]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * jccolor.c | |
3 | * | |
4 | * Copyright (C) 1991-1996, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains input colorspace conversion routines. | |
9 | */ | |
10 | ||
11 | #define JPEG_INTERNALS | |
12 | #include "jinclude.h" | |
13 | #include "jpeglib.h" | |
14 | ||
15 | ||
16 | /* Private subobject */ | |
17 | ||
18 | typedef struct { | |
19 | struct jpeg_color_converter pub; /* public fields */ | |
20 | ||
21 | /* Private state for RGB->YCC conversion */ | |
22 | JPEG_INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ | |
23 | } my_color_converter; | |
24 | ||
25 | typedef my_color_converter * my_cconvert_ptr; | |
26 | ||
27 | ||
28 | /**************** RGB -> YCbCr conversion: most common case **************/ | |
29 | ||
30 | /* | |
31 | * YCbCr is defined per CCIR 601-1, except that Cb and Cr are | |
32 | * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. | |
33 | * The conversion equations to be implemented are therefore | |
34 | * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B | |
35 | * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE | |
36 | * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE | |
37 | * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) | |
38 | * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, | |
39 | * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and | |
40 | * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) | |
41 | * were not represented exactly. Now we sacrifice exact representation of | |
42 | * maximum red and maximum blue in order to get exact grayscales. | |
43 | * | |
44 | * To avoid floating-point arithmetic, we represent the fractional constants | |
45 | * as integers scaled up by 2^16 (about 4 digits precision); we have to divide | |
46 | * the products by 2^16, with appropriate rounding, to get the correct answer. | |
47 | * | |
48 | * For even more speed, we avoid doing any multiplications in the inner loop | |
49 | * by precalculating the constants times R,G,B for all possible values. | |
50 | * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); | |
51 | * for 12-bit samples it is still acceptable. It's not very reasonable for | |
52 | * 16-bit samples, but if you want lossless storage you shouldn't be changing | |
53 | * colorspace anyway. | |
54 | * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included | |
55 | * in the tables to save adding them separately in the inner loop. | |
56 | */ | |
57 | ||
58 | #define SCALEBITS 16 /* speediest right-shift on some machines */ | |
59 | #define CBCR_OFFSET ((JPEG_INT32) CENTERJSAMPLE << SCALEBITS) | |
60 | #define ONE_HALF ((JPEG_INT32) 1 << (SCALEBITS-1)) | |
61 | #define FIX(x) ((JPEG_INT32) ((x) * (1L<<SCALEBITS) + 0.5)) | |
62 | ||
63 | /* We allocate one big table and divide it up into eight parts, instead of | |
64 | * doing eight alloc_small requests. This lets us use a single table base | |
65 | * address, which can be held in a register in the inner loops on many | |
66 | * machines (more than can hold all eight addresses, anyway). | |
67 | */ | |
68 | ||
69 | #define R_Y_OFF 0 /* offset to R => Y section */ | |
70 | #define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ | |
71 | #define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ | |
72 | #define R_CB_OFF (3*(MAXJSAMPLE+1)) | |
73 | #define G_CB_OFF (4*(MAXJSAMPLE+1)) | |
74 | #define B_CB_OFF (5*(MAXJSAMPLE+1)) | |
75 | #define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ | |
76 | #define G_CR_OFF (6*(MAXJSAMPLE+1)) | |
77 | #define B_CR_OFF (7*(MAXJSAMPLE+1)) | |
78 | #define TABLE_SIZE (8*(MAXJSAMPLE+1)) | |
79 | ||
80 | ||
81 | /* | |
82 | * Initialize for RGB->YCC colorspace conversion. | |
83 | */ | |
84 | ||
85 | METHODDEF(void) | |
86 | rgb_ycc_start (j_compress_ptr cinfo) | |
87 | { | |
88 | my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |
89 | JPEG_INT32 * rgb_ycc_tab; | |
90 | JPEG_INT32 i; | |
91 | ||
92 | /* Allocate and fill in the conversion tables. */ | |
93 | cconvert->rgb_ycc_tab = rgb_ycc_tab = (JPEG_INT32 *) | |
94 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
95 | (TABLE_SIZE * SIZEOF(JPEG_INT32))); | |
96 | ||
97 | for (i = 0; i <= MAXJSAMPLE; i++) { | |
98 | rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i; | |
99 | rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i; | |
100 | rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; | |
101 | rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i; | |
102 | rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i; | |
103 | /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr. | |
104 | * This ensures that the maximum output will round to MAXJSAMPLE | |
105 | * not MAXJSAMPLE+1, and thus that we don't have to range-limit. | |
106 | */ | |
107 | rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; | |
108 | /* B=>Cb and R=>Cr tables are the same | |
109 | rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; | |
110 | */ | |
111 | rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i; | |
112 | rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i; | |
113 | } | |
114 | } | |
115 | ||
116 | ||
117 | /* | |
118 | * Convert some rows of samples to the JPEG colorspace. | |
119 | * | |
120 | * Note that we change from the application's interleaved-pixel format | |
121 | * to our internal noninterleaved, one-plane-per-component format. | |
122 | * The input buffer is therefore three times as wide as the output buffer. | |
123 | * | |
124 | * A starting row offset is provided only for the output buffer. The caller | |
125 | * can easily adjust the passed input_buf value to accommodate any row | |
126 | * offset required on that side. | |
127 | */ | |
128 | ||
129 | METHODDEF(void) | |
130 | rgb_ycc_convert (j_compress_ptr cinfo, | |
131 | JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |
132 | JDIMENSION output_row, int num_rows) | |
133 | { | |
134 | my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |
135 | register int r, g, b; | |
136 | register JPEG_INT32 * ctab = cconvert->rgb_ycc_tab; | |
137 | register JSAMPROW inptr; | |
138 | register JSAMPROW outptr0, outptr1, outptr2; | |
139 | register JDIMENSION col; | |
140 | JDIMENSION num_cols = cinfo->image_width; | |
141 | ||
142 | while (--num_rows >= 0) { | |
143 | inptr = *input_buf++; | |
144 | outptr0 = output_buf[0][output_row]; | |
145 | outptr1 = output_buf[1][output_row]; | |
146 | outptr2 = output_buf[2][output_row]; | |
147 | output_row++; | |
148 | for (col = 0; col < num_cols; col++) { | |
149 | r = GETJSAMPLE(inptr[RGB_RED]); | |
150 | g = GETJSAMPLE(inptr[RGB_GREEN]); | |
151 | b = GETJSAMPLE(inptr[RGB_BLUE]); | |
152 | inptr += RGB_PIXELSIZE; | |
153 | /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations | |
154 | * must be too; we do not need an explicit range-limiting operation. | |
155 | * Hence the value being shifted is never negative, and we don't | |
156 | * need the general RIGHT_SHIFT macro. | |
157 | */ | |
158 | /* Y */ | |
159 | outptr0[col] = (JSAMPLE) | |
160 | ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) | |
161 | >> SCALEBITS); | |
162 | /* Cb */ | |
163 | outptr1[col] = (JSAMPLE) | |
164 | ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) | |
165 | >> SCALEBITS); | |
166 | /* Cr */ | |
167 | outptr2[col] = (JSAMPLE) | |
168 | ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) | |
169 | >> SCALEBITS); | |
170 | } | |
171 | } | |
172 | } | |
173 | ||
174 | ||
175 | /**************** Cases other than RGB -> YCbCr **************/ | |
176 | ||
177 | ||
178 | /* | |
179 | * Convert some rows of samples to the JPEG colorspace. | |
180 | * This version handles RGB->grayscale conversion, which is the same | |
181 | * as the RGB->Y portion of RGB->YCbCr. | |
182 | * We assume rgb_ycc_start has been called (we only use the Y tables). | |
183 | */ | |
184 | ||
185 | METHODDEF(void) | |
186 | rgb_gray_convert (j_compress_ptr cinfo, | |
187 | JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |
188 | JDIMENSION output_row, int num_rows) | |
189 | { | |
190 | my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |
191 | register int r, g, b; | |
192 | register JPEG_INT32 * ctab = cconvert->rgb_ycc_tab; | |
193 | register JSAMPROW inptr; | |
194 | register JSAMPROW outptr; | |
195 | register JDIMENSION col; | |
196 | JDIMENSION num_cols = cinfo->image_width; | |
197 | ||
198 | while (--num_rows >= 0) { | |
199 | inptr = *input_buf++; | |
200 | outptr = output_buf[0][output_row]; | |
201 | output_row++; | |
202 | for (col = 0; col < num_cols; col++) { | |
203 | r = GETJSAMPLE(inptr[RGB_RED]); | |
204 | g = GETJSAMPLE(inptr[RGB_GREEN]); | |
205 | b = GETJSAMPLE(inptr[RGB_BLUE]); | |
206 | inptr += RGB_PIXELSIZE; | |
207 | /* Y */ | |
208 | outptr[col] = (JSAMPLE) | |
209 | ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) | |
210 | >> SCALEBITS); | |
211 | } | |
212 | } | |
213 | } | |
214 | ||
215 | ||
216 | /* | |
217 | * Convert some rows of samples to the JPEG colorspace. | |
218 | * This version handles Adobe-style CMYK->YCCK conversion, | |
219 | * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same | |
220 | * conversion as above, while passing K (black) unchanged. | |
221 | * We assume rgb_ycc_start has been called. | |
222 | */ | |
223 | ||
224 | METHODDEF(void) | |
225 | cmyk_ycck_convert (j_compress_ptr cinfo, | |
226 | JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |
227 | JDIMENSION output_row, int num_rows) | |
228 | { | |
229 | my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |
230 | register int r, g, b; | |
231 | register JPEG_INT32 * ctab = cconvert->rgb_ycc_tab; | |
232 | register JSAMPROW inptr; | |
233 | register JSAMPROW outptr0, outptr1, outptr2, outptr3; | |
234 | register JDIMENSION col; | |
235 | JDIMENSION num_cols = cinfo->image_width; | |
236 | ||
237 | while (--num_rows >= 0) { | |
238 | inptr = *input_buf++; | |
239 | outptr0 = output_buf[0][output_row]; | |
240 | outptr1 = output_buf[1][output_row]; | |
241 | outptr2 = output_buf[2][output_row]; | |
242 | outptr3 = output_buf[3][output_row]; | |
243 | output_row++; | |
244 | for (col = 0; col < num_cols; col++) { | |
245 | r = MAXJSAMPLE - GETJSAMPLE(inptr[0]); | |
246 | g = MAXJSAMPLE - GETJSAMPLE(inptr[1]); | |
247 | b = MAXJSAMPLE - GETJSAMPLE(inptr[2]); | |
248 | /* K passes through as-is */ | |
249 | outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */ | |
250 | inptr += 4; | |
251 | /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations | |
252 | * must be too; we do not need an explicit range-limiting operation. | |
253 | * Hence the value being shifted is never negative, and we don't | |
254 | * need the general RIGHT_SHIFT macro. | |
255 | */ | |
256 | /* Y */ | |
257 | outptr0[col] = (JSAMPLE) | |
258 | ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) | |
259 | >> SCALEBITS); | |
260 | /* Cb */ | |
261 | outptr1[col] = (JSAMPLE) | |
262 | ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) | |
263 | >> SCALEBITS); | |
264 | /* Cr */ | |
265 | outptr2[col] = (JSAMPLE) | |
266 | ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) | |
267 | >> SCALEBITS); | |
268 | } | |
269 | } | |
270 | } | |
271 | ||
272 | ||
273 | /* | |
274 | * Convert some rows of samples to the JPEG colorspace. | |
275 | * This version handles grayscale output with no conversion. | |
276 | * The source can be either plain grayscale or YCbCr (since Y == gray). | |
277 | */ | |
278 | ||
279 | METHODDEF(void) | |
280 | grayscale_convert (j_compress_ptr cinfo, | |
281 | JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |
282 | JDIMENSION output_row, int num_rows) | |
283 | { | |
284 | register JSAMPROW inptr; | |
285 | register JSAMPROW outptr; | |
286 | register JDIMENSION col; | |
287 | JDIMENSION num_cols = cinfo->image_width; | |
288 | int instride = cinfo->input_components; | |
289 | ||
290 | while (--num_rows >= 0) { | |
291 | inptr = *input_buf++; | |
292 | outptr = output_buf[0][output_row]; | |
293 | output_row++; | |
294 | for (col = 0; col < num_cols; col++) { | |
295 | outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */ | |
296 | inptr += instride; | |
297 | } | |
298 | } | |
299 | } | |
300 | ||
301 | ||
302 | /* | |
303 | * Convert some rows of samples to the JPEG colorspace. | |
304 | * This version handles multi-component colorspaces without conversion. | |
305 | * We assume input_components == num_components. | |
306 | */ | |
307 | ||
308 | METHODDEF(void) | |
309 | null_convert (j_compress_ptr cinfo, | |
310 | JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |
311 | JDIMENSION output_row, int num_rows) | |
312 | { | |
313 | register JSAMPROW inptr; | |
314 | register JSAMPROW outptr; | |
315 | register JDIMENSION col; | |
316 | register int ci; | |
317 | int nc = cinfo->num_components; | |
318 | JDIMENSION num_cols = cinfo->image_width; | |
319 | ||
320 | while (--num_rows >= 0) { | |
321 | /* It seems fastest to make a separate pass for each component. */ | |
322 | for (ci = 0; ci < nc; ci++) { | |
323 | inptr = *input_buf; | |
324 | outptr = output_buf[ci][output_row]; | |
325 | for (col = 0; col < num_cols; col++) { | |
326 | outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */ | |
327 | inptr += nc; | |
328 | } | |
329 | } | |
330 | input_buf++; | |
331 | output_row++; | |
332 | } | |
333 | } | |
334 | ||
335 | ||
336 | /* | |
337 | * Empty method for start_pass. | |
338 | */ | |
339 | ||
340 | METHODDEF(void) | |
341 | null_method (j_compress_ptr cinfo) | |
342 | { | |
343 | /* no work needed */ | |
344 | } | |
345 | ||
346 | ||
347 | /* | |
348 | * Module initialization routine for input colorspace conversion. | |
349 | */ | |
350 | ||
351 | GLOBAL(void) | |
352 | jinit_color_converter (j_compress_ptr cinfo) | |
353 | { | |
354 | my_cconvert_ptr cconvert; | |
355 | ||
356 | cconvert = (my_cconvert_ptr) | |
357 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
358 | SIZEOF(my_color_converter)); | |
359 | cinfo->cconvert = (struct jpeg_color_converter *) cconvert; | |
360 | /* set start_pass to null method until we find out differently */ | |
361 | cconvert->pub.start_pass = null_method; | |
362 | ||
363 | /* Make sure input_components agrees with in_color_space */ | |
364 | switch (cinfo->in_color_space) { | |
365 | case JCS_GRAYSCALE: | |
366 | if (cinfo->input_components != 1) | |
367 | ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |
368 | break; | |
369 | ||
370 | case JCS_RGB: | |
371 | #if RGB_PIXELSIZE != 3 | |
372 | if (cinfo->input_components != RGB_PIXELSIZE) | |
373 | ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |
374 | break; | |
375 | #endif /* else share code with YCbCr */ | |
376 | ||
377 | case JCS_YCbCr: | |
378 | if (cinfo->input_components != 3) | |
379 | ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |
380 | break; | |
381 | ||
382 | case JCS_CMYK: | |
383 | case JCS_YCCK: | |
384 | if (cinfo->input_components != 4) | |
385 | ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |
386 | break; | |
387 | ||
388 | default: /* JCS_UNKNOWN can be anything */ | |
389 | if (cinfo->input_components < 1) | |
390 | ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |
391 | break; | |
392 | } | |
393 | ||
394 | /* Check num_components, set conversion method based on requested space */ | |
395 | switch (cinfo->jpeg_color_space) { | |
396 | case JCS_GRAYSCALE: | |
397 | if (cinfo->num_components != 1) | |
398 | ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |
399 | if (cinfo->in_color_space == JCS_GRAYSCALE) | |
400 | cconvert->pub.color_convert = grayscale_convert; | |
401 | else if (cinfo->in_color_space == JCS_RGB) { | |
402 | cconvert->pub.start_pass = rgb_ycc_start; | |
403 | cconvert->pub.color_convert = rgb_gray_convert; | |
404 | } else if (cinfo->in_color_space == JCS_YCbCr) | |
405 | cconvert->pub.color_convert = grayscale_convert; | |
406 | else | |
407 | ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |
408 | break; | |
409 | ||
410 | case JCS_RGB: | |
411 | if (cinfo->num_components != 3) | |
412 | ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |
413 | if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3) | |
414 | cconvert->pub.color_convert = null_convert; | |
415 | else | |
416 | ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |
417 | break; | |
418 | ||
419 | case JCS_YCbCr: | |
420 | if (cinfo->num_components != 3) | |
421 | ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |
422 | if (cinfo->in_color_space == JCS_RGB) { | |
423 | cconvert->pub.start_pass = rgb_ycc_start; | |
424 | cconvert->pub.color_convert = rgb_ycc_convert; | |
425 | } else if (cinfo->in_color_space == JCS_YCbCr) | |
426 | cconvert->pub.color_convert = null_convert; | |
427 | else | |
428 | ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |
429 | break; | |
430 | ||
431 | case JCS_CMYK: | |
432 | if (cinfo->num_components != 4) | |
433 | ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |
434 | if (cinfo->in_color_space == JCS_CMYK) | |
435 | cconvert->pub.color_convert = null_convert; | |
436 | else | |
437 | ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |
438 | break; | |
439 | ||
440 | case JCS_YCCK: | |
441 | if (cinfo->num_components != 4) | |
442 | ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |
443 | if (cinfo->in_color_space == JCS_CMYK) { | |
444 | cconvert->pub.start_pass = rgb_ycc_start; | |
445 | cconvert->pub.color_convert = cmyk_ycck_convert; | |
446 | } else if (cinfo->in_color_space == JCS_YCCK) | |
447 | cconvert->pub.color_convert = null_convert; | |
448 | else | |
449 | ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |
450 | break; | |
451 | ||
452 | default: /* allow null conversion of JCS_UNKNOWN */ | |
453 | if (cinfo->jpeg_color_space != cinfo->in_color_space || | |
454 | cinfo->num_components != cinfo->input_components) | |
455 | ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |
456 | cconvert->pub.color_convert = null_convert; | |
457 | break; | |
458 | } | |
459 | } |