]>
Commit | Line | Data |
---|---|---|
1 | /* crc32.c -- compute the CRC-32 of a data stream | |
2 | * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler | |
3 | * For conditions of distribution and use, see copyright notice in zlib.h | |
4 | * | |
5 | * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster | |
6 | * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing | |
7 | * tables for updating the shift register in one step with three exclusive-ors | |
8 | * instead of four steps with four exclusive-ors. This results in about a | |
9 | * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. | |
10 | */ | |
11 | ||
12 | ||
13 | /* | |
14 | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | |
15 | protection on the static variables used to control the first-use generation | |
16 | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should | |
17 | first call get_crc_table() to initialize the tables before allowing more than | |
18 | one thread to use crc32(). | |
19 | ||
20 | DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. | |
21 | */ | |
22 | ||
23 | #ifdef MAKECRCH | |
24 | # include <stdio.h> | |
25 | # ifndef DYNAMIC_CRC_TABLE | |
26 | # define DYNAMIC_CRC_TABLE | |
27 | # endif /* !DYNAMIC_CRC_TABLE */ | |
28 | #endif /* MAKECRCH */ | |
29 | ||
30 | #include "zutil.h" /* for STDC and FAR definitions */ | |
31 | ||
32 | #define local static | |
33 | ||
34 | /* Definitions for doing the crc four data bytes at a time. */ | |
35 | #if !defined(NOBYFOUR) && defined(Z_U4) | |
36 | # define BYFOUR | |
37 | #endif | |
38 | #ifdef BYFOUR | |
39 | local unsigned long crc32_little OF((unsigned long, | |
40 | const unsigned char FAR *, unsigned)); | |
41 | local unsigned long crc32_big OF((unsigned long, | |
42 | const unsigned char FAR *, unsigned)); | |
43 | # define TBLS 8 | |
44 | #else | |
45 | # define TBLS 1 | |
46 | #endif /* BYFOUR */ | |
47 | ||
48 | /* Local functions for crc concatenation */ | |
49 | local unsigned long gf2_matrix_times OF((unsigned long *mat, | |
50 | unsigned long vec)); | |
51 | local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); | |
52 | local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); | |
53 | ||
54 | ||
55 | #ifdef DYNAMIC_CRC_TABLE | |
56 | ||
57 | local volatile int crc_table_empty = 1; | |
58 | local z_crc_t FAR crc_table[TBLS][256]; | |
59 | local void make_crc_table OF((void)); | |
60 | #ifdef MAKECRCH | |
61 | local void write_table OF((FILE *, const z_crc_t FAR *)); | |
62 | #endif /* MAKECRCH */ | |
63 | /* | |
64 | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | |
65 | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | |
66 | ||
67 | Polynomials over GF(2) are represented in binary, one bit per coefficient, | |
68 | with the lowest powers in the most significant bit. Then adding polynomials | |
69 | is just exclusive-or, and multiplying a polynomial by x is a right shift by | |
70 | one. If we call the above polynomial p, and represent a byte as the | |
71 | polynomial q, also with the lowest power in the most significant bit (so the | |
72 | byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, | |
73 | where a mod b means the remainder after dividing a by b. | |
74 | ||
75 | This calculation is done using the shift-register method of multiplying and | |
76 | taking the remainder. The register is initialized to zero, and for each | |
77 | incoming bit, x^32 is added mod p to the register if the bit is a one (where | |
78 | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by | |
79 | x (which is shifting right by one and adding x^32 mod p if the bit shifted | |
80 | out is a one). We start with the highest power (least significant bit) of | |
81 | q and repeat for all eight bits of q. | |
82 | ||
83 | The first table is simply the CRC of all possible eight bit values. This is | |
84 | all the information needed to generate CRCs on data a byte at a time for all | |
85 | combinations of CRC register values and incoming bytes. The remaining tables | |
86 | allow for word-at-a-time CRC calculation for both big-endian and little- | |
87 | endian machines, where a word is four bytes. | |
88 | */ | |
89 | local void make_crc_table() | |
90 | { | |
91 | z_crc_t c; | |
92 | int n, k; | |
93 | z_crc_t poly; /* polynomial exclusive-or pattern */ | |
94 | /* terms of polynomial defining this crc (except x^32): */ | |
95 | static volatile int first = 1; /* flag to limit concurrent making */ | |
96 | static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; | |
97 | ||
98 | /* See if another task is already doing this (not thread-safe, but better | |
99 | than nothing -- significantly reduces duration of vulnerability in | |
100 | case the advice about DYNAMIC_CRC_TABLE is ignored) */ | |
101 | if (first) { | |
102 | first = 0; | |
103 | ||
104 | /* make exclusive-or pattern from polynomial (0xedb88320UL) */ | |
105 | poly = 0; | |
106 | for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) | |
107 | poly |= (z_crc_t)1 << (31 - p[n]); | |
108 | ||
109 | /* generate a crc for every 8-bit value */ | |
110 | for (n = 0; n < 256; n++) { | |
111 | c = (z_crc_t)n; | |
112 | for (k = 0; k < 8; k++) | |
113 | c = c & 1 ? poly ^ (c >> 1) : c >> 1; | |
114 | crc_table[0][n] = c; | |
115 | } | |
116 | ||
117 | #ifdef BYFOUR | |
118 | /* generate crc for each value followed by one, two, and three zeros, | |
119 | and then the byte reversal of those as well as the first table */ | |
120 | for (n = 0; n < 256; n++) { | |
121 | c = crc_table[0][n]; | |
122 | crc_table[4][n] = ZSWAP32(c); | |
123 | for (k = 1; k < 4; k++) { | |
124 | c = crc_table[0][c & 0xff] ^ (c >> 8); | |
125 | crc_table[k][n] = c; | |
126 | crc_table[k + 4][n] = ZSWAP32(c); | |
127 | } | |
128 | } | |
129 | #endif /* BYFOUR */ | |
130 | ||
131 | crc_table_empty = 0; | |
132 | } | |
133 | else { /* not first */ | |
134 | /* wait for the other guy to finish (not efficient, but rare) */ | |
135 | while (crc_table_empty) | |
136 | ; | |
137 | } | |
138 | ||
139 | #ifdef MAKECRCH | |
140 | /* write out CRC tables to crc32.h */ | |
141 | { | |
142 | FILE *out; | |
143 | ||
144 | out = fopen("crc32.h", "w"); | |
145 | if (out == NULL) return; | |
146 | fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); | |
147 | fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); | |
148 | fprintf(out, "local const z_crc_t FAR "); | |
149 | fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); | |
150 | write_table(out, crc_table[0]); | |
151 | # ifdef BYFOUR | |
152 | fprintf(out, "#ifdef BYFOUR\n"); | |
153 | for (k = 1; k < 8; k++) { | |
154 | fprintf(out, " },\n {\n"); | |
155 | write_table(out, crc_table[k]); | |
156 | } | |
157 | fprintf(out, "#endif\n"); | |
158 | # endif /* BYFOUR */ | |
159 | fprintf(out, " }\n};\n"); | |
160 | fclose(out); | |
161 | } | |
162 | #endif /* MAKECRCH */ | |
163 | } | |
164 | ||
165 | #ifdef MAKECRCH | |
166 | local void write_table(out, table) | |
167 | FILE *out; | |
168 | const z_crc_t FAR *table; | |
169 | { | |
170 | int n; | |
171 | ||
172 | for (n = 0; n < 256; n++) | |
173 | fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", | |
174 | (unsigned long)(table[n]), | |
175 | n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); | |
176 | } | |
177 | #endif /* MAKECRCH */ | |
178 | ||
179 | #else /* !DYNAMIC_CRC_TABLE */ | |
180 | /* ======================================================================== | |
181 | * Tables of CRC-32s of all single-byte values, made by make_crc_table(). | |
182 | */ | |
183 | #include "crc32.h" | |
184 | #endif /* DYNAMIC_CRC_TABLE */ | |
185 | ||
186 | /* ========================================================================= | |
187 | * This function can be used by asm versions of crc32() | |
188 | */ | |
189 | const z_crc_t FAR * ZEXPORT get_crc_table() | |
190 | { | |
191 | #ifdef DYNAMIC_CRC_TABLE | |
192 | if (crc_table_empty) | |
193 | make_crc_table(); | |
194 | #endif /* DYNAMIC_CRC_TABLE */ | |
195 | return (const z_crc_t FAR *)crc_table; | |
196 | } | |
197 | ||
198 | /* ========================================================================= */ | |
199 | #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) | |
200 | #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 | |
201 | ||
202 | /* ========================================================================= */ | |
203 | unsigned long ZEXPORT crc32(crc, buf, len) | |
204 | unsigned long crc; | |
205 | const unsigned char FAR *buf; | |
206 | uInt len; | |
207 | { | |
208 | if (buf == Z_NULL) return 0UL; | |
209 | ||
210 | #ifdef DYNAMIC_CRC_TABLE | |
211 | if (crc_table_empty) | |
212 | make_crc_table(); | |
213 | #endif /* DYNAMIC_CRC_TABLE */ | |
214 | ||
215 | #ifdef BYFOUR | |
216 | if (sizeof(void *) == sizeof(ptrdiff_t)) { | |
217 | z_crc_t endian; | |
218 | ||
219 | endian = 1; | |
220 | if (*((unsigned char *)(&endian))) | |
221 | return crc32_little(crc, buf, len); | |
222 | else | |
223 | return crc32_big(crc, buf, len); | |
224 | } | |
225 | #endif /* BYFOUR */ | |
226 | crc = crc ^ 0xffffffffUL; | |
227 | while (len >= 8) { | |
228 | DO8; | |
229 | len -= 8; | |
230 | } | |
231 | if (len) do { | |
232 | DO1; | |
233 | } while (--len); | |
234 | return crc ^ 0xffffffffUL; | |
235 | } | |
236 | ||
237 | #ifdef BYFOUR | |
238 | ||
239 | /* ========================================================================= */ | |
240 | #define DOLIT4 c ^= *buf4++; \ | |
241 | c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ | |
242 | crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] | |
243 | #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 | |
244 | ||
245 | /* ========================================================================= */ | |
246 | local unsigned long crc32_little(crc, buf, len) | |
247 | unsigned long crc; | |
248 | const unsigned char FAR *buf; | |
249 | unsigned len; | |
250 | { | |
251 | register z_crc_t c; | |
252 | register const z_crc_t FAR *buf4; | |
253 | ||
254 | c = (z_crc_t)crc; | |
255 | c = ~c; | |
256 | while (len && ((ptrdiff_t)buf & 3)) { | |
257 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
258 | len--; | |
259 | } | |
260 | ||
261 | buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | |
262 | while (len >= 32) { | |
263 | DOLIT32; | |
264 | len -= 32; | |
265 | } | |
266 | while (len >= 4) { | |
267 | DOLIT4; | |
268 | len -= 4; | |
269 | } | |
270 | buf = (const unsigned char FAR *)buf4; | |
271 | ||
272 | if (len) do { | |
273 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
274 | } while (--len); | |
275 | c = ~c; | |
276 | return (unsigned long)c; | |
277 | } | |
278 | ||
279 | /* ========================================================================= */ | |
280 | #define DOBIG4 c ^= *++buf4; \ | |
281 | c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ | |
282 | crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] | |
283 | #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 | |
284 | ||
285 | /* ========================================================================= */ | |
286 | local unsigned long crc32_big(crc, buf, len) | |
287 | unsigned long crc; | |
288 | const unsigned char FAR *buf; | |
289 | unsigned len; | |
290 | { | |
291 | register z_crc_t c; | |
292 | register const z_crc_t FAR *buf4; | |
293 | ||
294 | c = ZSWAP32((z_crc_t)crc); | |
295 | c = ~c; | |
296 | while (len && ((ptrdiff_t)buf & 3)) { | |
297 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
298 | len--; | |
299 | } | |
300 | ||
301 | buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | |
302 | buf4--; | |
303 | while (len >= 32) { | |
304 | DOBIG32; | |
305 | len -= 32; | |
306 | } | |
307 | while (len >= 4) { | |
308 | DOBIG4; | |
309 | len -= 4; | |
310 | } | |
311 | buf4++; | |
312 | buf = (const unsigned char FAR *)buf4; | |
313 | ||
314 | if (len) do { | |
315 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
316 | } while (--len); | |
317 | c = ~c; | |
318 | return (unsigned long)(ZSWAP32(c)); | |
319 | } | |
320 | ||
321 | #endif /* BYFOUR */ | |
322 | ||
323 | #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ | |
324 | ||
325 | /* ========================================================================= */ | |
326 | local unsigned long gf2_matrix_times(mat, vec) | |
327 | unsigned long *mat; | |
328 | unsigned long vec; | |
329 | { | |
330 | unsigned long sum; | |
331 | ||
332 | sum = 0; | |
333 | while (vec) { | |
334 | if (vec & 1) | |
335 | sum ^= *mat; | |
336 | vec >>= 1; | |
337 | mat++; | |
338 | } | |
339 | return sum; | |
340 | } | |
341 | ||
342 | /* ========================================================================= */ | |
343 | local void gf2_matrix_square(square, mat) | |
344 | unsigned long *square; | |
345 | unsigned long *mat; | |
346 | { | |
347 | int n; | |
348 | ||
349 | for (n = 0; n < GF2_DIM; n++) | |
350 | square[n] = gf2_matrix_times(mat, mat[n]); | |
351 | } | |
352 | ||
353 | /* ========================================================================= */ | |
354 | local uLong crc32_combine_(crc1, crc2, len2) | |
355 | uLong crc1; | |
356 | uLong crc2; | |
357 | z_off64_t len2; | |
358 | { | |
359 | int n; | |
360 | unsigned long row; | |
361 | unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ | |
362 | unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ | |
363 | ||
364 | /* degenerate case (also disallow negative lengths) */ | |
365 | if (len2 <= 0) | |
366 | return crc1; | |
367 | ||
368 | /* put operator for one zero bit in odd */ | |
369 | odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ | |
370 | row = 1; | |
371 | for (n = 1; n < GF2_DIM; n++) { | |
372 | odd[n] = row; | |
373 | row <<= 1; | |
374 | } | |
375 | ||
376 | /* put operator for two zero bits in even */ | |
377 | gf2_matrix_square(even, odd); | |
378 | ||
379 | /* put operator for four zero bits in odd */ | |
380 | gf2_matrix_square(odd, even); | |
381 | ||
382 | /* apply len2 zeros to crc1 (first square will put the operator for one | |
383 | zero byte, eight zero bits, in even) */ | |
384 | do { | |
385 | /* apply zeros operator for this bit of len2 */ | |
386 | gf2_matrix_square(even, odd); | |
387 | if (len2 & 1) | |
388 | crc1 = gf2_matrix_times(even, crc1); | |
389 | len2 >>= 1; | |
390 | ||
391 | /* if no more bits set, then done */ | |
392 | if (len2 == 0) | |
393 | break; | |
394 | ||
395 | /* another iteration of the loop with odd and even swapped */ | |
396 | gf2_matrix_square(odd, even); | |
397 | if (len2 & 1) | |
398 | crc1 = gf2_matrix_times(odd, crc1); | |
399 | len2 >>= 1; | |
400 | ||
401 | /* if no more bits set, then done */ | |
402 | } while (len2 != 0); | |
403 | ||
404 | /* return combined crc */ | |
405 | crc1 ^= crc2; | |
406 | return crc1; | |
407 | } | |
408 | ||
409 | /* ========================================================================= */ | |
410 | uLong ZEXPORT crc32_combine(crc1, crc2, len2) | |
411 | uLong crc1; | |
412 | uLong crc2; | |
413 | z_off_t len2; | |
414 | { | |
415 | return crc32_combine_(crc1, crc2, len2); | |
416 | } | |
417 | ||
418 | uLong ZEXPORT crc32_combine64(crc1, crc2, len2) | |
419 | uLong crc1; | |
420 | uLong crc2; | |
421 | z_off64_t len2; | |
422 | { | |
423 | return crc32_combine_(crc1, crc2, len2); | |
424 | } |