]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * (c) Copyright 1993, 1994, Silicon Graphics, Inc. | |
3 | * ALL RIGHTS RESERVED | |
4 | * Permission to use, copy, modify, and distribute this software for | |
5 | * any purpose and without fee is hereby granted, provided that the above | |
6 | * copyright notice appear in all copies and that both the copyright notice | |
7 | * and this permission notice appear in supporting documentation, and that | |
8 | * the name of Silicon Graphics, Inc. not be used in advertising | |
9 | * or publicity pertaining to distribution of the software without specific, | |
10 | * written prior permission. | |
11 | * | |
12 | * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS" | |
13 | * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, | |
14 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR | |
15 | * FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON | |
16 | * GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT, | |
17 | * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY | |
18 | * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION, | |
19 | * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF | |
20 | * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN | |
21 | * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON | |
22 | * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE | |
23 | * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE. | |
24 | * | |
25 | * US Government Users Restricted Rights | |
26 | * Use, duplication, or disclosure by the Government is subject to | |
27 | * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph | |
28 | * (c)(1)(ii) of the Rights in Technical Data and Computer Software | |
29 | * clause at DFARS 252.227-7013 and/or in similar or successor | |
30 | * clauses in the FAR or the DOD or NASA FAR Supplement. | |
31 | * Unpublished-- rights reserved under the copyright laws of the | |
32 | * United States. Contractor/manufacturer is Silicon Graphics, | |
33 | * Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. | |
34 | * | |
35 | * OpenGL(TM) is a trademark of Silicon Graphics, Inc. | |
36 | */ | |
37 | /* | |
38 | * Trackball code: | |
39 | * | |
40 | * Implementation of a virtual trackball. | |
41 | * Implemented by Gavin Bell, lots of ideas from Thant Tessman and | |
42 | * the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129. | |
43 | * | |
44 | * Vector manip code: | |
45 | * | |
46 | * Original code from: | |
47 | * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli | |
48 | * | |
49 | * Much mucking with by: | |
50 | * Gavin Bell | |
51 | */ | |
52 | #include <math.h> | |
53 | #include "trackball.h" | |
54 | ||
55 | /* | |
56 | * This size should really be based on the distance from the center of | |
57 | * rotation to the point on the object underneath the mouse. That | |
58 | * point would then track the mouse as closely as possible. This is a | |
59 | * simple example, though, so that is left as an Exercise for the | |
60 | * Programmer. | |
61 | */ | |
62 | #define TRACKBALLSIZE (0.8) | |
63 | ||
64 | /* | |
65 | * Local function prototypes (not defined in trackball.h) | |
66 | */ | |
67 | static float tb_project_to_sphere(float, float, float); | |
68 | static void normalize_quat(float [4]); | |
69 | ||
70 | void | |
71 | vzero(float *v) | |
72 | { | |
73 | v[0] = 0.0; | |
74 | v[1] = 0.0; | |
75 | v[2] = 0.0; | |
76 | } | |
77 | ||
78 | void | |
79 | vset(float *v, float x, float y, float z) | |
80 | { | |
81 | v[0] = x; | |
82 | v[1] = y; | |
83 | v[2] = z; | |
84 | } | |
85 | ||
86 | void | |
87 | vsub(const float *src1, const float *src2, float *dst) | |
88 | { | |
89 | dst[0] = src1[0] - src2[0]; | |
90 | dst[1] = src1[1] - src2[1]; | |
91 | dst[2] = src1[2] - src2[2]; | |
92 | } | |
93 | ||
94 | void | |
95 | vcopy(const float *v1, float *v2) | |
96 | { | |
97 | register int i; | |
98 | for (i = 0 ; i < 3 ; i++) | |
99 | v2[i] = v1[i]; | |
100 | } | |
101 | ||
102 | void | |
103 | vcross(const float *v1, const float *v2, float *cross) | |
104 | { | |
105 | float temp[3]; | |
106 | ||
107 | temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]); | |
108 | temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]); | |
109 | temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]); | |
110 | vcopy(temp, cross); | |
111 | } | |
112 | ||
113 | float | |
114 | vlength(const float *v) | |
115 | { | |
116 | return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); | |
117 | } | |
118 | ||
119 | void | |
120 | vscale(float *v, float div) | |
121 | { | |
122 | v[0] *= div; | |
123 | v[1] *= div; | |
124 | v[2] *= div; | |
125 | } | |
126 | ||
127 | void | |
128 | vnormal(float *v) | |
129 | { | |
130 | vscale(v,1.0/vlength(v)); | |
131 | } | |
132 | ||
133 | float | |
134 | vdot(const float *v1, const float *v2) | |
135 | { | |
136 | return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; | |
137 | } | |
138 | ||
139 | void | |
140 | vadd(const float *src1, const float *src2, float *dst) | |
141 | { | |
142 | dst[0] = src1[0] + src2[0]; | |
143 | dst[1] = src1[1] + src2[1]; | |
144 | dst[2] = src1[2] + src2[2]; | |
145 | } | |
146 | ||
147 | /* | |
148 | * Ok, simulate a track-ball. Project the points onto the virtual | |
149 | * trackball, then figure out the axis of rotation, which is the cross | |
150 | * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0) | |
151 | * Note: This is a deformed trackball-- is a trackball in the center, | |
152 | * but is deformed into a hyperbolic sheet of rotation away from the | |
153 | * center. This particular function was chosen after trying out | |
154 | * several variations. | |
155 | * | |
156 | * It is assumed that the arguments to this routine are in the range | |
157 | * (-1.0 ... 1.0) | |
158 | */ | |
159 | void | |
160 | trackball(float q[4], float p1x, float p1y, float p2x, float p2y) | |
161 | { | |
162 | float a[3]; /* Axis of rotation */ | |
163 | float phi; /* how much to rotate about axis */ | |
164 | float p1[3], p2[3], d[3]; | |
165 | float t; | |
166 | ||
167 | if (p1x == p2x && p1y == p2y) { | |
168 | /* Zero rotation */ | |
169 | vzero(q); | |
170 | q[3] = 1.0; | |
171 | return; | |
172 | } | |
173 | ||
174 | /* | |
175 | * First, figure out z-coordinates for projection of P1 and P2 to | |
176 | * deformed sphere | |
177 | */ | |
178 | vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y)); | |
179 | vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y)); | |
180 | ||
181 | /* | |
182 | * Now, we want the cross product of P1 and P2 | |
183 | */ | |
184 | vcross(p2,p1,a); | |
185 | ||
186 | /* | |
187 | * Figure out how much to rotate around that axis. | |
188 | */ | |
189 | vsub(p1,p2,d); | |
190 | t = vlength(d) / (2.0*TRACKBALLSIZE); | |
191 | ||
192 | /* | |
193 | * Avoid problems with out-of-control values... | |
194 | */ | |
195 | if (t > 1.0) t = 1.0; | |
196 | if (t < -1.0) t = -1.0; | |
197 | phi = 2.0 * asin(t); | |
198 | ||
199 | axis_to_quat(a,phi,q); | |
200 | } | |
201 | ||
202 | /* | |
203 | * Given an axis and angle, compute quaternion. | |
204 | */ | |
205 | void | |
206 | axis_to_quat(float a[3], float phi, float q[4]) | |
207 | { | |
208 | vnormal(a); | |
209 | vcopy(a,q); | |
210 | vscale(q,sin(phi/2.0)); | |
211 | q[3] = cos(phi/2.0); | |
212 | } | |
213 | ||
214 | /* | |
215 | * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet | |
216 | * if we are away from the center of the sphere. | |
217 | */ | |
218 | static float | |
219 | tb_project_to_sphere(float r, float x, float y) | |
220 | { | |
221 | float d, t, z; | |
222 | ||
223 | d = sqrt(x*x + y*y); | |
224 | if (d < r * 0.70710678118654752440) { /* Inside sphere */ | |
225 | z = sqrt(r*r - d*d); | |
226 | } else { /* On hyperbola */ | |
227 | t = r / 1.41421356237309504880; | |
228 | z = t*t / d; | |
229 | } | |
230 | return z; | |
231 | } | |
232 | ||
233 | /* | |
234 | * Given two rotations, e1 and e2, expressed as quaternion rotations, | |
235 | * figure out the equivalent single rotation and stuff it into dest. | |
236 | * | |
237 | * This routine also normalizes the result every RENORMCOUNT times it is | |
238 | * called, to keep error from creeping in. | |
239 | * | |
240 | * NOTE: This routine is written so that q1 or q2 may be the same | |
241 | * as dest (or each other). | |
242 | */ | |
243 | ||
244 | #define RENORMCOUNT 97 | |
245 | ||
246 | void | |
247 | add_quats(float q1[4], float q2[4], float dest[4]) | |
248 | { | |
249 | static int count=0; | |
250 | float t1[4], t2[4], t3[4]; | |
251 | float tf[4]; | |
252 | ||
253 | vcopy(q1,t1); | |
254 | vscale(t1,q2[3]); | |
255 | ||
256 | vcopy(q2,t2); | |
257 | vscale(t2,q1[3]); | |
258 | ||
259 | vcross(q2,q1,t3); | |
260 | vadd(t1,t2,tf); | |
261 | vadd(t3,tf,tf); | |
262 | tf[3] = q1[3] * q2[3] - vdot(q1,q2); | |
263 | ||
264 | dest[0] = tf[0]; | |
265 | dest[1] = tf[1]; | |
266 | dest[2] = tf[2]; | |
267 | dest[3] = tf[3]; | |
268 | ||
269 | if (++count > RENORMCOUNT) { | |
270 | count = 0; | |
271 | normalize_quat(dest); | |
272 | } | |
273 | } | |
274 | ||
275 | /* | |
276 | * Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0 | |
277 | * If they don't add up to 1.0, dividing by their magnitued will | |
278 | * renormalize them. | |
279 | * | |
280 | * Note: See the following for more information on quaternions: | |
281 | * | |
282 | * - Shoemake, K., Animating rotation with quaternion curves, Computer | |
283 | * Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985. | |
284 | * - Pletinckx, D., Quaternion calculus as a basic tool in computer | |
285 | * graphics, The Visual Computer 5, 2-13, 1989. | |
286 | */ | |
287 | static void | |
288 | normalize_quat(float q[4]) | |
289 | { | |
290 | int i; | |
291 | float mag; | |
292 | ||
293 | mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); | |
294 | for (i = 0; i < 4; i++) q[i] /= mag; | |
295 | } | |
296 | ||
297 | /* | |
298 | * Build a rotation matrix, given a quaternion rotation. | |
299 | * | |
300 | */ | |
301 | void | |
302 | build_rotmatrix(float m[4][4], float q[4]) | |
303 | { | |
304 | m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]); | |
305 | m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]); | |
306 | m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]); | |
307 | m[0][3] = 0.0; | |
308 | ||
309 | m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]); | |
310 | m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]); | |
311 | m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]); | |
312 | m[1][3] = 0.0; | |
313 | ||
314 | m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]); | |
315 | m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]); | |
316 | m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]); | |
317 | m[2][3] = 0.0; | |
318 | ||
319 | m[3][0] = 0.0; | |
320 | m[3][1] = 0.0; | |
321 | m[3][2] = 0.0; | |
322 | m[3][3] = 1.0; | |
323 | } | |
324 |