]> git.saurik.com Git - wxWidgets.git/blame_incremental - src/zlib/crc32.c
wxMessageBox off the main thread lost result code.
[wxWidgets.git] / src / zlib / crc32.c
... / ...
CommitLineData
1/* crc32.c -- compute the CRC-32 of a data stream
2 * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 *
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
7 * tables for updating the shift register in one step with three exclusive-ors
8 * instead of four steps with four exclusive-ors. This results in about a
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
10 */
11
12
13/*
14 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
15 protection on the static variables used to control the first-use generation
16 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
17 first call get_crc_table() to initialize the tables before allowing more than
18 one thread to use crc32().
19
20 DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
21 */
22
23#ifdef MAKECRCH
24# include <stdio.h>
25# ifndef DYNAMIC_CRC_TABLE
26# define DYNAMIC_CRC_TABLE
27# endif /* !DYNAMIC_CRC_TABLE */
28#endif /* MAKECRCH */
29
30#include "zutil.h" /* for STDC and FAR definitions */
31
32#define local static
33
34/* Definitions for doing the crc four data bytes at a time. */
35#if !defined(NOBYFOUR) && defined(Z_U4)
36# define BYFOUR
37#endif
38#ifdef BYFOUR
39 local unsigned long crc32_little OF((unsigned long,
40 const unsigned char FAR *, unsigned));
41 local unsigned long crc32_big OF((unsigned long,
42 const unsigned char FAR *, unsigned));
43# define TBLS 8
44#else
45# define TBLS 1
46#endif /* BYFOUR */
47
48/* Local functions for crc concatenation */
49local unsigned long gf2_matrix_times OF((unsigned long *mat,
50 unsigned long vec));
51local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
52local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
53
54
55#ifdef DYNAMIC_CRC_TABLE
56
57local volatile int crc_table_empty = 1;
58local z_crc_t FAR crc_table[TBLS][256];
59local void make_crc_table OF((void));
60#ifdef MAKECRCH
61 local void write_table OF((FILE *, const z_crc_t FAR *));
62#endif /* MAKECRCH */
63/*
64 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
65 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
66
67 Polynomials over GF(2) are represented in binary, one bit per coefficient,
68 with the lowest powers in the most significant bit. Then adding polynomials
69 is just exclusive-or, and multiplying a polynomial by x is a right shift by
70 one. If we call the above polynomial p, and represent a byte as the
71 polynomial q, also with the lowest power in the most significant bit (so the
72 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
73 where a mod b means the remainder after dividing a by b.
74
75 This calculation is done using the shift-register method of multiplying and
76 taking the remainder. The register is initialized to zero, and for each
77 incoming bit, x^32 is added mod p to the register if the bit is a one (where
78 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
79 x (which is shifting right by one and adding x^32 mod p if the bit shifted
80 out is a one). We start with the highest power (least significant bit) of
81 q and repeat for all eight bits of q.
82
83 The first table is simply the CRC of all possible eight bit values. This is
84 all the information needed to generate CRCs on data a byte at a time for all
85 combinations of CRC register values and incoming bytes. The remaining tables
86 allow for word-at-a-time CRC calculation for both big-endian and little-
87 endian machines, where a word is four bytes.
88*/
89local void make_crc_table()
90{
91 z_crc_t c;
92 int n, k;
93 z_crc_t poly; /* polynomial exclusive-or pattern */
94 /* terms of polynomial defining this crc (except x^32): */
95 static volatile int first = 1; /* flag to limit concurrent making */
96 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
97
98 /* See if another task is already doing this (not thread-safe, but better
99 than nothing -- significantly reduces duration of vulnerability in
100 case the advice about DYNAMIC_CRC_TABLE is ignored) */
101 if (first) {
102 first = 0;
103
104 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
105 poly = 0;
106 for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
107 poly |= (z_crc_t)1 << (31 - p[n]);
108
109 /* generate a crc for every 8-bit value */
110 for (n = 0; n < 256; n++) {
111 c = (z_crc_t)n;
112 for (k = 0; k < 8; k++)
113 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
114 crc_table[0][n] = c;
115 }
116
117#ifdef BYFOUR
118 /* generate crc for each value followed by one, two, and three zeros,
119 and then the byte reversal of those as well as the first table */
120 for (n = 0; n < 256; n++) {
121 c = crc_table[0][n];
122 crc_table[4][n] = ZSWAP32(c);
123 for (k = 1; k < 4; k++) {
124 c = crc_table[0][c & 0xff] ^ (c >> 8);
125 crc_table[k][n] = c;
126 crc_table[k + 4][n] = ZSWAP32(c);
127 }
128 }
129#endif /* BYFOUR */
130
131 crc_table_empty = 0;
132 }
133 else { /* not first */
134 /* wait for the other guy to finish (not efficient, but rare) */
135 while (crc_table_empty)
136 ;
137 }
138
139#ifdef MAKECRCH
140 /* write out CRC tables to crc32.h */
141 {
142 FILE *out;
143
144 out = fopen("crc32.h", "w");
145 if (out == NULL) return;
146 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
147 fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
148 fprintf(out, "local const z_crc_t FAR ");
149 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
150 write_table(out, crc_table[0]);
151# ifdef BYFOUR
152 fprintf(out, "#ifdef BYFOUR\n");
153 for (k = 1; k < 8; k++) {
154 fprintf(out, " },\n {\n");
155 write_table(out, crc_table[k]);
156 }
157 fprintf(out, "#endif\n");
158# endif /* BYFOUR */
159 fprintf(out, " }\n};\n");
160 fclose(out);
161 }
162#endif /* MAKECRCH */
163}
164
165#ifdef MAKECRCH
166local void write_table(out, table)
167 FILE *out;
168 const z_crc_t FAR *table;
169{
170 int n;
171
172 for (n = 0; n < 256; n++)
173 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ",
174 (unsigned long)(table[n]),
175 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
176}
177#endif /* MAKECRCH */
178
179#else /* !DYNAMIC_CRC_TABLE */
180/* ========================================================================
181 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
182 */
183#include "crc32.h"
184#endif /* DYNAMIC_CRC_TABLE */
185
186/* =========================================================================
187 * This function can be used by asm versions of crc32()
188 */
189const z_crc_t FAR * ZEXPORT get_crc_table()
190{
191#ifdef DYNAMIC_CRC_TABLE
192 if (crc_table_empty)
193 make_crc_table();
194#endif /* DYNAMIC_CRC_TABLE */
195 return (const z_crc_t FAR *)crc_table;
196}
197
198/* ========================================================================= */
199#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
200#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
201
202/* ========================================================================= */
203unsigned long ZEXPORT crc32(crc, buf, len)
204 unsigned long crc;
205 const unsigned char FAR *buf;
206 uInt len;
207{
208 if (buf == Z_NULL) return 0UL;
209
210#ifdef DYNAMIC_CRC_TABLE
211 if (crc_table_empty)
212 make_crc_table();
213#endif /* DYNAMIC_CRC_TABLE */
214
215#ifdef BYFOUR
216 if (sizeof(void *) == sizeof(ptrdiff_t)) {
217 z_crc_t endian;
218
219 endian = 1;
220 if (*((unsigned char *)(&endian)))
221 return crc32_little(crc, buf, len);
222 else
223 return crc32_big(crc, buf, len);
224 }
225#endif /* BYFOUR */
226 crc = crc ^ 0xffffffffUL;
227 while (len >= 8) {
228 DO8;
229 len -= 8;
230 }
231 if (len) do {
232 DO1;
233 } while (--len);
234 return crc ^ 0xffffffffUL;
235}
236
237#ifdef BYFOUR
238
239/* ========================================================================= */
240#define DOLIT4 c ^= *buf4++; \
241 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
242 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
243#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
244
245/* ========================================================================= */
246local unsigned long crc32_little(crc, buf, len)
247 unsigned long crc;
248 const unsigned char FAR *buf;
249 unsigned len;
250{
251 register z_crc_t c;
252 register const z_crc_t FAR *buf4;
253
254 c = (z_crc_t)crc;
255 c = ~c;
256 while (len && ((ptrdiff_t)buf & 3)) {
257 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
258 len--;
259 }
260
261 buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
262 while (len >= 32) {
263 DOLIT32;
264 len -= 32;
265 }
266 while (len >= 4) {
267 DOLIT4;
268 len -= 4;
269 }
270 buf = (const unsigned char FAR *)buf4;
271
272 if (len) do {
273 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
274 } while (--len);
275 c = ~c;
276 return (unsigned long)c;
277}
278
279/* ========================================================================= */
280#define DOBIG4 c ^= *++buf4; \
281 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
282 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
283#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
284
285/* ========================================================================= */
286local unsigned long crc32_big(crc, buf, len)
287 unsigned long crc;
288 const unsigned char FAR *buf;
289 unsigned len;
290{
291 register z_crc_t c;
292 register const z_crc_t FAR *buf4;
293
294 c = ZSWAP32((z_crc_t)crc);
295 c = ~c;
296 while (len && ((ptrdiff_t)buf & 3)) {
297 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
298 len--;
299 }
300
301 buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
302 buf4--;
303 while (len >= 32) {
304 DOBIG32;
305 len -= 32;
306 }
307 while (len >= 4) {
308 DOBIG4;
309 len -= 4;
310 }
311 buf4++;
312 buf = (const unsigned char FAR *)buf4;
313
314 if (len) do {
315 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
316 } while (--len);
317 c = ~c;
318 return (unsigned long)(ZSWAP32(c));
319}
320
321#endif /* BYFOUR */
322
323#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
324
325/* ========================================================================= */
326local unsigned long gf2_matrix_times(mat, vec)
327 unsigned long *mat;
328 unsigned long vec;
329{
330 unsigned long sum;
331
332 sum = 0;
333 while (vec) {
334 if (vec & 1)
335 sum ^= *mat;
336 vec >>= 1;
337 mat++;
338 }
339 return sum;
340}
341
342/* ========================================================================= */
343local void gf2_matrix_square(square, mat)
344 unsigned long *square;
345 unsigned long *mat;
346{
347 int n;
348
349 for (n = 0; n < GF2_DIM; n++)
350 square[n] = gf2_matrix_times(mat, mat[n]);
351}
352
353/* ========================================================================= */
354local uLong crc32_combine_(crc1, crc2, len2)
355 uLong crc1;
356 uLong crc2;
357 z_off64_t len2;
358{
359 int n;
360 unsigned long row;
361 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
362 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
363
364 /* degenerate case (also disallow negative lengths) */
365 if (len2 <= 0)
366 return crc1;
367
368 /* put operator for one zero bit in odd */
369 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
370 row = 1;
371 for (n = 1; n < GF2_DIM; n++) {
372 odd[n] = row;
373 row <<= 1;
374 }
375
376 /* put operator for two zero bits in even */
377 gf2_matrix_square(even, odd);
378
379 /* put operator for four zero bits in odd */
380 gf2_matrix_square(odd, even);
381
382 /* apply len2 zeros to crc1 (first square will put the operator for one
383 zero byte, eight zero bits, in even) */
384 do {
385 /* apply zeros operator for this bit of len2 */
386 gf2_matrix_square(even, odd);
387 if (len2 & 1)
388 crc1 = gf2_matrix_times(even, crc1);
389 len2 >>= 1;
390
391 /* if no more bits set, then done */
392 if (len2 == 0)
393 break;
394
395 /* another iteration of the loop with odd and even swapped */
396 gf2_matrix_square(odd, even);
397 if (len2 & 1)
398 crc1 = gf2_matrix_times(odd, crc1);
399 len2 >>= 1;
400
401 /* if no more bits set, then done */
402 } while (len2 != 0);
403
404 /* return combined crc */
405 crc1 ^= crc2;
406 return crc1;
407}
408
409/* ========================================================================= */
410uLong ZEXPORT crc32_combine(crc1, crc2, len2)
411 uLong crc1;
412 uLong crc2;
413 z_off_t len2;
414{
415 return crc32_combine_(crc1, crc2, len2);
416}
417
418uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
419 uLong crc1;
420 uLong crc2;
421 z_off64_t len2;
422{
423 return crc32_combine_(crc1, crc2, len2);
424}