]>
Commit | Line | Data |
---|---|---|
1 | // Name: matrix.cpp | |
2 | // Purpose: wxTransformMatrix class | |
3 | // Author: Chris Breeze, Julian Smart | |
4 | // Modified by: Klaas Holwerda | |
5 | // Created: 01/02/97 | |
6 | // RCS-ID: $Id$ | |
7 | // Copyright: (c) Julian Smart and Markus Holzem | |
8 | // Licence: wxWindows licence | |
9 | ///////////////////////////////////////////////////////////////////////////// | |
10 | ||
11 | #ifdef __GNUG__ | |
12 | #pragma implementation "matrix.h" | |
13 | #endif | |
14 | ||
15 | // Note: this is intended to be used in wxDC at some point to replace | |
16 | // the current system of scaling/translation. It is not yet used. | |
17 | ||
18 | // For compilers that support precompilation, includes "wx.h". | |
19 | #include "wx/wxprec.h" | |
20 | ||
21 | #ifdef __BORLANDC__ | |
22 | #pragma hdrstop | |
23 | #endif | |
24 | ||
25 | #ifndef WX_PRECOMP | |
26 | #include "wx/defs.h" | |
27 | #endif | |
28 | ||
29 | #include "wx/matrix.h" | |
30 | #include <math.h> | |
31 | ||
32 | static const double pi = 3.1415926535; | |
33 | ||
34 | wxTransformMatrix::wxTransformMatrix(void) | |
35 | { | |
36 | m_isIdentity = FALSE; | |
37 | ||
38 | Identity(); | |
39 | } | |
40 | ||
41 | wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) | |
42 | : wxObject() | |
43 | { | |
44 | (*this) = mat; | |
45 | } | |
46 | ||
47 | double wxTransformMatrix::GetValue(int col, int row) const | |
48 | { | |
49 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
50 | return 0.0; | |
51 | ||
52 | return m_matrix[col][row]; | |
53 | } | |
54 | ||
55 | void wxTransformMatrix::SetValue(int col, int row, double value) | |
56 | { | |
57 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
58 | return; | |
59 | ||
60 | m_matrix[col][row] = value; | |
61 | m_isIdentity = IsIdentity1(); | |
62 | } | |
63 | ||
64 | void wxTransformMatrix::operator = (const wxTransformMatrix& mat) | |
65 | { | |
66 | int i, j; | |
67 | for (i = 0; i < 3; i++) | |
68 | { | |
69 | for (j = 0; j < 3; j++) | |
70 | { | |
71 | m_matrix[i][j] = mat.m_matrix[i][j]; | |
72 | } | |
73 | } | |
74 | m_isIdentity = mat.m_isIdentity; | |
75 | } | |
76 | ||
77 | bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) | |
78 | { | |
79 | if (m_isIdentity==TRUE && mat.m_isIdentity==TRUE) | |
80 | return TRUE; | |
81 | ||
82 | int i, j; | |
83 | for (i = 0; i < 3; i++) | |
84 | { | |
85 | for (j = 0; j < 3; j++) | |
86 | { | |
87 | if (m_matrix[i][j] != mat.m_matrix[i][j]) | |
88 | return FALSE; | |
89 | } | |
90 | } | |
91 | return TRUE; | |
92 | } | |
93 | ||
94 | bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) | |
95 | { | |
96 | return (! ((*this) == mat)); | |
97 | } | |
98 | ||
99 | double& wxTransformMatrix::operator()(int col, int row) | |
100 | { | |
101 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
102 | return m_matrix[0][0]; | |
103 | ||
104 | return m_matrix[col][row]; | |
105 | } | |
106 | ||
107 | double wxTransformMatrix::operator()(int col, int row) const | |
108 | { | |
109 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
110 | return 0.0; | |
111 | ||
112 | return m_matrix[col][row]; | |
113 | } | |
114 | ||
115 | // Invert matrix | |
116 | bool wxTransformMatrix::Invert(void) | |
117 | { | |
118 | double inverseMatrix[3][3]; | |
119 | ||
120 | // calculate the adjoint | |
121 | inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); | |
122 | inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); | |
123 | inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); | |
124 | ||
125 | inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); | |
126 | inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); | |
127 | inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); | |
128 | ||
129 | inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); | |
130 | inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); | |
131 | inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); | |
132 | ||
133 | // now divide by the determinant | |
134 | double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; | |
135 | if (det != 0.0) | |
136 | { | |
137 | inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; | |
138 | inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; | |
139 | inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; | |
140 | ||
141 | int i, j; | |
142 | for (i = 0; i < 3; i++) | |
143 | { | |
144 | for (j = 0; j < 3; j++) | |
145 | { | |
146 | m_matrix[i][j] = inverseMatrix[i][j]; | |
147 | } | |
148 | } | |
149 | m_isIdentity = IsIdentity1(); | |
150 | return TRUE; | |
151 | } | |
152 | else | |
153 | { | |
154 | return FALSE; | |
155 | } | |
156 | } | |
157 | ||
158 | // Make into identity matrix | |
159 | bool wxTransformMatrix::Identity(void) | |
160 | { | |
161 | m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; | |
162 | m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; | |
163 | m_isIdentity = TRUE; | |
164 | ||
165 | return TRUE; | |
166 | } | |
167 | ||
168 | // Scale by scale (isotropic scaling i.e. the same in x and y): | |
169 | // | scale 0 0 | | |
170 | // matrix' = | 0 scale 0 | x matrix | |
171 | // | 0 0 scale | | |
172 | // | |
173 | bool wxTransformMatrix::Scale(double scale) | |
174 | { | |
175 | int i, j; | |
176 | for (i = 0; i < 3; i++) | |
177 | { | |
178 | for (j = 0; j < 3; j++) | |
179 | { | |
180 | m_matrix[i][j] *= scale; | |
181 | } | |
182 | } | |
183 | m_isIdentity = IsIdentity1(); | |
184 | ||
185 | return TRUE; | |
186 | } | |
187 | ||
188 | ||
189 | // scale a matrix in 2D | |
190 | // | |
191 | // xs 0 xc(1-xs) | |
192 | // 0 ys yc(1-ys) | |
193 | // 0 0 1 | |
194 | // | |
195 | wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc) | |
196 | { | |
197 | double r00,r10,r20,r01,r11,r21; | |
198 | ||
199 | if (m_isIdentity) | |
200 | { | |
201 | double tx =xc*(1-xs); | |
202 | double ty =yc*(1-ys); | |
203 | r00 = xs; | |
204 | r10 = 0; | |
205 | r20 = tx; | |
206 | r01 = 0; | |
207 | r11 = ys; | |
208 | r21 = ty; | |
209 | } | |
210 | else if (xc!=0 || yc!=0) | |
211 | { | |
212 | double tx =xc*(1-xs); | |
213 | double ty =yc*(1-ys); | |
214 | r00 = xs * m_matrix[0][0]; | |
215 | r10 = xs * m_matrix[1][0]; | |
216 | r20 = xs * m_matrix[2][0] + tx; | |
217 | r01 = ys * m_matrix[0][1]; | |
218 | r11 = ys * m_matrix[1][1]; | |
219 | r21 = ys * m_matrix[2][1] + ty; | |
220 | } | |
221 | else | |
222 | { | |
223 | r00 = xs * m_matrix[0][0]; | |
224 | r10 = xs * m_matrix[1][0]; | |
225 | r20 = xs * m_matrix[2][0]; | |
226 | r01 = ys * m_matrix[0][1]; | |
227 | r11 = ys * m_matrix[1][1]; | |
228 | r21 = ys * m_matrix[2][1]; | |
229 | } | |
230 | ||
231 | m_matrix[0][0] = r00; | |
232 | m_matrix[1][0] = r10; | |
233 | m_matrix[2][0] = r20; | |
234 | m_matrix[0][1] = r01; | |
235 | m_matrix[1][1] = r11; | |
236 | m_matrix[2][1] = r21; | |
237 | ||
238 | /* or like this | |
239 | // first translate to origin O | |
240 | (*this).Translate(-x_cen, -y_cen); | |
241 | ||
242 | // now do the scaling | |
243 | wxTransformMatrix scale; | |
244 | scale.m_matrix[0][0] = x_fac; | |
245 | scale.m_matrix[1][1] = y_fac; | |
246 | scale.m_isIdentity = IsIdentity1(); | |
247 | ||
248 | *this = scale * (*this); | |
249 | ||
250 | // translate back from origin to x_cen, y_cen | |
251 | (*this).Translate(x_cen, y_cen); | |
252 | */ | |
253 | ||
254 | m_isIdentity = IsIdentity1(); | |
255 | ||
256 | return *this; | |
257 | } | |
258 | ||
259 | ||
260 | // mirror a matrix in x, y | |
261 | // | |
262 | // -1 0 0 Y-mirror | |
263 | // 0 -1 0 X-mirror | |
264 | // 0 0 -1 Z-mirror | |
265 | wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y) | |
266 | { | |
267 | wxTransformMatrix temp; | |
268 | if (x) | |
269 | { | |
270 | temp.m_matrix[1][1] = -1; | |
271 | temp.m_isIdentity=FALSE; | |
272 | } | |
273 | if (y) | |
274 | { | |
275 | temp.m_matrix[0][0] = -1; | |
276 | temp.m_isIdentity=FALSE; | |
277 | } | |
278 | ||
279 | *this = temp * (*this); | |
280 | m_isIdentity = IsIdentity1(); | |
281 | return *this; | |
282 | } | |
283 | ||
284 | // Translate by dx, dy: | |
285 | // | 1 0 dx | | |
286 | // matrix' = | 0 1 dy | x matrix | |
287 | // | 0 0 1 | | |
288 | // | |
289 | bool wxTransformMatrix::Translate(double dx, double dy) | |
290 | { | |
291 | int i; | |
292 | for (i = 0; i < 3; i++) | |
293 | m_matrix[i][0] += dx * m_matrix[i][2]; | |
294 | for (i = 0; i < 3; i++) | |
295 | m_matrix[i][1] += dy * m_matrix[i][2]; | |
296 | ||
297 | m_isIdentity = IsIdentity1(); | |
298 | ||
299 | return TRUE; | |
300 | } | |
301 | ||
302 | // Rotate clockwise by the given number of degrees: | |
303 | // | cos sin 0 | | |
304 | // matrix' = | -sin cos 0 | x matrix | |
305 | // | 0 0 1 | | |
306 | bool wxTransformMatrix::Rotate(double degrees) | |
307 | { | |
308 | Rotate(-degrees,0,0); | |
309 | return TRUE; | |
310 | } | |
311 | ||
312 | // counter clockwise rotate around a point | |
313 | // | |
314 | // cos(r) -sin(r) x(1-cos(r))+y(sin(r) | |
315 | // sin(r) cos(r) y(1-cos(r))-x(sin(r) | |
316 | // 0 0 1 | |
317 | wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y) | |
318 | { | |
319 | double angle = degrees * pi / 180.0; | |
320 | double c = cos(angle); | |
321 | double s = sin(angle); | |
322 | double r00,r10,r20,r01,r11,r21; | |
323 | ||
324 | if (m_isIdentity) | |
325 | { | |
326 | double tx = x*(1-c)+y*s; | |
327 | double ty = y*(1-c)-x*s; | |
328 | r00 = c ; | |
329 | r10 = -s; | |
330 | r20 = tx; | |
331 | r01 = s; | |
332 | r11 = c; | |
333 | r21 = ty; | |
334 | } | |
335 | else if (x!=0 || y!=0) | |
336 | { | |
337 | double tx = x*(1-c)+y*s; | |
338 | double ty = y*(1-c)-x*s; | |
339 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2]; | |
340 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2]; | |
341 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2]; | |
342 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2]; | |
343 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2]; | |
344 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2]; | |
345 | } | |
346 | else | |
347 | { | |
348 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1]; | |
349 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1]; | |
350 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1]; | |
351 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0]; | |
352 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0]; | |
353 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0]; | |
354 | } | |
355 | ||
356 | m_matrix[0][0] = r00; | |
357 | m_matrix[1][0] = r10; | |
358 | m_matrix[2][0] = r20; | |
359 | m_matrix[0][1] = r01; | |
360 | m_matrix[1][1] = r11; | |
361 | m_matrix[2][1] = r21; | |
362 | ||
363 | /* or like this | |
364 | wxTransformMatrix rotate; | |
365 | rotate.m_matrix[2][0] = tx; | |
366 | rotate.m_matrix[2][1] = ty; | |
367 | ||
368 | rotate.m_matrix[0][0] = c; | |
369 | rotate.m_matrix[0][1] = s; | |
370 | ||
371 | rotate.m_matrix[1][0] = -s; | |
372 | rotate.m_matrix[1][1] = c; | |
373 | ||
374 | rotate.m_isIdentity=false; | |
375 | *this = rotate * (*this); | |
376 | */ | |
377 | m_isIdentity = IsIdentity1(); | |
378 | ||
379 | return *this; | |
380 | } | |
381 | ||
382 | // Transform a point from logical to device coordinates | |
383 | bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const | |
384 | { | |
385 | if (IsIdentity()) | |
386 | { | |
387 | tx = x; ty = y; return TRUE; | |
388 | } | |
389 | ||
390 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; | |
391 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; | |
392 | ||
393 | return TRUE; | |
394 | } | |
395 | ||
396 | // Transform a point from device to logical coordinates. | |
397 | ||
398 | // Example of use: | |
399 | // wxTransformMatrix mat = dc.GetTransformation(); | |
400 | // mat.Invert(); | |
401 | // mat.InverseTransformPoint(x, y, x1, y1); | |
402 | // OR (shorthand:) | |
403 | // dc.LogicalToDevice(x, y, x1, y1); | |
404 | // The latter is slightly less efficient if we're doing several | |
405 | // conversions, since the matrix is inverted several times. | |
406 | bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const | |
407 | { | |
408 | if (IsIdentity()) | |
409 | { | |
410 | tx = x; ty = y; return TRUE; | |
411 | } | |
412 | ||
413 | double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; | |
414 | if (z == 0.0) | |
415 | { | |
416 | // z = 0.0000001; | |
417 | return FALSE; | |
418 | } | |
419 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; | |
420 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; | |
421 | return TRUE; | |
422 | } | |
423 | ||
424 | wxTransformMatrix& wxTransformMatrix::operator*=(const double& t) | |
425 | { | |
426 | for (int i = 0; i < 3; i++) | |
427 | for (int j = 0; j < 3; j++) | |
428 | m_matrix[i][j]*= t; | |
429 | m_isIdentity = IsIdentity1(); | |
430 | return *this; | |
431 | } | |
432 | ||
433 | wxTransformMatrix& wxTransformMatrix::operator/=(const double& t) | |
434 | { | |
435 | for (int i = 0; i < 3; i++) | |
436 | for (int j = 0; j < 3; j++) | |
437 | m_matrix[i][j]/= t; | |
438 | m_isIdentity = IsIdentity1(); | |
439 | return *this; | |
440 | } | |
441 | ||
442 | wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat) | |
443 | { | |
444 | for (int i = 0; i < 3; i++) | |
445 | for (int j = 0; j < 3; j++) | |
446 | m_matrix[i][j] += mat.m_matrix[i][j]; | |
447 | m_isIdentity = IsIdentity1(); | |
448 | return *this; | |
449 | } | |
450 | ||
451 | wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat) | |
452 | { | |
453 | for (int i = 0; i < 3; i++) | |
454 | for (int j = 0; j < 3; j++) | |
455 | m_matrix[i][j] -= mat.m_matrix[i][j]; | |
456 | m_isIdentity = IsIdentity1(); | |
457 | return *this; | |
458 | } | |
459 | ||
460 | wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat) | |
461 | { | |
462 | ||
463 | if (mat.m_isIdentity) | |
464 | return *this; | |
465 | if (m_isIdentity) | |
466 | { | |
467 | *this = mat; | |
468 | return *this; | |
469 | } | |
470 | else | |
471 | { | |
472 | wxTransformMatrix result; | |
473 | for (int i = 0; i < 3; i++) | |
474 | { | |
475 | for (int j = 0; j < 3; j++) | |
476 | { | |
477 | double sum = 0; | |
478 | for (int k = 0; k < 3; k++) | |
479 | sum += m_matrix[k][i] * mat.m_matrix[j][k]; | |
480 | result.m_matrix[j][i] = sum; | |
481 | } | |
482 | } | |
483 | *this = result; | |
484 | } | |
485 | ||
486 | m_isIdentity = IsIdentity1(); | |
487 | return *this; | |
488 | } | |
489 | ||
490 | ||
491 | // constant operators | |
492 | wxTransformMatrix wxTransformMatrix::operator*(const double& t) const | |
493 | { | |
494 | wxTransformMatrix result = *this; | |
495 | result *= t; | |
496 | result.m_isIdentity = result.IsIdentity1(); | |
497 | return result; | |
498 | } | |
499 | ||
500 | wxTransformMatrix wxTransformMatrix::operator/(const double& t) const | |
501 | { | |
502 | wxTransformMatrix result = *this; | |
503 | // wxASSERT(t!=0); | |
504 | result /= t; | |
505 | result.m_isIdentity = result.IsIdentity1(); | |
506 | return result; | |
507 | } | |
508 | ||
509 | wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const | |
510 | { | |
511 | wxTransformMatrix result = *this; | |
512 | result += m; | |
513 | result.m_isIdentity = result.IsIdentity1(); | |
514 | return result; | |
515 | } | |
516 | ||
517 | wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const | |
518 | { | |
519 | wxTransformMatrix result = *this; | |
520 | result -= m; | |
521 | result.m_isIdentity = result.IsIdentity1(); | |
522 | return result; | |
523 | } | |
524 | ||
525 | ||
526 | wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const | |
527 | { | |
528 | wxTransformMatrix result = *this; | |
529 | result *= m; | |
530 | result.m_isIdentity = result.IsIdentity1(); | |
531 | return result; | |
532 | } | |
533 | ||
534 | ||
535 | wxTransformMatrix wxTransformMatrix::operator-() const | |
536 | { | |
537 | wxTransformMatrix result = *this; | |
538 | for (int i = 0; i < 3; i++) | |
539 | for (int j = 0; j < 3; j++) | |
540 | result.m_matrix[i][j] = -(this->m_matrix[i][j]); | |
541 | result.m_isIdentity = result.IsIdentity1(); | |
542 | return result; | |
543 | } | |
544 | ||
545 | static double CheckInt(double getal) | |
546 | { | |
547 | // check if the number is very close to an integer | |
548 | if ( (ceil(getal) - getal) < 0.0001) | |
549 | return ceil(getal); | |
550 | ||
551 | else if ( (getal - floor(getal)) < 0.0001) | |
552 | return floor(getal); | |
553 | ||
554 | return getal; | |
555 | ||
556 | } | |
557 | ||
558 | double wxTransformMatrix::Get_scaleX() | |
559 | { | |
560 | double scale_factor; | |
561 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
562 | if (rot_angle != 90 && rot_angle != -90) | |
563 | scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi); | |
564 | else | |
565 | scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
566 | ||
567 | scale_factor = CheckInt(scale_factor); | |
568 | if (scale_factor < 0) | |
569 | scale_factor = -scale_factor; | |
570 | ||
571 | return scale_factor; | |
572 | } | |
573 | ||
574 | double wxTransformMatrix::Get_scaleY() | |
575 | { | |
576 | double scale_factor; | |
577 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
578 | if (rot_angle != 90 && rot_angle != -90) | |
579 | scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi); | |
580 | else | |
581 | scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
582 | ||
583 | scale_factor = CheckInt(scale_factor); | |
584 | if (scale_factor < 0) | |
585 | ||
586 | scale_factor = -scale_factor; | |
587 | ||
588 | return scale_factor; | |
589 | ||
590 | } | |
591 | ||
592 | double wxTransformMatrix::GetRotation() | |
593 | { | |
594 | double temp1 = GetValue(0,0); // for angle calculation | |
595 | double temp2 = GetValue(0,1); // | |
596 | ||
597 | // Rotation | |
598 | double rot_angle = atan2(temp2,temp1)*180/pi; | |
599 | ||
600 | rot_angle = CheckInt(rot_angle); | |
601 | return rot_angle; | |
602 | } | |
603 | ||
604 | void wxTransformMatrix::SetRotation(double rotation) | |
605 | { | |
606 | double x=GetValue(2,0); | |
607 | double y=GetValue(2,1); | |
608 | Rotate(-GetRotation(), x, y); | |
609 | Rotate(rotation, x, y); | |
610 | } | |
611 |