]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * This source code is a product of Sun Microsystems, Inc. and is provided | |
3 | * for unrestricted use. Users may copy or modify this source code without | |
4 | * charge. | |
5 | * | |
6 | * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING | |
7 | * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR | |
8 | * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. | |
9 | * | |
10 | * Sun source code is provided with no support and without any obligation on | |
11 | * the part of Sun Microsystems, Inc. to assist in its use, correction, | |
12 | * modification or enhancement. | |
13 | * | |
14 | * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE | |
15 | * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE | |
16 | * OR ANY PART THEREOF. | |
17 | * | |
18 | * In no event will Sun Microsystems, Inc. be liable for any lost revenue | |
19 | * or profits or other special, indirect and consequential damages, even if | |
20 | * Sun has been advised of the possibility of such damages. | |
21 | * | |
22 | * Sun Microsystems, Inc. | |
23 | * 2550 Garcia Avenue | |
24 | * Mountain View, California 94043 | |
25 | */ | |
26 | ||
27 | /* | |
28 | * g711.c | |
29 | * | |
30 | * u-law, A-law and linear PCM conversions. | |
31 | */ | |
32 | #define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */ | |
33 | #define QUANT_MASK (0xf) /* Quantization field mask. */ | |
34 | #define NSEGS (8) /* Number of A-law segments. */ | |
35 | #define SEG_SHIFT (4) /* Left shift for segment number. */ | |
36 | #define SEG_MASK (0x70) /* Segment field mask. */ | |
37 | ||
38 | static short seg_end[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF, | |
39 | 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF}; | |
40 | ||
41 | /* copy from CCITT G.711 specifications */ | |
42 | unsigned char _u2a[128] = { /* u- to A-law conversions */ | |
43 | 1, 1, 2, 2, 3, 3, 4, 4, | |
44 | 5, 5, 6, 6, 7, 7, 8, 8, | |
45 | 9, 10, 11, 12, 13, 14, 15, 16, | |
46 | 17, 18, 19, 20, 21, 22, 23, 24, | |
47 | 25, 27, 29, 31, 33, 34, 35, 36, | |
48 | 37, 38, 39, 40, 41, 42, 43, 44, | |
49 | 46, 48, 49, 50, 51, 52, 53, 54, | |
50 | 55, 56, 57, 58, 59, 60, 61, 62, | |
51 | 64, 65, 66, 67, 68, 69, 70, 71, | |
52 | 72, 73, 74, 75, 76, 77, 78, 79, | |
53 | 81, 82, 83, 84, 85, 86, 87, 88, | |
54 | 89, 90, 91, 92, 93, 94, 95, 96, | |
55 | 97, 98, 99, 100, 101, 102, 103, 104, | |
56 | 105, 106, 107, 108, 109, 110, 111, 112, | |
57 | 113, 114, 115, 116, 117, 118, 119, 120, | |
58 | 121, 122, 123, 124, 125, 126, 127, 128}; | |
59 | ||
60 | unsigned char _a2u[128] = { /* A- to u-law conversions */ | |
61 | 1, 3, 5, 7, 9, 11, 13, 15, | |
62 | 16, 17, 18, 19, 20, 21, 22, 23, | |
63 | 24, 25, 26, 27, 28, 29, 30, 31, | |
64 | 32, 32, 33, 33, 34, 34, 35, 35, | |
65 | 36, 37, 38, 39, 40, 41, 42, 43, | |
66 | 44, 45, 46, 47, 48, 48, 49, 49, | |
67 | 50, 51, 52, 53, 54, 55, 56, 57, | |
68 | 58, 59, 60, 61, 62, 63, 64, 64, | |
69 | 65, 66, 67, 68, 69, 70, 71, 72, | |
70 | 73, 74, 75, 76, 77, 78, 79, 79, | |
71 | 80, 81, 82, 83, 84, 85, 86, 87, | |
72 | 88, 89, 90, 91, 92, 93, 94, 95, | |
73 | 96, 97, 98, 99, 100, 101, 102, 103, | |
74 | 104, 105, 106, 107, 108, 109, 110, 111, | |
75 | 112, 113, 114, 115, 116, 117, 118, 119, | |
76 | 120, 121, 122, 123, 124, 125, 126, 127}; | |
77 | ||
78 | static int | |
79 | search( | |
80 | int val, | |
81 | short *table, | |
82 | int size) | |
83 | { | |
84 | int i; | |
85 | ||
86 | for (i = 0; i < size; i++) { | |
87 | if (val <= *table++) | |
88 | return (i); | |
89 | } | |
90 | return (size); | |
91 | } | |
92 | ||
93 | /* | |
94 | * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law | |
95 | * | |
96 | * linear2alaw() accepts an 16-bit integer and encodes it as A-law data. | |
97 | * | |
98 | * Linear Input Code Compressed Code | |
99 | * ------------------------ --------------- | |
100 | * 0000000wxyza 000wxyz | |
101 | * 0000001wxyza 001wxyz | |
102 | * 000001wxyzab 010wxyz | |
103 | * 00001wxyzabc 011wxyz | |
104 | * 0001wxyzabcd 100wxyz | |
105 | * 001wxyzabcde 101wxyz | |
106 | * 01wxyzabcdef 110wxyz | |
107 | * 1wxyzabcdefg 111wxyz | |
108 | * | |
109 | * For further information see John C. Bellamy's Digital Telephony, 1982, | |
110 | * John Wiley & Sons, pps 98-111 and 472-476. | |
111 | */ | |
112 | unsigned char | |
113 | linear2alaw( | |
114 | int pcm_val) /* 2's complement (16-bit range) */ | |
115 | { | |
116 | int mask; | |
117 | int seg; | |
118 | unsigned char aval; | |
119 | ||
120 | if (pcm_val >= 0) { | |
121 | mask = 0xD5; /* sign (7th) bit = 1 */ | |
122 | } else { | |
123 | mask = 0x55; /* sign bit = 0 */ | |
124 | pcm_val = -pcm_val - 8; | |
125 | } | |
126 | ||
127 | /* Convert the scaled magnitude to segment number. */ | |
128 | seg = search(pcm_val, seg_end, 8); | |
129 | ||
130 | /* Combine the sign, segment, and quantization bits. */ | |
131 | ||
132 | if (seg >= 8) /* out of range, return maximum value. */ | |
133 | return (0x7F ^ mask); | |
134 | else { | |
135 | aval = seg << SEG_SHIFT; | |
136 | if (seg < 2) | |
137 | aval |= (pcm_val >> 4) & QUANT_MASK; | |
138 | else | |
139 | aval |= (pcm_val >> (seg + 3)) & QUANT_MASK; | |
140 | return (aval ^ mask); | |
141 | } | |
142 | } | |
143 | ||
144 | /* | |
145 | * alaw2linear() - Convert an A-law value to 16-bit linear PCM | |
146 | * | |
147 | */ | |
148 | int | |
149 | alaw2linear( | |
150 | unsigned char a_val) | |
151 | { | |
152 | int t; | |
153 | int seg; | |
154 | ||
155 | a_val ^= 0x55; | |
156 | ||
157 | t = (a_val & QUANT_MASK) << 4; | |
158 | seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT; | |
159 | switch (seg) { | |
160 | case 0: | |
161 | t += 8; | |
162 | break; | |
163 | case 1: | |
164 | t += 0x108; | |
165 | break; | |
166 | default: | |
167 | t += 0x108; | |
168 | t <<= seg - 1; | |
169 | } | |
170 | return ((a_val & SIGN_BIT) ? t : -t); | |
171 | } | |
172 | ||
173 | #define BIAS (0x84) /* Bias for linear code. */ | |
174 | ||
175 | /* | |
176 | * linear2ulaw() - Convert a linear PCM value to u-law | |
177 | * | |
178 | * In order to simplify the encoding process, the original linear magnitude | |
179 | * is biased by adding 33 which shifts the encoding range from (0 - 8158) to | |
180 | * (33 - 8191). The result can be seen in the following encoding table: | |
181 | * | |
182 | * Biased Linear Input Code Compressed Code | |
183 | * ------------------------ --------------- | |
184 | * 00000001wxyza 000wxyz | |
185 | * 0000001wxyzab 001wxyz | |
186 | * 000001wxyzabc 010wxyz | |
187 | * 00001wxyzabcd 011wxyz | |
188 | * 0001wxyzabcde 100wxyz | |
189 | * 001wxyzabcdef 101wxyz | |
190 | * 01wxyzabcdefg 110wxyz | |
191 | * 1wxyzabcdefgh 111wxyz | |
192 | * | |
193 | * Each biased linear code has a leading 1 which identifies the segment | |
194 | * number. The value of the segment number is equal to 7 minus the number | |
195 | * of leading 0's. The quantization interval is directly available as the | |
196 | * four bits wxyz. * The trailing bits (a - h) are ignored. | |
197 | * | |
198 | * Ordinarily the complement of the resulting code word is used for | |
199 | * transmission, and so the code word is complemented before it is returned. | |
200 | * | |
201 | * For further information see John C. Bellamy's Digital Telephony, 1982, | |
202 | * John Wiley & Sons, pps 98-111 and 472-476. | |
203 | */ | |
204 | unsigned char | |
205 | linear2ulaw( | |
206 | int pcm_val) /* 2's complement (16-bit range) */ | |
207 | { | |
208 | int mask; | |
209 | int seg; | |
210 | unsigned char uval; | |
211 | ||
212 | /* Get the sign and the magnitude of the value. */ | |
213 | if (pcm_val < 0) { | |
214 | pcm_val = BIAS - pcm_val; | |
215 | mask = 0x7F; | |
216 | } else { | |
217 | pcm_val += BIAS; | |
218 | mask = 0xFF; | |
219 | } | |
220 | ||
221 | /* Convert the scaled magnitude to segment number. */ | |
222 | seg = search(pcm_val, seg_end, 8); | |
223 | ||
224 | /* | |
225 | * Combine the sign, segment, quantization bits; | |
226 | * and complement the code word. | |
227 | */ | |
228 | if (seg >= 8) /* out of range, return maximum value. */ | |
229 | return (0x7F ^ mask); | |
230 | else { | |
231 | uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF); | |
232 | return (uval ^ mask); | |
233 | } | |
234 | ||
235 | } | |
236 | ||
237 | /* | |
238 | * ulaw2linear() - Convert a u-law value to 16-bit linear PCM | |
239 | * | |
240 | * First, a biased linear code is derived from the code word. An unbiased | |
241 | * output can then be obtained by subtracting 33 from the biased code. | |
242 | * | |
243 | * Note that this function expects to be passed the complement of the | |
244 | * original code word. This is in keeping with ISDN conventions. | |
245 | */ | |
246 | int | |
247 | ulaw2linear( | |
248 | unsigned char u_val) | |
249 | { | |
250 | int t; | |
251 | ||
252 | /* Complement to obtain normal u-law value. */ | |
253 | u_val = ~u_val; | |
254 | ||
255 | /* | |
256 | * Extract and bias the quantization bits. Then | |
257 | * shift up by the segment number and subtract out the bias. | |
258 | */ | |
259 | t = ((u_val & QUANT_MASK) << 3) + BIAS; | |
260 | t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT; | |
261 | ||
262 | return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS)); | |
263 | } | |
264 | ||
265 | /* A-law to u-law conversion */ | |
266 | unsigned char | |
267 | alaw2ulaw( | |
268 | unsigned char aval) | |
269 | { | |
270 | aval &= 0xff; | |
271 | return ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) : | |
272 | (0x7F ^ _a2u[aval ^ 0x55])); | |
273 | } | |
274 | ||
275 | /* u-law to A-law conversion */ | |
276 | unsigned char | |
277 | ulaw2alaw( | |
278 | unsigned char uval) | |
279 | { | |
280 | uval &= 0xff; | |
281 | return ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) : | |
282 | (0x55 ^ (_u2a[0x7F ^ uval] - 1))); | |
283 | } |