyClass : public BaseClass // inheriting from wxEvtHandler
1085 virtual bool TryBefore(wxEvent& event)
1087 if ( MyPreProcess(event) )
1090 return BaseClass::TryBefore(event);
1097 virtual bool TryBefore(wxEvent
& event
);
1100 Try to process the event in this event handler.
1102 This method is called from ProcessEventLocally() and thus, indirectly,
1103 from ProcessEvent(), please see the detailed description of the event
1104 processing logic there.
1106 It is currently @em not virtual and so may not be overridden.
1113 @true if this object itself defines a handler for this event and
1114 the handler didn't skip the event.
1116 bool TryThis(wxEvent
& event
);
1119 Method called by ProcessEvent() as last resort.
1121 This method can be overridden to implement post-processing for the
1122 events which were not processed anywhere else.
1124 The base class version handles forwarding the unprocessed events to
1125 wxApp at wxEvtHandler level and propagating them upwards the window
1126 child-parent chain at wxWindow level and so should usually be called
1127 when overriding this method:
1129 class MyClass : public BaseClass // inheriting from wxEvtHandler
1133 virtual bool TryAfter(wxEvent& event)
1135 if ( BaseClass::TryAfter(event) )
1138 return MyPostProcess(event);
1145 virtual bool TryAfter(wxEvent
& event
);
1150 Flags for categories of keys.
1152 These values are used by wxKeyEvent::IsKeyInCategory(). They may be
1153 combined via the bitwise operators |, &, and ~.
1157 enum wxKeyCategoryFlags
1159 /// arrow keys, on and off numeric keypads
1162 /// page up and page down keys, on and off numeric keypads
1163 WXK_CATEGORY_PAGING
,
1165 /// home and end keys, on and off numeric keypads
1168 /// tab key, on and off numeric keypads
1171 /// backspace and delete keys, on and off numeric keypads
1174 /// union of WXK_CATEGORY_ARROW, WXK_CATEGORY_PAGING, and WXK_CATEGORY_JUMP categories
1175 WXK_CATEGORY_NAVIGATION
1182 This event class contains information about key press and release events.
1184 Notice that there are three different kinds of keyboard events in wxWidgets:
1185 key down and up events and char events. The difference between the first two
1186 is clear - the first corresponds to a key press and the second to a key
1187 release - otherwise they are identical. Just note that if the key is
1188 maintained in a pressed state you will typically get a lot of (automatically
1189 generated) down events but only one up so it is wrong to assume that there is
1190 one up event corresponding to each down one.
1192 Both key down and up events provide untranslated key codes while the char
1193 event carries the translated one. The untranslated code for alphanumeric
1194 keys is always an upper case value. For the other keys it is one of @c
1195 WXK_XXX values from the ::wxKeyCode enumeration. The translated key is, in
1196 general, the character the user expects to appear as the result of the key
1197 combination when typing the text into a text entry zone, for example.
1199 A few examples to clarify this (all assume that CAPS LOCK is unpressed
1200 and the standard US keyboard): when the @c 'A' key is pressed, the key down
1201 event key code is equal to @c ASCII A == 65. But the char event key code
1202 is @c ASCII a == 97. On the other hand, if you press both SHIFT and
1203 @c 'A' keys simultaneously , the key code in key down event will still be
1204 just @c 'A' while the char event key code parameter will now be @c 'A'
1207 Although in this simple case it is clear that the correct key code could be
1208 found in the key down event handler by checking the value returned by
1209 wxKeyEvent::ShiftDown(), in general you should use @c EVT_CHAR if you need
1210 the translated key as for non-alphanumeric keys the translation is
1211 keyboard-layout dependent and can only be done properly by the system
1214 Another kind of translation is done when the control key is pressed: for
1215 example, for CTRL-A key press the key down event still carries the
1216 same key code @c 'a' as usual but the char event will have key code of 1,
1217 the ASCII value of this key combination.
1219 Notice that while pressing any key will generate a key down event (except
1220 in presence of IME perhaps) a few special keys don't generate a char event:
1221 currently, Shift, Control (or Command), Alt (or Menu or Meta) and Caps, Num
1222 and Scroll Lock keys don't do it. For all the other keys you have the
1223 choice about whether to choose key down or char event for handling it and
1224 either can be used. However it is advised to use char events only for the
1225 keys that are supposed to generate characters on screen and key down events
1229 You may discover how the other keys on your system behave interactively by
1230 running the @ref page_samples_keyboard wxWidgets sample and pressing some
1233 @b Tip: be sure to call @c event.Skip() for events that you don't process in
1234 key event function, otherwise menu shortcuts may cease to work under Windows.
1236 @note If a key down (@c EVT_KEY_DOWN) event is caught and the event handler
1237 does not call @c event.Skip() then the corresponding char event
1238 (@c EVT_CHAR) will not happen.
1239 This is by design and enables the programs that handle both types of
1240 events to be a bit simpler.
1242 @note For Windows programmers: The key and char events in wxWidgets are
1243 similar to but slightly different from Windows @c WM_KEYDOWN and
1244 @c WM_CHAR events. In particular, Alt-x combination will generate a
1245 char event in wxWidgets (unless it is used as an accelerator) and
1246 almost all keys, including ones without ASCII equivalents, generate
1250 @beginEventTable{wxKeyEvent}
1251 @event{EVT_KEY_DOWN(func)}
1252 Process a @c wxEVT_KEY_DOWN event (any key has been pressed).
1253 @event{EVT_KEY_UP(func)}
1254 Process a @c wxEVT_KEY_UP event (any key has been released).
1255 @event{EVT_CHAR(func)}
1256 Process a @c wxEVT_CHAR event.
1259 @see wxKeyboardState
1264 class wxKeyEvent
: public wxEvent
,
1265 public wxKeyboardState
1270 Currently, the only valid event types are @c wxEVT_CHAR and @c wxEVT_CHAR_HOOK.
1272 wxKeyEvent(wxEventType keyEventType
= wxEVT_NULL
);
1275 Returns the virtual key code. ASCII events return normal ASCII values,
1276 while non-ASCII events return values such as @b WXK_LEFT for the left
1277 cursor key. See ::wxKeyCode for a full list of the virtual key codes.
1279 Note that in Unicode build, the returned value is meaningful only if
1280 the user entered a character that can be represented in current
1281 locale's default charset. You can obtain the corresponding Unicode
1282 character using GetUnicodeKey().
1284 int GetKeyCode() const;
1287 Returns true if the key is in the given key category.
1290 A bitwise combination of named ::wxKeyCategoryFlags constants.
1294 bool IsKeyInCategory(int category
) const;
1298 Obtains the position (in client coordinates) at which the key was pressed.
1300 wxPoint
GetPosition() const;
1301 void GetPosition(long* x
, long* y
) const;
1305 Returns the raw key code for this event. This is a platform-dependent scan code
1306 which should only be used in advanced applications.
1308 @note Currently the raw key codes are not supported by all ports, use
1309 @ifdef_ wxHAS_RAW_KEY_CODES to determine if this feature is available.
1311 wxUint32
GetRawKeyCode() const;
1314 Returns the low level key flags for this event. The flags are
1315 platform-dependent and should only be used in advanced applications.
1317 @note Currently the raw key flags are not supported by all ports, use
1318 @ifdef_ wxHAS_RAW_KEY_CODES to determine if this feature is available.
1320 wxUint32
GetRawKeyFlags() const;
1323 Returns the Unicode character corresponding to this key event.
1325 If the key pressed doesn't have any character value (e.g. a cursor key)
1326 this method will return 0.
1328 This function is only available in Unicode build, i.e. when
1329 @c wxUSE_UNICODE is 1.
1331 wxChar
GetUnicodeKey() const;
1334 Returns the X position (in client coordinates) of the event.
1336 wxCoord
GetX() const;
1339 Returns the Y position (in client coordinates) of the event.
1341 wxCoord
GetY() const;
1347 @class wxJoystickEvent
1349 This event class contains information about joystick events, particularly
1350 events received by windows.
1352 @beginEventTable{wxJoystickEvent}
1353 @event{EVT_JOY_BUTTON_DOWN(func)}
1354 Process a @c wxEVT_JOY_BUTTON_DOWN event.
1355 @event{EVT_JOY_BUTTON_UP(func)}
1356 Process a @c wxEVT_JOY_BUTTON_UP event.
1357 @event{EVT_JOY_MOVE(func)}
1358 Process a @c wxEVT_JOY_MOVE event.
1359 @event{EVT_JOY_ZMOVE(func)}
1360 Process a @c wxEVT_JOY_ZMOVE event.
1361 @event{EVT_JOYSTICK_EVENTS(func)}
1362 Processes all joystick events.
1370 class wxJoystickEvent
: public wxEvent
1376 wxJoystickEvent(wxEventType eventType
= wxEVT_NULL
, int state
= 0,
1377 int joystick
= wxJOYSTICK1
,
1381 Returns @true if the event was a down event from the specified button
1385 Can be @c wxJOY_BUTTONn where @c n is 1, 2, 3 or 4; or @c wxJOY_BUTTON_ANY to
1386 indicate any button down event.
1388 bool ButtonDown(int button
= wxJOY_BUTTON_ANY
) const;
1391 Returns @true if the specified button (or any button) was in a down state.
1394 Can be @c wxJOY_BUTTONn where @c n is 1, 2, 3 or 4; or @c wxJOY_BUTTON_ANY to
1395 indicate any button down event.
1397 bool ButtonIsDown(int button
= wxJOY_BUTTON_ANY
) const;
1400 Returns @true if the event was an up event from the specified button
1404 Can be @c wxJOY_BUTTONn where @c n is 1, 2, 3 or 4; or @c wxJOY_BUTTON_ANY to
1405 indicate any button down event.
1407 bool ButtonUp(int button
= wxJOY_BUTTON_ANY
) const;
1410 Returns the identifier of the button changing state.
1412 This is a @c wxJOY_BUTTONn identifier, where @c n is one of 1, 2, 3, 4.
1414 int GetButtonChange() const;
1417 Returns the down state of the buttons.
1419 This is a @c wxJOY_BUTTONn identifier, where @c n is one of 1, 2, 3, 4.
1421 int GetButtonState() const;
1424 Returns the identifier of the joystick generating the event - one of
1425 wxJOYSTICK1 and wxJOYSTICK2.
1427 int GetJoystick() const;
1430 Returns the x, y position of the joystick event.
1432 wxPoint
GetPosition() const;
1435 Returns the z position of the joystick event.
1437 int GetZPosition() const;
1440 Returns @true if this was a button up or down event
1441 (@e not 'is any button down?').
1443 bool IsButton() const;
1446 Returns @true if this was an x, y move event.
1448 bool IsMove() const;
1451 Returns @true if this was a z move event.
1453 bool IsZMove() const;
1459 @class wxScrollWinEvent
1461 A scroll event holds information about events sent from scrolling windows.
1463 Note that you can use the EVT_SCROLLWIN* macros for intercepting scroll window events
1464 from the receiving window.
1466 @beginEventTable{wxScrollWinEvent}
1467 @event{EVT_SCROLLWIN(func)}
1468 Process all scroll events.
1469 @event{EVT_SCROLLWIN_TOP(func)}
1470 Process wxEVT_SCROLLWIN_TOP scroll-to-top events.
1471 @event{EVT_SCROLLWIN_BOTTOM(func)}
1472 Process wxEVT_SCROLLWIN_BOTTOM scroll-to-bottom events.
1473 @event{EVT_SCROLLWIN_LINEUP(func)}
1474 Process wxEVT_SCROLLWIN_LINEUP line up events.
1475 @event{EVT_SCROLLWIN_LINEDOWN(func)}
1476 Process wxEVT_SCROLLWIN_LINEDOWN line down events.
1477 @event{EVT_SCROLLWIN_PAGEUP(func)}
1478 Process wxEVT_SCROLLWIN_PAGEUP page up events.
1479 @event{EVT_SCROLLWIN_PAGEDOWN(func)}
1480 Process wxEVT_SCROLLWIN_PAGEDOWN page down events.
1481 @event{EVT_SCROLLWIN_THUMBTRACK(func)}
1482 Process wxEVT_SCROLLWIN_THUMBTRACK thumbtrack events
1483 (frequent events sent as the user drags the thumbtrack).
1484 @event{EVT_SCROLLWIN_THUMBRELEASE(func)}
1485 Process wxEVT_SCROLLWIN_THUMBRELEASE thumb release events.
1492 @see wxScrollEvent, @ref overview_events
1494 class wxScrollWinEvent
: public wxEvent
1500 wxScrollWinEvent(wxEventType commandType
= wxEVT_NULL
, int pos
= 0,
1501 int orientation
= 0);
1504 Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
1507 @todo wxHORIZONTAL and wxVERTICAL should go in their own enum
1509 int GetOrientation() const;
1512 Returns the position of the scrollbar for the thumb track and release events.
1514 Note that this field can't be used for the other events, you need to query
1515 the window itself for the current position in that case.
1517 int GetPosition() const;
1523 @class wxSysColourChangedEvent
1525 This class is used for system colour change events, which are generated
1526 when the user changes the colour settings using the control panel.
1527 This is only appropriate under Windows.
1530 The default event handler for this event propagates the event to child windows,
1531 since Windows only sends the events to top-level windows.
1532 If intercepting this event for a top-level window, remember to call the base
1533 class handler, or to pass the event on to the window's children explicitly.
1535 @beginEventTable{wxSysColourChangedEvent}
1536 @event{EVT_SYS_COLOUR_CHANGED(func)}
1537 Process a @c wxEVT_SYS_COLOUR_CHANGED event.
1543 @see @ref overview_events
1545 class wxSysColourChangedEvent
: public wxEvent
1551 wxSysColourChangedEvent();
1557 @class wxWindowCreateEvent
1559 This event is sent just after the actual window associated with a wxWindow
1560 object has been created.
1562 Since it is derived from wxCommandEvent, the event propagates up
1563 the window hierarchy.
1565 @beginEventTable{wxWindowCreateEvent}
1566 @event{EVT_WINDOW_CREATE(func)}
1567 Process a @c wxEVT_CREATE event.
1573 @see @ref overview_events, wxWindowDestroyEvent
1575 class wxWindowCreateEvent
: public wxCommandEvent
1581 wxWindowCreateEvent(wxWindow
* win
= NULL
);
1583 /// Retutn the window being created.
1584 wxWindow
*GetWindow() const;
1592 A paint event is sent when a window's contents needs to be repainted.
1594 The handler of this event must create a wxPaintDC object and use it for
1595 painting the window contents. For example:
1597 void MyWindow::OnPaint(wxPaintEvent& event)
1605 Notice that you must @e not create other kinds of wxDC (e.g. wxClientDC or
1606 wxWindowDC) in EVT_PAINT handlers and also don't create wxPaintDC outside
1607 of this event handlers.
1610 You can optimize painting by retrieving the rectangles that have been damaged
1611 and only repainting these. The rectangles are in terms of the client area,
1612 and are unscrolled, so you will need to do some calculations using the current
1613 view position to obtain logical, scrolled units.
1614 Here is an example of using the wxRegionIterator class:
1616 // Called when window needs to be repainted.
1617 void MyWindow::OnPaint(wxPaintEvent& event)
1621 // Find Out where the window is scrolled to
1622 int vbX,vbY; // Top left corner of client
1623 GetViewStart(&vbX,&vbY);
1625 int vX,vY,vW,vH; // Dimensions of client area in pixels
1626 wxRegionIterator upd(GetUpdateRegion()); // get the update rect list
1635 // Alternatively we can do this:
1636 // wxRect rect(upd.GetRect());
1638 // Repaint this rectangle
1647 Please notice that in general it is impossible to change the drawing of a
1648 standard control (such as wxButton) and so you shouldn't attempt to handle
1649 paint events for them as even if it might work on some platforms, this is
1650 inherently not portable and won't work everywhere.
1653 @beginEventTable{wxPaintEvent}
1654 @event{EVT_PAINT(func)}
1655 Process a @c wxEVT_PAINT event.
1661 @see @ref overview_events
1663 class wxPaintEvent
: public wxEvent
1669 wxPaintEvent(int id
= 0);
1675 @class wxMaximizeEvent
1677 An event being sent when a top level window is maximized. Notice that it is
1678 not sent when the window is restored to its original size after it had been
1679 maximized, only a normal wxSizeEvent is generated in this case.
1681 @beginEventTable{wxMaximizeEvent}
1682 @event{EVT_MAXIMIZE(func)}
1683 Process a @c wxEVT_MAXIMIZE event.
1689 @see @ref overview_events, wxTopLevelWindow::Maximize,
1690 wxTopLevelWindow::IsMaximized
1692 class wxMaximizeEvent
: public wxEvent
1696 Constructor. Only used by wxWidgets internally.
1698 wxMaximizeEvent(int id
= 0);
1702 The possibles modes to pass to wxUpdateUIEvent::SetMode().
1706 /** Send UI update events to all windows. */
1707 wxUPDATE_UI_PROCESS_ALL
,
1709 /** Send UI update events to windows that have
1710 the wxWS_EX_PROCESS_UI_UPDATES flag specified. */
1711 wxUPDATE_UI_PROCESS_SPECIFIED
1716 @class wxUpdateUIEvent
1718 This class is used for pseudo-events which are called by wxWidgets
1719 to give an application the chance to update various user interface elements.
1721 Without update UI events, an application has to work hard to check/uncheck,
1722 enable/disable, show/hide, and set the text for elements such as menu items
1723 and toolbar buttons. The code for doing this has to be mixed up with the code
1724 that is invoked when an action is invoked for a menu item or button.
1726 With update UI events, you define an event handler to look at the state of the
1727 application and change UI elements accordingly. wxWidgets will call your member
1728 functions in idle time, so you don't have to worry where to call this code.
1730 In addition to being a clearer and more declarative method, it also means you don't
1731 have to worry whether you're updating a toolbar or menubar identifier. The same
1732 handler can update a menu item and toolbar button, if the identifier is the same.
1733 Instead of directly manipulating the menu or button, you call functions in the event
1734 object, such as wxUpdateUIEvent::Check. wxWidgets will determine whether such a
1735 call has been made, and which UI element to update.
1737 These events will work for popup menus as well as menubars. Just before a menu is
1738 popped up, wxMenu::UpdateUI is called to process any UI events for the window that
1741 If you find that the overhead of UI update processing is affecting your application,
1742 you can do one or both of the following:
1743 @li Call wxUpdateUIEvent::SetMode with a value of wxUPDATE_UI_PROCESS_SPECIFIED,
1744 and set the extra style wxWS_EX_PROCESS_UI_UPDATES for every window that should
1745 receive update events. No other windows will receive update events.
1746 @li Call wxUpdateUIEvent::SetUpdateInterval with a millisecond value to set the delay
1747 between updates. You may need to call wxWindow::UpdateWindowUI at critical points,
1748 for example when a dialog is about to be shown, in case the user sees a slight
1749 delay before windows are updated.
1751 Note that although events are sent in idle time, defining a wxIdleEvent handler
1752 for a window does not affect this because the events are sent from wxWindow::OnInternalIdle
1753 which is always called in idle time.
1755 wxWidgets tries to optimize update events on some platforms.
1756 On Windows and GTK+, events for menubar items are only sent when the menu is about
1757 to be shown, and not in idle time.
1760 @beginEventTable{wxUpdateUIEvent}
1761 @event{EVT_UPDATE_UI(id, func)}
1762 Process a @c wxEVT_UPDATE_UI event for the command with the given id.
1763 @event{EVT_UPDATE_UI_RANGE(id1, id2, func)}
1764 Process a @c wxEVT_UPDATE_UI event for any command with id included in the given range.
1770 @see @ref overview_events
1772 class wxUpdateUIEvent
: public wxCommandEvent
1778 wxUpdateUIEvent(wxWindowID commandId
= 0);
1781 Returns @true if it is appropriate to update (send UI update events to)
1784 This function looks at the mode used (see wxUpdateUIEvent::SetMode),
1785 the wxWS_EX_PROCESS_UI_UPDATES flag in @a window, the time update events
1786 were last sent in idle time, and the update interval, to determine whether
1787 events should be sent to this window now. By default this will always
1788 return @true because the update mode is initially wxUPDATE_UI_PROCESS_ALL
1789 and the interval is set to 0; so update events will be sent as often as
1790 possible. You can reduce the frequency that events are sent by changing the
1791 mode and/or setting an update interval.
1793 @see ResetUpdateTime(), SetUpdateInterval(), SetMode()
1795 static bool CanUpdate(wxWindow
* window
);
1798 Check or uncheck the UI element.
1800 void Check(bool check
);
1803 Enable or disable the UI element.
1805 void Enable(bool enable
);
1808 Returns @true if the UI element should be checked.
1810 bool GetChecked() const;
1813 Returns @true if the UI element should be enabled.
1815 bool GetEnabled() const;
1818 Static function returning a value specifying how wxWidgets will send update
1819 events: to all windows, or only to those which specify that they will process
1824 static wxUpdateUIMode
GetMode();
1827 Returns @true if the application has called Check().
1828 For wxWidgets internal use only.
1830 bool GetSetChecked() const;
1833 Returns @true if the application has called Enable().
1834 For wxWidgets internal use only.
1836 bool GetSetEnabled() const;
1839 Returns @true if the application has called Show().
1840 For wxWidgets internal use only.
1842 bool GetSetShown() const;
1845 Returns @true if the application has called SetText().
1846 For wxWidgets internal use only.
1848 bool GetSetText() const;
1851 Returns @true if the UI element should be shown.
1853 bool GetShown() const;
1856 Returns the text that should be set for the UI element.
1858 wxString
GetText() const;
1861 Returns the current interval between updates in milliseconds.
1862 The value -1 disables updates, 0 updates as frequently as possible.
1864 @see SetUpdateInterval().
1866 static long GetUpdateInterval();
1869 Used internally to reset the last-updated time to the current time.
1871 It is assumed that update events are normally sent in idle time, so this
1872 is called at the end of idle processing.
1874 @see CanUpdate(), SetUpdateInterval(), SetMode()
1876 static void ResetUpdateTime();
1879 Specify how wxWidgets will send update events: to all windows, or only to
1880 those which specify that they will process the events.
1883 this parameter may be one of the ::wxUpdateUIMode enumeration values.
1884 The default mode is wxUPDATE_UI_PROCESS_ALL.
1886 static void SetMode(wxUpdateUIMode mode
);
1889 Sets the text for this UI element.
1891 void SetText(const wxString
& text
);
1894 Sets the interval between updates in milliseconds.
1896 Set to -1 to disable updates, or to 0 to update as frequently as possible.
1899 Use this to reduce the overhead of UI update events if your application
1900 has a lot of windows. If you set the value to -1 or greater than 0,
1901 you may also need to call wxWindow::UpdateWindowUI at appropriate points
1902 in your application, such as when a dialog is about to be shown.
1904 static void SetUpdateInterval(long updateInterval
);
1907 Show or hide the UI element.
1909 void Show(bool show
);
1915 @class wxClipboardTextEvent
1917 This class represents the events generated by a control (typically a
1918 wxTextCtrl but other windows can generate these events as well) when its
1919 content gets copied or cut to, or pasted from the clipboard.
1921 There are three types of corresponding events wxEVT_COMMAND_TEXT_COPY,
1922 wxEVT_COMMAND_TEXT_CUT and wxEVT_COMMAND_TEXT_PASTE.
1924 If any of these events is processed (without being skipped) by an event
1925 handler, the corresponding operation doesn't take place which allows to
1926 prevent the text from being copied from or pasted to a control. It is also
1927 possible to examine the clipboard contents in the PASTE event handler and
1928 transform it in some way before inserting in a control -- for example,
1929 changing its case or removing invalid characters.
1931 Finally notice that a CUT event is always preceded by the COPY event which
1932 makes it possible to only process the latter if it doesn't matter if the
1933 text was copied or cut.
1936 These events are currently only generated by wxTextCtrl under GTK+.
1937 They are generated by all controls under Windows.
1939 @beginEventTable{wxClipboardTextEvent}
1940 @event{EVT_TEXT_COPY(id, func)}
1941 Some or all of the controls content was copied to the clipboard.
1942 @event{EVT_TEXT_CUT(id, func)}
1943 Some or all of the controls content was cut (i.e. copied and
1945 @event{EVT_TEXT_PASTE(id, func)}
1946 Clipboard content was pasted into the control.
1955 class wxClipboardTextEvent
: public wxCommandEvent
1961 wxClipboardTextEvent(wxEventType commandType
= wxEVT_NULL
, int id
= 0);
1969 This event class contains information about the events generated by the mouse:
1970 they include mouse buttons press and release events and mouse move events.
1972 All mouse events involving the buttons use @c wxMOUSE_BTN_LEFT for the
1973 left mouse button, @c wxMOUSE_BTN_MIDDLE for the middle one and
1974 @c wxMOUSE_BTN_RIGHT for the right one. And if the system supports more
1975 buttons, the @c wxMOUSE_BTN_AUX1 and @c wxMOUSE_BTN_AUX2 events
1976 can also be generated. Note that not all mice have even a middle button so a
1977 portable application should avoid relying on the events from it (but the right
1978 button click can be emulated using the left mouse button with the control key
1979 under Mac platforms with a single button mouse).
1981 For the @c wxEVT_ENTER_WINDOW and @c wxEVT_LEAVE_WINDOW events
1982 purposes, the mouse is considered to be inside the window if it is in the
1983 window client area and not inside one of its children. In other words, the
1984 parent window receives @c wxEVT_LEAVE_WINDOW event not only when the
1985 mouse leaves the window entirely but also when it enters one of its children.
1987 The position associated with a mouse event is expressed in the window
1988 coordinates of the window which generated the event, you can use
1989 wxWindow::ClientToScreen() to convert it to screen coordinates and possibly
1990 call wxWindow::ScreenToClient() next to convert it to window coordinates of
1993 @note Note that under Windows CE mouse enter and leave events are not natively
1994 supported by the system but are generated by wxWidgets itself. This has several
1995 drawbacks: the LEAVE_WINDOW event might be received some time after the mouse
1996 left the window and the state variables for it may have changed during this time.
1998 @note Note the difference between methods like wxMouseEvent::LeftDown and
1999 the inherited wxMouseState::LeftIsDown: the former returns @true when
2000 the event corresponds to the left mouse button click while the latter
2001 returns @true if the left mouse button is currently being pressed.
2002 For example, when the user is dragging the mouse you can use
2003 wxMouseEvent::LeftIsDown to test whether the left mouse button is
2004 (still) depressed. Also, by convention, if wxMouseEvent::LeftDown
2005 returns @true, wxMouseEvent::LeftIsDown will also return @true in
2006 wxWidgets whatever the underlying GUI behaviour is (which is
2007 platform-dependent). The same applies, of course, to other mouse
2011 @beginEventTable{wxMouseEvent}
2012 @event{EVT_LEFT_DOWN(func)}
2013 Process a @c wxEVT_LEFT_DOWN event. The handler of this event should normally
2014 call event.Skip() to allow the default processing to take place as otherwise
2015 the window under mouse wouldn't get the focus.
2016 @event{EVT_LEFT_UP(func)}
2017 Process a @c wxEVT_LEFT_UP event.
2018 @event{EVT_LEFT_DCLICK(func)}
2019 Process a @c wxEVT_LEFT_DCLICK event.
2020 @event{EVT_MIDDLE_DOWN(func)}
2021 Process a @c wxEVT_MIDDLE_DOWN event.
2022 @event{EVT_MIDDLE_UP(func)}
2023 Process a @c wxEVT_MIDDLE_UP event.
2024 @event{EVT_MIDDLE_DCLICK(func)}
2025 Process a @c wxEVT_MIDDLE_DCLICK event.
2026 @event{EVT_RIGHT_DOWN(func)}
2027 Process a @c wxEVT_RIGHT_DOWN event.
2028 @event{EVT_RIGHT_UP(func)}
2029 Process a @c wxEVT_RIGHT_UP event.
2030 @event{EVT_RIGHT_DCLICK(func)}
2031 Process a @c wxEVT_RIGHT_DCLICK event.
2032 @event{EVT_MOUSE_AUX1_DOWN(func)}
2033 Process a @c wxEVT_AUX1_DOWN event.
2034 @event{EVT_MOUSE_AUX1_UP(func)}
2035 Process a @c wxEVT_AUX1_UP event.
2036 @event{EVT_MOUSE_AUX1_DCLICK(func)}
2037 Process a @c wxEVT_AUX1_DCLICK event.
2038 @event{EVT_MOUSE_AUX2_DOWN(func)}
2039 Process a @c wxEVT_AUX2_DOWN event.
2040 @event{EVT_MOUSE_AUX2_UP(func)}
2041 Process a @c wxEVT_AUX2_UP event.
2042 @event{EVT_MOUSE_AUX2_DCLICK(func)}
2043 Process a @c wxEVT_AUX2_DCLICK event.
2044 @event{EVT_MOTION(func)}
2045 Process a @c wxEVT_MOTION event.
2046 @event{EVT_ENTER_WINDOW(func)}
2047 Process a @c wxEVT_ENTER_WINDOW event.
2048 @event{EVT_LEAVE_WINDOW(func)}
2049 Process a @c wxEVT_LEAVE_WINDOW event.
2050 @event{EVT_MOUSEWHEEL(func)}
2051 Process a @c wxEVT_MOUSEWHEEL event.
2052 @event{EVT_MOUSE_EVENTS(func)}
2053 Process all mouse events.
2061 class wxMouseEvent
: public wxEvent
,
2066 Constructor. Valid event types are:
2068 @li wxEVT_ENTER_WINDOW
2069 @li wxEVT_LEAVE_WINDOW
2072 @li wxEVT_LEFT_DCLICK
2073 @li wxEVT_MIDDLE_DOWN
2075 @li wxEVT_MIDDLE_DCLICK
2076 @li wxEVT_RIGHT_DOWN
2078 @li wxEVT_RIGHT_DCLICK
2079 @li wxEVT_MOUSE_AUX1_DOWN
2080 @li wxEVT_MOUSE_AUX1_UP
2081 @li wxEVT_MOUSE_AUX1_DCLICK
2082 @li wxEVT_MOUSE_AUX2_DOWN
2083 @li wxEVT_MOUSE_AUX2_UP
2084 @li wxEVT_MOUSE_AUX2_DCLICK
2086 @li wxEVT_MOUSEWHEEL
2088 wxMouseEvent(wxEventType mouseEventType
= wxEVT_NULL
);
2091 Returns @true if the event was a first extra button double click.
2093 bool Aux1DClick() const;
2096 Returns @true if the first extra button mouse button changed to down.
2098 bool Aux1Down() const;
2101 Returns @true if the first extra button mouse button changed to up.
2103 bool Aux1Up() const;
2106 Returns @true if the event was a second extra button double click.
2108 bool Aux2DClick() const;
2111 Returns @true if the second extra button mouse button changed to down.
2113 bool Aux2Down() const;
2116 Returns @true if the second extra button mouse button changed to up.
2118 bool Aux2Up() const;
2121 Returns @true if the event was generated by the specified button.
2123 @see wxMouseState::ButtoinIsDown()
2125 bool Button(wxMouseButton but
) const;
2128 If the argument is omitted, this returns @true if the event was a mouse
2129 double click event. Otherwise the argument specifies which double click event
2130 was generated (see Button() for the possible values).
2132 bool ButtonDClick(wxMouseButton but
= wxMOUSE_BTN_ANY
) const;
2135 If the argument is omitted, this returns @true if the event was a mouse
2136 button down event. Otherwise the argument specifies which button-down event
2137 was generated (see Button() for the possible values).
2139 bool ButtonDown(wxMouseButton but
= wxMOUSE_BTN_ANY
) const;
2142 If the argument is omitted, this returns @true if the event was a mouse
2143 button up event. Otherwise the argument specifies which button-up event
2144 was generated (see Button() for the possible values).
2146 bool ButtonUp(wxMouseButton but
= wxMOUSE_BTN_ANY
) const;
2149 Returns @true if this was a dragging event (motion while a button is depressed).
2153 bool Dragging() const;
2156 Returns @true if the mouse was entering the window.
2160 bool Entering() const;
2163 Returns the mouse button which generated this event or @c wxMOUSE_BTN_NONE
2164 if no button is involved (for mouse move, enter or leave event, for example).
2165 Otherwise @c wxMOUSE_BTN_LEFT is returned for the left button down, up and
2166 double click events, @c wxMOUSE_BTN_MIDDLE and @c wxMOUSE_BTN_RIGHT
2167 for the same events for the middle and the right buttons respectively.
2169 int GetButton() const;
2172 Returns the number of mouse clicks for this event: 1 for a simple click, 2
2173 for a double-click, 3 for a triple-click and so on.
2175 Currently this function is implemented only in wxMac and returns -1 for the
2176 other platforms (you can still distinguish simple clicks from double-clicks as
2177 they generate different kinds of events however).
2181 int GetClickCount() const;
2184 Returns the configured number of lines (or whatever) to be scrolled per
2185 wheel action. Defaults to three.
2187 int GetLinesPerAction() const;
2190 Returns the logical mouse position in pixels (i.e. translated according to the
2191 translation set for the DC, which usually indicates that the window has been
2194 wxPoint
GetLogicalPosition(const wxDC
& dc
) const;
2197 Get wheel delta, normally 120.
2199 This is the threshold for action to be taken, and one such action
2200 (for example, scrolling one increment) should occur for each delta.
2202 int GetWheelDelta() const;
2205 Get wheel rotation, positive or negative indicates direction of rotation.
2207 Current devices all send an event when rotation is at least +/-WheelDelta, but
2208 finer resolution devices can be created in the future.
2210 Because of this you shouldn't assume that one event is equal to 1 line, but you
2211 should be able to either do partial line scrolling or wait until several
2212 events accumulate before scrolling.
2214 int GetWheelRotation() const;
2217 Gets the axis the wheel operation concerns; @c 0 is the Y axis as on
2218 most mouse wheels, @c 1 is the X axis.
2220 Note that only some models of mouse have horizontal wheel axis.
2222 int GetWheelAxis() const;
2225 Returns @true if the event was a mouse button event (not necessarily a button
2226 down event - that may be tested using ButtonDown()).
2228 bool IsButton() const;
2231 Returns @true if the system has been setup to do page scrolling with
2232 the mouse wheel instead of line scrolling.
2234 bool IsPageScroll() const;
2237 Returns @true if the mouse was leaving the window.
2241 bool Leaving() const;
2244 Returns @true if the event was a left double click.
2246 bool LeftDClick() const;
2249 Returns @true if the left mouse button changed to down.
2251 bool LeftDown() const;
2254 Returns @true if the left mouse button changed to up.
2256 bool LeftUp() const;
2259 Returns @true if the Meta key was down at the time of the event.
2261 bool MetaDown() const;
2264 Returns @true if the event was a middle double click.
2266 bool MiddleDClick() const;
2269 Returns @true if the middle mouse button changed to down.
2271 bool MiddleDown() const;
2274 Returns @true if the middle mouse button changed to up.
2276 bool MiddleUp() const;
2279 Returns @true if this was a motion event and no mouse buttons were pressed.
2280 If any mouse button is held pressed, then this method returns @false and
2281 Dragging() returns @true.
2283 bool Moving() const;
2286 Returns @true if the event was a right double click.
2288 bool RightDClick() const;
2291 Returns @true if the right mouse button changed to down.
2293 bool RightDown() const;
2296 Returns @true if the right mouse button changed to up.
2298 bool RightUp() const;
2304 @class wxDropFilesEvent
2306 This class is used for drop files events, that is, when files have been dropped
2307 onto the window. This functionality is currently only available under Windows.
2309 The window must have previously been enabled for dropping by calling
2310 wxWindow::DragAcceptFiles().
2312 Important note: this is a separate implementation to the more general drag and drop
2313 implementation documented in the @ref overview_dnd. It uses the older, Windows
2314 message-based approach of dropping files.
2316 @beginEventTable{wxDropFilesEvent}
2317 @event{EVT_DROP_FILES(func)}
2318 Process a @c wxEVT_DROP_FILES event.
2326 @see @ref overview_events
2328 class wxDropFilesEvent
: public wxEvent
2334 wxDropFilesEvent(wxEventType id
= 0, int noFiles
= 0,
2335 wxString
* files
= NULL
);
2338 Returns an array of filenames.
2340 wxString
* GetFiles() const;
2343 Returns the number of files dropped.
2345 int GetNumberOfFiles() const;
2348 Returns the position at which the files were dropped.
2349 Returns an array of filenames.
2351 wxPoint
GetPosition() const;
2357 @class wxCommandEvent
2359 This event class contains information about command events, which originate
2360 from a variety of simple controls.
2362 Note that wxCommandEvents and wxCommandEvent-derived event classes by default
2363 and unlike other wxEvent-derived classes propagate upward from the source
2364 window (the window which emits the event) up to the first parent which processes
2365 the event. Be sure to read @ref overview_events_propagation.
2367 More complex controls, such as wxTreeCtrl, have separate command event classes.
2369 @beginEventTable{wxCommandEvent}
2370 @event{EVT_COMMAND(id, event, func)}
2371 Process a command, supplying the window identifier, command event identifier,
2372 and member function.
2373 @event{EVT_COMMAND_RANGE(id1, id2, event, func)}
2374 Process a command for a range of window identifiers, supplying the minimum and
2375 maximum window identifiers, command event identifier, and member function.
2376 @event{EVT_BUTTON(id, func)}
2377 Process a @c wxEVT_COMMAND_BUTTON_CLICKED command, which is generated by a wxButton control.
2378 @event{EVT_CHECKBOX(id, func)}
2379 Process a @c wxEVT_COMMAND_CHECKBOX_CLICKED command, which is generated by a wxCheckBox control.
2380 @event{EVT_CHOICE(id, func)}
2381 Process a @c wxEVT_COMMAND_CHOICE_SELECTED command, which is generated by a wxChoice control.
2382 @event{EVT_COMBOBOX(id, func)}
2383 Process a @c wxEVT_COMMAND_COMBOBOX_SELECTED command, which is generated by a wxComboBox control.
2384 @event{EVT_LISTBOX(id, func)}
2385 Process a @c wxEVT_COMMAND_LISTBOX_SELECTED command, which is generated by a wxListBox control.
2386 @event{EVT_LISTBOX_DCLICK(id, func)}
2387 Process a @c wxEVT_COMMAND_LISTBOX_DOUBLECLICKED command, which is generated by a wxListBox control.
2388 @event{EVT_CHECKLISTBOX(id, func)}
2389 Process a @c wxEVT_COMMAND_CHECKLISTBOX_TOGGLED command, which is generated by a wxCheckListBox control.
2390 @event{EVT_MENU(id, func)}
2391 Process a @c wxEVT_COMMAND_MENU_SELECTED command, which is generated by a menu item.
2392 @event{EVT_MENU_RANGE(id1, id2, func)}
2393 Process a @c wxEVT_COMMAND_MENU_RANGE command, which is generated by a range of menu items.
2394 @event{EVT_CONTEXT_MENU(func)}
2395 Process the event generated when the user has requested a popup menu to appear by
2396 pressing a special keyboard key (under Windows) or by right clicking the mouse.
2397 @event{EVT_RADIOBOX(id, func)}
2398 Process a @c wxEVT_COMMAND_RADIOBOX_SELECTED command, which is generated by a wxRadioBox control.
2399 @event{EVT_RADIOBUTTON(id, func)}
2400 Process a @c wxEVT_COMMAND_RADIOBUTTON_SELECTED command, which is generated by a wxRadioButton control.
2401 @event{EVT_SCROLLBAR(id, func)}
2402 Process a @c wxEVT_COMMAND_SCROLLBAR_UPDATED command, which is generated by a wxScrollBar
2403 control. This is provided for compatibility only; more specific scrollbar event macros
2404 should be used instead (see wxScrollEvent).
2405 @event{EVT_SLIDER(id, func)}
2406 Process a @c wxEVT_COMMAND_SLIDER_UPDATED command, which is generated by a wxSlider control.
2407 @event{EVT_TEXT(id, func)}
2408 Process a @c wxEVT_COMMAND_TEXT_UPDATED command, which is generated by a wxTextCtrl control.
2409 @event{EVT_TEXT_ENTER(id, func)}
2410 Process a @c wxEVT_COMMAND_TEXT_ENTER command, which is generated by a wxTextCtrl control.
2411 Note that you must use wxTE_PROCESS_ENTER flag when creating the control if you want it
2412 to generate such events.
2413 @event{EVT_TEXT_MAXLEN(id, func)}
2414 Process a @c wxEVT_COMMAND_TEXT_MAXLEN command, which is generated by a wxTextCtrl control
2415 when the user tries to enter more characters into it than the limit previously set
2416 with SetMaxLength().
2417 @event{EVT_TOGGLEBUTTON(id, func)}
2418 Process a @c wxEVT_COMMAND_TOGGLEBUTTON_CLICKED event.
2419 @event{EVT_TOOL(id, func)}
2420 Process a @c wxEVT_COMMAND_TOOL_CLICKED event (a synonym for @c wxEVT_COMMAND_MENU_SELECTED).
2421 Pass the id of the tool.
2422 @event{EVT_TOOL_RANGE(id1, id2, func)}
2423 Process a @c wxEVT_COMMAND_TOOL_CLICKED event for a range of identifiers. Pass the ids of the tools.
2424 @event{EVT_TOOL_RCLICKED(id, func)}
2425 Process a @c wxEVT_COMMAND_TOOL_RCLICKED event. Pass the id of the tool. (Not available on wxOSX.)
2426 @event{EVT_TOOL_RCLICKED_RANGE(id1, id2, func)}
2427 Process a @c wxEVT_COMMAND_TOOL_RCLICKED event for a range of ids. Pass the ids of the tools. (Not available on wxOSX.)
2428 @event{EVT_TOOL_ENTER(id, func)}
2429 Process a @c wxEVT_COMMAND_TOOL_ENTER event. Pass the id of the toolbar itself.
2430 The value of wxCommandEvent::GetSelection() is the tool id, or -1 if the mouse cursor
2431 has moved off a tool. (Not available on wxOSX.)
2432 @event{EVT_COMMAND_LEFT_CLICK(id, func)}
2433 Process a @c wxEVT_COMMAND_LEFT_CLICK command, which is generated by a control (wxMSW only).
2434 @event{EVT_COMMAND_LEFT_DCLICK(id, func)}
2435 Process a @c wxEVT_COMMAND_LEFT_DCLICK command, which is generated by a control (wxMSW only).
2436 @event{EVT_COMMAND_RIGHT_CLICK(id, func)}
2437 Process a @c wxEVT_COMMAND_RIGHT_CLICK command, which is generated by a control (wxMSW only).
2438 @event{EVT_COMMAND_SET_FOCUS(id, func)}
2439 Process a @c wxEVT_COMMAND_SET_FOCUS command, which is generated by a control (wxMSW only).
2440 @event{EVT_COMMAND_KILL_FOCUS(id, func)}
2441 Process a @c wxEVT_COMMAND_KILL_FOCUS command, which is generated by a control (wxMSW only).
2442 @event{EVT_COMMAND_ENTER(id, func)}
2443 Process a @c wxEVT_COMMAND_ENTER command, which is generated by a control.
2449 class wxCommandEvent
: public wxEvent
2455 wxCommandEvent(wxEventType commandEventType
= wxEVT_NULL
, int id
= 0);
2458 Returns client data pointer for a listbox or choice selection event
2459 (not valid for a deselection).
2461 void* GetClientData() const;
2464 Returns client object pointer for a listbox or choice selection event
2465 (not valid for a deselection).
2467 wxClientData
* GetClientObject() const;
2470 Returns extra information dependant on the event objects type.
2472 If the event comes from a listbox selection, it is a boolean
2473 determining whether the event was a selection (@true) or a
2474 deselection (@false). A listbox deselection only occurs for
2475 multiple-selection boxes, and in this case the index and string values
2476 are indeterminate and the listbox must be examined by the application.
2478 long GetExtraLong() const;
2481 Returns the integer identifier corresponding to a listbox, choice or
2482 radiobox selection (only if the event was a selection, not a deselection),
2483 or a boolean value representing the value of a checkbox.
2488 Returns item index for a listbox or choice selection event (not valid for
2491 int GetSelection() const;
2494 Returns item string for a listbox or choice selection event. If one
2495 or several items have been deselected, returns the index of the first
2496 deselected item. If some items have been selected and others deselected
2497 at the same time, it will return the index of the first selected item.
2499 wxString
GetString() const;
2502 This method can be used with checkbox and menu events: for the checkboxes, the
2503 method returns @true for a selection event and @false for a deselection one.
2504 For the menu events, this method indicates if the menu item just has become
2505 checked or unchecked (and thus only makes sense for checkable menu items).
2507 Notice that this method can not be used with wxCheckListBox currently.
2509 bool IsChecked() const;
2512 For a listbox or similar event, returns @true if it is a selection, @false
2513 if it is a deselection. If some items have been selected and others deselected
2514 at the same time, it will return @true.
2516 bool IsSelection() const;
2519 Sets the client data for this event.
2521 void SetClientData(void* clientData
);
2524 Sets the client object for this event. The client object is not owned by the
2525 event object and the event object will not delete the client object in its destructor.
2527 The client object must be owned and deleted by another object (e.g. a control)
2528 that has longer life time than the event object.
2530 void SetClientObject(wxClientData
* clientObject
);
2533 Sets the @b m_extraLong member.
2535 void SetExtraLong(long extraLong
);
2538 Sets the @b m_commandInt member.
2540 void SetInt(int intCommand
);
2543 Sets the @b m_commandString member.
2545 void SetString(const wxString
& string
);
2551 @class wxActivateEvent
2553 An activate event is sent when a window or application is being activated
2556 @beginEventTable{wxActivateEvent}
2557 @event{EVT_ACTIVATE(func)}
2558 Process a @c wxEVT_ACTIVATE event.
2559 @event{EVT_ACTIVATE_APP(func)}
2560 Process a @c wxEVT_ACTIVATE_APP event.
2561 This event is received by the wxApp-derived instance only.
2562 @event{EVT_HIBERNATE(func)}
2563 Process a hibernate event, supplying the member function. This event applies
2564 to wxApp only, and only on Windows SmartPhone and PocketPC.
2565 It is generated when the system is low on memory; the application should free
2566 up as much memory as possible, and restore full working state when it receives
2567 a wxEVT_ACTIVATE or wxEVT_ACTIVATE_APP event.
2573 @see @ref overview_events, wxApp::IsActive
2575 class wxActivateEvent
: public wxEvent
2581 wxActivateEvent(wxEventType eventType
= wxEVT_NULL
, bool active
= true,
2585 Returns @true if the application or window is being activated, @false otherwise.
2587 bool GetActive() const;
2593 @class wxContextMenuEvent
2595 This class is used for context menu events, sent to give
2596 the application a chance to show a context (popup) menu for a wxWindow.
2598 Note that if wxContextMenuEvent::GetPosition returns wxDefaultPosition, this
2599 means that the event originated from a keyboard context button event, and you
2600 should compute a suitable position yourself, for example by calling wxGetMousePosition().
2602 When a keyboard context menu button is pressed on Windows, a right-click event
2603 with default position is sent first, and if this event is not processed, the
2604 context menu event is sent. So if you process mouse events and you find your
2605 context menu event handler is not being called, you could call wxEvent::Skip()
2606 for mouse right-down events.
2608 @beginEventTable{wxContextMenuEvent}
2609 @event{EVT_CONTEXT_MENU(func)}
2610 A right click (or other context menu command depending on platform) has been detected.
2617 @see wxCommandEvent, @ref overview_events
2619 class wxContextMenuEvent
: public wxCommandEvent
2625 wxContextMenuEvent(wxEventType id
= wxEVT_NULL
, int id
= 0,
2626 const wxPoint
& pos
= wxDefaultPosition
);
2629 Returns the position in screen coordinates at which the menu should be shown.
2630 Use wxWindow::ScreenToClient to convert to client coordinates.
2632 You can also omit a position from wxWindow::PopupMenu in order to use
2633 the current mouse pointer position.
2635 If the event originated from a keyboard event, the value returned from this
2636 function will be wxDefaultPosition.
2638 const wxPoint
& GetPosition() const;
2641 Sets the position at which the menu should be shown.
2643 void SetPosition(const wxPoint
& point
);
2651 An erase event is sent when a window's background needs to be repainted.
2653 On some platforms, such as GTK+, this event is simulated (simply generated just
2654 before the paint event) and may cause flicker. It is therefore recommended that
2655 you set the text background colour explicitly in order to prevent flicker.
2656 The default background colour under GTK+ is grey.
2658 To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table
2661 You must call wxEraseEvent::GetDC and use the returned device context if it is
2662 non-@NULL. If it is @NULL, create your own temporary wxClientDC object.
2665 Use the device context returned by GetDC to draw on, don't create
2666 a wxPaintDC in the event handler.
2668 @beginEventTable{wxEraseEvent}
2669 @event{EVT_ERASE_BACKGROUND(func)}
2670 Process a @c wxEVT_ERASE_BACKGROUND event.
2676 @see @ref overview_events
2678 class wxEraseEvent
: public wxEvent
2684 wxEraseEvent(int id
= 0, wxDC
* dc
= NULL
);
2687 Returns the device context associated with the erase event to draw on.
2689 wxDC
* GetDC() const;
2697 A focus event is sent when a window's focus changes. The window losing focus
2698 receives a "kill focus" event while the window gaining it gets a "set focus" one.
2700 Notice that the set focus event happens both when the user gives focus to the
2701 window (whether using the mouse or keyboard) and when it is done from the
2702 program itself using wxWindow::SetFocus.
2704 @beginEventTable{wxFocusEvent}
2705 @event{EVT_SET_FOCUS(func)}
2706 Process a @c wxEVT_SET_FOCUS event.
2707 @event{EVT_KILL_FOCUS(func)}
2708 Process a @c wxEVT_KILL_FOCUS event.
2714 @see @ref overview_events
2716 class wxFocusEvent
: public wxEvent
2722 wxFocusEvent(wxEventType eventType
= wxEVT_NULL
, int id
= 0);
2725 Returns the window associated with this event, that is the window which had the
2726 focus before for the @c wxEVT_SET_FOCUS event and the window which is
2727 going to receive focus for the @c wxEVT_KILL_FOCUS one.
2729 Warning: the window pointer may be @NULL!
2731 wxWindow
*GetWindow() const;
2737 @class wxChildFocusEvent
2739 A child focus event is sent to a (parent-)window when one of its child windows
2740 gains focus, so that the window could restore the focus back to its corresponding
2741 child if it loses it now and regains later.
2743 Notice that child window is the direct child of the window receiving event.
2744 Use wxWindow::FindFocus() to retreive the window which is actually getting focus.
2746 @beginEventTable{wxChildFocusEvent}
2747 @event{EVT_CHILD_FOCUS(func)}
2748 Process a @c wxEVT_CHILD_FOCUS event.
2754 @see @ref overview_events
2756 class wxChildFocusEvent
: public wxCommandEvent
2763 The direct child which is (or which contains the window which is) receiving
2766 wxChildFocusEvent(wxWindow
* win
= NULL
);
2769 Returns the direct child which receives the focus, or a (grand-)parent of the
2770 control receiving the focus.
2772 To get the actually focused control use wxWindow::FindFocus.
2774 wxWindow
*GetWindow() const;
2780 @class wxMouseCaptureLostEvent
2782 An mouse capture lost event is sent to a window that obtained mouse capture,
2783 which was subsequently loss due to "external" event, for example when a dialog
2784 box is shown or if another application captures the mouse.
2786 If this happens, this event is sent to all windows that are on capture stack
2787 (i.e. called CaptureMouse, but didn't call ReleaseMouse yet). The event is
2788 not sent if the capture changes because of a call to CaptureMouse or
2791 This event is currently emitted under Windows only.
2793 @beginEventTable{wxMouseCaptureLostEvent}
2794 @event{EVT_MOUSE_CAPTURE_LOST(func)}
2795 Process a @c wxEVT_MOUSE_CAPTURE_LOST event.
2803 @see wxMouseCaptureChangedEvent, @ref overview_events,
2804 wxWindow::CaptureMouse, wxWindow::ReleaseMouse, wxWindow::GetCapture
2806 class wxMouseCaptureLostEvent
: public wxEvent
2812 wxMouseCaptureLostEvent(wxWindowID windowId
= 0);
2818 @class wxNotifyEvent
2820 This class is not used by the event handlers by itself, but is a base class
2821 for other event classes (such as wxBookCtrlEvent).
2823 It (or an object of a derived class) is sent when the controls state is being
2824 changed and allows the program to wxNotifyEvent::Veto() this change if it wants
2825 to prevent it from happening.
2830 @see wxBookCtrlEvent
2832 class wxNotifyEvent
: public wxCommandEvent
2836 Constructor (used internally by wxWidgets only).
2838 wxNotifyEvent(wxEventType eventType
= wxEVT_NULL
, int id
= 0);
2841 This is the opposite of Veto(): it explicitly allows the event to be processed.
2842 For most events it is not necessary to call this method as the events are allowed
2843 anyhow but some are forbidden by default (this will be mentioned in the corresponding
2849 Returns @true if the change is allowed (Veto() hasn't been called) or @false
2850 otherwise (if it was).
2852 bool IsAllowed() const;
2855 Prevents the change announced by this event from happening.
2857 It is in general a good idea to notify the user about the reasons for vetoing
2858 the change because otherwise the applications behaviour (which just refuses to
2859 do what the user wants) might be quite surprising.
2866 @class wxThreadEvent
2868 This class adds some simple functionalities to wxCommandEvent coinceived
2869 for inter-threads communications.
2871 This event is not natively emitted by any control/class: this is just
2872 an helper class for the user.
2873 Its most important feature is the GetEventCategory() implementation which
2874 allows thread events to @b NOT be processed by wxEventLoopBase::YieldFor calls
2875 (unless the @c wxEVT_CATEGORY_THREAD is specified - which is never in wx code).
2878 @category{events,threading}
2880 @see @ref overview_thread, wxEventLoopBase::YieldFor
2882 class wxThreadEvent
: public wxCommandEvent
2888 wxThreadEvent(wxEventType eventType
= wxEVT_COMMAND_THREAD
, int id
= wxID_ANY
);
2891 Clones this event making sure that all internal members which use
2892 COW (only @c m_commandString for now; see @ref overview_refcount)
2893 are unshared (see wxObject::UnShare).
2895 virtual wxEvent
*Clone() const;
2898 Returns @c wxEVT_CATEGORY_THREAD.
2900 This is important to avoid unwanted processing of thread events
2901 when calling wxEventLoopBase::YieldFor().
2903 virtual wxEventCategory
GetEventCategory() const;
2906 Sets custom data payload.
2908 The @a payload argument may be of any type that wxAny can handle
2909 (i.e. pretty much anything). Note that T's copy constructor must be
2910 thread-safe, i.e. create a copy that doesn't share anything with
2911 the original (see Clone()).
2913 @note This method is not available with Visual C++ 6.
2917 @see GetPayload(), wxAny
2919 template<typename T
>
2920 void SetPayload(const T
& payload
);
2923 Get custom data payload.
2925 Correct type is checked in debug builds.
2927 @note This method is not available with Visual C++ 6.
2931 @see SetPayload(), wxAny
2933 template<typename T
>
2934 T
GetPayload() const;
2941 A help event is sent when the user has requested context-sensitive help.
2942 This can either be caused by the application requesting context-sensitive help mode
2943 via wxContextHelp, or (on MS Windows) by the system generating a WM_HELP message when
2944 the user pressed F1 or clicked on the query button in a dialog caption.
2946 A help event is sent to the window that the user clicked on, and is propagated
2947 up the window hierarchy until the event is processed or there are no more event
2950 The application should call wxEvent::GetId to check the identity of the
2951 clicked-on window, and then either show some suitable help or call wxEvent::Skip()
2952 if the identifier is unrecognised.
2954 Calling Skip is important because it allows wxWidgets to generate further
2955 events for ancestors of the clicked-on window. Otherwise it would be impossible to
2956 show help for container windows, since processing would stop after the first window
2959 @beginEventTable{wxHelpEvent}
2960 @event{EVT_HELP(id, func)}
2961 Process a @c wxEVT_HELP event.
2962 @event{EVT_HELP_RANGE(id1, id2, func)}
2963 Process a @c wxEVT_HELP event for a range of ids.
2969 @see wxContextHelp, wxDialog, @ref overview_events
2971 class wxHelpEvent
: public wxCommandEvent
2975 Indicates how a wxHelpEvent was generated.
2979 Origin_Unknown
, /**< unrecognized event source. */
2980 Origin_Keyboard
, /**< event generated from F1 key press. */
2982 /** event generated by wxContextHelp or from the [?] button on
2983 the title bar (Windows). */
2990 wxHelpEvent(wxEventType type
= wxEVT_NULL
,
2991 wxWindowID winid
= 0,
2992 const wxPoint
& pt
= wxDefaultPosition
,
2993 wxHelpEvent::Origin origin
= Origin_Unknown
);
2996 Returns the origin of the help event which is one of the ::wxHelpEventOrigin
2999 The application may handle events generated using the keyboard or mouse
3000 differently, e.g. by using wxGetMousePosition() for the mouse events.
3004 wxHelpEvent::Origin
GetOrigin() const;
3007 Returns the left-click position of the mouse, in screen coordinates.
3008 This allows the application to position the help appropriately.
3010 const wxPoint
& GetPosition() const;
3013 Set the help event origin, only used internally by wxWidgets normally.
3017 void SetOrigin(wxHelpEvent::Origin origin
);
3020 Sets the left-click position of the mouse, in screen coordinates.
3022 void SetPosition(const wxPoint
& pt
);
3028 @class wxScrollEvent
3030 A scroll event holds information about events sent from stand-alone
3031 scrollbars (see wxScrollBar) and sliders (see wxSlider).
3033 Note that scrolled windows send the wxScrollWinEvent which does not derive from
3034 wxCommandEvent, but from wxEvent directly - don't confuse these two kinds of
3035 events and use the event table macros mentioned below only for the scrollbar-like
3038 @section scrollevent_diff The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED
3040 The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the thumb
3041 using the mouse and releasing it (This EVT_SCROLL_THUMBRELEASE event is also followed
3042 by an EVT_SCROLL_CHANGED event).
3044 The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the thumb
3045 position, and when clicking next to the thumb (In all these cases the EVT_SCROLL_THUMBRELEASE
3046 event does not happen).
3048 In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/ moving has finished
3049 independently of the way it had started. Please see the widgets sample ("Slider" page)
3050 to see the difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.
3053 Note that unless specifying a scroll control identifier, you will need to test for scrollbar
3054 orientation with wxScrollEvent::GetOrientation, since horizontal and vertical scroll events
3055 are processed using the same event handler.
3057 @beginEventTable{wxScrollEvent}
3058 You can use EVT_COMMAND_SCROLL... macros with window IDs for when intercepting
3059 scroll events from controls, or EVT_SCROLL... macros without window IDs for
3060 intercepting scroll events from the receiving window -- except for this, the
3061 macros behave exactly the same.
3062 @event{EVT_SCROLL(func)}
3063 Process all scroll events.
3064 @event{EVT_SCROLL_TOP(func)}
3065 Process wxEVT_SCROLL_TOP scroll-to-top events (minimum position).
3066 @event{EVT_SCROLL_BOTTOM(func)}
3067 Process wxEVT_SCROLL_BOTTOM scroll-to-bottom events (maximum position).
3068 @event{EVT_SCROLL_LINEUP(func)}
3069 Process wxEVT_SCROLL_LINEUP line up events.
3070 @event{EVT_SCROLL_LINEDOWN(func)}
3071 Process wxEVT_SCROLL_LINEDOWN line down events.
3072 @event{EVT_SCROLL_PAGEUP(func)}
3073 Process wxEVT_SCROLL_PAGEUP page up events.
3074 @event{EVT_SCROLL_PAGEDOWN(func)}
3075 Process wxEVT_SCROLL_PAGEDOWN page down events.
3076 @event{EVT_SCROLL_THUMBTRACK(func)}
3077 Process wxEVT_SCROLL_THUMBTRACK thumbtrack events (frequent events sent as the
3078 user drags the thumbtrack).
3079 @event{EVT_SCROLL_THUMBRELEASE(func)}
3080 Process wxEVT_SCROLL_THUMBRELEASE thumb release events.
3081 @event{EVT_SCROLL_CHANGED(func)}
3082 Process wxEVT_SCROLL_CHANGED end of scrolling events (MSW only).
3083 @event{EVT_COMMAND_SCROLL(id, func)}
3084 Process all scroll events.
3085 @event{EVT_COMMAND_SCROLL_TOP(id, func)}
3086 Process wxEVT_SCROLL_TOP scroll-to-top events (minimum position).
3087 @event{EVT_COMMAND_SCROLL_BOTTOM(id, func)}
3088 Process wxEVT_SCROLL_BOTTOM scroll-to-bottom events (maximum position).
3089 @event{EVT_COMMAND_SCROLL_LINEUP(id, func)}
3090 Process wxEVT_SCROLL_LINEUP line up events.
3091 @event{EVT_COMMAND_SCROLL_LINEDOWN(id, func)}
3092 Process wxEVT_SCROLL_LINEDOWN line down events.
3093 @event{EVT_COMMAND_SCROLL_PAGEUP(id, func)}
3094 Process wxEVT_SCROLL_PAGEUP page up events.
3095 @event{EVT_COMMAND_SCROLL_PAGEDOWN(id, func)}
3096 Process wxEVT_SCROLL_PAGEDOWN page down events.
3097 @event{EVT_COMMAND_SCROLL_THUMBTRACK(id, func)}
3098 Process wxEVT_SCROLL_THUMBTRACK thumbtrack events (frequent events sent
3099 as the user drags the thumbtrack).
3100 @event{EVT_COMMAND_SCROLL_THUMBRELEASE(func)}
3101 Process wxEVT_SCROLL_THUMBRELEASE thumb release events.
3102 @event{EVT_COMMAND_SCROLL_CHANGED(func)}
3103 Process wxEVT_SCROLL_CHANGED end of scrolling events (MSW only).
3109 @see wxScrollBar, wxSlider, wxSpinButton, wxScrollWinEvent, @ref overview_events
3111 class wxScrollEvent
: public wxCommandEvent
3117 wxScrollEvent(wxEventType commandType
= wxEVT_NULL
, int id
= 0, int pos
= 0,
3118 int orientation
= 0);
3121 Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
3124 int GetOrientation() const;
3127 Returns the position of the scrollbar.
3129 int GetPosition() const;
3133 See wxIdleEvent::SetMode() for more info.
3137 /** Send idle events to all windows */
3140 /** Send idle events to windows that have the wxWS_EX_PROCESS_IDLE flag specified */
3141 wxIDLE_PROCESS_SPECIFIED
3148 This class is used for idle events, which are generated when the system becomes
3149 idle. Note that, unless you do something specifically, the idle events are not
3150 sent if the system remains idle once it has become it, e.g. only a single idle
3151 event will be generated until something else resulting in more normal events
3152 happens and only then is the next idle event sent again.
3154 If you need to ensure a continuous stream of idle events, you can either use
3155 wxIdleEvent::RequestMore method in your handler or call wxWakeUpIdle() periodically
3156 (for example from a timer event handler), but note that both of these approaches
3157 (and especially the first one) increase the system load and so should be avoided
3160 By default, idle events are sent to all windows (and also wxApp, as usual).
3161 If this is causing a significant overhead in your application, you can call
3162 wxIdleEvent::SetMode with the value wxIDLE_PROCESS_SPECIFIED, and set the
3163 wxWS_EX_PROCESS_IDLE extra window style for every window which should receive
3166 @beginEventTable{wxIdleEvent}
3167 @event{EVT_IDLE(func)}
3168 Process a @c wxEVT_IDLE event.
3174 @see @ref overview_events, wxUpdateUIEvent, wxWindow::OnInternalIdle
3176 class wxIdleEvent
: public wxEvent
3185 Returns @true if it is appropriate to send idle events to this window.
3187 This function looks at the mode used (see wxIdleEvent::SetMode),
3188 and the wxWS_EX_PROCESS_IDLE style in @a window to determine whether idle
3189 events should be sent to this window now.
3191 By default this will always return @true because the update mode is initially
3192 wxIDLE_PROCESS_ALL. You can change the mode to only send idle events to
3193 windows with the wxWS_EX_PROCESS_IDLE extra window style set.
3197 static bool CanSend(wxWindow
* window
);
3200 Static function returning a value specifying how wxWidgets will send idle
3201 events: to all windows, or only to those which specify that they
3202 will process the events.
3206 static wxIdleMode
GetMode();
3209 Returns @true if the OnIdle function processing this event requested more
3214 bool MoreRequested() const;
3217 Tells wxWidgets that more processing is required.
3219 This function can be called by an OnIdle handler for a window or window event
3220 handler to indicate that wxApp::OnIdle should forward the OnIdle event once
3221 more to the application windows.
3223 If no window calls this function during OnIdle, then the application will
3224 remain in a passive event loop (not calling OnIdle) until a new event is
3225 posted to the application by the windowing system.
3227 @see MoreRequested()
3229 void RequestMore(bool needMore
= true);
3232 Static function for specifying how wxWidgets will send idle events: to
3233 all windows, or only to those which specify that they will process the events.
3236 Can be one of the ::wxIdleMode values.
3237 The default is wxIDLE_PROCESS_ALL.
3239 static void SetMode(wxIdleMode mode
);
3245 @class wxInitDialogEvent
3247 A wxInitDialogEvent is sent as a dialog or panel is being initialised.
3248 Handlers for this event can transfer data to the window.
3250 The default handler calls wxWindow::TransferDataToWindow.
3252 @beginEventTable{wxInitDialogEvent}
3253 @event{EVT_INIT_DIALOG(func)}
3254 Process a @c wxEVT_INIT_DIALOG event.
3260 @see @ref overview_events
3262 class wxInitDialogEvent
: public wxEvent
3268 wxInitDialogEvent(int id
= 0);
3274 @class wxWindowDestroyEvent
3276 This event is sent as early as possible during the window destruction
3279 For the top level windows, as early as possible means that this is done by
3280 wxFrame or wxDialog destructor, i.e. after the destructor of the derived
3281 class was executed and so any methods specific to the derived class can't
3282 be called any more from this event handler. If you need to do this, you
3283 must call wxWindow::SendDestroyEvent() from your derived class destructor.
3285 For the child windows, this event is generated just before deleting the
3286 window from wxWindow::Destroy() (which is also called when the parent
3287 window is deleted) or from the window destructor if operator @c delete was
3288 used directly (which is not recommended for this very reason).
3290 It is usually pointless to handle this event in the window itself but it ca
3291 be very useful to receive notifications about the window destruction in the
3292 parent window or in any other object interested in this window.
3297 @see @ref overview_events, wxWindowCreateEvent
3299 class wxWindowDestroyEvent
: public wxCommandEvent
3305 wxWindowDestroyEvent(wxWindow
* win
= NULL
);
3307 /// Retutn the window being destroyed.
3308 wxWindow
*GetWindow() const;
3313 @class wxNavigationKeyEvent
3315 This event class contains information about navigation events,
3316 generated by navigation keys such as tab and page down.
3318 This event is mainly used by wxWidgets implementations.
3319 A wxNavigationKeyEvent handler is automatically provided by wxWidgets
3320 when you make a class into a control container with the macro
3321 WX_DECLARE_CONTROL_CONTAINER.
3323 @beginEventTable{wxNavigationKeyEvent}
3324 @event{EVT_NAVIGATION_KEY(func)}
3325 Process a navigation key event.
3331 @see wxWindow::Navigate, wxWindow::NavigateIn
3333 class wxNavigationKeyEvent
: public wxEvent
3337 Flags which can be used with wxNavigationKeyEvent.
3339 enum wxNavigationKeyEventFlags
3341 IsBackward
= 0x0000,
3347 wxNavigationKeyEvent();
3348 wxNavigationKeyEvent(const wxNavigationKeyEvent
& event
);
3351 Returns the child that has the focus, or @NULL.
3353 wxWindow
* GetCurrentFocus() const;
3356 Returns @true if the navigation was in the forward direction.
3358 bool GetDirection() const;
3361 Returns @true if the navigation event was from a tab key.
3362 This is required for proper navigation over radio buttons.
3364 bool IsFromTab() const;
3367 Returns @true if the navigation event represents a window change
3368 (for example, from Ctrl-Page Down in a notebook).
3370 bool IsWindowChange() const;
3373 Sets the current focus window member.
3375 void SetCurrentFocus(wxWindow
* currentFocus
);
3378 Sets the direction to forward if @a direction is @true, or backward
3381 void SetDirection(bool direction
);
3384 Sets the flags for this event.
3385 The @a flags can be a combination of the ::wxNavigationKeyEventFlags values.
3387 void SetFlags(long flags
);
3390 Marks the navigation event as from a tab key.
3392 void SetFromTab(bool fromTab
);
3395 Marks the event as a window change event.
3397 void SetWindowChange(bool windowChange
);
3403 @class wxMouseCaptureChangedEvent
3405 An mouse capture changed event is sent to a window that loses its
3406 mouse capture. This is called even if wxWindow::ReleaseMouse
3407 was called by the application code. Handling this event allows
3408 an application to cater for unexpected capture releases which
3409 might otherwise confuse mouse handling code.
3413 @beginEventTable{wxMouseCaptureChangedEvent}
3414 @event{EVT_MOUSE_CAPTURE_CHANGED(func)}
3415 Process a @c wxEVT_MOUSE_CAPTURE_CHANGED event.
3421 @see wxMouseCaptureLostEvent, @ref overview_events,
3422 wxWindow::CaptureMouse, wxWindow::ReleaseMouse, wxWindow::GetCapture
3424 class wxMouseCaptureChangedEvent
: public wxEvent
3430 wxMouseCaptureChangedEvent(wxWindowID windowId
= 0,
3431 wxWindow
* gainedCapture
= NULL
);
3434 Returns the window that gained the capture, or @NULL if it was a
3435 non-wxWidgets window.
3437 wxWindow
* GetCapturedWindow() const;
3445 This event class contains information about window and session close events.
3447 The handler function for EVT_CLOSE is called when the user has tried to close a
3448 a frame or dialog box using the window manager (X) or system menu (Windows).
3449 It can also be invoked by the application itself programmatically, for example by
3450 calling the wxWindow::Close function.
3452 You should check whether the application is forcing the deletion of the window
3453 using wxCloseEvent::CanVeto. If this is @false, you @e must destroy the window
3454 using wxWindow::Destroy.
3456 If the return value is @true, it is up to you whether you respond by destroying
3459 If you don't destroy the window, you should call wxCloseEvent::Veto to
3460 let the calling code know that you did not destroy the window.
3461 This allows the wxWindow::Close function to return @true or @false depending
3462 on whether the close instruction was honoured or not.
3464 Example of a wxCloseEvent handler:
3467 void MyFrame::OnClose(wxCloseEvent& event)
3469 if ( event.CanVeto() && m_bFileNotSaved )
3471 if ( wxMessageBox("The file has not been saved... continue closing?",
3473 wxICON_QUESTION | wxYES_NO) != wxYES )
3480 Destroy(); // you may also do: event.Skip();
3481 // since the default event handler does call Destroy(), too
3485 The EVT_END_SESSION event is slightly different as it is sent by the system
3486 when the user session is ending (e.g. because of log out or shutdown) and
3487 so all windows are being forcefully closed. At least under MSW, after the
3488 handler for this event is executed the program is simply killed by the
3489 system. Because of this, the default handler for this event provided by
3490 wxWidgets calls all the usual cleanup code (including wxApp::OnExit()) so
3491 that it could still be executed and exit()s the process itself, without
3492 waiting for being killed. If this behaviour is for some reason undesirable,
3493 make sure that you define a handler for this event in your wxApp-derived
3494 class and do not call @c event.Skip() in it (but be aware that the system
3495 will still kill your application).
3497 @beginEventTable{wxCloseEvent}
3498 @event{EVT_CLOSE(func)}
3499 Process a @c wxEVT_CLOSE_WINDOW command event, supplying the member function.
3500 This event applies to wxFrame and wxDialog classes.
3501 @event{EVT_QUERY_END_SESSION(func)}
3502 Process a @c wxEVT_QUERY_END_SESSION session event, supplying the member function.
3503 This event can be handled in wxApp-derived class only.
3504 @event{EVT_END_SESSION(func)}
3505 Process a @c wxEVT_END_SESSION session event, supplying the member function.
3506 This event can be handled in wxApp-derived class only.
3512 @see wxWindow::Close, @ref overview_windowdeletion
3514 class wxCloseEvent
: public wxEvent
3520 wxCloseEvent(wxEventType commandEventType
= wxEVT_NULL
, int id
= 0);
3523 Returns @true if you can veto a system shutdown or a window close event.
3524 Vetoing a window close event is not possible if the calling code wishes to
3525 force the application to exit, and so this function must be called to check this.
3527 bool CanVeto() const;
3530 Returns @true if the user is just logging off or @false if the system is
3531 shutting down. This method can only be called for end session and query end
3532 session events, it doesn't make sense for close window event.
3534 bool GetLoggingOff() const;
3537 Sets the 'can veto' flag.
3539 void SetCanVeto(bool canVeto
);
3542 Sets the 'logging off' flag.
3544 void SetLoggingOff(bool loggingOff
);
3547 Call this from your event handler to veto a system shutdown or to signal
3548 to the calling application that a window close did not happen.
3550 You can only veto a shutdown if CanVeto() returns @true.
3552 void Veto(bool veto
= true);
3560 This class is used for a variety of menu-related events. Note that
3561 these do not include menu command events, which are
3562 handled using wxCommandEvent objects.
3564 The default handler for @c wxEVT_MENU_HIGHLIGHT displays help
3565 text in the first field of the status bar.
3567 @beginEventTable{wxMenuEvent}
3568 @event{EVT_MENU_OPEN(func)}
3569 A menu is about to be opened. On Windows, this is only sent once for each
3570 navigation of the menubar (up until all menus have closed).
3571 @event{EVT_MENU_CLOSE(func)}
3572 A menu has been just closed.
3573 @event{EVT_MENU_HIGHLIGHT(id, func)}
3574 The menu item with the specified id has been highlighted: used to show
3575 help prompts in the status bar by wxFrame
3576 @event{EVT_MENU_HIGHLIGHT_ALL(func)}
3577 A menu item has been highlighted, i.e. the currently selected menu item has changed.
3583 @see wxCommandEvent, @ref overview_events
3585 class wxMenuEvent
: public wxEvent
3591 wxMenuEvent(wxEventType id
= wxEVT_NULL
, int id
= 0, wxMenu
* menu
= NULL
);
3594 Returns the menu which is being opened or closed. This method should only be
3595 used with the @c OPEN and @c CLOSE events and even for them the
3596 returned pointer may be @NULL in some ports.
3598 wxMenu
* GetMenu() const;
3601 Returns the menu identifier associated with the event.
3602 This method should be only used with the @c HIGHLIGHT events.
3604 int GetMenuId() const;
3607 Returns @true if the menu which is being opened or closed is a popup menu,
3608 @false if it is a normal one.
3610 This method should only be used with the @c OPEN and @c CLOSE events.
3612 bool IsPopup() const;
3618 An event being sent when the window is shown or hidden.
3620 Currently only wxMSW, wxGTK and wxOS2 generate such events.
3622 @onlyfor{wxmsw,wxgtk,wxos2}
3624 @beginEventTable{wxShowEvent}
3625 @event{EVT_SHOW(func)}
3626 Process a @c wxEVT_SHOW event.
3632 @see @ref overview_events, wxWindow::Show,
3636 class wxShowEvent
: public wxEvent
3642 wxShowEvent(int winid
= 0, bool show
= false);
3645 Set whether the windows was shown or hidden.
3647 void SetShow(bool show
);
3650 Return @true if the window has been shown, @false if it has been
3653 bool IsShown() const;
3656 @deprecated This function is deprecated in favour of IsShown().
3658 bool GetShow() const;
3664 @class wxIconizeEvent
3666 An event being sent when the frame is iconized (minimized) or restored.
3668 Currently only wxMSW and wxGTK generate such events.
3670 @onlyfor{wxmsw,wxgtk}
3672 @beginEventTable{wxIconizeEvent}
3673 @event{EVT_ICONIZE(func)}
3674 Process a @c wxEVT_ICONIZE event.
3680 @see @ref overview_events, wxTopLevelWindow::Iconize,
3681 wxTopLevelWindow::IsIconized
3683 class wxIconizeEvent
: public wxEvent
3689 wxIconizeEvent(int id
= 0, bool iconized
= true);
3692 Returns @true if the frame has been iconized, @false if it has been
3695 bool IsIconized() const;
3698 @deprecated This function is deprecated in favour of IsIconized().
3700 bool Iconized() const;
3708 A move event holds information about wxTopLevelWindow move change events.
3710 @beginEventTable{wxMoveEvent}
3711 @event{EVT_MOVE(func)}
3712 Process a @c wxEVT_MOVE event, which is generated when a window is moved.
3713 @event{EVT_MOVE_START(func)}
3714 Process a @c wxEVT_MOVE_START event, which is generated when the user starts
3715 to move or size a window. wxMSW only.
3716 @event{EVT_MOVE_END(func)}
3717 Process a @c wxEVT_MOVE_END event, which is generated when the user stops
3718 moving or sizing a window. wxMSW only.
3724 @see wxPoint, @ref overview_events
3726 class wxMoveEvent
: public wxEvent
3732 wxMoveEvent(const wxPoint
& pt
, int id
= 0);
3735 Returns the position of the window generating the move change event.
3737 wxPoint
GetPosition() const;
3744 A size event holds information about size change events of wxWindow.
3746 The EVT_SIZE handler function will be called when the window has been resized.
3748 You may wish to use this for frames to resize their child windows as appropriate.
3750 Note that the size passed is of the whole window: call wxWindow::GetClientSize()
3751 for the area which may be used by the application.
3753 When a window is resized, usually only a small part of the window is damaged
3754 and you may only need to repaint that area. However, if your drawing depends on the
3755 size of the window, you may need to clear the DC explicitly and repaint the whole window.
3756 In which case, you may need to call wxWindow::Refresh to invalidate the entire window.
3758 @beginEventTable{wxSizeEvent}
3759 @event{EVT_SIZE(func)}
3760 Process a @c wxEVT_SIZE event.
3766 @see wxSize, @ref overview_events
3768 class wxSizeEvent
: public wxEvent
3774 wxSizeEvent(const wxSize
& sz
, int id
= 0);
3777 Returns the entire size of the window generating the size change event.
3779 This is the new total size of the window, i.e. the same size as would
3780 be returned by wxWindow::GetSize() if it were called now. Use
3781 wxWindow::GetClientSize() if you catch this event in a top level window
3782 such as wxFrame to find the size available for the window contents.
3784 wxSize
GetSize() const;
3790 @class wxSetCursorEvent
3792 A wxSetCursorEvent is generated from wxWindow when the mouse cursor is about
3793 to be set as a result of mouse motion.
3795 This event gives the application the chance to perform specific mouse cursor
3796 processing based on the current position of the mouse within the window.
3797 Use wxSetCursorEvent::SetCursor to specify the cursor you want to be displayed.
3799 @beginEventTable{wxSetCursorEvent}
3800 @event{EVT_SET_CURSOR(func)}
3801 Process a @c wxEVT_SET_CURSOR event.
3807 @see ::wxSetCursor, wxWindow::wxSetCursor
3809 class wxSetCursorEvent
: public wxEvent
3813 Constructor, used by the library itself internally to initialize the event
3816 wxSetCursorEvent(wxCoord x
= 0, wxCoord y
= 0);
3819 Returns a reference to the cursor specified by this event.
3821 const wxCursor
& GetCursor() const;
3824 Returns the X coordinate of the mouse in client coordinates.
3826 wxCoord
GetX() const;
3829 Returns the Y coordinate of the mouse in client coordinates.
3831 wxCoord
GetY() const;
3834 Returns @true if the cursor specified by this event is a valid cursor.
3836 @remarks You cannot specify wxNullCursor with this event, as it is not
3837 considered a valid cursor.
3839 bool HasCursor() const;
3842 Sets the cursor associated with this event.
3844 void SetCursor(const wxCursor
& cursor
);
3849 // ============================================================================
3850 // Global functions/macros
3851 // ============================================================================
3853 /** @addtogroup group_funcmacro_events */
3857 A value uniquely identifying the type of the event.
3859 The values of this type should only be created using wxNewEventType().
3861 See the macro DEFINE_EVENT_TYPE() for more info.
3863 @see @ref overview_events_introduction
3865 typedef int wxEventType
;
3868 A special event type usually used to indicate that some wxEvent has yet
3871 wxEventType wxEVT_NULL
;
3874 Generates a new unique event type.
3876 Usually this function is only used by wxDEFINE_EVENT() and not called
3879 wxEventType
wxNewEventType();
3882 Define a new event type associated with the specified event class.
3884 This macro defines a new unique event type @a name associated with the
3889 wxDEFINE_EVENT(MY_COMMAND_EVENT, wxCommandEvent);
3891 class MyCustomEvent : public wxEvent { ... };
3892 wxDEFINE_EVENT(MY_CUSTOM_EVENT, MyCustomEvent);
3895 @see wxDECLARE_EVENT(), @ref overview_events_custom
3897 #define wxDEFINE_EVENT(name, cls) \
3898 const wxEventTypeTag< cls > name(wxNewEventType())
3901 Declares a custom event type.
3903 This macro declares a variable called @a name which must be defined
3904 elsewhere using wxDEFINE_EVENT().
3906 The class @a cls must be the wxEvent-derived class associated with the
3907 events of this type and its full declaration must be visible from the point
3908 of use of this macro.
3912 wxDECLARE_EVENT(MY_COMMAND_EVENT, wxCommandEvent);
3914 class MyCustomEvent : public wxEvent { ... };
3915 wxDECLARE_EVENT(MY_CUSTOM_EVENT, MyCustomEvent);
3918 #define wxDECLARE_EVENT(name, cls) \
3919 wxDECLARE_EXPORTED_EVENT(wxEMPTY_PARAMETER_VALUE, name, cls)
3922 Variant of wxDECLARE_EVENT() used for event types defined inside a shared
3925 This is mostly used by wxWidgets internally, e.g.
3927 wxDECLARE_EXPORTED_EVENT(WXDLLIMPEXP_CORE, wxEVT_COMMAND_BUTTON_CLICKED, wxCommandEvent)
3930 #define wxDECLARE_EXPORTED_EVENT( expdecl, name, cls ) \
3931 extern const expdecl wxEventTypeTag< cls > name;
3934 Helper macro for definition of custom event table macros.
3936 This macro must only be used if wxEVENTS_COMPATIBILITY_2_8 is 1, otherwise
3937 it is better and more clear to just use the address of the function
3938 directly as this is all this macro does in this case. However it needs to
3939 explicitly cast @a func to @a functype, which is the type of wxEvtHandler
3940 member function taking the custom event argument when
3941 wxEVENTS_COMPATIBILITY_2_8 is 0.
3943 See wx__DECLARE_EVT0 for an example of use.
3945 @see @ref overview_events_custom_ownclass
3947 #define wxEVENT_HANDLER_CAST(functype, func) (&func)
3950 This macro is used to define event table macros for handling custom
3955 class MyEvent : public wxEvent { ... };
3957 // note that this is not necessary unless using old compilers: for the
3958 // reasonably new ones just use &func instead of MyEventHandler(func)
3959 typedef void (wxEvtHandler::*MyEventFunction)(MyEvent&);
3960 #define MyEventHandler(func) wxEVENT_HANDLER_CAST(MyEventFunction, func)
3962 wxDEFINE_EVENT(MY_EVENT_TYPE, MyEvent);
3964 #define EVT_MY(id, func) \
3965 wx__DECLARE_EVT1(MY_EVENT_TYPE, id, MyEventHandler(func))
3969 wxBEGIN_EVENT_TABLE(MyFrame, wxFrame)
3970 EVT_MY(wxID_ANY, MyFrame::OnMyEvent)
3975 The event type to handle.
3977 The identifier of events to handle.
3979 The event handler method.
3981 #define wx__DECLARE_EVT1(evt, id, fn) \
3982 wx__DECLARE_EVT2(evt, id, wxID_ANY, fn)
3985 Generalized version of the wx__DECLARE_EVT1() macro taking a range of
3986 IDs instead of a single one.
3987 Argument @a id1 is the first identifier of the range, @a id2 is the
3988 second identifier of the range.
3990 #define wx__DECLARE_EVT2(evt, id1, id2, fn) \
3991 DECLARE_EVENT_TABLE_ENTRY(evt, id1, id2, fn, NULL),
3994 Simplified version of the wx__DECLARE_EVT1() macro, to be used when the
3995 event type must be handled regardless of the ID associated with the
3996 specific event instances.
3998 #define wx__DECLARE_EVT0(evt, fn) \
3999 wx__DECLARE_EVT1(evt, wxID_ANY, fn)
4002 Use this macro inside a class declaration to declare a @e static event table
4005 In the implementation file you'll need to use the wxBEGIN_EVENT_TABLE()
4006 and the wxEND_EVENT_TABLE() macros, plus some additional @c EVT_xxx macro
4009 Note that this macro requires a final semicolon.
4011 @see @ref overview_events_eventtables
4013 #define wxDECLARE_EVENT_TABLE()
4016 Use this macro in a source file to start listing @e static event handlers
4017 for a specific class.
4019 Use wxEND_EVENT_TABLE() to terminate the event-declaration block.
4021 @see @ref overview_events_eventtables
4023 #define wxBEGIN_EVENT_TABLE(theClass, baseClass)
4026 Use this macro in a source file to end listing @e static event handlers
4027 for a specific class.
4029 Use wxBEGIN_EVENT_TABLE() to start the event-declaration block.
4031 @see @ref overview_events_eventtables
4033 #define wxEND_EVENT_TABLE()
4036 In a GUI application, this function posts @a event to the specified @e dest
4037 object using wxEvtHandler::AddPendingEvent().
4039 Otherwise, it dispatches @a event immediately using
4040 wxEvtHandler::ProcessEvent(). See the respective documentation for details
4041 (and caveats). Because of limitation of wxEvtHandler::AddPendingEvent()
4042 this function is not thread-safe for event objects having wxString fields,
4043 use wxQueueEvent() instead.
4047 void wxPostEvent(wxEvtHandler
* dest
, const wxEvent
& event
);
4050 Queue an event for processing on the given object.
4052 This is a wrapper around wxEvtHandler::QueueEvent(), see its documentation
4058 The object to queue the event on, can't be @c NULL.
4060 The heap-allocated and non-@c NULL event to queue, the function takes
4063 void wxQueueEvent(wxEvtHandler
* dest
, wxEvent
*event
);