]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * jfdctflt.c | |
3 | * | |
4 | * Copyright (C) 1994-1996, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains a floating-point implementation of the | |
9 | * forward DCT (Discrete Cosine Transform). | |
10 | * | |
11 | * This implementation should be more accurate than either of the integer | |
12 | * DCT implementations. However, it may not give the same results on all | |
13 | * machines because of differences in roundoff behavior. Speed will depend | |
14 | * on the hardware's floating point capacity. | |
15 | * | |
16 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | |
17 | * on each column. Direct algorithms are also available, but they are | |
18 | * much more complex and seem not to be any faster when reduced to code. | |
19 | * | |
20 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for | |
21 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |
22 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell | |
23 | * JPEG textbook (see REFERENCES section in file README). The following code | |
24 | * is based directly on figure 4-8 in P&M. | |
25 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is | |
26 | * possible to arrange the computation so that many of the multiplies are | |
27 | * simple scalings of the final outputs. These multiplies can then be | |
28 | * folded into the multiplications or divisions by the JPEG quantization | |
29 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds | |
30 | * to be done in the DCT itself. | |
31 | * The primary disadvantage of this method is that with a fixed-point | |
32 | * implementation, accuracy is lost due to imprecise representation of the | |
33 | * scaled quantization values. However, that problem does not arise if | |
34 | * we use floating point arithmetic. | |
35 | */ | |
36 | ||
37 | #define JPEG_INTERNALS | |
38 | #include "jinclude.h" | |
39 | #include "jpeglib.h" | |
40 | #include "jdct.h" /* Private declarations for DCT subsystem */ | |
41 | ||
42 | #ifdef DCT_FLOAT_SUPPORTED | |
43 | ||
44 | ||
45 | /* | |
46 | * This module is specialized to the case DCTSIZE = 8. | |
47 | */ | |
48 | ||
49 | #if DCTSIZE != 8 | |
50 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
51 | #endif | |
52 | ||
53 | ||
54 | /* | |
55 | * Perform the forward DCT on one block of samples. | |
56 | */ | |
57 | ||
58 | GLOBAL(void) | |
59 | jpeg_fdct_float (FAST_FLOAT * data) | |
60 | { | |
61 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
62 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13; | |
63 | FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; | |
64 | FAST_FLOAT *dataptr; | |
65 | int ctr; | |
66 | ||
67 | /* Pass 1: process rows. */ | |
68 | ||
69 | dataptr = data; | |
70 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
71 | tmp0 = dataptr[0] + dataptr[7]; | |
72 | tmp7 = dataptr[0] - dataptr[7]; | |
73 | tmp1 = dataptr[1] + dataptr[6]; | |
74 | tmp6 = dataptr[1] - dataptr[6]; | |
75 | tmp2 = dataptr[2] + dataptr[5]; | |
76 | tmp5 = dataptr[2] - dataptr[5]; | |
77 | tmp3 = dataptr[3] + dataptr[4]; | |
78 | tmp4 = dataptr[3] - dataptr[4]; | |
79 | ||
80 | /* Even part */ | |
81 | ||
82 | tmp10 = tmp0 + tmp3; /* phase 2 */ | |
83 | tmp13 = tmp0 - tmp3; | |
84 | tmp11 = tmp1 + tmp2; | |
85 | tmp12 = tmp1 - tmp2; | |
86 | ||
87 | dataptr[0] = tmp10 + tmp11; /* phase 3 */ | |
88 | dataptr[4] = tmp10 - tmp11; | |
89 | ||
90 | z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ | |
91 | dataptr[2] = tmp13 + z1; /* phase 5 */ | |
92 | dataptr[6] = tmp13 - z1; | |
93 | ||
94 | /* Odd part */ | |
95 | ||
96 | tmp10 = tmp4 + tmp5; /* phase 2 */ | |
97 | tmp11 = tmp5 + tmp6; | |
98 | tmp12 = tmp6 + tmp7; | |
99 | ||
100 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | |
101 | z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ | |
102 | z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ | |
103 | z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ | |
104 | z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ | |
105 | ||
106 | z11 = tmp7 + z3; /* phase 5 */ | |
107 | z13 = tmp7 - z3; | |
108 | ||
109 | dataptr[5] = z13 + z2; /* phase 6 */ | |
110 | dataptr[3] = z13 - z2; | |
111 | dataptr[1] = z11 + z4; | |
112 | dataptr[7] = z11 - z4; | |
113 | ||
114 | dataptr += DCTSIZE; /* advance pointer to next row */ | |
115 | } | |
116 | ||
117 | /* Pass 2: process columns. */ | |
118 | ||
119 | dataptr = data; | |
120 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
121 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |
122 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |
123 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |
124 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |
125 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |
126 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |
127 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |
128 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |
129 | ||
130 | /* Even part */ | |
131 | ||
132 | tmp10 = tmp0 + tmp3; /* phase 2 */ | |
133 | tmp13 = tmp0 - tmp3; | |
134 | tmp11 = tmp1 + tmp2; | |
135 | tmp12 = tmp1 - tmp2; | |
136 | ||
137 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | |
138 | dataptr[DCTSIZE*4] = tmp10 - tmp11; | |
139 | ||
140 | z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ | |
141 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | |
142 | dataptr[DCTSIZE*6] = tmp13 - z1; | |
143 | ||
144 | /* Odd part */ | |
145 | ||
146 | tmp10 = tmp4 + tmp5; /* phase 2 */ | |
147 | tmp11 = tmp5 + tmp6; | |
148 | tmp12 = tmp6 + tmp7; | |
149 | ||
150 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | |
151 | z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ | |
152 | z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ | |
153 | z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ | |
154 | z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ | |
155 | ||
156 | z11 = tmp7 + z3; /* phase 5 */ | |
157 | z13 = tmp7 - z3; | |
158 | ||
159 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | |
160 | dataptr[DCTSIZE*3] = z13 - z2; | |
161 | dataptr[DCTSIZE*1] = z11 + z4; | |
162 | dataptr[DCTSIZE*7] = z11 - z4; | |
163 | ||
164 | dataptr++; /* advance pointer to next column */ | |
165 | } | |
166 | } | |
167 | ||
168 | #endif /* DCT_FLOAT_SUPPORTED */ |