]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * jdmaster.c | |
3 | * | |
4 | * Copyright (C) 1991-1997, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains master control logic for the JPEG decompressor. | |
9 | * These routines are concerned with selecting the modules to be executed | |
10 | * and with determining the number of passes and the work to be done in each | |
11 | * pass. | |
12 | */ | |
13 | ||
14 | #define JPEG_INTERNALS | |
15 | #include "jinclude.h" | |
16 | #include "jpeglib.h" | |
17 | ||
18 | /* Private state */ | |
19 | ||
20 | typedef struct { | |
21 | struct jpeg_decomp_master pub; /* public fields */ | |
22 | ||
23 | int pass_number; /* # of passes completed */ | |
24 | ||
25 | wxjpeg_boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ | |
26 | ||
27 | /* Saved references to initialized quantizer modules, | |
28 | * in case we need to switch modes. | |
29 | */ | |
30 | struct jpeg_color_quantizer * quantizer_1pass; | |
31 | struct jpeg_color_quantizer * quantizer_2pass; | |
32 | } my_decomp_master; | |
33 | ||
34 | typedef my_decomp_master * my_master_ptr; | |
35 | ||
36 | ||
37 | /* | |
38 | * Determine whether merged upsample/color conversion should be used. | |
39 | * CRUCIAL: this must match the actual capabilities of jdmerge.c! | |
40 | */ | |
41 | ||
42 | LOCAL(wxjpeg_boolean) | |
43 | use_merged_upsample (j_decompress_ptr cinfo) | |
44 | { | |
45 | #ifdef UPSAMPLE_MERGING_SUPPORTED | |
46 | /* Merging is the equivalent of plain box-filter upsampling */ | |
47 | if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) | |
48 | return FALSE; | |
49 | /* jdmerge.c only supports YCC=>RGB color conversion */ | |
50 | if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || | |
51 | cinfo->out_color_space != JCS_RGB || | |
52 | cinfo->out_color_components != RGB_PIXELSIZE) | |
53 | return FALSE; | |
54 | /* and it only handles 2h1v or 2h2v sampling ratios */ | |
55 | if (cinfo->comp_info[0].h_samp_factor != 2 || | |
56 | cinfo->comp_info[1].h_samp_factor != 1 || | |
57 | cinfo->comp_info[2].h_samp_factor != 1 || | |
58 | cinfo->comp_info[0].v_samp_factor > 2 || | |
59 | cinfo->comp_info[1].v_samp_factor != 1 || | |
60 | cinfo->comp_info[2].v_samp_factor != 1) | |
61 | return FALSE; | |
62 | /* furthermore, it doesn't work if we've scaled the IDCTs differently */ | |
63 | if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size || | |
64 | cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size || | |
65 | cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size) | |
66 | return FALSE; | |
67 | /* ??? also need to test for upsample-time rescaling, when & if supported */ | |
68 | return TRUE; /* by golly, it'll work... */ | |
69 | #else | |
70 | return FALSE; | |
71 | #endif | |
72 | } | |
73 | ||
74 | ||
75 | /* | |
76 | * Compute output image dimensions and related values. | |
77 | * NOTE: this is exported for possible use by application. | |
78 | * Hence it mustn't do anything that can't be done twice. | |
79 | * Also note that it may be called before the master module is initialized! | |
80 | */ | |
81 | ||
82 | GLOBAL(void) | |
83 | jpeg_calc_output_dimensions (j_decompress_ptr cinfo) | |
84 | /* Do computations that are needed before master selection phase */ | |
85 | { | |
86 | #ifdef IDCT_SCALING_SUPPORTED | |
87 | int ci; | |
88 | jpeg_component_info *compptr; | |
89 | #endif | |
90 | ||
91 | /* Prevent application from calling me at wrong times */ | |
92 | if (cinfo->global_state != DSTATE_READY) | |
93 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |
94 | ||
95 | #ifdef IDCT_SCALING_SUPPORTED | |
96 | ||
97 | /* Compute actual output image dimensions and DCT scaling choices. */ | |
98 | if (cinfo->scale_num * 8 <= cinfo->scale_denom) { | |
99 | /* Provide 1/8 scaling */ | |
100 | cinfo->output_width = (JDIMENSION) | |
101 | jdiv_round_up((long) cinfo->image_width, 8L); | |
102 | cinfo->output_height = (JDIMENSION) | |
103 | jdiv_round_up((long) cinfo->image_height, 8L); | |
104 | cinfo->min_DCT_scaled_size = 1; | |
105 | } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) { | |
106 | /* Provide 1/4 scaling */ | |
107 | cinfo->output_width = (JDIMENSION) | |
108 | jdiv_round_up((long) cinfo->image_width, 4L); | |
109 | cinfo->output_height = (JDIMENSION) | |
110 | jdiv_round_up((long) cinfo->image_height, 4L); | |
111 | cinfo->min_DCT_scaled_size = 2; | |
112 | } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) { | |
113 | /* Provide 1/2 scaling */ | |
114 | cinfo->output_width = (JDIMENSION) | |
115 | jdiv_round_up((long) cinfo->image_width, 2L); | |
116 | cinfo->output_height = (JDIMENSION) | |
117 | jdiv_round_up((long) cinfo->image_height, 2L); | |
118 | cinfo->min_DCT_scaled_size = 4; | |
119 | } else { | |
120 | /* Provide 1/1 scaling */ | |
121 | cinfo->output_width = cinfo->image_width; | |
122 | cinfo->output_height = cinfo->image_height; | |
123 | cinfo->min_DCT_scaled_size = DCTSIZE; | |
124 | } | |
125 | /* In selecting the actual DCT scaling for each component, we try to | |
126 | * scale up the chroma components via IDCT scaling rather than upsampling. | |
127 | * This saves time if the upsampler gets to use 1:1 scaling. | |
128 | * Note this code assumes that the supported DCT scalings are powers of 2. | |
129 | */ | |
130 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
131 | ci++, compptr++) { | |
132 | int ssize = cinfo->min_DCT_scaled_size; | |
133 | while (ssize < DCTSIZE && | |
134 | (compptr->h_samp_factor * ssize * 2 <= | |
135 | cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) && | |
136 | (compptr->v_samp_factor * ssize * 2 <= | |
137 | cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) { | |
138 | ssize = ssize * 2; | |
139 | } | |
140 | compptr->DCT_scaled_size = ssize; | |
141 | } | |
142 | ||
143 | /* Recompute downsampled dimensions of components; | |
144 | * application needs to know these if using raw downsampled data. | |
145 | */ | |
146 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
147 | ci++, compptr++) { | |
148 | /* Size in samples, after IDCT scaling */ | |
149 | compptr->downsampled_width = (JDIMENSION) | |
150 | jdiv_round_up((long) cinfo->image_width * | |
151 | (long) (compptr->h_samp_factor * compptr->DCT_scaled_size), | |
152 | (long) (cinfo->max_h_samp_factor * DCTSIZE)); | |
153 | compptr->downsampled_height = (JDIMENSION) | |
154 | jdiv_round_up((long) cinfo->image_height * | |
155 | (long) (compptr->v_samp_factor * compptr->DCT_scaled_size), | |
156 | (long) (cinfo->max_v_samp_factor * DCTSIZE)); | |
157 | } | |
158 | ||
159 | #else /* !IDCT_SCALING_SUPPORTED */ | |
160 | ||
161 | /* Hardwire it to "no scaling" */ | |
162 | cinfo->output_width = cinfo->image_width; | |
163 | cinfo->output_height = cinfo->image_height; | |
164 | /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE, | |
165 | * and has computed unscaled downsampled_width and downsampled_height. | |
166 | */ | |
167 | ||
168 | #endif /* IDCT_SCALING_SUPPORTED */ | |
169 | ||
170 | /* Report number of components in selected colorspace. */ | |
171 | /* Probably this should be in the color conversion module... */ | |
172 | switch (cinfo->out_color_space) { | |
173 | case JCS_GRAYSCALE: | |
174 | cinfo->out_color_components = 1; | |
175 | break; | |
176 | case JCS_RGB: | |
177 | #if RGB_PIXELSIZE != 3 | |
178 | cinfo->out_color_components = RGB_PIXELSIZE; | |
179 | break; | |
180 | #endif /* else share code with YCbCr */ | |
181 | case JCS_YCbCr: | |
182 | cinfo->out_color_components = 3; | |
183 | break; | |
184 | case JCS_CMYK: | |
185 | case JCS_YCCK: | |
186 | cinfo->out_color_components = 4; | |
187 | break; | |
188 | default: /* else must be same colorspace as in file */ | |
189 | cinfo->out_color_components = cinfo->num_components; | |
190 | break; | |
191 | } | |
192 | cinfo->output_components = (cinfo->quantize_colors ? 1 : | |
193 | cinfo->out_color_components); | |
194 | ||
195 | /* See if upsampler will want to emit more than one row at a time */ | |
196 | if (use_merged_upsample(cinfo)) | |
197 | cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; | |
198 | else | |
199 | cinfo->rec_outbuf_height = 1; | |
200 | } | |
201 | ||
202 | ||
203 | /* | |
204 | * Several decompression processes need to range-limit values to the range | |
205 | * 0..MAXJSAMPLE; the input value may fall somewhat outside this range | |
206 | * due to noise introduced by quantization, roundoff error, etc. These | |
207 | * processes are inner loops and need to be as fast as possible. On most | |
208 | * machines, particularly CPUs with pipelines or instruction prefetch, | |
209 | * a (subscript-check-less) C table lookup | |
210 | * x = sample_range_limit[x]; | |
211 | * is faster than explicit tests | |
212 | * if (x < 0) x = 0; | |
213 | * else if (x > MAXJSAMPLE) x = MAXJSAMPLE; | |
214 | * These processes all use a common table prepared by the routine below. | |
215 | * | |
216 | * For most steps we can mathematically guarantee that the initial value | |
217 | * of x is within MAXJSAMPLE+1 of the legal range, so a table running from | |
218 | * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial | |
219 | * limiting step (just after the IDCT), a wildly out-of-range value is | |
220 | * possible if the input data is corrupt. To avoid any chance of indexing | |
221 | * off the end of memory and getting a bad-pointer trap, we perform the | |
222 | * post-IDCT limiting thus: | |
223 | * x = range_limit[x & MASK]; | |
224 | * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit | |
225 | * samples. Under normal circumstances this is more than enough range and | |
226 | * a correct output will be generated; with bogus input data the mask will | |
227 | * cause wraparound, and we will safely generate a bogus-but-in-range output. | |
228 | * For the post-IDCT step, we want to convert the data from signed to unsigned | |
229 | * representation by adding CENTERJSAMPLE at the same time that we limit it. | |
230 | * So the post-IDCT limiting table ends up looking like this: | |
231 | * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, | |
232 | * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), | |
233 | * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), | |
234 | * 0,1,...,CENTERJSAMPLE-1 | |
235 | * Negative inputs select values from the upper half of the table after | |
236 | * masking. | |
237 | * | |
238 | * We can save some space by overlapping the start of the post-IDCT table | |
239 | * with the simpler range limiting table. The post-IDCT table begins at | |
240 | * sample_range_limit + CENTERJSAMPLE. | |
241 | * | |
242 | * Note that the table is allocated in near data space on PCs; it's small | |
243 | * enough and used often enough to justify this. | |
244 | */ | |
245 | ||
246 | LOCAL(void) | |
247 | prepare_range_limit_table (j_decompress_ptr cinfo) | |
248 | /* Allocate and fill in the sample_range_limit table */ | |
249 | { | |
250 | JSAMPLE * table; | |
251 | int i; | |
252 | ||
253 | table = (JSAMPLE *) | |
254 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
255 | (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE)); | |
256 | table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ | |
257 | cinfo->sample_range_limit = table; | |
258 | /* First segment of "simple" table: limit[x] = 0 for x < 0 */ | |
259 | MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); | |
260 | /* Main part of "simple" table: limit[x] = x */ | |
261 | for (i = 0; i <= MAXJSAMPLE; i++) | |
262 | table[i] = (JSAMPLE) i; | |
263 | table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ | |
264 | /* End of simple table, rest of first half of post-IDCT table */ | |
265 | for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) | |
266 | table[i] = MAXJSAMPLE; | |
267 | /* Second half of post-IDCT table */ | |
268 | MEMZERO(table + (2 * (MAXJSAMPLE+1)), | |
269 | (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE)); | |
270 | MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), | |
271 | cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE)); | |
272 | } | |
273 | ||
274 | ||
275 | /* | |
276 | * Master selection of decompression modules. | |
277 | * This is done once at jpeg_start_decompress time. We determine | |
278 | * which modules will be used and give them appropriate initialization calls. | |
279 | * We also initialize the decompressor input side to begin consuming data. | |
280 | * | |
281 | * Since jpeg_read_header has finished, we know what is in the SOF | |
282 | * and (first) SOS markers. We also have all the application parameter | |
283 | * settings. | |
284 | */ | |
285 | ||
286 | LOCAL(void) | |
287 | master_selection (j_decompress_ptr cinfo) | |
288 | { | |
289 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
290 | wxjpeg_boolean use_c_buffer; | |
291 | long samplesperrow; | |
292 | JDIMENSION jd_samplesperrow; | |
293 | ||
294 | /* Initialize dimensions and other stuff */ | |
295 | jpeg_calc_output_dimensions(cinfo); | |
296 | prepare_range_limit_table(cinfo); | |
297 | ||
298 | /* Width of an output scanline must be representable as JDIMENSION. */ | |
299 | samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; | |
300 | jd_samplesperrow = (JDIMENSION) samplesperrow; | |
301 | if ((long) jd_samplesperrow != samplesperrow) | |
302 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |
303 | ||
304 | /* Initialize my private state */ | |
305 | master->pass_number = 0; | |
306 | master->using_merged_upsample = use_merged_upsample(cinfo); | |
307 | ||
308 | /* Color quantizer selection */ | |
309 | master->quantizer_1pass = NULL; | |
310 | master->quantizer_2pass = NULL; | |
311 | /* No mode changes if not using buffered-image mode. */ | |
312 | if (! cinfo->quantize_colors || ! cinfo->buffered_image) { | |
313 | cinfo->enable_1pass_quant = FALSE; | |
314 | cinfo->enable_external_quant = FALSE; | |
315 | cinfo->enable_2pass_quant = FALSE; | |
316 | } | |
317 | if (cinfo->quantize_colors) { | |
318 | if (cinfo->raw_data_out) | |
319 | ERREXIT(cinfo, JERR_NOTIMPL); | |
320 | /* 2-pass quantizer only works in 3-component color space. */ | |
321 | if (cinfo->out_color_components != 3) { | |
322 | cinfo->enable_1pass_quant = TRUE; | |
323 | cinfo->enable_external_quant = FALSE; | |
324 | cinfo->enable_2pass_quant = FALSE; | |
325 | cinfo->colormap = NULL; | |
326 | } else if (cinfo->colormap != NULL) { | |
327 | cinfo->enable_external_quant = TRUE; | |
328 | } else if (cinfo->two_pass_quantize) { | |
329 | cinfo->enable_2pass_quant = TRUE; | |
330 | } else { | |
331 | cinfo->enable_1pass_quant = TRUE; | |
332 | } | |
333 | ||
334 | if (cinfo->enable_1pass_quant) { | |
335 | #ifdef QUANT_1PASS_SUPPORTED | |
336 | jinit_1pass_quantizer(cinfo); | |
337 | master->quantizer_1pass = cinfo->cquantize; | |
338 | #else | |
339 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
340 | #endif | |
341 | } | |
342 | ||
343 | /* We use the 2-pass code to map to external colormaps. */ | |
344 | if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { | |
345 | #ifdef QUANT_2PASS_SUPPORTED | |
346 | jinit_2pass_quantizer(cinfo); | |
347 | master->quantizer_2pass = cinfo->cquantize; | |
348 | #else | |
349 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
350 | #endif | |
351 | } | |
352 | /* If both quantizers are initialized, the 2-pass one is left active; | |
353 | * this is necessary for starting with quantization to an external map. | |
354 | */ | |
355 | } | |
356 | ||
357 | /* Post-processing: in particular, color conversion first */ | |
358 | if (! cinfo->raw_data_out) { | |
359 | if (master->using_merged_upsample) { | |
360 | #ifdef UPSAMPLE_MERGING_SUPPORTED | |
361 | jinit_merged_upsampler(cinfo); /* does color conversion too */ | |
362 | #else | |
363 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
364 | #endif | |
365 | } else { | |
366 | jinit_color_deconverter(cinfo); | |
367 | jinit_upsampler(cinfo); | |
368 | } | |
369 | jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); | |
370 | } | |
371 | /* Inverse DCT */ | |
372 | jinit_inverse_dct(cinfo); | |
373 | /* Entropy decoding: either Huffman or arithmetic coding. */ | |
374 | if (cinfo->arith_code) { | |
375 | ERREXIT(cinfo, JERR_ARITH_NOTIMPL); | |
376 | } else { | |
377 | if (cinfo->progressive_mode) { | |
378 | #ifdef D_PROGRESSIVE_SUPPORTED | |
379 | jinit_phuff_decoder(cinfo); | |
380 | #else | |
381 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
382 | #endif | |
383 | } else | |
384 | jinit_huff_decoder(cinfo); | |
385 | } | |
386 | ||
387 | /* Initialize principal buffer controllers. */ | |
388 | use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; | |
389 | jinit_d_coef_controller(cinfo, use_c_buffer); | |
390 | ||
391 | if (! cinfo->raw_data_out) | |
392 | jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); | |
393 | ||
394 | /* We can now tell the memory manager to allocate virtual arrays. */ | |
395 | (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | |
396 | ||
397 | /* Initialize input side of decompressor to consume first scan. */ | |
398 | (*cinfo->inputctl->start_input_pass) (cinfo); | |
399 | ||
400 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
401 | /* If jpeg_start_decompress will read the whole file, initialize | |
402 | * progress monitoring appropriately. The input step is counted | |
403 | * as one pass. | |
404 | */ | |
405 | if (cinfo->progress != NULL && ! cinfo->buffered_image && | |
406 | cinfo->inputctl->has_multiple_scans) { | |
407 | int nscans; | |
408 | /* Estimate number of scans to set pass_limit. */ | |
409 | if (cinfo->progressive_mode) { | |
410 | /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ | |
411 | nscans = 2 + 3 * cinfo->num_components; | |
412 | } else { | |
413 | /* For a nonprogressive multiscan file, estimate 1 scan per component. */ | |
414 | nscans = cinfo->num_components; | |
415 | } | |
416 | cinfo->progress->pass_counter = 0L; | |
417 | cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; | |
418 | cinfo->progress->completed_passes = 0; | |
419 | cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); | |
420 | /* Count the input pass as done */ | |
421 | master->pass_number++; | |
422 | } | |
423 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ | |
424 | } | |
425 | ||
426 | ||
427 | /* | |
428 | * Per-pass setup. | |
429 | * This is called at the beginning of each output pass. We determine which | |
430 | * modules will be active during this pass and give them appropriate | |
431 | * start_pass calls. We also set is_dummy_pass to indicate whether this | |
432 | * is a "real" output pass or a dummy pass for color quantization. | |
433 | * (In the latter case, jdapistd.c will crank the pass to completion.) | |
434 | */ | |
435 | ||
436 | METHODDEF(void) | |
437 | prepare_for_output_pass (j_decompress_ptr cinfo) | |
438 | { | |
439 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
440 | ||
441 | if (master->pub.is_dummy_pass) { | |
442 | #ifdef QUANT_2PASS_SUPPORTED | |
443 | /* Final pass of 2-pass quantization */ | |
444 | master->pub.is_dummy_pass = FALSE; | |
445 | (*cinfo->cquantize->start_pass) (cinfo, FALSE); | |
446 | (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); | |
447 | (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); | |
448 | #else | |
449 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
450 | #endif /* QUANT_2PASS_SUPPORTED */ | |
451 | } else { | |
452 | if (cinfo->quantize_colors && cinfo->colormap == NULL) { | |
453 | /* Select new quantization method */ | |
454 | if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { | |
455 | cinfo->cquantize = master->quantizer_2pass; | |
456 | master->pub.is_dummy_pass = TRUE; | |
457 | } else if (cinfo->enable_1pass_quant) { | |
458 | cinfo->cquantize = master->quantizer_1pass; | |
459 | } else { | |
460 | ERREXIT(cinfo, JERR_MODE_CHANGE); | |
461 | } | |
462 | } | |
463 | (*cinfo->idct->start_pass) (cinfo); | |
464 | (*cinfo->coef->start_output_pass) (cinfo); | |
465 | if (! cinfo->raw_data_out) { | |
466 | if (! master->using_merged_upsample) | |
467 | (*cinfo->cconvert->start_pass) (cinfo); | |
468 | (*cinfo->upsample->start_pass) (cinfo); | |
469 | if (cinfo->quantize_colors) | |
470 | (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); | |
471 | (*cinfo->post->start_pass) (cinfo, | |
472 | (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); | |
473 | (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); | |
474 | } | |
475 | } | |
476 | ||
477 | /* Set up progress monitor's pass info if present */ | |
478 | if (cinfo->progress != NULL) { | |
479 | cinfo->progress->completed_passes = master->pass_number; | |
480 | cinfo->progress->total_passes = master->pass_number + | |
481 | (master->pub.is_dummy_pass ? 2 : 1); | |
482 | /* In buffered-image mode, we assume one more output pass if EOI not | |
483 | * yet reached, but no more passes if EOI has been reached. | |
484 | */ | |
485 | if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { | |
486 | cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); | |
487 | } | |
488 | } | |
489 | } | |
490 | ||
491 | ||
492 | /* | |
493 | * Finish up at end of an output pass. | |
494 | */ | |
495 | ||
496 | METHODDEF(void) | |
497 | finish_output_pass (j_decompress_ptr cinfo) | |
498 | { | |
499 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
500 | ||
501 | if (cinfo->quantize_colors) | |
502 | (*cinfo->cquantize->finish_pass) (cinfo); | |
503 | master->pass_number++; | |
504 | } | |
505 | ||
506 | ||
507 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
508 | ||
509 | /* | |
510 | * Switch to a new external colormap between output passes. | |
511 | */ | |
512 | ||
513 | GLOBAL(void) | |
514 | jpeg_new_colormap (j_decompress_ptr cinfo) | |
515 | { | |
516 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
517 | ||
518 | /* Prevent application from calling me at wrong times */ | |
519 | if (cinfo->global_state != DSTATE_BUFIMAGE) | |
520 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |
521 | ||
522 | if (cinfo->quantize_colors && cinfo->enable_external_quant && | |
523 | cinfo->colormap != NULL) { | |
524 | /* Select 2-pass quantizer for external colormap use */ | |
525 | cinfo->cquantize = master->quantizer_2pass; | |
526 | /* Notify quantizer of colormap change */ | |
527 | (*cinfo->cquantize->new_color_map) (cinfo); | |
528 | master->pub.is_dummy_pass = FALSE; /* just in case */ | |
529 | } else | |
530 | ERREXIT(cinfo, JERR_MODE_CHANGE); | |
531 | } | |
532 | ||
533 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ | |
534 | ||
535 | ||
536 | /* | |
537 | * Initialize master decompression control and select active modules. | |
538 | * This is performed at the start of jpeg_start_decompress. | |
539 | */ | |
540 | ||
541 | GLOBAL(void) | |
542 | jinit_master_decompress (j_decompress_ptr cinfo) | |
543 | { | |
544 | my_master_ptr master; | |
545 | ||
546 | master = (my_master_ptr) | |
547 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
548 | SIZEOF(my_decomp_master)); | |
549 | cinfo->master = (struct jpeg_decomp_master *) master; | |
550 | master->pub.prepare_for_output_pass = prepare_for_output_pass; | |
551 | master->pub.finish_output_pass = finish_output_pass; | |
552 | ||
553 | master->pub.is_dummy_pass = FALSE; | |
554 | ||
555 | master_selection(cinfo); | |
556 | } | |
557 |